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Abstract: This paper reports an evaluation of eleven oat genotypes in four environments for two
consecutive years to identify high-biomass-yielding, stable, and broadly adapted genotypes in
selected parts of Ethiopia. Genotypes were planted and evaluated with a randomized complete block
design, which was repeated three times. The additive main effect and multiplicative interaction
analysis of variances revealed that the environment, genotype, and genotype–environment interaction
had a significant (p ≤ 0.001) influence on the biomass yield in the dry matter base (t ha−1). The
interaction of the first and second principal component analysis accounted for 73.43% and 14.97%
of the genotype according to the environment interaction sum of squares, respectively. G6 and
G5 were the most stable and widely adapted genotypes and were selected as superior genotypes.
The genotype-by-environment interaction showed a 49.46% contribution to the total treatment of
sum-of-squares variation, while genotype and environment effects explained 34.94% and 15.60%,
respectively. The highest mean yield was obtained from G6 (12.52 kg/ha), and the lowest mean
yield was obtained from G7 (8.65 kg/ha). According to the additive main effect and multiplicative
interaction biplot, G6 and G5 were high-yielding genotypes, whereas G7 was a low-yielding genotype.
Furthermore, according to the genotype and genotype–environment interaction biplot, G6 was the
winning genotype in all environments. However, G7 was a low-yielding genotype in all environments.
Finally, G6 was an ideal genotype with a higher mean yield and relatively good stability. However, G7
was a poor-yielding and unstable genotype. The genotype, environment, and genotype x environment
interaction had extremely important effects on the biomass yield of oats. The findings of the graphic
stability methods (additive main effect and multiplicative interaction and the genotype and genotype–
environment interaction) for identifying high-yielding and stable oat genotypes were very similar.

Keywords: oat (Avena sativa L.); biomass yield; GXE Interaction; AMMI; GGE

1. Introduction

The livestock subsector in Ethiopia significantly contributes to the national income [1]
and rural and urban residents’ means of subsistence. However, because of a lack of feed
and an imbalanced supply of feed, animal output remains poor [2]. The mean oat biomass
production of 9.67 t/ha in this study is promising for developing nations like Ethiopia.
This country is known for its lengthy dry season, during which there is inadequate plant
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biomass left over from the wet season to maintain domestic livestock species and key issues
with feeding livestock arise [3].

Avena sativa, sometimes known as oat, is a significant multi-use cereal crop that is
grown on more than 9 million hectares worldwide for grain, feed, fodder, and straw [4].
It is not very selective in terms of soils and climate and thus can reliably be grown in
infertile soils and cool and humid climates [5]. One of the well-adapted and significant
fodder crops that grow in Ethiopia’s highlands, primarily under rain-fed conditions, is
Avena sativa. It is also one of the crucial fodder crops that are frequently cultivated in the
winter, when animals confront a shortage of green fodder and the majority of the feed
starts to deteriorate and eventually dry out [6]. In terms of cereal output, it comes in sixth
place behind wheat, maize, rice, barley, and sorghum. Oats are excellent for making hay
in climates that are suitable for them. Oats ensile effectively for use on farms. Compared
with wheat or barley straw, oat straw is a more appealing and nutritious feed option for
livestock. However, because there are not many breeding programs for fodder oats, culti-
vars are often developed and produced primarily for grain, and the same cultivars are used
for both [7].

For quantitative variables like yield, a strong genotype-by-environment interaction
might limit the relevance of inferences that would otherwise be true and significantly limit
the ability to select superior genotypes [8–10]. The difference in the genetic ranking of
genotypes in relation to the environment—for example, a genotype performing well in well-
watered conditions but poorly in dry situations—is how [11] define genotype–environment
interaction. The development of genotypes that can be adapted to a wide range of various
settings is the ultimate goal of plant breeders in crop improvement efforts [11]. Finding
genotypes whose performance remains stable in a variety of conditions can be accomplished
using yield stability analysis [12,13]. The genotypes of oats that perform the best in target
conditions and those that are most adaptable to other habitats can thus be found through
comparing performance across environments.

Different statistical approaches for analyzing genotype stability can help with the diffi-
cult task of discovering superior genotypes in the context of significant
G × E interactions [12].

The genotype, environmental factors, and their interaction have a considerable impact
on yield and characteristics [14–16]. According to [15], genotype–environment interactions
(GEIs) cause genotypes to behave differently in various settings. Breeders want to determine
the best growing conditions for their genotype in addition to quantifying the GEI [16].
An ideal stable genotype is one that consistently produces good results for agronomic
and quality factors over a wide range of environmental conditions. According to [17], the
genotype–environment interaction is usually assessed according to the AMMI (additive
main effects and multiplicative interaction) model and GGE biplot analyses in order to
predict phenotypic responses to environmental changes in the examined genotypes. In
the AMMI approach, principal component analysis (PCA) with multiplicative parameters
and analysis of variance (ANOVA) with additive parameters are combined into a single
analysis. The main and interaction effects for environments and genotypes are displayed
together in the AMMI biplot. Additionally, Ref. [18] offered a solitary examination of the
genotype-by-environment interaction.

Powerful methods for examining and providing commentary on multi-environment
data structures in breeding operations include the AMMI and GGE biplot models [19,20].
Researchers interested in agriculture are particularly interested in these two statistical
analyses (AMMI and GGE). This is due to the fact that they may be applied to any two-way
data matrix, even those involving a number of genotypes examined across many sites [21].
These analyses include principal component analysis (PCA) and analysis of variance
(ANOVA) [22]. The GGE biplot analysis and the AMMI biplot analysis differ in that the
former is based on an environment-centered PCA, while the latter is based on a double-
centered PCA [23].
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The majority of genotypes have been reported to exhibit narrow adaptability and
significant genotype-by-environment interaction (GEI) effects, despite the fact that oats
typically adapt to a broad range of environmental scenarios [24,25]. The significance of
extending research efforts to examine the variations in biomass yield across oat genotypes
and across settings was studied in this report. This study will help researchers plan the
further breeding and production of promising, specific, and widely adapted genotypes. The
examination of the performance of oat genotypes in various conditions in Ethiopia is still in
its infancy. Therefore, the objectives of this study were to (1) estimate the magnitude of the
genotype-by-environment interaction, (2) identify stable genotypes with a high biomass
yield based on dry matter, and (3) identify mega-environments to guide future testing
strategies.

2. Results and Discussion
2.1. AMMI ANOVA

Eleven oat genotypes were examined in four locations using the AMMI model, and
the results showed that the environment (E), genotype (G), and genotype–environment
interaction (GEI) all had a significant (p < 0.001) impact on the yield of oat (t ha−1).

AMMI (IPCA1) was highly significant (p < 0.001) according to the AMMI model’s
analysis of variance (Table 1). This showed that strong genotype-by-environment (GE)
interaction caused a significant difference in yield performance among the oat genotypes
across the studied environments. As a result, it might be possible to create stable genotypes
or entries for a certain environment. This discovery is consistent with several studies
that have discovered significant interactions between the environment and genotypes of
oats [24–26].

Table 1. Combined analysis of variance from AMMI model for dry matter yield of genotypes.

Source D.F. S.S. M.S. (%) SS Explained

Total 263 3052.9 11.61

Treatments 43 1052.3 24.47 ***

Genotypes 10 367.6 36.76 *** 34.94

Environments 3 164.2 54.72 ** 15.60

Block 8 92.7 11.59

Interactions 30 520.5 17.35 ** 49.46

IPCA 1 12 381.8 31.81 *** 73.35

IPCA 2 10 77.9 7.79 14.97

Residuals −6 0 0

Error 212 1907.9 9
Key: *** p ≤ 0.001 and ** p ≤ 0.05.

Oat biomass dry matter yield was influenced by the genotype-by-environment (GE)
interaction effect (49.46%), genotype effect (34.94%), and environment effect (15.60%),
according to the total percentage explained by sum-of-squares factors (Table 1). The
genotypic response differed significantly among environments, as seen by the fact that
the GEI sum-of-squares component was greater than the genotype sum-of-squares factor.
Since the GE interaction or the sum of squares contributes more to the overall variance,
there is a greater likelihood that cultivars will evolve for a particular environment. In
line with these findings, Ref. [25] revealed that the genotype-by-environment interaction
effect, followed by genotype and environment, contributed to the biggest overall sum
of squares. The result is in contrast to Adjebeng-Danquah [27], who reported that the
environment contributed a greater proportion of the treatment sum of squares, followed by
the genotype and genotype-by-environment interaction. This was in contrast to findings
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from [26], who reported that the environment is the most contributing, followed by the
genotype-by-environment interaction effect and the genotype effect. Both studies found that
environmental conditions had a significant impact on production. This study result shows
the yield greatly depends on the environment. However, genotype (G) and genotype-by-
environment interaction (GEI) are relevant to genotype evaluation, whereas the significant
environmental influence is irrelevant [26].

According to [18], the first two IPCAs can be used to forecast the AMMI model that is
the most accurate. Several authors took the first two IPCAs for GGE biplot analysis because
the greater percentage of genotype-by-environment interaction (GEI), in most cases, were
explained by the first IPCA, such as for maize [28], bread wheat [29,30], common bean [29],
for finger millet [30], field pea [31] and oat [14,32].

The AMMI with IPCA1 and IPCA2 is the most effective predictive model for the cross-
validation of the yield variation explained by the GEI [33]. Considering IPCA1 (73.43%)
and IPCA2 (14.97%) together, the sums of squares from IPCA1 and IPCA2 contributed
87.43% of the total GEI, with the IPCA1 having a larger sum of squares than genotypes.
The entire genotype-by-environment interaction component was adequately explained by
the model [34]. Given that it removes the bulk of the real variation, this suggests that the
AMMI model with the IPCA1 and IPCA2 were suitable for cross validating the oat biomass
dry matter yield variation supplied by GEI in the given data set. The GEI contributes
more than genotypes, suggesting a need for research into the basis of the diverse ways that
genotypes respond to their surroundings (Table 1). Because GEI weakens the usefulness
of genotypes through mystifying their yield performance by means of decreasing the
relationship between genotypic and phenotypic characteristics [35,36], GEI complicates the
selection process.

The average genotype biomass dry matter yield ranged from 8.65 t ha−1 (ILRI_15152A = #G7)
to 12.52 t ha−1 (ILRI_5527A = #G6), while the average environment biomass dry matter yield
ranged from 8.50 t ha−1 at Hulla to 10.67 t ha−1 at Adiyo (Table 2). As shown by genotype yield
rankings that varied between environments, with the exception of genotypes G6 and G5, some
GEI genotypes were of a crossover type (Table 2). The highest biomass dry matter yield across
conditions was consistent for genotypes G6 and G5. Thus, the top-ranking genotypes in Chencha,
Adiyo, Doyegena, and Hula, respectively, were genotypes G6 and G5 (Table 2).

Table 2. Combined analysis of variance for biomass yield under different locations (t/ha).

Genotypes Environments Genotypic
Mean RankCode Name Chencha Adiyo Doyogena Hulla

G1 ILRI_5431A 8.30 10.26 11.11 8.85 9.63 3

G2 ILRI_5444A 7.08 11.38 11.55 7.02 9.26 6

G3 ILRI_5490A 9.47 7.88 10.93 6.72 8.75 10

G4 ILRI_5499A 8.89 9.75 10.67 7.82 9.29 5

G5 ILRI_5526A 11.51 11.67 11.65 11.75 11.65 2

G6 ILRI_5527A 12.48 12.65 12.77 12.17 12.52 1

G7 ILRI_15152A 10.47 11.11 3.01 9.99 8.65 11

G8 ILRI_15153A 8.99 11.38 8.60 7.72 9.17 7

G9 ILRI_16101A 8.75 9.88 9.69 7.82 9.03 9

G10 SRCPX80AB2291 8.23 10.09 10.31 7.53 9.04 8

G11 SRCPX80AB2806 10.69 11.36 9.52 11.36 9.43 4

Environmental Mean 9.53(3) 10.67(1) 9.98(2) 8.50(4) 9.67

LSD (5%) 2.81 2.88 3.55 3.12

CV (%) 15.46 14.93 18.75 21.72

F value ** *** * **

Key: *** p ≤ 0.001, ** p ≤ 0.05, and * p ≤ 0.1.
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2.2. AMMI Biplot

Four parts make up the AMMI1 biplot space (Figure 1), ranging from high-yielding
environments in parts 2 (upper right) and 3 (low right) to low-yielding environments in
sections 1 (higher left) and 4 (low left). The biplot in Figure 1 clearly shows that the points
for the genotypes are more dispersed than the points for the environment, indicating that
genotype variability is greater than environment-related variability, which is consistent
with ANOVA (Table 2). The points for the typically adapted genotypes on the biplot
would be close to the IPCA = 0 line (which shows negligible or no GE interaction) and
on the right side of the grand mean levels (suggesting high mean performance). In this
regard, the AMMI biplot was set up with two oat genotypes, such as G6 and G5, with
two environments, such as Doyogena and Adiyo, on the right side of the perpendicular
vertical line (Figure 1).
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and Adiyo, respectively.

The oat genotypes (G5, G6, G9, and G11) are weakly influenced by environmen-
tal factors (lower interaction effect). The genotypes’ (G2, G3, and G7) dry matter yield
was strongly influenced by environmental factors (higher interaction effect), as shown in
Figure 1. However, the dry matter yield response may not be higher for the genotypes that
were less sensitive to environmental influences.

Oat genotype ILRI_5527A (G6), which was closest to the IPCA 0, was more adaptable,
high-yielding, and stable throughout the tested settings, so it was excellent. Along with G6,
G5 also achieve a high dry matter yield and was adaptive in all of the studied situations. In
contrast to the optimum genotype ILRI_5527A9G6), the genotypes G7, G2, and G3 were far
from the IPCA 0 of the biplot and yielded low dry matter (Figure 1).

Genotypes close to the IPCA 0 of the biplot are not susceptible to environmental
interaction, whereas genotypes further from the origin of the biplot are sensitive and have
significant interaction effects, according to [19,35,37]. Additionally, Ref. [35] claims that
the best genotypes have small absolute IPC2 scores (great stability) and large IPC1 scores
(wider adaptability). Figure 1 shows how the environments Adiyo and Hulla differed
from Doyogena and Chencha in terms of the genotypes’ dry matter yield performance.
According to [36], environments with short spokes impose weak interacting pressures on
the performance of oat genotypes, whereas settings with long spokes exert high interaction.

On the other hand, certain environment (Figure 1) stood out as having a modest,
moderate, or significant contribution to the interaction (Doyogena), Chencha, Hulla, and
Adiyo, respectively. These environments (Adiyo and Doyogena) produced a mean dry
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matter yield that was higher than the overall mean (9.67 t ha−1), demonstrating that
they were the best places to find high means. The settings with the highest potential
(Hulla) showed variable genotype performance for dry matter yield and had a strong
positive IPCA1 score (Figure 1). All genotypes progressed poorly in the low-yielding
environment (IV), which had the lowest yield but a negative IPCA1 score. Similar ob-
servations were reported by different authors [36,38]. Settings with varying contribution
relationships in both high-yielding and low-yielding conditions were also part of different
observed findings [39].

2.3. AMMI Stability Value (ASV)

An AMMI stability value was computed to determine the stability of the genotypes
(Table 3). ASV is the distance from zero in a two-dimensional scatter graph comparing
IPCA1 (interaction principal component analysis axis 1) scores to IPCA2 scores. The
difference in stability measurements between the two primary components can be made up
for using the proportional difference between the IPCAs (1:2), which can then be calculated
using the Pythagorean theorem to account for the AMMI stability value [40]. The AMMI
stability value (ASV) quantifies and ranks genotypes based on their yield stability rather
than providing a quantitative stability indicator [38].

Table 3. Grand mean biomass yield based on dry matter (BDMY) tha−1, RY, GSI, ASV, RASV, IPCA1,
and IPCA2 of 11 oat genotypes across environments.

Genotypes BYDM RY GSI ASV RASV IPCA1 IPCA2

G1 9.63 3 11 0.937532498 8 −0.46271 0.32331

G2 9.26 6 16 1.793726372 10 −0.88151 −0.73616

G3 8.75 10 19 1.45376979 9 −0.7156 0.56232

G4 9.29 5 12 0.86520405 7 −0.42998 0.16699

G5 11.65 2 6 0.492768176 4 0.18251 0.80585

G6 12.52 1 3 0.290958358 2 0.06914 0.62493

G7 8.65 11 22 4.900847781 11 2.4432 −0.01007

G8 9.17 7 12 0.679687821 5 0.314 −0.62413

G9 9.03 9 10 0.277265348 1 −0.13761 0.06356

G10 9.04 8 14 1.982438484 6 −0.40402 −0.09492

G11 9.43 4 7 1.08732656 3 0.02258 −1.08168

DMY: dry matter yield; RY: rank of yield; ASV: AMMI stability value; RASV: rank of AMMI stability value; GSI:
genotype selection index.

In this respect, greater ASV values are associated with unstable genotypes, whereas
genotypes with lower ASV values are associated with more stable genotypes. The geno-
types G7, G2, and G3 were the most unstable, with ASV values of 4.9, 1.79, and 1.45,
respectively (Table 3). Genotype G9 was the most stable, with an ASV value of 0.27, fol-
lowed by genotypes G6 and G11, with ASV values of 0.29 and 1.08, respectively, in biomass
dry matter. Refs. [13,41–43] all employed a similar technique and discovered a more stable
genotype with a lower ASV value.

2.4. Genotype Selection Index (GSI) Analysis

There is a need for methods that combine mean and stability into a single criterion since
the most stable genotypes may not always produce the best yield performance. Stability
should not, however, be the primary parameter for selection. In this regard, because ASV
considers both IPCA1 and IPCA2, which account for the majority of the variation in GE
interaction, the rank of ASV and rank of mean yield are combined to form the Genotype
Selection Index (GSI), a single selection index [41]. Because the most stable genotypes may
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not always produce the highest yields, stability is not the main factor in selection. Only
when it is connected to average performance does the phrase “high stability” have any
real meaning [42]. Therefore, methods that combine mean yield and stability into a single
indicator are required [43]. The lowest GSI value, with a high mean yield, is regarded as
the most stable.

The smallest GSI is considered the most stable (Table 3); in that regard, the most stable
genotypes with the highest biomass dry matter yield were G6 and G5, which had the lowest
GSI values of 3 and 6, respectively. These genotypes were followed by G11 and G4, which
had GSI values of 7 and 12, respectively, suggesting that they were stable and high yielding.
This result is consistent with other research that found stable genotypes with high yields
could be found through analyzing the genotype selection index based on ranking mean
yield and ranking AMMI stability value [41–43]. These outcomes matched those of the
biplot graph.

2.5. GGE Biplot
2.5.1. Which-Won-Where View of GGE Biplot

In order to identify the winning genotypes through showing the patterns of interaction
between genotypes and environments, a polygon view of the GGE biplot graphic analysis
is shown (Figure 2) [34]. In multi-location yield experiments, it is useful for detecting
crossover and non-crossover genotype-by-environment interactions as well as the potential
existence of several mega-environments [14,20]. G2, G3, G6, and G7 were the vertex geno-
types, as shown by the genotypes in Figure 2. Because they are the farthest from the origin
of the biplot, these genotypes perform better or worse in some or all environments [34],
and they are regarded as specifically suited genotypes because they are more responsive to
environmental change. In the GGE’s polygon-view biplot, they thrive in environments that
are a part of their particular sector [34].
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HUL, CHE, DOY, and ADY stand for Hulla, Chencha, Doyogena, and Adiyo, respectively.

The two genotypes that performed best in each of the four environments—Hulla
Chencha, Adiyo, and Doyogena—were G6 and G5. On the other hand, because they were
located on the other side of the test environments and the furthest from the biplot’s origin,
the vertex genotypes—except G6, the rest: G2, G3, and G7—were the ones that performed
the poorest over practically the entire set of test settings. Similar findings reported on
genotypes’ which-won-where patterns [26,44–46] agree with this study’s finding. They
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discovered that certain genotypes performed better than others in a particular environment
and that certain genotypes performed worse in certain contexts. The red-color equality
lines in Figure 2 separate the biplot into four portions. While the genotypes were spread
over all four sectorial areas, the environments were only scattered across one. These were
only one mega-environment: Hulla, Chencha, Adiyo, and Doyogena. This implies that
similar genotypes perform well in an environment of homogeneity. In order to manage the
genotype-by-environment interactions and subsequently relate the findings to similar agro-
climatic regions, the identified mega-environments may be helpful. The most productive
genotypes in a sector are those that are located close to the vertex [16]. The first (I) sectors,
which were devoid of any environment, included seven and eight genotypes, respectively
(Figure 2). In the second sector (II), there were four environments that were found: Hulla,
Chena, Adiyo, and Doyogena. The G5 and G6 genotypes were included in this region
(Figure 2). G6 is the vertex (winner) at the four environments of the sector. The third
sector (III) contained four genotypes (G1, G2, G3, and G10) without any environments;
G2 and G3 were the vertex genotypes, indicating that these were the better genotypes for
sector III (Figure 2). Without any environments, G9 and G11 were located in the fourth
sector (IV), with no vertex genotype in this sector. The GEI variance was higher in the
vertex genotypes than in the genotypes close to the origin. Resulting around average
performance, the G1, G4, G5, G8, G9, G10, and G11 genotypes were close to the biplot
origin, and their GEI variation was lower than that of the vertex genotypes. The results
were similar to those reported by [40,42,47–50], who stated that the testing environment
was divided into various mega-environments with winning genotypes and sectors with
different numbers of genotypes. The effects of GE interaction influence the accuracy of
predicting the performance of some genotypes in new environments. This was observed
for genotypes ranked third and above, for example, genotype eleven (G11), which is ranked
as third in the environment of Chencha but not found within the top-five ranking in the
Doyegena environment. Similarly, genotype two (G2) ranked third in Doyegena but was
not found among the top five in Chencha and Hulla. The results show new promising
genotypes (G6 and G5) which were high yielding and stable in all environments, which is
recommended for the breeder for further production.

2.5.2. Relationship among Environments

According to Figure 3 of the GGE biplot, the first (PC1) and second (PC2) principal
components together accounted for 87% of the total variation, showing that this biplot
may be utilized to distinguish between interrelationships across the environments. The
correlation coefficient is related to the angle between the biplot origin and the test environ-
ment markers [35]. Additionally, a high degree of genotype discrimination is conferred
by the length of an environmental vector [19]. In the current study, Doyogena was the
environment that was most discriminating (held more information) about the genotypes
with the longest vectors from the origin, followed by Hulla and Chencha, which were
moderately discriminating, and the Adiyo environment, which was either barely or not
discriminating about genotype differences (Figure 3).

The use of non-discriminating (non-informative) test environments is discouraged
since they offer little information regarding genotypes [42]. Additionally, test environments
with acute, obtuse, and right-angle relationships, respectively, have positive, negative,
and zero correlation between environments predominantly found using the biplot vector
view [16].

The four environments were divided into two groups based on the angle test between
environment vectors. Figure 3 shows that the first group had a modest angle between the
environments Hulla, Chencha, and Adiyo; a strong positive correlation between them; and
similar genetic information. It means that their capacity to distinguish between genotypes is
compromised by the environment. Breeders should be able to use fewer test environments,
lowering testing costs and increasing breeding effectiveness, if they can obtain trustworthy
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information about environment similarity and clustering. The second group is in possession
of the broad angle between Doyogena and the rest of the environments.
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The performance of the genotype in an environment is better than average if the
angle between its vector and the environment’s vector is less than 90. And, it is less than
average if the angle is greater than 90◦ and near average if the angle is about 90◦ [16].
In this regard, G6 and G5 performed well in environments Chencha, Hulla, Adiyo, and
Doyogena. Wide obtuse angles are a sign of strong crossover GE in the test conditions, and
the biggest angle is somewhat wider than 90◦, suggesting that the GE is moderately large.
Therefore, except for G6 and G5, the rest of the genotypes showed varying performance in
different environments. Similar findings in the link between environments defined using
the angle method were reported by [40,51,52]. When compared to associations with small
angles, which showed significant positive correlations and provided information about
genotypes, they discovered that some settings between them had huge angles or low or
negative correlations.

2.5.3. Evaluation of Genotypes Based on the Ideal Genotype

An interesting application for comparing genotypes to a desirable genotype is the
GGE biplot model. An ideal genotype has a high mean performance as well as a high
level of stability across locations; a number of publications, including [18,45,53,54], claim
that the optimal position—the center of the concentric circle—was used to identify the
genotype with the highest mean performance and stability. Large PC1 scores (high mean
yield) and small (absolute) PC2 scores (high stability) characterize an optimal genotype.
Even though such an “ideal” genotype could not exist in the real world, it might be utilized
as a standard for assessing genotypes [52]. To more clearly show the disparity between
genotypes and the ideal genotype, concentric circles were created in a GGE biplot graph
based on genotype-focused scaling [18,23]. Early breeding cycles can be used to rule out
genotypes that are quite different from the ideal genotype, whereas later testing can take
into account genotypes that are relatively similar to it [55]. When a genotype is nearer to the
“ideal” genotype, which is shown in the first concentric circle of the GGE biplot graphic, it
is considered to be more desirable [56]. The genotype G6 was located in the first concentric
circle, as shown in the GGE biplot graph (Figure 4). It follows that G6 was the preferred
genotype position, followed by G5, making it the preferred genotype among those of oat.
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and ADY stand for Hulla, Chencha, Doyogena, and Adiyo, respectively.

This is comparable to the findings of [35,44,54] who showed that the first and second
concentric circles, respectively, include one optimal genotype and a few other suitable
genotypes. Similar to this, Ref. [26] found desired genotypes using various strategies. Their
criteria were that an ideal genotype should have big PC1 scores (high mean yield) and a
small absolute PC2 score (high stability); however, their strategy was unsuccessful in doing
so. The highest-yielding genotypes are those that are drawn on the concentric and/or
average environmental coordinate (AEC) center closest to the ideal genotype [57,58].

In the consideration of AMMI and GGE biplot analysis of oat genotype based on
the dry matter yield performance, genotypes G6 (ideal genotype) and G5 yielded more
dry-matter biomass than the remaining tested oat genotypes across the tested environments.
Therefore, these genotypes are relatively wider in adaptation across the
tested environments.

2.5.4. Evaluation of Environments Relative to Ideal Environments

The desired environments are those that are closest to the ideal environment, which
is located in the first concentric circle of the environment-focused GGE biplot. Hulla has
been in the perfect environment and is in the first concentric circle in this regard (Figure 5).
Hulla had a robust PC1 score but a reduced PC2 score. Therefore, genotype evaluation in
the Hulla environment increased the observed genotypic diversity across genotypes for the
biomass dry matter yield of the tested oat genotypes and should be regarded as the most
appropriate to identify broadly suited genotypes. Chencha’s and Adiyo’s habitats have
been recognized as desirable environments (Figure 5), since they are quite similar to the
ideal environment (Hulla).

The Doyogena environments, on the other hand, were placed far from ideal conditions,
making them unsuitable (fewer representatives) environments for choosing cultivars with
broad adaptations but useful for choosing those with particular adaptations. Soil fertility,
rainfall, and other environmental variability between environmental systems can be linked
to this variation. The discriminating power of a place is influenced by the genotype compo-
sition, but the existence of GEI makes selecting a suitable test location more challenging [35].
Furthermore, they suggested that the most representative environments can be used for
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widely adapted genotype selection, while non-representing environments can be useful for
specifically adapted genotype selection.
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2.5.5. Ranking of Genotypes Based on Mean Yield and Stability Performance

The average environment (tester) coordinate (AEC) methods were used in the GGE bi-
plot to determine mean dry matter yield and genotype stability (Figure 6) [59]. The average
PC1 and PC2 scores across all environments are used to define the average environmental
(tester) coordinate (AEC) [34]. The mean dry matter yield performance axis of genotypes
is indicated by the AEC X axis (PC1) line that goes through the biplot’s origin and has
an arrow pointing in the direction of the positive end. The stability of genotypes (PC2) is
measured using the line which runs through the origin and is perpendicular to the average
environmental axis (Figure 6). Stable genotypes had PC2 scores that were practically zero,
were close to AEC (PC1), and had the lowest number of perpendicular lines. Away from
the biplot origin, however, any direction on the axis denotes a greater GE interaction and a
lower level of stability.

The best genotypes for selection criteria are those with both high mean yield and high
stability. In this regard, in the present study (Figure 6), the single arrowed line pointed
to higher yield across environments. Therefore, genotype G6 had the highest mean yield,
followed by G5. They were the most stable, while G7, G3, and G2 were highly unstable,
and among them, G7 performed poorly. The present study’s findings are in line with the
report made by [60]. They ranked genotypes based on mean performance and stability
across environments. In this way, they found some genotypes to be the most stable with
a high mean yield and some unstable high yielders, while some other genotypes were
unstable with a poor yield and a stable low yielder.
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The AMMI model has been successfully applied in many studies to analyze GEI [32,35].
The AMMI model, put out by [61], makes use of analysis of variance and principal com-
ponent analysis for a better understanding of GEI, its causes, and effects. The GGE biplot
analysis, which prioritizes both genotype main effects and GEI effects for the study, was
proposed by [59]. Only the beginning analysis steps—where GGE examines G plus GE
(or GEI) while AMMI separates G from GE—and the final analysis processes, where the
biplot for the interpretation are built, distinguish these models from one another. The
environmental stratification provided by the AMMI biplot is complemented by the GGE
biplot, which enables the identification of mega-settings and genotypes that perform best in
these environments [62]. These distinctions, however, do not suggest that either approach
is better than the other [58]. The graphic analysis offered by the AMMI biplot offers a very
straightforward analysis for breeding researchers. Conclusions about phenotypic stability,
genotype behavior, genetic divergence between genotypes, and environments with the best
performance can be made based on the data. Accordingly, the stable and high-yielding
genotypes G6 and G5 are advised for breeding researchers to use in breeding programs.

3. Materials and Methods
3.1. Description of Study Area

During the primary growing season of 2018–2019, the field experiment was carried
out in four different environments. The study areas are shown in Figure 7.

The soil type, altitude, and mean annual rainfall at these locations are different from
each other (Table 4). Consequently, each place was regarded as having its own ecosystem
and considered an individual environment.
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Table 4. Description of test environments.

Location Altitude (m.a.s.l) Annual Av RF (mm) Soil Type Max T◦ Min T◦ pH

Adiyo 2573 2042.43 Clay loam 23.11 14.07 5.2

Doyogena 2535 1823.13 Clay loam 24.49 13.98 6.5

Hulla 2959 1255.39 Clay silt 25.15 13.99 5.0

Chencha 2985 1857.95 Nitosols 26.28 15.57 4.5

Source: climate data were taken from National Meteorology Agency (NMA).

3.2. Experimental Materials

Eleven oat genotypes used in the study are displayed in Table 5. From the total geno-
types, SRCPX80AB2291 and SRCPX80AB2806 were released, and the rest were promising.

Table 5. Description of oat genotypes used for the study.

Genotype Name Genotype Code Status

ILRI_5431A G1 Promising

ILRI_5444A G2 Promising

ILRI_5490A G3 Promising

ILRI_5499A G4 Promising

ILRI_5526A G5 Promising

ILRI_5527A G6 Promising

ILRI_15152A G7 Promising

ILRI_15153A G8 Promising

ILRI_16101A G9 Promising

SRCPX80AB2291 G10 Released

SRCPX80AB2806 G11 Released
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3.3. Experimental Design and Management

The experiment was laid out in an RCBD design, with three replications. The design
had three blocks and there were 33 plots, each with a dimension of 2 m × 3 m and a
plot area of 6 m2. The space between rows, blocks, and plots was 20, 150, and 100 cm,
respectively. Each plot had 10 rows. The experimental seeds were planted through drilling
into the soil. Each plot requirement of the seeds was measured through calculating the
oat seed plantation rate of 100 kg/ha. NPS and urea fertilizers were applied at 100 kg/ha
each. Data on biomass yield at the milk stage were collected from the three central rows
excluding the outside rows; it was weighed and then converted to tons per hectare (t ha−1).

3.4. Data Analysis

Utilizing Genstat, as reported by [63], statistical analyses were carried out. Each
environment’s data were subjected to an analysis of variance (ANOVA) and a normality
test prior to performing the combined analysis of variance across environments. After
validating the homogeneity of the variances, the combined analysis of variances across sites
was carried out. Bartlett’s tests of homogeneity of variances were used to determine the
homogeneity of the error variances of the individual location experiments. With genotypes
acting as fixed factors and surroundings acting as random variables, a combined ANOVA
was created using the AMMI model.

3.4.1. AMMI Analysis

The AMMI model’s biomass dry matter yield was examined. AMMI stands for
additive main effect and multiplicative interaction. Because in the validity test, the MS
component of the RCBD design for the block within replication is less than the residual
error across all sites, the analysis of variance was a combined analysis based on the RCBD.
According to [64], the AMMI analysis was utilized to modify both the multiplicative
effects of the GE interaction by the principal component analysis and the main or additive
genotype and environmental effects by analysis of variance. The following model was
proposed by [64] for the AMMI analysis of variance (ANOVA):

Yij = µ+ Gi + Ei + ∑n
k=1 γkαikγjk + εij (1)

where Yij is the mean yield of the ith genotype in the jth environment;
µ is the grand mean;
Gi and Ej are the genotype and environment deviation from grand mean, respectively;
αik and γjk are the genotype and environment principal component scores for axis k;
n is the maximum number of multiplicative terms;
γk is the kth singular value of x (square root of the eigenvalue of xx’ or x’x);
εij is the error term.

3.4.2. AMMI Stability Value (ASV) Analysis

Because the AMMI analysis does not offer a quantitative measure of stability, Purchase
et al.’s [40] recommendation was to utilize an ASV measure to quantify and categorize
genotypes according to their yield stability. The stability of a genotype is evaluated using
the ASV. Weighted IPCA1 and IPCA2 scores indicate that the stronger the stability, the
lower the value [40]. The following formula was used to determine the ASV.

The AMMI stability value (ASV) as described by [40] was calculated as follows:

ASV =

√√√√[
IPCA1sum o f square

IPCA2sum o f square
(IPCA1SCORE)

]2

+ (IPCA1score)
2 (2)

where SSIPCA1
SSIPCA2

is the weight given to the IPCA1 value through dividing the IPCA1 sum of
squares by the IPCA2 sum of squares. The larger the IPCA score, either negative or positive,
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the more specifically adapted a genotype is to certain environments. Smaller ASV scores
indicate a more stable genotype across environments.

3.4.3. Genotype Selection Index (GSI) Analysis

The genotype selection index was calculated using the equation GSI = RASV + RY [43].
The terms RASV and RY in this context stand for genotype mean yield ranking across
environments and AMMI stability value ranking, respectively. The author claims that GSI
combines stability and mean yield into a single criterion, with a low score suggesting stable
genotypes with a high mean yield. Therefore, it is assumed that the GSI with the lowest
value is the most stable and has the maximum biomass dry matter yield. A genotype is
better suited to particular surroundings when it has a higher IPCA score, whether positive
or negative.

3.4.4. Gene Gene Environment Biplot

Based on the singular value decomposition of the first two principal components, the
model for a GGE biplot [35] is

Yij − µ− βj = λ1ξi1 − η j1 + λ2ξi2 − η j2 + εij (3)

where Yij is the mean for the ith genotype in the jth environment, µ is the grand mean, βj is
the main effect of environment j, λ1 and λ2 are the singular values of the first and second
principal components (PC1 and PC2), ξi1 and ξi2 are the PC1 and PC2 scores, respectively,
for genotype ith, ηj1 and ηj2 are the eigenvectors for the jth environment for PC1 and PC2,
and ε is the residual error term.

4. Conclusions

The findings of this study support the need to test genotypes in representative envi-
ronmental settings in order to find the most stable and productive genotypes. To lessen the
impact of GE interaction and to increase the precision and refinement of genotype selection,
the yield and stability of performance should be taken into account simultaneously. The
genotypes, environments, interaction of genotype × environments, and AMMI component
were significant in the analysis of variance for the AMMI model of oat biomass yield based
on dry matter. Therefore, it is important to include yield along with PCA1 and PCA2 scores
at the same time in order to maximize the useful effects of GEI and increase the accuracy
of genotype recommendations. It was possible to find genotypes with superior and con-
sistent biomass yield based on dry matter production using a graphical interpretation of
the AMMI analysis and GSI index, which combined the ASV and the yield potential of
various genotypes into a single non-parametric index. Based on YSI or GSI indices, G6 and
G5 revealed the highest yield and stability. Generally, AMMI analysis is advantageous for
identifying high-yielding and stable genotypes (G6 and G5), whereas GGE is advantageous
for identifying genotypes that are specifically or broadly adapted. According to GGE, the
same genotypes (G6 and G5) were broadly adapted. The two methodologies of analysis
(AMMI and GGE) approve selecting G6 and G5 for a further breeding program or for
high-production growers in the study area. This study may need to be repeated after a
number of years because there will be a change in environments over a number of years,
which is a challenge of this study. A limitation of the study is that the graphical analysis
of GGE estimates about 87% of the reason, not 100%; i.e., a greater proportion could be
explained with a better alternative methodology.
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