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Abstract
Spotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize 
and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germ-
plasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no 
information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate 
insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced 
different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies 
for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts 
of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved 
in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 
genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily 
responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory recep-
tor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide 
action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors 
were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action 
of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate 
strategies to control C. partellus for sustainable crop production.
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Introduction

Spotted stem borer, Chilo partellus (Crambidae: Lepidop-
tera) first described by Swinhoe in 1885, is one of the most 
widely distributed species of Chilo in the tropics. Chilo par-
tellus is native of Asia, but in the 1950s it got established 
in East Africa, and since then has spread to southern and 
central Africa (IAPC 1985). Recently, it posed a serious risk 
of invasion in Americas, Australia, China, Europe, New Zea-
land, and West Africa due to congenial environment, host 
crops, and agronomic practices (Yonow et al., 2017). It is an 
established pest of maize, sorghum, sugarcane, and rice, and 
has also been recorded from small millets and wild grasses 
(CABI 2021), causing 18 to 25% yield losses in maize and 
sorghum in Asia and Africa (Dhaliwal et al. 2015). Further, 
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the presence, abundance, and intensity of infestation by C. 
partellus are influenced by both biotic and abiotic factors, 
wherein the morphological, behavioral, physiological, and 
bioecological variation makes it to survive under diverse and 
adverse agroecological conditions (Kfir et al., 2002; Dhillon 
et al. 2021a, b).

Several techniques such as sex pheromones, cultural con-
trol, intercropping and habitat management, manipulation of 
sowing dates, host plant resistance, and biological and chem-
ical control have been explored for the management of C. 
partellus. However, these management techniques are highly 
influenced by various biotic and abiotic factors resulting in 
their inconsistent effectiveness in space and time. Over the 
past five decades, several sources of resistance have been 
identified in sorghum and maize against C. partellus (Kanta 
et al., 1997; Sharma et al. 2003, 2007; Rakshit et al. 2008; 
Dhillon and Gujar 2013); however, there has been limited 
success in development and deployment of resistant varie-
ties against this pest. Genetically, diverse crop plants/species 
receive differential herbivory by the insects under different 
geographical and environmental conditions (Chown and Ter-
blanche 2006; Sezonlin et al. 2006; Williams and Howells 
2018). This results in change in resistant or susceptible reac-
tion at different locations as a result of genotype × environ-
ment interactions, and/or existence of genetically diverse 
populations under different agroecological conditions (Bey-
eneet al., 2011; Rizvi et al. 2021; Dhillon et al. 2021b). The 
genome-wide identification and evolution of specific gene 
families have been done in woodland strawberry and cucum-
ber (Haider et al., 2019, 2021).

Currently, a total of 1590 genome insect genome-
sequencing projects are available in National Center for 
Biotechnology Information (https:// www. ncbi. nlm. nih. 
gov). The i5K initiative, also known as “the Manhattan 
Project of Entomology,” aimed at sequencing the genomes 
of 5,000 insects to revolutionize the understanding about 
insects in terms of health, food, and economic security 
(Robinson et al. 2011). Biological studies have been suc-
cessful in understanding various aspects of C. partellus 
such as bioecology (Dhillon and Hasan 2017), phenologi-
cal variation (Dhillon et al. 2021a), diapause (Dhillon et al. 
2019), reproductive physiology (Dhillon and Hasan 2018), 
biochemical profiles (Dhillon et al. 2021b; Tanwar et al. 
2021), and mating systems (Dhillon et al. 2020), including 
interaction with the host plants (Samal et al., 2021). How-
ever, there had been limited success in deciphering under-
lying mechanisms and finding novel solutions for the man-
agement of C. partellus due to non-availability of genomic 
resources. The whole genome sequencing could help in 
understanding the role of specific genes involved in pro-
duction of heat- or cold-shock proteins to adapt to diverse 
and adverse environmental conditions. Such information 
is available only for a few insect species such as silkworm, 

Bombyx mori L. (Mita et al. 2004; Xia et al. 2004; Zhang 
et al. 2014); Antarctic midge, Belgica antarctica (Diptera: 
Chironomidae) (Kelley et al. 2014); and Chilo suppressalis 
(Walker) (Yin et al. 2014; Ma et al. 2020).

The biological experiments are good at understand-
ing various dimensions of insect life; however, underlying 
mechanisms, their functions and the genes responsible can 
only be best understood by getting their genome decoded. 
Several lepidopteran insects have been targeted to gener-
ate their genomic information which is publicly available 
in their databases such as Manduca Base (http:// agrip estba 
se. org/ mandu ca/), Heliconius homepage (http:// www. helic 
onius. org), KAIKObase (Shimomura et al. 2009), SilkDB 
(Duan et al., 2010), MonarchBase (Zhan and Reppert 2013), 
KONAGAbase (Jouraku et al. 2013), DBM-DB (Tang et al. 
2014), and ChiloDB (Yin et al. 2014). These have been used 
by the scientific community for various aspects of their life 
processes such as phylogeny, endocrine system, metabolism, 
diapause physiology, and novel insect pest management 
strategies. Though the genome study of Chilo suppressalis 
has been reported (Yin et al. 2014), Chilo partellus genome 
is yet to be sequenced. Besides this, not much informa-
tion is available on olfactory genes, circadian genes, and 
olfactory receptor genes which are required in insect-pest 
management. Therefore, to generate the genomic resources, 
we undertook whole genome sequencing of C. partellus to 
get new insights into various biological processes, mecha-
nisms of insecticide detoxification, insecticide resistance, 
discovery and synthesis of target site-specific insecticide 
molecules, and other appropriate strategies for controlling 
this pest for sustainable crop production.

Materials and methods

Insect source

We used three different cohorts of C. partellus larval sam-
ples obtained from three diverse sources, i.e., laboratory-
established strain (sample 1: New Delhi: 28.6139° N, 
77.2090° E; AMSL: 216 m), North India (sample 2: Hisar: 
29°10′N; 75°46′E; AMSL 215.2 m), and South India (sam-
ple 3: Coimbatore: 11.0168° N, 76.9558° E; AMSL: 411 m). 
These three cohort larval samples had two biological rep-
licates, thus making six test samples for whole genome 
sequencing.

Genomic DNA extraction, library preparation, 
and whole genome sequencing

The above mentioned six larval samples from sample 1, 
sample 2, and sample 3 were used to obtain DNA samples. 
Total genomic DNA was extracted with Invitogen PureLink 
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Genomic DNA Mini Kit (Thermo Fisher Scientific, USA). 
The DNA quality was checked and quantified by Nan-
oDrop and Qubit Florimeter, Thermo Scientific, USA. The 
DNA library was prepared using NEBNext® Ultra™ DNA 
Library Prep Kit for Illumina® (NEB #E7645) as per the 
standard protocols (New England Biolabs).

The whole genome sequencing of the genomic DNA 
samples of six C. partellus larval samples from sample 1, 
sample 2, and sample 3 was performed on Illumina HiSeq 
2500 to get paired-end reads. It was done in Rapid Run 
mode, with mean read length of 150 bp. Further, 500 ng of 
genomic DNA of test samples was enzymatically fragmented 
by dsDNA Fragmentase. The library was prepared using 
the NEBNext Ultra II kit according to the manufacturer’s 
instructions (New England Biolabs, USA).

Preprocessing and quality assessment of raw 
sequencing reads

The Illumina sequencing reads of C. partellus were qual-
ity checked using FASTQC v0.11.5 (Andrews 2010). The 
fastq files were pre-processed before performing assembly. 
Removal of contaminated reads was performed to get the 
error corrected reads. The low-quality bases with Phred5 
quality score of less than Q30, and the adapter sequence 
contaminations in raw reads were removed using PRIN-
SEQ v0.20.4 (Schmieder and Edwards 2011) and repaired 
the reads using BBmap v37.66 (https:// sourc eforge. net/ proje 
cts/ bbmap).

Genome assembly and quality assessment

De novo assembly were performed using ABySS (Simpson 
et al. 2009), MaSuRCA (Zimin et al., 2013), SOAPdenovo2 
(Luo et al. 2012), and SPAdes (Bankevich et al., 2012) for 
sample 1, sample 2, and sample 3. The default k-mer sizes 
were used for MaSuRCA and SPAdes. A range of k-mers 
from 31 to 95 was used for SOAPdenovo2 assembly and 
ABySS assembly.

Further, the improved hybrid genome assembly was 
achieved by merging the above three best contiguity 
genome assemblies of sample 1, sample 2, and sample 3 
by using the Metassembler v1.5. High N50 value and mini-
mum number of contigs increased N50 values together 
with longer scaffolds contributed to improving the genome 
coverage (Wences and Schatz, 2015). The “gaps” and “Ns” 
caused by repeats were measured in the mis-assemblies. 
In the course of meta-assembly, we minimized the gaps 
and other sequencing errors. We employed Quast v5.0.2 
(Gurevich et al. 2013) to gather extensive assembly statis-
tics. BUSCO v5.0 (Simao et al., 2015) was employed for 

assessing the genome completeness by checking the pres-
ence of conserved genes in the assembled contigs.

Gene prediction and functional annotations

We predicted CDSs from the SPAdes and Metassembler 
assembled contigs using Augustus v3.2.3 (Stanke and 
Morgenstern, 2005). The predicted genes were anno-
tated using the BLASTX search against the NCBI non-
redundant protein database (NR) and Universal Protein 
(UniProt) (The UniProt Consortium 2017), Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (Kanehisa et al. 
2021), and Gene Ontology (GO). For functional enrich-
ment and biological interpretation of the genes, the GO 
and KEGG ontology terms for genes were mapped using 
the Blast2GO software (Conesa and Götz 2008). The sig-
nificantly enriched pathways for genes in this study were 
determined by the Blast2GO software.

Identification of detoxification genes, circadian 
genes, and olfactory receptor genes and their 
sequence homology distribution

The genes related to insecticide action and detoxification 
were curated from various databases and repositories such 
as UniProt (https:// www. unipr ot. org) and NCBI database 
(https:// www. ncbi. nlm. nih. gov), encoding detoxification 
metabolic enzymes namely cytochrome P450s (CYP450s) 
and glutathione S-transferases (GSTs), and the target 
receptors related to insecticide action, namely acetylcho-
linesterases (AChEs), nicotinic acetylcholine receptors 
(nAChRs), and gamma-aminobutyric acid (GABA recep-
tors). The predicted genes were annotated using BLASTx 
within the non-redundant (NR) NCBI nucleotide data-
base at the cut-off e-value of 0.05 by searching reference 
sequences. Figure 1 shows the schematic illustration of 
sequencing and analysis of the three different cohorts of 
these C. partellus larval samples.

Identification of SSR markers in Chilo partellus 
genome

The assembled genome was used for SSRs mining using 
MISA (Microsatellite Analysis) tool (http:// pgrc. ipk- gater 
sleben. de/ misa/). We identified mono- to hexa-nucleotides 
microsatellites using the criteria of at least 10 repeats for 
mono-nucleotide, 6 repeats for di-nucleotides, five repeats 
for tri- and tetra-nucleotide, and 4 repeats for penta- and 
hexa-nucleotide (Thiel et al. 2003).
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Results

Preprocessing and quality assessment of raw 
sequencing reads

After quality check of Illumina reads of C. partellus 
using FASTQC v0.11.5, these were pre-processed, 

removing the low-quality bases with Phred5 quality 
score, Q < 30. After dropping 8.32%, 7.53%, and 6.87% 
of the reads from sample 1, sample 2, and sample 3, 
respectively, ~ 32 GB (91.68%), ~ 42 GB (92.47%), and 
38  GB (93.13%) cleaned reads were considered for 
assembly. Summary of the raw sequencing and cleaned 
reads is provided in Table 1.

Fig. 1  Schematic illustra-
tion of the whole genome 
sequencing and analysis 
overview of the three differ-
ent cohorts of C. partellus 
larval samples obtained from 
three diverse sources (WGS1= 
Sample 1; WGS2=Sample 2; 
WGS3=Sample 3)

Table 1  Read statistics before 
and after pre-processing

Sample Read ori-
entation

Total number of reads Total number of 
bases (Mb)

Total number of 
cleaned reads

Total number 
cleaned bases 
(Mb)

Sample 1 R1 35,013,914 5252.09 32,099,998 4233.83
R2 35,013,914 5252.09 32,099,998 4233.83

Sample 2 R1 45,448,931 6817.34 42,025,151 5275.21
R2 45,448,931 6817.34 42,025,151 5275.21

Sample 3 R1 40,940,595 6141.09 38,126,834 5,136.21
R2 40,940,595 6141.09 38,126,834 5,136.21
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Genome assembly and quality assessment

Improved hybrid draft genome assembly 
through reconciliation algorithm

De novo assembly performed for sample 1, sample 2, and 
sample 3 using various assemblers showed the SPAdes 
assembly to perform better. So, for the further downstream 
analysis, SPAdes assembly was selected, since this had 
better contiguity than all other assemblies generated (Sup-
plementary File 1).

The reconciliation assembly approach was employed 
in the present work to refine the incomplete draft 
genome assemblies of sample 1, sample 2, and sam-
ple 3. The Metassembler was employed for merging 
the three assemblies to get one hybrid, and a better 
assembly. Sample 1 consisted of 162,790 contigs (N50 
3914), sample 2 146,416 contigs (N50 4225), and sam-
ple 3 323,106 contigs (N50 1839). After pooling these 
sequences, Metassembler was performed for hybrid 
assembly, resulting into 102,935 reads with the N50 
value 4466 (Table 2). However, the improved draft ver-
sion of assembly was generated by using an iterative 
merging strategy of Metassembler v1.5 by merging sam-
ple 1, sample 2, and sample 3 to obtain paired-end reads 
of C. partellus. For the parameters measured, default 
values suggested in manuals were used. The Metassem-
bler implemented the reconciliation algorithm to refine 
and obtain the reconstructed genome.

Completeness of the improved hybrid assembly

BUSCO (Benchmarking Universal Single-Copy Orthologs) 
was employed for quantitative assessment of the assembly 
and its annotation (Simao et al. 2015). Of the total 1,013 
BUSCO groups that were searched, the meta-assembly 
contained 645 complete (C), 639 complete and single-copy 
(S), 6 complete and duplicated (D), 262 fragmented (F), and 
106 missing (M) BUSCOs. Comparatively sample 1, sam-
ple 2, and sample 3, assemblies were 62.58% (S: 61.99%, 
D: 0.59%, F: 26.25%, M: 11.15%), 62.88% (S: 62.19%, 
D: 0.69, F: 26.55%, M: 10.56%), and 45.90% (S: 45.21%, 
D: 0.69%, F: 38.59%, M: 15.49%) complete, respectively 
(Table 3). The gene completeness score as measured by 
BUSCO increased in the improved assembly, while the num-
bers of fragmented and missing BUSCO genes were reduced 
(Fig. 2). This genome comparison can be used to help such 
draft assemblies to obtain the finished genome assembly.

Gene prediction and functional annotations

The FGENESH module of the Molquest v.4.5 software 
package (Salamov and Solovyev  2000) and Augustus 
were employed, and 21,378 genes were predicted for the 
improved meta-assembly (Table 4). A number of predicted 
genes were found relatively lower in sample 1, sample 2, 
and sample 3 assemblies, but greater in the improved one. 
Gene identification from the Metassembler dataset against 
the Rhodnius prolixus Stäl as a model suggested 21,378 

Table 2  Assembly statistics 
of genomes of three different 
populations of C. partellus and 
improved hybrid assembly

Assembly statistics Sample 1 Sample 2 Sample 3 Improved 
hybrid 
assembly

Contigs (> = 0 bp) 162,790 146,416 323,106 102,935
Contigs (> = 1000 bp) 104,493 102,326 134,196 88,892
Contigs (> = 5000 bp) 18,285 19,975 4292 18,260
Contigs (> = 10,000 bp) 3523 3930 176 3519
Contigs (> = 25,000 bp) 77 88 0 77
Contigs (> = 50,000 bp) 1 1 0 1
Total length (> = 0 bp) 383,266,348 385,246,634 386,881,630 332,507,095
Total length (> = 1000 bp) 345,748,227 354,725,565 279,381,634 321,528,655
Total length (> = 5000 bp) 147,542,127 162,392,947 27,770,148 147,365,308
Total length (> = 10,000 bp) 47,556,389 53,480,132 2,095,132 47,499,098
Total length (> = 25,000 bp) 2,361,723 2,632,691 0 2,361,723
Total length (> = 50,000 bp) 52,319 59,923 0 52,319
Contigs 145,130 137,851 237,966 102,202
Largest contig 52,319 59,923 22,089 52,319
Total length 376,702,623 382,067,382 354,247,675 332,205,333
GC (%) 34.24 34.34 35.04 34.27
N50 3914 4225 1839 4466
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total genes in the improved version, but showed a lower 
number of genes with another dataset, which was included 
in merging and used to obtain the improved one (Mesquita 
et al. 2015). Variable number of predicted genes observed 
in the draft assemblies can be attributed to split genes 
and over estimation during gene finding. The over estima-
tion of genes often results when fragmented single genes 
are present on multiple contigs or scaffolds. Improve-
ments in gap filling and read mapping depth resulted in 

completeness of the number of genes in meta-assembly. 
The predicted total gene number was greater in meta-
assembly than in other draft assemblies (Table 4).

Identification of detoxification genes, circadian 
genes, and olfactory receptor genes and their 
sequence homology distribution

Identification of detoxification genes

Insects are faced with numerous toxins (xenobiotics) as they 
go through the life cycle, some produced naturally by plants 
(allelochemicals), and some introduced by humans (insec-
ticides). To survive the natural toxins, insects have evolved 
various detoxification mechanisms. These mechanisms allow 
the insects to withstand insecticides, and the level and the 
mode of action greatly differ. This results in differences 

Table 3  BUSCO assembly 
statistics of C. partellus genome

BUSCO assembly statistics Sample 1 Sample 2 Sample 3 Improved 
hybrid 
assembly

Complete BUSCOs (C) 634 637 465 645
Complete and single-copy BUSCOs (S) 628 630 458 639
Complete and duplicated BUSCOs (D) 6 7 7 6
Fragmented BUSCOs (F) 266 269 391 262
Missing BUSCOs (M) 113 107 157 106
Total BUSCO groups searched 1013 1013 1013 1013

Fig. 2  Comparative gene completeness statistics using the BUSCO for all the three different C. partellus populations with the merged genome 
assembly

Table 4  Gene search from different populations and the improved 
draft genome of C. partellus 

Parameter Sample 1 Sample 2 Sample 3 Metassembler

No. of genes pre-
dicted

12,706 12,762 10,760 21,378
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in susceptibility to insecticides in different populations of 
C. partellus. Knowledge of detoxification mechanisms is 
important to deploy different resistance mechanisms in crop 
plants, and to select effective insecticides for pest manage-
ment under field conditions. Therefore, using blast search 
and filtering by searching for motifs using hmmsearch, 
which produce a full list of hmmsearch and HMMERHEAD 
command line options (Johnson et al. 2010), resulted in iden-
tification of 64 cytochrome P450 genes (CYP450s), and 36 
glutathione S-transferases genes (GSTs), which are members 
of the major multigene enzyme families primarily respon-
sible for xenobiotic metabolism, i.e., metabolism of insec-
ticides and plant-toxic allelochemicals (Bao et al. 2012). In 
addition, insecticide targets such as 4 acetylcholinesterase 
(AChE), 14 γ-aminobutyric acid receptor (GABA), and 15 
nicotinic acetylcholine receptor (nAChR) genes were also 
identified in C. partellus (Supplementary Table 1).

Identification of circadian genes and olfactory receptor 
genes

A total of 3,291 reference protein sequences of insect circa-
dian genes were obtained from the UniProt database (https:// 
www. unipr ot. org) and CGDB (circadian genes a database) 
(http:// cgdb. biocu ckoo. org/ index. php), which included 
ortholog gene species, Drosophila melanogaster, Bombyx 
mori, Chilo suppressalis, and Danaus plexippus. Manually 
annotated well-studied circadian genes for (1) period (PER), 
(2) timeless (TIM), (3) clock (CLK), (4) cycle (CYC), and 
(5) cryptochrome (CRY genes) were also identified by using 
conserved domains within proteins. We found a total of 183 
(> 80% homolog) and 1541 (> 40% homolog) circadian 
genes from this analysis, which were manually annotated 
(Supplementary Table 2). Eleven olfactory receptor (OR) 
genes (Supplementary Table 2) were also found in the C. 
partellus genome against a 66 well-curated insect OR gene 
family (https:// github. com/ sdk15/ insec tOR) responsible 
for chemosensory processes such as locating food, shelter, 
mates, and oviposition sites.

Sequence homology distribution of detoxification, 
circadian and olfactory receptor genes

To annotate these genes, we searched reference sequences 
using BLASTx within the non-redundant (NR) NCBI 
nucleotide database using a cut-off e-value of 0.05. A 
total of 5,427 genes (25.38%) did not match any annotated 
sequences due to short nucleotide length. However, 15,951 
genes (74.61%) displayed annotated BLASTx hits. The 
e-value distributions for the 15,951 annotated genes showed 
that 47.2% of the sequences had significant homology 
matches in the NCBI database. The similarity distribution 
showed that 10.1% of the sequences had greater than 80% 

homology, 57.42% of the sequences had above 60% homol-
ogy, 21.67% of the sequences had above 40% homology, 
and 10.81% of the sequences had less than 40% homology. 
A species distribution analysis revealed that majority of the 
sequences closely resembled to other Lepidopterans, viz., 
C. suppressalis, followed by Helicoverpa armigera (Hub-
ner), Ostrinia furnacalis (Guenée), and Papilio xuthus L. 
(Fig. 3; Supplementary Table 3). Approximately 66.09% of 
the genes had top homology matches with C. suppressalis 
(Supplementary Table 4).

Functional annotation of predicted genes

The identified genes were annotated by against NCBI non-
redundant protein database, UniProt, KEGG, and GO. A 
total of 20,818 genes (42.53%) were successfully annotated, 
including 20,001 (40.87%) from the NR database, 13,980 
(28.56%) from the UniProt database, 7,943 (16.23%) from 
the KEGG database, and 8,239 (16.83%) from the GO data-
base. The GO distribution for the genes was classified into 
three categories (139 subcategories): biological processes 
(69 subcategories), molecular function (38 subcategories), 
and cellular components (32 subcategories) (Supplementary 
Table 5).

For the biological processes category, clusters were 
highly represented where categories relating to “biosyn-
thetic process” were enriched for 3,869 genes, followed 
by “cellular nitrogen compound metabolic process” 
for 2,625 genes, “signal transduction” for 2,566 genes, 
“cellular protein modification process” for 2,559 genes, 
“DNA metabolic process” for 1,751 genes, “biologi-
cal process” for 1,688 genes, “lipid metabolic process” 
for 1,196 genes, “response to stress” for 10,19 genes, 
“immune system process” for 104 genes, and “protein 
folding” for 97 genes. For the cellular components cat-
egory, the clusters relating to “cellular component” had 
an enrichment of 8,565 genes, “nucleus” for 3,513 genes, 
and “protein-containing complex” for 2,220 genes. For 
the molecular functions category, clusters relating to 
“ion binding” were 8,678 genes, “molecular function” for 
4,295 genes, “oxidoreductase activity” for 3,036 genes, 
“transmembrane transporter activity” for 2,570 genes, 
“peptidase activity” for 2,437 genes, “kinase activity” for 
1,890 genes, “DNA binding” for 1,754 genes, “enzyme 
regulator activity” for 1,115 genes, and “enzyme binding” 
for 217 genes (Table 5; Fig. 4).

To further evaluate the annotation for identified detoxi-
fication gene, a total of 133 detoxification genes were 
enriched with 471 Gene Ontology terms. We examined the 
annotated genes that possessed the functional classifications. 
Out of total 133 total genes, the complete list of annota-
tion with respect to protein families, PRINTS, PROSITE, 
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InterPro, Pfam, and PANTHER are listed in the Supplemen-
tary Table 1.

KEGG Ontology annotation‑based functional enrichment 
and metabolic pathway analysis

According to the KEGG pathway analysis, we found 
6,560 significantly enriched genes in pathways using 
the associated KOG (KEGG Ontology of Genes) anno-
tation terms. Moreover, with these associated pathway 
IDs, 468 enzymes were found, and their effect on corre-
sponding metabolism was also explored. The major gene-
enriched pathways included “Purine metabolism, Thia-
mine metabolism” (28.80%), “Drug metabolism—other 
enzymes” (7.25%), “Glycerolipid metabolism” (3.35%), 
“Folate biosynthesis” (2.62%), “Porphyrin and chlorophyll 
metabolism” (2.39%), “Arginine and proline metabolism” 

(1.92%), and “Cutin, suberine, and wax biosynthesis” 
(1.92%). All extensive pathway maps have been provided 
in Supplementary Table 6.

Gene orthology–based analysis

The formations of orthologs are the key steps in finding gene 
evolution. We identified unique and shared gene families 
and proteomes in C. partellus and C. suppressalis (GenBank 
Accession: GCA_004000445.1). We detected 90.60% shared 
gene orthology between C. partellus and C. suppressalis 
(Fig. 5). Further comparison of a contiguous region of the 
species revealed that 5.76% and 3.63% of the sequences were 
not shared between C. suppressalis and C. partellus. The 
species form 9,365 clusters, 1,634 orthologous clusters, and 
7,731 single-copy gene clusters. Comparison of proteomes 
revealed that 8,485 gene clusters were common for C. par-
tellus and C. suppressalis (Supplementary Table 7).

Identification of SSR markers in Chilo partellus 
genome

A total of 63,816 SSRs were identified in the 102,935 
sequences of assembled genome. Out of which, 41,036 were 
mononucleotides, 14,378 dinucleotides, 5,941 trinucleotides, 

Fig. 3  Sequence homology distribution for Chilo partellus genes

Table 5  Gene Ontology terms 
identified in each category for 
identified detoxification genes

Category Number 
of terms

Biological processes 43
Molecular functions 448
Cellular components 86
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2,215 tetranucleotides, 196 pentanucleotides, and 50 hexa-
nucleotides (Table 6, Fig. 6). Among the 63,816 microsatel-
lites, A/T-type (97.55%) microsatellites were most common 
in the genome, followed by AC/GT (45.45%), and AAT/
ATT (63.03%) AAAC/GTTT (36.97%), AAATG/ATTTC 
(21.93%), and AAG GAT /ATC CTT  (28%) in mononucleo-
tides, dinucleotides, trinucleotides, tetranucleotides, penta-
nucleotides, and hexanucleotides, respectively. The details 
about all the identified SSRs for frequency of identified SSR 
motifs and frequency of classified repeat types have been 
provided in Supplementary Table 8.

Discussion

The draft genome assembly of spotted stem borer, C. par-
tellus, reveals its genome size ≈332.2 Mb, which is larger 
than genomes of D. melanogaster-180 Mb (Adams et al. 
2000), Danaus plexippus-248 Mb (Zhan et al. 2011), Heli-
conius melpomene (L)-266 Mb (Dasmahapatra et al. 2012), 

and Papilio polytes L-227 Mb (Nishikawa et al. 2015), and 
smaller than other important lepidopteran insect pests of 
maize like Busseola fusca (Fuller)-492.9 Mb (Hardwick 
et al. 2019), C. suppressalis-824 Mb (Yin et al. 2014), 
and Spodoptera frugiperda (J.E. Smith)-371 Mb (Gouin 
et al. 2017). The differences in the genome size of dif-
ferent insects could be due to number of repetitive ele-
ments in the genome and other factors like physiology, 
range of host plants, and environmental adaptation (Xue 
et  al., 2014). The GC content of C. partellus genome 
(34.27%) was almost similar to other important insect 
pests such as Nilaparvata lugens (Stål) (37.59%) (Xue 
et al. 2014), Laodelphax striatellus (Fallén) (34.5%) (Zhu 
et al. 2017), Sogatella furcifera (Horváth) (31.6%) (Evans 
and Gundersen-Rindal 2003), and S. frugiperda (32.97%) 
(Kakumani et al. 2014). Furthermore, the constitution of 
draft genome assembly of C. partellus resulted in 102,935 
sequences with N50 length of 4466, had 645 complete 
and 639 complete and single-copy orthologs, and a total 
of 21,378 genes analogous to R. prolixus, which can be 

Fig. 4  GO distribution of C. partellus predicted genes. A Biological process. B Cellular component. C Molecular function
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helpful in obtaining the finished genome assembly. Since 
this is the first maiden effort to sequence the C. partellus 
genome, the genome assembly coverage is comparatively 
lower than these discussed insects.

The gene sequence homology found 15,951 genes in C. 
partellus with 74.61% of the sequences closely resembling 
to other lepidopterans, viz., C. suppressalis, H. armigera, O. 

furnacalis, and P. xuthus, having top homology with C. sup-
pressalis genes (66.09%). All these compared pest insects 
are plant borers/foliage feeders and are common in many 
aspects like visual, chemosensory, feeding behavior, diges-
tive machinery, and metamorphosis, while differ in their 
host preference. Furthermore, most of the insects including 
these resembling lepidopterans have evolved strategies for 
survival under adverse environmental conditions by enter-
ing diapause. Chilo suppressalis, the most resembling insect 
species in terms of gene sequence homology to C. partellus, 
undergo facultative diapause at the onset of autumn (Inoue 
and Kamano 1957), while the other maize borers like Dia-
traea grandiosella Dyar and B. fusca undergo facultative 
summer diapause under tropical and subtropical conditions 
(Usua 1973; Kikukawa and Chippendale 1983). Unlike these 
maize borers, C. partellus undergo both winter and sum-
mer diapause in the larval stage (Dhillon et al. 2019), and 
could be having other additional untapped genes ascribing 
to dual diapause which are not captured in the present draft 
genome assembly of C. partellus. H. armigera has also been 
reported to undergo both winter and summer diapause, but 
in the pupal stage (Wilson et al. 1979; Wu and Guo 1995; 
Liu et al. 2006).

The insect behavioral activities which regulate key bio-
logical events like locomotion, courtship, mating behav-
ior, seasonal adaptations, egg-laying, and photoperiodism 

Fig. 5  Venn diagram (Edwards 
plot) showing the overlap of 
orthologous genes found within 
five species, viz., Chilo partel-
lus, Chilo suppressalis, Dros-
ophila melanogaster, Bombyx 
mori, and Danaus plexippus 

Table 6  The microsatellites (SSRs) identified from assembled 
genome of C. partellus 

Total number of sequences examined 102,935

Total size of examined sequences (bp) 332,507,095
Total number of identified SSRs 63,816
Number of SSR containing sequences 41,655
Number of sequences containing more than 1 SSR 14,487
Number of SSRs present in compound formation 3726
Distribution to different repeat type classes
Unit size Number of SSRs
Monomer 41,036
Dimer 14,378
Trimer 5941
Tetramer 2215
Pentamer 196
Hexamer 50
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mainly depend on the circadian rhythms (Saunders 2002). 
Further, the olfactory receptor genes help in perceiving the 
chemical cues, while circadian genes play an important role 
in staggering the biological activities to prevailing situa-
tion and adaption to adverse environmental conditions. A 
total of 3,291 reference protein sequences of insect circadian 
genes orthologous to D. melanogaster, B. mori, C. suppres-
salis, and D. plexippus were identified, of which 183 genes 
have > 80% homology and 1541 genes with > 40% homol-
ogy circadian genes including CRY genes along with 11 
olfactory receptor genes in the C. partellus genome, which 
could be responsible for chemosensory processes, varying 
reaction to diverse host plants and genotypes, and adapta-
tion under diverse agro-ecological conditions. The presence 
of circadian rhythm genes like CRY genes in C. partellus 
like that in other lepidopterans including C. suppressalis 
(Kattupalli et al., 2021) indicates the correctness of our 
draft genome assembly. Furthermore, the phylogenies are 
important for addressing various biological questions such 
as relationships among species as well as genes, the origin 
and spread of the pest, and demographic changes among 
different Chilo species. Comparison of proteomes in the pre-
sent study revealed 8,485 gene clusters with 90.60% shared 
gene orthology, and a unique and shared gene (GenBank 
Accession: GCA_004000445.1) between C. partellus and 
C. suppressalis. Further, a total of 63,816 microsatellites 
were also identified in the present assembled genome, from 
which reliable SSRs could be designed for their deployment 
in deciphering the population structure of C. partellus under 
diverse agro-ecologies. The SSRs mined can be of much use 
for population structure and diversity analysis. They can also 
be used for pedigree construction as well as DNA signature 
for sub-species level. Such information are required in insect 
management.

The functional gene annotation of C. partellus predicted 
genes and detoxification genes successfully annotated a 
total of 20,818 genes (42.53%) encompassing biological 
processes, molecular function, and cellular components, 
of which 133 were functional detoxification genes. The 
KEGG metabolic pathway analysis found 6,560 signifi-
cantly enriched genes encompassing major gene-enriched 
pathways, which indicate that the combination of the 
detoxification genes with metabolic pathway genes could 
play a significant role in xenobiotic detoxification in C. 
partellus. Although the frequency of the metabolic path-
way genes in the present hybrid assembly was low, more 
such gene families and functional genes could be identi-
fied once the complete genome assembly of C. partellus 
is available. Further, the insects have evolved specialized 
detoxification mechanisms, assisted by several detoxify-
ing genes such as ABC transporters, cytochrome P450, 
cytochrome P450 monooxygenase, glutathione S trans-
ferase, carboxylesterase, cholinesterase, and UDP-glycosyl 
transferase, to deal with xenobiotic defense and to with-
stand insecticides and/or display varying levels of suscep-
tibility to the insecticides. The CYP450 genes have been 
reported to play role in inactivation of endogenous toxic 
compounds in several insects (Ono et al. 2006; Després 
et al. 2007). Like in C. partellus, other insects have also 
been found to harbor several xenobiotic detoxifying genes 
like 130 CYP450 and 6 GSTs in C. suppressalis, nine 
GST genes in S. furcifera, and 13 GST genes have been 
identified in N. lugens (Zhou et al. 2013), which have the 
potential to detoxify both endogenous and xenobiotic com-
pounds. The identified detoxification genes may also play a 
role in residual detoxification by bioweapon catalytic scav-
engers (Paidi et al. 2021). From the present draft genome 
assembly of C. partellus, we found 64 CYP450s, 36GSTs, 
4 AChE, 14 GABA, and 15 nAChR genes, which could 

Fig. 6  Graphical distribution of 
SSR-motif types

Monomer Dimer Trimer

Tetramer Pentamer Hexamer
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be useful in understanding the detoxification mechanism 
and xenobiotic metabolism and designing target-specific 
insecticides to control the ecologically diverse C. partel-
lus populations.

Conclusions

This is the first report of whole genome sequencing of C. 
partellus providing significant information on one of the 
devastating pests of coarse cereals, sorghum, and maize, C. 
partellus. The genes related to mode of action of insecticides 
and the detoxification mechanisms were identified, includ-
ing 64 cytochrome P450 genes (CYP450s), 36 glutathione 
S-transferases (GSTs), 4 acetylcholinesterase (AChE), 14 
γ-aminobutyric acid receptor (GABA), and 15 nicotinic ace-
tylcholine receptor (nAChR) genes. This information will 
be useful for deployment of selective insecticides for the 
control of C. partellus for sustainable crop production. The 
discovered SSR markers can be used for population struc-
ture, diversity analysis, and DNA signature for sub-species 
level. These findings have immense potential use in insect-
pest management in endeavor of better crop productivity.
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