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Summary
Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they

guarantee food security for people living in areas with extreme climatic conditions and provide

stress-related genetic resources for other crops. However, no platform is available to provide a

comprehensive and systematic multi-omics analysis for millets, which seriously hinders the

mining of stress-related genes and the molecular breeding of millets. Here, a free, web-

accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.

novogene.com) has been developed. The Milletdb contains six millets and their one related

species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data,

which enable Milletdb to be the most complete millets multi-omics database available. We stored

GWAS (genome-wide association study) results of 20 yield-related trait data obtained under

three environmental conditions [field (no stress), early drought and late drought] for 2 years in

the database, allowing users to identify stress-related genes that support yield improvement.

Milletdb can simplify the functional genomics analysis of millets by providing users with 20

different tools (e.g., ‘Gene mapping’, ‘Co-expression’, ‘KEGG/GO Enrichment’ analysis, etc.). On

the Milletdb platform, a gene PMA1G03779.1 was identified through ‘GWAS’, which has the

potential to modulate yield and respond to different environmental stresses. Using the tools

provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family

expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress

responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing

and molecular breeding of millets.

Introduction

Global hunger has been increasing since 2014 (Molotoks

et al., 2021). According to the Food and Agriculture Organization

of the United Nations (FAO, https://www.fao.org/state-of-food-

security-nutrition/en/), approximately 720 to 811 million people

faced hunger in 2020, with those from Asia and Africa being the

worst affected. Global climate change and frequent extreme

weather events are important factors leading to global hunger

(FAO, 2018), with climate-affected cereal production expected to

be 1%–7% by 2060 (Juma and Kelonye, 2016). Consequently,

cultivating crops with high-abiotic stress tolerance is essential to

ensure an adequate food supply in the future (Varshney

et al., 2021a,b).

Millets are a collective name for coarse grains (McSteen and

Kellogg, 2022), with the characteristics of small grains
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and ranking sixth in the world in terms of yield (Shahidi and

Chandrasekara, 2013). In 2018, the world’s total millet produc-

tion was estimated at 31 million tones, with more than 96% of

millet crops grown in regions with poor soil fertility and limited

rainfall in Africa and Asia (Muthamilarasan and Prasad, 2021;

Yousaf et al., 2021). Millets have evolved sophisticated regulatory

mechanisms to improve tolerance to various stresses, in

adaptation to different environmental conditions and become

climate–smart crops (Ceasar and Maharajan, 2022). Conse-

quently, millets can curb food insecurity caused by climate

change (Adebiyi et al., 2018).

Millets include 11 genera, the more famous are pearl millet

(Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.)

Morrone) and the small millets, finger millet (Eleusine

coracana), foxtail millet (Setaria italica), proso millet (Panicum

miliaceum), barnyard millet (Echinochloa crus-galli), tef (Era-

grostis tef), fonio (Digitaria exilis) and Job’s tears (Coix lacryma-

jobi) (Goron and Raizada, 2015; Muthamilarasan et al., 2019;

Yousaf et al., 2021). Some millets, such as pearl millet, have a

close phylogenetic relationship with other major Poaceae crops

such as sorghum (Sorghum bicolor), maize (Zea mays) and rice

(Oryza sativa), which could enable the easy transfer of its

abiotic-stress resistance genes to these crops (Desai

et al., 2006; Islam et al., 2010; Verma et al., 2007). For

example, a pearl millet glutathione peroxidase (PgGPX) gene

transformed into rice effectively improved both salt tolerance

and drought tolerance (Islam et al., 2015). Thus, millets provide

new insights into understanding plant abiotic stress tolerance

and genetic resources for improving stress tolerance in major

crops.

The broad application of high-throughput sequencing tech-

nologies has enabled the genomes of millets to be deciphered

(Varshney et al., 2017) and a large number of multi-omics data

from millets have been reported. For instance, intensive research

on stress-related genetic resources of millets has produced

enormous data covering transcriptome sequencing (Awan

et al., 2022; Huang et al., 2021; Ji et al., 2021; Sun

et al., 2021; Wu et al., 2021; Zhang et al., 2021), whole-

genome resequencing (Varshney et al., 2017) and phenomics

(Varshney et al., 2017). These offer new opportunities to

innovate knowledge regarding plant abiotic stress tolerance

and to advance the genetic improvement of stress tolerance in

major crops. However, the collection and analysis of these data

are time-consuming, especially for researchers who lack

bioinformatics experience and computing resources, resulting

in data mining of key stress-tolerance genes still being a

challenging task.

To solve the data mining problem, we have developed a

comprehensive and user-friendly millets multi-omics database

(Milletdb, http://milletdb.novogene.com), comprising volumi-

nous data with browsing and analytical tools. The Milletdb

contains genomes of seven genera and 1800 sets of diverse

omics data including graph-based pan-genomics, transcrip-

tomics, epigenomics, variomics and phenomics data. Various

practical tools integrated by Milletdb can help users quickly

identify a single gene from multiple perspectives (homologous

search, blast, traits), build regulatory networks from multiple

levels [TE (transposable element) distribution, TF (transcription

factor) binding sites, expression level, protein level] and

characterize gene sets (sequence characteristics, expression

patterns and functional enrichment). The database platform

can provide effective services for the entire scientific

community in millets’ functional genomics and population

genetic studies.

Results

Database content

Milletdb contains 824 198 entries of genes from 18 genomes viz

11 pearl millet, two elephant grass (Cenchrus purpureus), one

foxtail millet (v 2.0) one proso millet (Pm_0390_v2), one finger

millet (Ragi_PR202_v._2.0), one fonio (DiExil) and one barnyard

millet (ec_v3), with information on 7184 biological pathways (939

pathways related to abiotic stress) and one graph-based pan-

genome with information on 30 050 483 SNPs (single nucleotide

variants), 424 085 SVs (structural variants), and 692 transcrip-

tome data. Approximately 147 of the transcriptome data are

derived from different developmental stages, 527 and 18

are from abiotic and biotic stress, respectively. The database also

holds four histones ChIP–seq data (H3K4me3 and H3K36me3

modification of root and panicle), 400 basic information data

(such as biological status, seed source, etc.) 242 with phenotypic

data, 378 resequencing data, 1 455 924 pearl millet population

SNPs and 124 532 SVs among pearl millet accessions (Figure 1a,

Table S1). Notably, the pearl millet materials for generating stress-

related transcriptome data were uniformly grown and processed.

It can avoid errors due to different growth conditions of the

materials. The pan-genome browser in Milletdb displays all SVs,

SNPs, indels and histone modification sites of pearl millet. Thus,

Milletdb contains the largest amount of millet-related data up to

now, solving the dilemma associated with collecting and

interrogating all of these data.

Gene identification

Reverse-genetics strategy

Milletdb shown as follows provides three options when

searching for genes. (A) Gene ID search: where users can

obtain the target gene in ‘Gene’ through gene ID, KO/GO

number, Pfam ID, keywords and corresponding gene ID in

Ensemble and Phytozome databases (Figure 1a,b); (B) Homology

search: whereby users can directly input the gene ID of other

species (e.g., Arabidopsis, rice and maize) in the ‘Homologous

gene search’ bar to identify candidate genes (Figure 1a,b). The

‘Homologous gene search’ supports a two-way search, enabling

users to identify homologous candidate genes across species

that could benefit crop breeding. In addition, the sequence

alignment of protein sequences between homologous genes is

shown; (C) Search by sequence, which allows users to employ

‘Blast’ (basic local alignment search tool) to quickly obtain

specific genes using sequence information (Figure 1a,b). The

hyperlinks provided by ‘Blast’ helps users obtain full information

on target genes.

Forward-genetics strategy

Trait-based search allows users to screen key genes potentially

controlling the target trait via the ‘Significant SNPs & Gene’/

‘Significant SVs & Gene’ part of the ‘GWAS’ (genome-wide

association study) module under ‘Variation’ (Figures 1a and 2).

For example, we identified an SV associated with the vegetative

growth index [GI (kg/ha/d)] through the ‘Significant SVs & Gene’

page in the ‘GWAS’ section of the ‘Variation’ module (Figure 2a,

Figure S1A). Navigating to the results section of this web page

showed that this SV was located within 4.89 kb of the gene
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PMA1G03779.1, which can be identified from 122 (31%) pearl

millet accessions (Figure 2a, Figure S1B). According to the

‘Individual Alleles’ page, we observed that the GI value of

the accessions (122) with this SV was significantly lower than

that of the accessions (256) without this SV (Figure 2b,

Figure S1B). Further analysis of the potentially associated

gene, PMA1G03779.1, revealed that it is likely to be involved in

the G-protein coupled receptor signalling pathway, which has a

potential role in plant growth (Figure S1C; Colucci et al., 2002).

Utilization of the ‘Heatmap’ feature on the webpage shows that

this gene is not only expressed during the vegetative growth

stage of pearl millet but also in the leaves under high

temperature, drought and salt stress (Figure 2c, Figure S1C).

Through ‘Homologous gene search’, we found that this gene has

no orthologous gene in maize, rice or Arabidopsis and it is

presumed to be a new gene that controls GI (Figure S1D).

The landscape of gene information

Milletdb provides comprehensive information on millet genes,

including their annotation, location, homology and expression

(Figure S2), which is helpful for in-depth functional studies of the

target. The gene information mainly contains three parts: basic

gene information, homologous genes and heat maps. The

basic gene information shows the millet accessions to which

the gene belongs, the annotation information of the gene in five

databases [Swissport (Swiss-Prot Protein Sequence Database), NR

(Non-Redundant Protein Sequence Database), KEGG (Kyoto

Encyclopedia of Genes and Genomes, https://www.kegg.jp/),

GO (Gene Ontology, http://geneontology.org/), Interpro (https://

www.ebi.ac.uk/interpro/)], the sequence information of the gene

(nucleic acid and protein sequence) and the chromosomal

location. Clicking on the location hyperlink opens the pan-

genome browser (the pan-genome browser supports genes from

the reference PI537069 and the others are supported by the

genome browser), which shows the homologous genes and their

structures among pearl millet accessions. The browser also

displays information on SVs and SNPs adjacent to the genes,

enabling users to design markers for exploring the genetic

differences between pearl millet accessions (Figure 1b; Figure S3).

Meanwhile, the homologous genes show those genes with similar

homologous genes among different millets, Arabidopsis, rice and

maize. The heat map shows the expression of genes in three

categories, viz multiple stresses (i.e., heat stress, drought stress

and salt stress), multiple tissues and multiple materials. For

convenience, users can extract the gene information through the

Gene ID hyperlinks in ‘Gene’, ‘Variation’ and ‘Tools’, etc., which

prompts users to obtain information on key genes more

efficiently and comprehensively.

Identification of upstream regulatory elements of genes

Milletdb contains two tools, the ‘Transposable Elements Identi-

fication’ and ‘Motif binding site prediction’ for analysing

regulatory elements adjacent to the genes (Figure 1b). This

facilitates users to find the upstream regulatory elements of the

target gene. ‘Transposable Elements Identification’ can be used to

summarize the TE statistics around a gene set, the distribution of

TEs and the TE information of each gene. ‘Motif binding site

prediction’ provides a convenient method for users to analyse

upstream cis-elements of genes by matching multiple expectation

maximizations for motif elicitation (MEME) motifs. Users can

obtain a list of genes containing the binding sites of the TF after

entering the motif of a target TF and selecting the length of the

upstream sequence of the genes (Figure 1b; Figure S4). Milletdb

also supports directly downloading complete TE information via

the ‘Transposable Elements’ tool. In brief, the Milletdb is helpful

for users to understand the potential regulation of gene

expression in a simplified way.

Gene network construction

Millets have excellent resistance to abiotic stresses through

complex gene regulation networks. Therefore, we developed

modules to enable prediction on the gene regulatory networks.

All the gene information involved in the regulatory pathway can

be quickly retrieved using a keyword or pathway number of the

target gene (Figure 1). The main module ‘Pathway’ contains 422

non-redundant KEGG pathways. The ‘Accessions’ dropdown

menu can be used to select the millet accessions. Moreover, the

‘Map_ID’ contains a hyperlink for displaying detailed pathway

information, while ‘Map Info’ shows the schematic diagram of

the pathway, where the green fill indicates its existence in millet.

The genes involved in a specific pathway are displayed in a table

format at the bottom of the schematic diagram and can be

downloaded in CSV or excel file formats. Furthermore, the ‘Co-

expression’ tool is constructed based on the expression patterns

of genes under various stresses (heat, drought, salt), multiple

materials and multiple tissues (Figure 1, Figure S4). This paves the

way for screening a large number of genes potentially interacting

with a target gene. Also, Milletdb provides ‘PPI’ (protein–protein
interaction) analysis for narrowing down gene sets obtained by

‘Co-expression’.

Analysis of PLATZ genes in millets based on tools
provided by Milletdb

Milletdb provides practical tools for gene sequence analysis and

gene function prediction (Figure 1). For example, users can

extract sequence fragments, coding sequences (CDSs), protein

sequences and upstream or downstream sequences using gene

location or ID through ‘Sequence Fetch’ and ‘Gene Sequence

Extraction’ tools’ (Figure 1a). Subsequently, the polymorphisms

between gene sequences of different millet accessions can be

determined via ‘Gene Synteny Viewer’ and gene sets clustered

according to sequence features using the ‘Phylogenetic Tree’ tool

(Figure 1a, Figure S4). The functional enrichment analysis of the

gene clusters is then conducted using the ‘KEGG/GO Enrichment’

tool, which also supports the online adjustment of pictures

(Figure 1). The ‘Gene Expression’ tool provided by Milletdb allows

batch extraction of expression of the genes under different

catalogues. The distribution of specific gene sets in millet

chromosomes is displayed via the ‘Gene mapping’ tool (Figure 1).

Milletdb also provides the ‘References’ and ‘Primer design’ tools

for searching millet-related publications and primers, respectively

(Figure 1).

A typical case of a user using the web is shown in Figure 3.

Millets are generally cereal crops that are extremely tolerant to

environmental stresses (Muthamilarasan and Prasad, 2021).

PLATZs (plant AT-rich sequence and zinc-binding proteins) are

plant-specific TFs involved in plant responses to abiotic stress (Fu

et al., 2020; Gonz�alez-Morales et al., 2016). However, the

PLATZ gene family in millets has not been reported so far.

Based on the Milletdb platform, we identified that millets

contain 17–59 genes encoding PLATZs depending on the

accession. Of the millet accessions, 87.5% (14/17) contain

more PLATZs than maize, rice and barley (Hordeum vulgare)

(Figure 3a, Figure S4A).
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The ‘Gene Sequence Extraction’ tools were used to extract the

protein sequences of PLATZ genes in millets. According to the

analysis results of the ‘Phylogenetic Tree’ tool, PLATZ genes

are divided into four clades. Of these, two clades (clade 2 and

clade 3) only contain PLATZ genes from millets (Figure 3b,

Figure S4B,C). Further analysis of the protein sequences of the
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above two clades found that Cclade 2 contains motifs 1, 2, 3 and

4 and clade 3 contains motifs 12, 3, 4, 7 and 11 structures which

are uniquely present in pearl millet. With the ‘Gene mapping’

tool, we found that these genes are mainly distributed at both

ends of the chromosomes (Figure S4D). The ‘Gene Expression’

tool used to characterize the above genes expression patterns

showed that the gene PMA5G01662.1, containing motifs 1, 2, 3,

4, 5 and 6, was involved in seed germination, seedling growth

and tiller tissue growth of pearl millet and was up-regulated in

response to heat, drought and salt stresses (Figure 3d,

Figure 1 Overview of Milletdb and its application in millets functional genomics. (a) Milletdb data content and functions. The left panel illustrates the

multi-omics data stored in Milletdb and the right panel shows the utilities in Milletdb and their purposes. ‘Gene’ is used to search for target genes based on

gene identifier (ID), KO/GO/Pfam ID and keywords. ‘Homologous gene search’ is used to search for genes of interest across species. The Basic Local

Alignment Search Tool ‘Blast’ is used to retrieve target genes based on sequence similarity. ‘Variation’ is used to search for genes of interest based on

associated traits. ‘Pan-JBrowse’ is used to view homologous genes and TEs (transposable elements), SNPs, SVs and nearby genes. ‘Transposable Elements

Identification’ is used to view TEs near the target gene. ‘Motif binding site prediction’ is used to find genes containing specific motifs. ‘Transposable

Elements’ is used to view and download whole-genome TE information. ‘Pathway’ is used to search for genes involved in a specific pathway. ‘Co-

expression’ searches for gene sets that are co-expressed with the specified genes. ‘PPI’ (protein–protein interaction) searches for proteins that interact with

the specified protein. ‘Sequence Fetch’ is used to extract sequence fragments based on their position. ‘Gene Sequence Extraction’ is used to retrieve coding

sequences (CDS), protein sequences or upstream and downstream sequences based on gene IDs. ‘Phylogenetic Tree’ is used to build a phylogenetic tree of

a specific gene set. ‘Gene Synteny Viewer’ is used to examine collinearity among multiple genes. ‘KEGG/GO Enrichment’ is used for functional enrichment

analysis of specified gene sets. ‘Gene mapping’ is used to display the chromosomal distribution of the specified gene set. ‘Gene expression’ is used to

extract the expression of a gene set. ‘primer design’ is used to design primers. ‘References’ is used to search for references in the literature. (b) Shows the

tools in Milletdb used for the complete analysis process of the auxin response factors (ARFs) gene family. Firstly, the homologous gene ID, keywords, Pfam

and ARF protein sequence information are used to search for ARF genes on the Milletdb platform (1); According to the genome information provided by

Milletdb, genome collinearity analysis is conducted (2); The expression of ARF genes is characterized by ‘Gene expression’ and ‘Gene’ in Milletdb (3);

Histone modified regions are identified based on ‘Pan-JBrowse’ (4); Finally, ‘Motif binding site prediction’, ‘Pathway’, ‘Co-expression’, ‘Pan-JBrowse’, or

‘Transposable Elements Identification’ are used to build the regulatory network (5). CK, control group; D, drought stress; S, salt stress; H, heat stress; seed,

seeds in the ripening stage; HAI36, imbibition after 36 h; T5L, five-leaf stage; TL, tillering stage; FT, flowering stage.
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Figure S4E). The gene PMA6G00675.1, which only contains

motifs 3, 4 and 5, plays a role in flowering and high-temperature

stress (Figure 3d). The protein sequence of gene PMA2G00809.1,

which regulates the flowering in pearl millet and participates in

the response to high-temperature stress, contains the motifs 12,

3, 4, 7 and 11 (Figure 3d). The above results suggest that motifs
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1, 2 and 6 may be important in plant vegetative growth and

multiple abiotic stress responses, although subsequent functional

analysis is still needed. Based on ‘Co-expression’ and ‘Motif

binding site prediction’, 165 genes and 18 genes were identified

as potentially interacting with PMA5G01662.1 at levels of stress

(heat, drought and salinity) and growth, respectively (Figure 3e,

Figure S4F,G).

The ‘KEGG/GO Enrichment’ tool showed that 165 genes were

enriched in the pathway or terms related to stress, such as the

‘Cysteine and methionine metabolism’ pathway (Romero

et al., 2014), ‘Arginine and proline metabolism pathway’ (Dar

et al., 2016), ‘Pyruvate metabolism’ pathway (Kato-

Noguchi, 2006), ‘2-oxoglutarate-dependent dioxygenase activ-

ity’ term (Vigani et al., 2013), ‘L-ascorbic acid binding’ term

(Gallie, 2013), ‘regulation of endocytosis’ term (Fan et al., 2015)

(Figure 3f, Figure S4H). Eighteen genes were enriched in the

‘Glutathione metabolism’ pathway (May et al., 1998) and

‘calmodulin binding’ term (Bouch�e et al., 2005), which are

associated with plant growth and development (Figure 3f). In

summary, the Milletdb platform contains a large amount of data

and practical tools to meet the needs of researchers to quickly

mine key genes, identify interacting genes and build regulatory

networks using forward or reverse genetics strategies.

Discussion

In summary, Milletdb is the most comprehensive millet database

produced so far. It comprises and visualizes a large amount of

multi-omics data for users to extend their studies from individual

genes to the level of millet genetic networks. Milletdb provides

plenty of candidate stress-related genes orthologous to genes of

other major crops, which may help breeders easily identify

important genes that improve crop yields and positively respond

to stress. The interface is user-friendly and bilingual and provides

operation manuals (http://milletdb.novogene.com/home; http://

milletdb.novogene.com/document) for all tools. Moreover, the

database is an open platform where users can extract and share

data through the contact information provided on the contact

page (http://milletdb.novogene.com/contact). It will be continu-

ously updated to provide long-term support for scientists working

on millets and developing stress-tolerant crops.

Materials and methods

Genomics and pan-genome data

We collected whole genome sequence data from eleven pearl

millet accessions, including PI186338 (SAMN28616529), PI250

656 (SAMN28613898), PI343841 (SAMN28616536), PI521612

(SAMN20372179), PI526529 (SAMN20372180), PI527388 (SA

MN28614406), PI537069 (SAMN20372178), PI587025 (SAMN20

372182), PI583800 (SAMN20372181), Tifleaf 3 (SAMN20

372183), Tifleaf 3 (SAMN20372183) (Yan et al., 2023) and PmiG

(Varshney et al., 2017) from NCBI (https://www.ncbi.nlm.nih.gov/

assembly). Genome sequence information of other millet

accessions and related species, including foxtail millet (Setaria_i-

talica_v2.0) (Bennetzen et al., 2012), proso millet (Pm_0390_v2)

(Zou et al., 2019), finger millet (Ragi_PR202_v._2.0) (Hatakeyama

et al., 2017), fonio (DiExil) (Wang et al., 2021), barnyard millet

(ec_v3) (Wu et al., 2022) and elephant grass (Yan et al., 2021;

Zhang et al., 2022), was downloaded from NCBI. The software

package EggNOG v5 (http://eggnog5.embl.de/#/app/home)

(Huerta-Cepas et al., 2018) was used for functional annotation.

TE annotation is done by the software DeepTE (Yan et al., 2020).

The OrthoMCL10 (v2.0.9) (http://orthomcl.org/orthomcl/) and

MUMmer (v4.0.0) (Delcher et al., 2003) software packages were

used to identify the gene atlas of the eleven genomes (core,

dispensable and private genes), generate a genetic variation atlas

and construct a graph-based pearl millet pan-genome.

Resequencing data

The 378 whole-genome resequencing data of pearl millet were

derived from SRP063925 (Varshney et al., 2017) and mapped to

the graph-based pan-genome using vg tools (Garrison et al.,

2018). Thereafter, PAV–GWAS (presence and absence variations

genome-wide association study) and SNP–GWAS were performed

using GEMMA (v0.94.1) (Zhou and Stephens, 2012) and the

results were made available in Milletdb.

RNA-Seq data

We collected a total of 192 transcriptome data of accession

Tifleaf 3 grown under abiotic stress conditions, including heat

(Huang et al., 2021; Sun et al., 2021), drought (Ji et al., 2021;

Zhang et al., 2021) and salt (Awan et al., 2022) (Table S1). The

13-day-old pearl millet seedlings were grouped into the normal

culture group (CK), heat treatment group (40 °C/35 °C), drought
treatment group (20% PEG) and salt treatment group (100 mM/

L). The treatments were performed simultaneously, and fresh

leaves and roots were collected at 1, 3, 5, 7, 24, 48, 96 and 144 h

(h) after the treatments. The raw data was filtered by fastq

(Version 0.11.9, Default setting) using the default parameters

(Andrews, 2014) and Kallisto (v0.46.2, �b 100) (Bray et al., 2016)

was used to assess expression levels. Moreover, we collected

transcriptome data of PI537069, PI521612, PI587025, PI583800,

PI526529 and Tifleaf 3 from normal culture and high-

temperature treatment (45 °C/40 °C).
The transcriptome data for pearl millet seed germination were

also obtained from a previous study (Wu et al., 2021) (Table S1).

We conducted transcriptome sequencing using different tissues

of accession Tifleaf3 under normal culture conditions at different

developmental stages: root and leaf samples at the three-leaf and

five-leaf stages; roots, stems, leaves and tiller tissues samples at

the tillering stage; panicles, leaves and stem samples at the

Figure 3 The Milletdb platform is used to identify the PLATZ gene family. (a) The proportion of PLATZ gene family members among all genes in millets,

maize, rice and barley. (b) The phylogenetic tree of PLATZ genes. (c) MEME motif structure of PLATZ genes in Clade2 and Clade3. The solid line and dotted

line represent the conservative motif and alternative motif, respectively. (d) Expression pattern of genes PMA6G00675.1, PMA2G00809.1 and

PMA5G01662.1. (e) Venn diagram of gene sets interacting with PMA5G01662.1. (f) Functional enrichment of genes interacting with PMA5G01662.1. The

solid line and dotted line represent the conservative motif and alterable motif, respectively. The black triangle and star represent the pearl millet-specific

protein structure. CK, control group; D, drought stress; S, salt stress; H, heat stress; HAI24, imbibition after 24 h; HAI36, imbibition after 36 h; HAI48,

imbibition after 48 h; T5L, five-leaf stage; TL, tillering stage; FW, flowering stage; R, root; M, tillering tissue; F, spike.
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heading, flowering and dough stage. Fastq (Version 0.11.9)

(Andrews, 2014) and Kallisto (Bray et al., 2016) were used to

analyse the transcriptome data.

Raw transcriptomic data of other millets was sourced from the

SRA database (Bandyopadhyay et al., 2020; Bennetzen et al.,

2012; Cannarozzi et al., 2014; Fang et al., 2019; Guo et al.,

2017; Hatakeyama et al., 2017; Jin et al., 2021; Lai et al., 2021;

Pan et al., 2020; Qin et al., 2020; Ramadoss, 2014; Shen et al.,

2020; Sun et al., 2022; Wang et al., 2020, 2021; Watson-

Lazowski et al., 2019; Wu et al., 2022; Yan et al., 2021, 2022,

2023; Yu et al., 2020; Yuan et al., 2021, 2022; Zhang et al.,

2022; Zou et al., 2019) (Table S1). Fastq (Version 0.11.9) was

used for raw data filtering. Kallisto was used to align with the

reference genome (AN00000390, Yugu1 and PR202) and to

calculate the count value.

Co-expression analysis

We grouped the transcriptome data into five catalogues: heat

stress, drought stress, salt stress, multi-tissue (growth and

development) and multi-accession (PI537069, PI521612,

PI587025, PI583800, PI526529 and Tifleaf3). After that, the

Pearson correlation coefficient was used to analyse the correla-

tion between gene expression within each catalogue based on

the transcript per million (TPM) value of the genes using Hmisc (Jr

and Dupont, 2015) software. We obtained the correlation index

and P-values between genes within each class and saved the

correlation results in Milletdb.

ChIP–seq data

Spikelets and mature roots of pearl millet grown under normal

field conditions were collected separately and treated according

to the method described previously (Wedel and Siegel, 2017).

Briefly, the samples were homogenized in liquid nitrogen and

digested with micrococcal nuclease (MNase) for 8 min to achieve

chromatin shearing. Following this, anti-H3K4me3 (Millipore, 05-

745R) and anti-H3K36me3 (Abcam, ab9050) were added to the

immunoprecipitated sheared chromatin, whose fragments were

then captured using protein A/G magnetic beads (Thermo, cat

88 802). All libraries were prepared with the VAHTS universal

DNA library prep kit for Illumina Library Systems (Vazyme)

according to the manufacturer’s instructions. The obtained library

was then sequenced using Illumina Hiseq-Xten and Fastp

software (Chen et al., 2018) was used to filter reads. Alignment

was performed using Bowtie 2.4.5 (Langmead and Salz-

berg, 2012) with PI537069 as the reference genome sequence.

The software MACS 3.0.0a7 (Feng et al., 2012) was used to call

peaks (Table S1).

Pearl millet accession details

We collected basic information on 400 pearl millet accessions

(Varshney et al., 2017), of which 242 materials contained

phenotypic data while growing under three conditions (field,

early drought stress and late drought stress) (Varshney

et al., 2017). The obtained information was then deposited in

Milletdb.

References

We searched theWeb of Sciencewebsite (http://webofknowledge.

com) for pearl millet-related articles and exported the search results

in batches. The Citavi software (Com, 2006) was used to generate

hyperlinks to the articles.

Data integration

The genomic, transcriptomic, epigenomics, phenotypic, co-

expression analysis, SNP–GWAS and PAV–GWAS data of millets

were stored in MongoDB.

Database construction

Milletdb is implemented by the Linux-operating system and

Nginx. Ant Design and Django were used for interactive front-end

and back-end queries. Genomic and pan-genomic features were

displayed by JBrowse (Buels et al., 2016) and its plugins. The

variation in the pearl millet population is displayed via Ant Design

Charts (https://charts.ant.design/), igv (Thorvaldsdottir et al.,

2012) and ant-design/icons (https://ant.design/components/icon-

cn/). BLAST 2.2.31+ (Tatusova and Madden, 1999) was used for

‘Blast’ construction. SYNVISIO (https://github.com/kiranbandi/

synvisio) was used to visualize results based on inter-genome

alignments (blastp). The ‘Sequence Fetch’, ‘Gene Sequence

Extraction’, ‘Transposable Elements Identification’, ‘Transcription

Factor identification’ and ‘Co-expression’ tools were built using

Python 3.9.
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