CSIRO PUBLISHING

www.publish.csiro.au/journals/fpb

Does susceptibility to heat stress confound screening
for drought tolerance in rice?

Krishna S. V. Jagadish™, Jill E. Cairns®, Arvind Kumar®, Impa M. Somayanda®
and Peter Q. Craufurd“*®*

APlant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute (IRRI),
DAPO Box 7777, Metro Manila, Philippines.
BCrop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Box 7777,
Metro Manila, Philippines.
€Plant Environment Laboratory, University of Reading, Cutbush Lane, Shinfield, Reading RG2 9AF, UK.
Ppresent address: Km. 45, Carretera Mexico-Veracruz El, Batan, Texcoco, Edo. de México, CP 56130 México.
FAgroecosystems, ICRISAT, Patancheru, AP 502324, India.
FCorresponding author. Email: p.craufurd@cgiar.org

Abstract. Drought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in
widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate
phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially
during the critical flowering stage, which could lead to false conclusion about drought tolerance. Screening germplasm and
mapping-populations to identify quantitative trait loci (QTL)/candidate genes for drought tolerance is usually conducted
in hot dry seasons where water supply can be controlled. Hence, results from dry season drought screening in the field could
be confounded by heat stress, either directly on heat sensitive processes such as pollination or indirectly by raising tissue
temperature through reducing transpirational cooling under water deficit conditions. Drought-tolerant entries or drought-
responsive candidate genes/QTL identified from germplasm highly susceptible to heat stress during anthesis/flowering have
to be interpreted with caution. During drought screening, germplasm tolerant to water stress but highly susceptible to heat
stress has to be excluded during dry and hot season screening. Responses to drought and heat stress in rice are compared and
results from field and controlled environment experiments studying drought and heat tolerance and their interaction are
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discussed.
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Introduction

Drought — defined as a condition where available soil water or
moisture is insufficient to support average crop production —
affects 23 million ha of rice regularly (Pandey et al. 2007).
Anticipated changes in climate in future are likely to double
the area affected by drought, especially in the tropical and
subtropical regions of the world (IPCC 2007). Developing
improved drought-tolerant rice (Oryza sativa L.) germplasm
for drought prone areas is a major focus of many agricultural
research programs (Virk et al. 2003; Atlin et al. 2006; Ouk et al.
2006; Pinheiro et al. 2006; Bernier et al. 2007; Steele et al. 2007,
Venuprasad et al. 2007, 2008; Kumar et al. 2008; Verulkar et al.
2010). Drought most often occurs during dry, hot periods with
limited or no precipitation. Moreover, drought seldom occurs in
isolation; often interacting with other abiotic and biotic stresses
(Ceccarelli et al. 2004): most commonly with heat stress (Rizhsky
et al. 2002, 2004; Mittler 2006). Heat stress is associated with
temperatures rising above an optimum, which may adversely
affect the physiological activities (for e.g. photosynthesis; Vani
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et al. 2001) and lead to an altered path of development
(e.g. reduced grain quality; Kobata and Uemuki 2004).
Further, general circulation models also predict an increase in
mean global temperatures by 2.0—4.5°C with increased variability
over the mean by the end of the century (IPCC 2007), greatly
exacerbating drought and heat stress interactions.

Using spatial techniques and cropping pattern data from the
rice almanac (Maclean er al. 2003; Siddiq 2006), Wassmann
et al. (2009) examined the occurrence of drought and heat
stress experienced by the rice crop in Asia. They reported that
high-temperature stress during the susceptible/critical flowering
to early grain filling period would coincide with drought stress
in Bangladesh, eastern India, southern Myanmar, and northern
Thailand (Fig. 1). For example, in Bangladesh, rice is grown in
large areas during the ‘boro’ season (dry season, December—
April) with temperatures ranging from 36—40°C during the
critical flowering stage. Hence, with the frequency of high
temperatures during crop growing seasons predicted to
increase in many areas, drought exacerbated by heat stress
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Fig. 1. Geographic illustration of Asia’s rice-producing regions highlighting maximum temperatures >33°C (monthly averages) and (a) ellipsis depict high-

temperature regions where rice crop is at flowering and/or ripening stage in April. For a similar analysis during the other months of the year see Wassmann ez al.
(2009). (b) The weighted anomaly standardised precipitation (WASP) index, which is based on average monthly precipitation data from 1980 to 2000 at a
resolution of 2.5°. Both these maps show regions which could be potentially vulnerable to combined high temperatures and drought stress under current climates
and more so during future warmer and drier climates. Reprinted from Advances in Agronomy 102, Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G,
Ismail A, Serraj R, Redofia E, Singh RK, Heuer S. Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. 91-133,
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(Battisti and Naylor 2009) will have serious implications for
future rice production in drought prone areas.

Effect of temperature and drought on fertility

The effects of high temperature and drought at various stages
of floral development leading to spikelet sterility are compared
in Table 1, and as described below, these effects are broadly
similar at all stages except flowering responses and early grain-
filling. High temperatures during the reproductive stage
(booting/meiosis, anthesis; pollination and post-fertilisation) in
rice has a strong negative effect on yield, with the maximum
yield depression occurring when high temperatures occur during
anthesis, pollination and pollen germination (i.e. flowering)
(Yoshida et al. 1981; Prasad et al. 2006; Jagadish et al. 2007,
2008,2010a,20100). High temperatures before flowering, during
booting which coincides with microsporogenesis, also affects
fertility but to a lesser extent compared with flowering. There is
genetic variation in the critical temperature thresholds at which
spikelet fertility falls below 50% (Yoshida ef al. 1981). The
tolerant cv. N22 has a critical temperature of 36.5°C compared
with 32°C in a susceptible entry IR747B-2—6. In rice, high
temperatures (up to 41°C) 1 hour after pollination has no effect
on spikelet fertility. Critical temperatures have also been
measured for other reproductive stages/processes and in peanut
(Arachis hypogea L.) for example, the critical temperature varies
from 33°C during meiosis, pollination and fertilisation (Vara
Prasad er al. 2001) to 36°C for fruit-set (Vara Prasad ef al. 2000).
Likewise, in 21 peanut genotypes average temperature thresholds
for pollen germination and pollen tube growth were 30.1 and
34.4°C, respectively (Kakani ez al. 2002).

In rice, spikelet sterility at high temperatures is closely
associated with abnormal anther dehiscence (Matsui er al.
2000; Jagadish et al. 2010a), resulting in less pollen and
germinated pollen on the stigma (Yoshida et al. 1981). Pollen
tube growth may also be reduced causing sterility (Jagadish et al.
2010a). Heat tolerant genotypes are able to deposit sufficient
(10-20) viable pollen grains on the stigma to ensure successful
fertilisation.

The largest reduction in yield occurs when drought stress
coincides with the flowering stage (Cruz and O’Toole 1984;
Boonjung and Fukai 1996). Water stress at panicle initiation
(~35 days before flowering) and more so at heading reduces
peduncle elongation, thereby inhibiting complete exsertion of the
panicle out of the flag leaf sheath, which, in turn, reduces fertility
because spikelets that remain within the leaf sheath have lower
fertility (Cruz and O’Toole 1984). Further, rice plants exposed
to drought or heat stress 3 days before heading had peduncle
lengths reduced by 24 and 8%, respectively, which resulted in a
significantly higher number of spikelets trapped in the leaf sheath
but only with drought stress (Rang et al. 2011). Drought stress at
panicle initiation also reduces the number of spikelet primordia
(Boonjung and Fukai 1996; Mackill et al. 1996).

Effect of drought and [CO,] on tissue/canopy
temperature

An immediate response to drought stress is the reduction of
transpiration (through partial stomatal closure), which, in turn,
increases canopy and tissue temperatures (Rizhsky et al.
2002, 2004) due to less transpiration cooling. Using infrared
thermometry during 1981 and 1982 dry-season drought
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Table 1. Physiological impacts of high temperature and drought stress on different developmental stages in rice

Developmental stage High temperature stress

Drought stress

References

Thylakoid structure disorganised,
significant loss in PSII activity

Seedling

Panicle initiation -

Booting/microsporogenesis Drastic reduction in pollen
production and impaired cell
division of microspore mother
cells

Decreased pollen volume and
diameter; reduced starch
accumulation; stamen
hypoplasia

Pistil hyperplasia

Reduction in days to flowering;
earlier time peak flowering;
shorter flowering period

Pollen development

Pistil development
Flowering

Abnormal anther dehiscence; low
or no pollen count on stigma;
asynchronous pollination

Anther dehiscence and
pollination

Reduced pollen viability and rate
of pollen tube growth, spikelet
sterility

Pollen germination and
fertilisation

Early grain filling Chalkiness; shorter grain filling

period; reduced grain weight

Reduced leaf expansion growth
and photosynthesis

Reduced spikelet number

Reduced number of viable pollen;
pollen abortion; dead
microspores

Inhibition of starch accumulation;
stamen hypoplasia and
abnormal organogenesis

Days to flowering extended;
flowering rate reduced;
extended flowering duration

Incomplete panicle exsertion and
peduncle elongation; reduced
anther dehiscence; spikelet
abortion

Viability and pollen tube growth
rate reduced; spikelet sterility

Grain abortion and chaffiness

Vani et al. (2001)*; Singh et al.
(1996)®; Boonlertnirun et al.
(2007)8

Allah ez al. (2010)®

Prasad et al. (2006)"; Takeoka
et al. (1992)"; Sheoran and
Saini (1996)® Nguyen er al.
(2009)®

Takeoka et al. (1991)*; Matsui
et al. (2000)*; Sheoran and
Saini (1996)®; Liu and Bennett
(2010)®

Takeoka et al. (1991)*

Ishimaru ef al. (2010)*; Jagadish
et al. (2008)"; Prasad et al.
(2006)™; Pantuwan et al.
(2002h)® Jongdee et al.
(2006)®; Rang et al. (2011)*?

Matsui and Omasa (2002)";
Matsui et al. (1997)b”; Yoshida
et al. (1981)"; Jagadish et al.
(2010)*; Rang et al. (2011)™B;
Liu et al. (2006)®

Yoshida et al. (1981)*; Prasad
et al. (2006)"; Jagadish e al.
(2010h)™; Liu et al. (2006)®;
Rang et al. (2011)B

Fitzgerald et al. (2009a),
(2009h)*; Kobata and Uemuki
(2004)*; O’Toole and Namuco
(1983)®

AHigh temperature studies.
BDrought stress studies.

screenings at IRRI Garrity and O’Toole (1995) recorded a
canopy temperature increase from 28 to 37°C during drought
stress (after accounting for cloud cover, wind speed, and
minimising solar angle interactions). Furthermore, there was a
significant negative relationship (+*=-0.63, P<0.05) between
yield and midday canopy temperature on the day of 50%
flowering with complete sterility when midday temperatures
were >34°C (Fig. 2). They concluded that entries with lower
canopy temperature or higher canopy: air difference were better
drought avoiders, similarly capable of avoiding combined
drought and heat stress. Fischer et al. (1989) in maize (Zea
mays L.) recorded a significantly negative relationship
(r=-0.73, P<0.01) between canopy temperature and yield
under severe water stress. Similar increase in relative leaf
temperature of 4.4—5.4°C has also been observed in cotton
(Gossypium barbadense L. cv. PF-15) 6 days after drought
stress was imposed (Cohen et al. 2005). The soil moisture
content ranging from 25 to 175%, resulted in corresponding
variation in canopy temperature of rice, with lower soil
moisture recording a higher canopy temperature (Zhang et al.
2007). Evapotranspiration and energy-exchange studies in
flooded and aerobic rice have shown that under aerobic
conditions, a large proportion of the available net radiation
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Fig. 2. Relationship between rice grain yield and canopy temperature in 27
cultivars on the date of 50% flowering during 1982 dry-season drought
screening at IRRI. (Garrity and O’Toole 1995; reprinted with permission
from The American Society of Agronomy).
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was used for sensible heat transfer that warmed the surrounding
ambient air temperature (Alberto et al. 2009). With the predicted
doubling (~700 pmol mol ™) of [CO,] by the end of the century
(IPCC 2007), grain yields may increase at lower temperatures
due to the CO, fertilisation effect (Long and Ort, 2010) but at
higher temperatures yields will be severely affected by
[CO;,] x temperature interactions, such as in rice (Matsui et al.
1997a) and sorghum (Sorghum bicolor (L.) Moench, Vara
Prasad et al. 2006). This has been attributed to higher canopy
temperature at elevated [CO,] due to stomatal closure and
reduced transpirational cooling. For example, Vara Prasad
et al. (2006) recorded a canopy temperature increase of
1.3-2.7°C at 700 ummol™" CO, in temperature regimes of
32/22°C to 44/34°C in sorghum. Furthermore, Matsui et al.
(1997a) recorded a 1°C reduction in the critical air temperature
induced spikelet sterility with elevated [CO,]. Hence, in future
climates with increasing frequency and intensity of droughts
combined with increased [CO,], the adverse influence of
warmer temperatures leading to higher canopy temperatures
that exceed critical levels are likely to adversely affect yield
formation processes in rice and other crop species.

Combined drought and heat stress

Relatively little is known about the interaction between drought
and heat stress in rice (Moffat 2002; Shah and Paulsen 2003).
In tobacco (Nicotiana tabacum L. cv. Xanthi-nc NN), heat
stress caused stomata to open, whereas, under drought stress
or combined drought and heat stress, stomata remained closed,
resulting in a 2-3°C increase in leaf temperature relative to leaves
subjected to heat stress only (Rizhsky et al. 2002).

The effects of drought and heat stress could be additive
(Barnabas et al. 2008), with the combined effect of both
stresses shown to be greater than that of each stress
individually in sorghum (Craufurd and Peacock 1993) and
barley (Hordeum vulgare L., Savin and Nicolas 1996).
Recently, Rang et al. (2011) studied the effect of heat and
drought independently and in combination at flowering in five
rice genotypes with known levels of tolerance/susceptibility
to either heat or drought. The heat tolerant cultivar N22 had
high spikelet fertility under heat, drought and the combined
stress. Conversely, the heat-sensitive and drought-tolerant
cultivars Apo and Moroberekan were on par with N22 under
drought stress but recorded the lowest spikelet fertility under
combined stresses, suggesting a negative interaction between
heat and drought, wherein susceptibility to heat stress dominated
the interaction.

One drought tolerance strategy is to maintain turgor in both
the male and female reproductive organs to ensure normal
reproductive processes during anthesis (Saini and Aspinall
1982). In rice, the lemma and palea, to a certain extent, protect
the heat-sensitive reproductive organs (anthers, stigmas) from
direct radiative heating effects before anthesis. However, at
anthesis, the spikelet is open for ~45min (Ekanayake et al.
1989), with both anthers and stigma exposed directly to high
ambient air temperatures and high transpirational demand. When
severe drought coincides with anthesis, canopy temperature is
known to increase beyond critical levels (Garrity and O’Toole
1995). This results in increased transpiration from the spikelets
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and aloss of moisture needed for pollen swelling, in turn, reducing
anther dehiscence (Matsui et al. 2000), and, thus, affecting the
succeeding processes involved in grain formation. It is, therefore,
essential to test putatively drought tolerant lines for their heat
tolerance, and not to ascribe tolerance or susceptibility to drought
only.

Screening for drought tolerance

One major limitation to the improvement of rice for drought-
prone areas has been the lack of appropriate screening methods
to routinely and reliably impose drought in order to select
tolerant lines: both true tolerance and those exhibiting
plasticity. Breeders have tried several methods including late-
sown wet-season reproductive-stage screening (Jongdee et al.
2002; Pantuwan et al. 2002a; Kumar et al. 2008), line-source
sprinkler screening (Garrity and O’ Toole 1994), rain-out shelter
screening (Lilley and Fukai 1994), and dry-season reproductive-
stage screening (Atlin and Lafitte 2002; Kumar ez a/. 2008). Field
trials are often conducted during the dry season, in which both
drought stress and water supply can be managed artificially
through irrigation. Managed field drought-screening protocols
for reproductive-stage stress tolerance generally fall into the
following three categories, depending on the objectives of the
drought screen; stress being imposed (i) as a cyclic drought stress
(Bernier et al. 2007; Venuprasad et al. 2007, 2008); (ii) at panicle
initiation till panicle emergence/heading, followed by re-
watering at flowering to study the impact of drought on pollen
meiosis and spikelet sterility (Saini and Aspinall 1982); or (iii) to
expose the most sensitive flowering stage to drought stress. To
account for differences in phenology while using the second and
third protocols, either staggered planting or drip irrigation at plot
level is followed (Lafitte et al. 2002, 2004). The remaining part of
this paper concentrates mainly on studies using the first or third
screening protocol, provided severe drought stress coincided with
flowering.

Although interactions between drought and high temperature
have been observed (Rang e al.2011), drought tolerance does not
necessarily confer heat tolerance; indeed, many drought-tolerant
cultivars have been shown to be highly sensitive to heat stress
(Jagadisheral.2007,2008,2010a, 2010b; see also Craufurd et al.
2003 for peanut). Moreover, the rice gene pool has large
genotypic variation for tolerance of heat stress (Jagadish et al.
2008); thus, although all accessions in a drought screen
experience similar exposure to high temperature at flowering,
tolerance of heat stress varies among the accessions. Unless
experiments are designed to account for combined tolerance of
drought and heat stress, the interpretation of results from dry-
season drought screens in the field will be confounded by the
influence of heat stress.

Case studies involving drought screening at International
Rice Research Institute (IRRI) and India are considered for
addressing the hypothesis of heat stress influencing dry season
drought screening. A large proportion of drought screening at
the IRRI in Los Bafios, Philippines (14°10'N, 121°15'E), is
conducted during the dry season, which runs from January to
mid-May. The flowering period in these experiments is generally
from March to April (Lafitte et al. 2004; Venuprasad et al. 2007,
2008; Kumar et al. 2008), when rainfall is minimal, allowing
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efficient application of drought stress. IRRI experimental farm
weather records from 1979 to 2008 show average maximum
temperatures of 32 and 34°C and high RH of 80 and 78% in
March and April, respectively. Since the weather data provides a
measure of ambient air temperature 2 m above the crop canopy,
with progressive drought, canopy and tissue temperatures can
rise much higher than the ambient temperature, as discussed
previously (Fig. 2; Garrity and O’Toole 1995).

There are several rice cultivars that have been studied
extensively, for which the extent of drought and heat tolerance
are known. These include N22 (heat and drought tolerant: Selote
and Chopra 2004; Prasad et al. 2006; Jagadish et al. 2008),
Moroberekan and Azucena (drought tolerant but susceptible to
heat stress; Champoux et al. 1995; Babu et al. 2001; Sharma et al.
2002; Hittalmani et al. 2004; Jagadish et al. 2007, 2008, 2010a),
and IR64 (moderate heat tolerant, sensitive to drought stress; Liu
et al. 2006; Jagadish et al. 2008). The percentage reduction in
grain yield of Moroberekan and Azucena, N22 and IR64 in field
experiments conducted in the dry season (2005) and wet season
(2008) at IRRI and the average maximum monthly temperature
are shown in (Fig. 3a). Although the intensity and duration
of stress varied between seasons, the drought-sensitive and
moderately heat tolerant check IR64 (Jagadish et al. 2008)
provides an indication of the level of stress. Drought-tolerant
checks Moroberekan and Azucena had a greater reduction in grain
yield under drought stress in the dry season relative to IR64, but
this trend was reversed in the wet season. Other studies with
Moroberekan show similar effects in wet and dry seasons (Babu
et al. 2001; Hittalmani et al. 2004; Liu et al. 2006; Table 2). We
hypothesise that this is due to higher temperatures rather than
drought stress, as Moroberekan and Azucena are extremely
sensitive to heat stress (Jagadish et al. 2008, 2010a). Across
both seasons, N22 had a significantly lower yield decline than
the other entries, indicating better heat and drought tolerance
(Yoshida et al. 1981; Prasad et al. 2006; Jagadish et al. 2008).
Recently, we have also shown under controlled drought
at anthesis (~50% flag leaf RWC) that the spikelet fertility of
Moroberekan was not significantly different from N22. However,
under combined heat and drought stress at anthesis spikelet
fertility was significantly reduced (P<0.01) in Moroberekan
compared with N22 (Fig. 3b; Rang et al. 2011). The ability to
tolerate drought with an efficient antioxidant defence mechanism
in N22 panicles has been reported by Selote and Chopra (2004).

Although many other factors such as difference in the severity
of the stress, management, and genotype X environment
interactions may have also contributed to the differences in
yield, the better performance of other drought-tolerant checks
indicates that they may be good heat avoiders (i.e. low canopy
temperature; Garrity and O’Toole 1995), possess development
traits contributing to heat escape (i.e. early morning flowering;
Sheehy et al. 2005) or have true heat tolerance (Yoshida et al.
1981; Jagadish et al. 2008; Weerakoon et al. 2008). In peanut,
some of the most drought tolerant lines also possess good heat
tolerance (Craufurd et al. 2003).

The co-location or otherwise of quantitative trait loci (QTL)
for heat and drought tolerance also provide some insight into these
heat and drought interactions. Azucena, which is drought tolerant
but susceptible to heat stress (Jagadish et al. 2008), has been used
in developing several mapping populations used for studying
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Fig. 3. (@) Mean percentage reduction in rice grain yield under water stress
relative to well watered plots is presented for varieties IR64 (drought-sensitive
check), N22, Moroberekan (drought-tolerant check) and Azucena. Each data
point is an average of four replications of 1 linear meter (J. E. Cairns and
R. Lafitte, unpubl. data). Dry-season experiments were sown in January 2005,
with flowering in March and April. Drought stress was imposed at flowering
using a drip irrigation system. Wet-season experiments were sown between
June and August 2007. After establishment in the drought treatments, plants
relied on rainfall. Only plots in which flowering coincided with a period of
natural drought stress were included. Temperature data was obtained from the
IRRI Climate Unit and collected from the IRRI lowland agro-meteorological
weather station during 1979-2008. (b) Two independent experiments with
flowering in rice exposed to drought (closed symbols) and combined high
temperature and drought stress (open symbols) with the duration of high
temperature differing from 2—4 days between the first and second experiments,
respectively. N22 was the most tolerant to both stresses even with longer
duration of high temperature stress while Moroberekan performed equally
well under mild drought stress but recorded close to complete sterility with
four days of high temperature stress at flowering (Rang et al. 2011).

drought tolerance in particular. For example, in the Bala/Azucena
mapping population, QTL for root traits conferring drought
tolerance and grain yield were co-located in wet season
experiments in southern India (Gomez et al. 2006), but poorly
co-located under drought stress in the dry season at IRRI
(Lafitte et al. 2004). More recently, Jagadish et al. (2010b)
identified QTL for heat tolerance during anthesis in the same
mapping population. They found the most significant and
consistent QTL for spikelet fertility under heat stress,
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Table2. Performance of (rice) Moroberekan and drought tolerant checks during dry season drought screening at IRRI,
Philippines and wet season screening at Raipur, India respectively during 2008
Grain yield reduction was calculated as a percent of stress/non-stress
Season Temperature Entry Grain yield (t ha ") Percent
(°C) Non-stress Stress reduction
Dry season 24-34 Moroberekan 2.36 0.44 81.5
check — IR77298-14-1-2-10 4.90 1.75 64.0
SE 0.52 0.33 -
Wet season 24-30 Moroberekan 3.33 1.55 53.0
check — IR42253 5.50 2.61 53.0
SE 0.77 0.46 -

accounting for nearly 18% of the phenotypic variation, on
chromosome 1. There was, however, no co-location between
QTL for spikelet fertility under ambient and heat stress
conditions. The QTL for heat stress was in the same physical
location on the rice genome as drought and other stress QTL
(e.g. Kumar et al. 2007; Jagadish et al. 2010b). Similarly, Pinto
et al. (2010) using Seri x Babax wheat (Triticum aestivum L.)
mapping population identified QTL for cooler canopy
temperature co-localising for both drought and heat stress
under field conditions.

Transcript profiling in tobacco and Arabidopsis (Arabidopsis
thaliana (L.) Heynh cv. Columbia) showed lower expression
of dehydrins (stress proteins involved in protection against
dehydration; Allagulova et al. 2003) under combined heat and
drought stress than with drought stress only, whereas heat
shock proteins had greater expression under combined heat
and drought stress than with either heat or drought stress
alone (Rizhsky et al. 2002, 2004). A similar response has been
observed in the desert legume Retama raetam (White Broom;
Pnueli et al. 2002), indicating comparative responses across
species. Recently, a comprehensive compilation of transcripts
and metabolic changes to combined drought and heat stress
showed >770 transcripts and unique metabolites, especially
sugars, altered under combined stress that were not altered by
either drought or heat stress (Mittler 2006). Using ‘the stress
matrix’, Mittler (2006) emphasised the study of abiotic stress
combinations as a new state of abiotic stress rather than just a sum
of two different stresses.

These QTL and molecular analyses suggests that certain
chromosomal regions, genes and metabolic pathways are
responsive to both companions of stresses, with a certain
proportion being particularly responsive to either of these two
stresses. Most importantly, these studies highlight the interaction
of heat and drought stress during the dry-season screening
and raise important questions for future drought research. The
hidden effects of high temperatures during flowering-stage
drought screening can lead to confounding results and
screening outputs (germplasm, QTL and candidate genes),
which may not translate into gains in drought tolerance in the
target environment.

Conclusions

Managed drought screens in the dry season are often exposed to
high-temperature stress, confounding drought screening. Hence,
caution should be exercised in interpreting cultivars or candidate

QTL or genes from these trials, as drought-tolerant entries highly
susceptible to heat stress during anthesis or flowering could be
discarded. Potential drought tolerant material should be further
tested under cooler wet season to identify true drought tolerant
varieties. Conversely, dry season screening may also involve
selecting for heat tolerance, which will be needed as global
temperatures are predicted to increase. Further physiological
and molecular analysis using well planned controlled
environment and field studies are needed to understand the
impact of the combined heat and drought stress on rice growth
and productivity. Furthermore, to ensure developing crops that
can cope with the rapidly changing climate, stress-tolerant
germplasm has to be evaluated for stress defence and yield
potential under multiple abiotic stresses occurring in farmers
fields before release for commercial cultivation.
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