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Abstract: Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an
important source of edible oil and protein for human nutrition. However, the incidence of stem rot
disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant
yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem
rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The
mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea
showed no significant difference. Accessions from southern China displayed the lowest disease index
value compared to those from other ecological regions. We used whole-genome resequencing to
analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot
resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated
with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging
from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of
23 significant SNPs were annotated, which have functions related to recognition, signal transduction,
and defense response. These significant SNPs and candidate genes provide valuable information for
further validation and molecular breeding to improve stem rot resistance in peanut.

Keywords: peanut; stem rot; resistance; genome-wide association study (GWAS); significant SNP

1. Introduction

Peanut (Arachis hypogaea L.) is a significant source of edible oil and protein and was
planted on approximately 30 million hectares with a total production of around 50 million tons
worldwide in 2022 (https://www.fao.org/faostat, accessed on 8 March 2023). China is one of
the leading peanut-producing countries, with a planting area of 4.74 million hectares and the
largest peanut production of approximately 18 million tons in 2022
(http://www.stats.gov.cn, accessed on 8 March 2023). Stem rot, also known as southern
blight, southern stem rot, or white mold, is caused by Athelia rolfsi (Curzi) C.C. Tu & Kimbr.
(Sclerotium rolfsii Sacc.), has been a constraint on peanut production in China in the past
twenty years, and has become one of the most important soil-borne diseases of peanut
in many producing areas, particularly in the Liaoning, Jiangxi, Guangdong, and Henan
provinces [1–4]. Yield losses due to stem rot in peanuts range from 10% to 30% and can
reach up to 80% in heavily infested fields [5,6]. Although cultural methods, fungicides, and
biological agents may reduce the risk of infection by stem rot disease, they do not provide
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sufficient protection, and they require additional labor and financial input. The use of stem-
rot-resistant cultivar is an effective and sustainable approach to manage the disease [7–9],
while traditional methods of breeding stem-rot-resistant peanut varieties have low efficiency
and are time-consuming. Utilization of molecular markers linked with stem rot disease
resistance might accelerate the process of developing resistant varieties.

Stem rot resistance in peanut is a complex trait that is controlled by multiple genes and
influenced by environments [10]. Previous studies have attempted to dissect the genetic
basis of resistance to stem rot in peanut, and some quantitative trait loci (QTLs) linked to
stem rot resistance have been identified. The first QTL linked to stem rot resistance in peanut
was identified using an F2 population derived from TG37A (Susceptible) X NRCG CS85
(Resistant) with SSR markers [11]. Later on, Dodia et al. (2019) identified seven major
QTLs in the F6 generation of the same recombinant inbred population (RIL) derived
from TG-37Aand NRCG CS85, with variation explained ranging from 5.5% to 8.5% [10].
Using another RIL population derived from a cross of NC3033 (resistant) and Tifrunner
(susceptible), Luo et al. (2020) identified a total of 33 additive QTLs for stem rot resistance
using SNP and SSR markers [12], and Cui et al. (2020) identified another two QTLs
linked to stem rot resistance using the QTL-seq method [13]. The QTLs linked to stem rot
resistance were identified using bi-parental populations with a narrow genetic background.
To discover new genes or QTLs associated with stem rot resistance in peanut, more resistant
sources to stem rot resistance should be used. Association analysis employs natural
populations to discover genomic regions associated with target traits in a relatively high-
resolution and unbiased manner in broad-based and diverse accessions [14].

GWAS, which stands for whole-genome association study, is an observational study
that investigates whether any genetic variants in a genome-wide set of variants is associated
with specific traits in different individuals [15]. This approach has proven to be a powerful
tool for detecting markers that are closely linked to QTLs based on the principle of linkage
disequilibrium between genetic markers and QTLs [16]. Recent advances in genomic
sequencing technologies, coupled with the availability of tetraploid genome sequences
in Arachis species [17–19], have enabled high-throughput genotype data to be combined
with phenotypic data for peanut breeding and genetics research. Such advances have also
enabled the discovery of marker–trait associations through GWAS. In recent years, GWAS
have been successfully conducted in peanut to unravel the genetic basis of some traits,
such as oil content [20], domestication [21], plant characteristics [14,22,23], yield-related
traits [24,25], and disease resistance [23,26–28]. Although stem rot is a destructive disease
in peanut, no studies have yet been conducted using GWAS to identify QTLs related to
stem rot resistance.

This study utilized whole-genome resequencing of 202 peanut accessions, mainly from
Chinese varieties, to mine high-quality SNPs distributed throughout the peanut genome.
GWAS was performed to identify genomic regions associated with resistance against stem
rot disease and to discover potential candidate genes within the QTLs regions in peanut.
The SNP markers and candidate genes related to stem rot resistance identified in this study
have the potential to assist peanut breeding in developing resistance varieties against
this disease.

2. Materials and Methods
2.1. Plant Materials and Field Evaluation of Stem Rot Resistance

A total of 202 peanut accessions were included in the current study, of which 164 cultivars
were collected from 18 provinces of China, and 38 cultivars were collected from other coun-
tries. There are 110 accessions belonging to subspecies fastigiata and 92 accessions belonging
to subspecies hypogaea (Table S1). The 202 accessions were planted on 6 May 2019 and on
10 May 2021 at the Wuchang Experiment Station (WES) and on 10 May 2021 at the Yangluo
Experiment Station (YES) of the Oil Crops Research Institute using a randomized complete
block design with three replicates. Each plot was set with a 2.5 m row length and 0.33 m
row space, with a seedling rate of 15 seeds per row. Field inoculation was performed using
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one moderately virulent strain (WH1) of A. rolfsii, as described by Fan et al., 2020 [29].
The inoculum, A. rolfsii-infested oat grains as mentioned by Fan et al. (2020) [29] and
Shokes et al. (1998) [30], was prepared by placing sterile sclerotia of A. rolfsii WH1 on a
potato dextrose agar (PDA) medium and incubating for 48 h at 30 ◦C. Five mycelium discs
were transferred to 300 g autoclaved oat grains in a 1 L flask. The culture was incubated
at 30 ◦C under dark for 4~5 days and shaken daily until the oat grains were completely
covered by mycelium. The oat grain culture was placed in a clean kraft envelope, dried
in an oven at 40 ◦C for a week, and kept under 4 ◦C for further use. Approximately
12 healthy plants per plot were inoculated with mycelium-infested oat grains 80–90 days
after sowing. Around one gram of oat grains culture was spread on the soil surface around
the stem base of each plant. Field soil was irrigated to water capacity after inoculation
for 2–3 consecutive days as mentioned by Yan et al., 2022 [31]. Disease rating was con-
ducted around 14 to 21 days after inoculation (DAI). Each plant was rated individually on
a visual scale of 0 to 4 for the severity of wilting, as described by Shokes et al. (1998) [30],
where 0 = no symptoms, 1 = symptom only on the stems, 2 = less than 25% wilting foliage,
3 = 25 to 50% wilting foliage, and 4 = more than 50% wilting foliage. The disease index (DI)
was calculated according to Yan et al. (2022) [31] as follows: DI = [(1 × number of plants
classified in scale 1) + (2 × number of plants classified in scale 2) + (3 × number of plants
classified in scale 3) + (4 × number of plants classified in scale 4)]/(4 × total number of
plants) × 100. The mean disease index of three replicates in each environment was used for
phenotypic data for GWAS analysis. The phenotypic data collected in WES were denoted
as A followed by the year, i.e., 2019-A-DI and 2021-A-DI, and those in YES were denoted
as B followed by the year, i.e., 2021-B-DI. Therefore, in total, three sets of phenotypic data
were collected. The phenotypic distribution was plotted using OriginLab Origin 2019b
(OriginLab Corporation, Northampton, MA, USA). All statistical analyses were conducted
using SPSS 25 (IBM SPSS Statistics, Chicago, IL, USA).

2.2. Samples Preparation and Genotyping

Young leaves from the 202 peanut accessions were collected from field-grown plants for
DNA extraction. Genomic DNA was extracted using a Hi-DNA secure
Pant Kit (Tiangen, Beijing, China). The quality and quantity of DNA were assessed using a
NanoDrop 2000 (Thermos Fisher Scientific Inc., Wilmington, DE, USA) and 1% agarose gel
electrophoresis. Whole-genome resequencing (WGS) of the panel was performed using
the BGISEQ-500/MGISEQ-2000 platform. Clean data were obtained by removing adaptors
and low-quality reads with Soapnuke software (BGI Company, Hong Kong, China). High-
quality unique reads were then mapped onto the reference genome of tetraploid cultivated
peanut (A. hypogaea) Tifrunner [17] using the Burrows–Wheeler Aligner (BWA) [32] with the
following parameters: —t 8—k 19—M—R. Alignment duplications were removed using
SAMTools [33] and Picard Tooklit (https://broadinstitute.github.io/picard/sss, accessed
on 20 October 2022). SNP identification was carried out using GATK [34] with the following
parameters: MQ > 30, QD < 1.5, —max missing 0.9—min alleles 2—max alleles 2—maf 0.05,
and -cluster-window size 10. A total of 3,034,414 SNPs markers were retained after filtering
out SNPs with genotyping error, a call rate <0.90 or minor allele frequency <0.05.

2.3. Population Structure Analysis and Phylogenetic Tree Construction

High-quality SNPs markers obtained from the DNA samples of the 202 peanut ac-
cessions were used to conduct principal component analysis (PCA), population structure
analysis, phylogenetic trees construction, and relative kinship analysis. PCA was per-
formed using EIGENSOFT software (https://mybiosoftware.com/eigensoft-population-
structure-eigenanalysis-stratification.html, accessed on 20 October 2022). The population
structure of the peanut panel was assessed using fastStructure software [35] with K-values
ranging from 0 to 7. Pairwise distance among the 202 accessions were calculated using the
p-distance model, and a phylogenetic tree with 1000 bootstraps was constructed using the
maximum likelihood methods in MEGA6 [36].

https://broadinstitute.github.io/picard/sss
https://mybiosoftware.com/eigensoft-population-structure-eigenanalysis-stratification.html
https://mybiosoftware.com/eigensoft-population-structure-eigenanalysis-stratification.html
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2.4. Genome-Wide Association Analysis and Candidate Genes’ Predication

SNPs with a minor allele frequency (MAF) higher than 0.01 were employed for link-
age disequilibrium analysis. LD blocks were visualized using Haploview 4.2 [37] fol-
lowing the protocol of Sardos et al. [38]. The genome-wide association analysis was
performed with high-integrity SNPs and phenotypic data from three environments of
202 peanut accessions using rMVP software [39] with three models, namely the gen-
eralized linear model (GLM), which uses population structure as a covariate [40]; the
mixed linear model (MLM), which incorporates both the population structure and kin-
ship among the individuals to adjust association tests on markers [41]; and fixed and
random model circulating probability unification (FarmCPU), which performs marker
tests with associated markers as covariates in a fixed-effect model and performs opti-
mization on the associated covariate markers in a random-effect model separately [42].
A significant threshold of p < 0.01 was used to determine the association. Candidate
genes located within a 100 kb region upstream or downstream of the significant SNPs
were identified from the A. hypogaea cv. Tifrunner: assembly and annotation (gnm1.ann1)
available at https://peanutbase.org (accessed on 20 October 2022). The r2 value was used
to explain the phenotypic variation of each marker following the methods described by
Zhang et al. (2017) [21].

3. Results
3.1. Phenotypic Variation among Peanut Accessions

The disease-resistance parameters showed a wide range of phenotypic variation both
within and across three environments, and they exhibited a nearly normal distribution
(Figure 1; Table 1). In the WES of 2019 (2019-A), the disease index ranged from 27.03 to
90.10 with an average of 49.68. In the WES of 2021 (2021-A), the disease index ranged from
22.97 to 91.54 with an average of 42.77, while in the YES of 2021 (2021-B), the disease index
ranged from 34.26 to 94.29 with an average of 59.92. The coefficient of variation (CV) for the
disease index values of 2019-A, 2021-A, and 2021-B were 24.62, 25.92, and 20.47, respectively.
The disease index in 2021-A showed significant correlation with that of 2019-A (r = 0.39,
p < 0.01) and with that of 2021-B (r = 0.41, p < 0.01), while it did not show significant
correlation with that of 2021-B (r = 0.24) (Table S2). ANOVA analysis of the 202 accessions
indicated that the disease index was significant (p < 0.01) for environment, genotype, and
genotype × environment interaction (Table S3). The broad-sense heritability estimated for
the disease index was 0.67 in a combined ANOVA across the three environments (Table 1),
indicating that resistance was heritable.
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Figure 1. Frequency distribution of stem rot resistance of peanut in 2019-A, 2021-A, and 2021-B.
(A): the experiments conducted at Wuchang Experimental Station in 2019; (B): the experiment carried
out at Wuchang Experimental Station in 2021; (C) the experiment conducted at Yangluo Experimental
Station in 2021.

https://peanutbase.org
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Table 1. Phenotypic variation of disease index of 202 peanut accessions to stem rot across three
environments.

Environment Minimum Maximum Mean SD CV Skew Kurt H2 (%)

2019-A 27.03 83.75 48.52 12.33 0.25 0.72 0.23
67.12021-A 28.71 97.34 52.62 13.77 0.26 0.85 0.50

2021-B 34.26 94.29 60.06 12.85 0.21 0.21 −0.65
Note: 2019-A means the data collected in 2019 at the Wuchang Experimental Station; 2021-A means data
collected in 2021 at the Wuchang Experimental Station; 2021-B means data collected in 2021 at the Yangluo
Experimental Station.

Peanut accessions were classified into two subspecies, fastigiata and hypogaea. In
this study, 110 peanut accessions belonged to fastigiata subspecies, and 92 accessions be-
longed to hypogaea subspecies (Table S1). The mean disease index of accessions in subsp.
fastigiata (52.80) was lower compared to accessions in subsp. hypogaea (54.89) across three
environments, and the disease index of accessions in subsp. fastigiata (47.86 in 2019-A,
52.06 in 2021-A, 58.47 in 2021-B) was also lower compared to accessions in subsp.
hypogaea (49.34 in 2019-A, 53.31 in 2021-A, 61.95 in 2021-B) in each environment, al-
though the difference was not significant (Table 2). The peanut panel used in the current
study was divided into four groups based on the geographical location of each accession:
southern China (Guangdong, Guangxi, Fujian and Hainan); the Yangtze River region
(Yunnan, Guizhou, Sichuan, Hubei, Hunan, Jiangxi, Anhui, Jiangxi, and Jiangsu); north-
ern China (Liaoning, Hebei, Shandong, Shanxi, Henan); and others (ICRISAT, America,
Africa) (Table S1). The mean disease index of accessions in southern China (48.89) was
the lowest across three environments and significantly differed from accessions from the
Yangtze River region and other countries, but it did not significantly differ from accessions
from northern China. The disease index of accessions in southern China was also the low-
est in each environment and was significantly different from accessions from the Yangtze
River region and other countries in 2019-A, 2021-A, and 2021-B, as well as from accessions
from northern China in 2021-B; however, it did not significantly differ from accessions
from northern China in 2019-A and 2021-A (Table 3). Moderately resistant and highly
susceptible peanut accessions among the 202 accessions were identified based on the mean
disease index across three environments (Table S4). Seven accessions with a mean disease
index lower than 40 were considered moderately resistant, including CE036, CE064, CE072,
CE084, CE103, CE104, and CE142. Four accessions, CE032, CE133, CE133, and CE171, with
a mean disease index higher than 80 were regarded as highly susceptible. The moderately
resistant accessions included four accessions belonging to fastigiata subspecies and three
belonging to hypogaea subspecies. The four highly susceptible accessions all belonged to
hypogaea subspecies.

Table 2. Disease index of two subspecies in 202 peanut accessions.

Subspecies
Environment

2019-A 2021-A 2021-B Mean

subsp. fastigiata 47.86 ± 12.23 a 52.06 ± 13.52 a 58.47 ± 12.80 a 52.8 ± 9.59 a
subsp. hypogaea 49.34 ± 12.47 a 53.31 ± 14.11 a 61.95 ± 12.71 a 54.89 ± 9.89 a

Note: 2019-A means the data collected in 2019 at the Wuchang Experimental Station; 2021-A means data collected
in 2021 at the Wuchang Experimental Station; 2021-B means data collected in 2021 at the Yangluo Experimental
Station. Means followed by the same letter within a column are not significant different (p ≤ 0.05) according to
Dunnett’s Test.
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Table 3. Disease index variation of accessions originated from different areas.

Originated Place
Environment

2019-A 2021-A 2021-B Mean

Southern China 45.39 ± 10.60 a 46.20 ± 11.22 a 54.92 ± 11.54 a 48.89 ± 8.22 a
Yangtze River region 51.17 ± 14.48 b 54.59 ± 15.03 b 63.08 ± 14.75 b 56.28 ± 11.41 b
Northern China 45.68 ± 9.29 a 50.09 ± 9.47 ab 60.04 ± 10.42 b 51.98 ± 5.65 a
Other countries 52.64 ± 13.06 b 61.71 ± 15.10 c 62.09 ± 13.07 b 58.82 ± 10.40 c

Note: 2019-A means data collected in 2019 at the Wuchang Experimental Station; 2021-A means data collected
in 2021 at the Wuchang Experimental Station; 2021-B means data collected in 2019 at the Yangluo Experimental
Station. Means followed by the same letter within a column are not significant different (p ≤ 0.05), while followed
by different letters within a column are significant different (p ≤ 0.05) according to Dunnett’s Test.

3.2. Genome-Wide Distribution of SNPs

The 202 accessions were genotyped using next-generation whole-genome resequencing
at a depth of 10×. SNPs were identified by comparing the genome sequence of the
cultivated peanut Tifrunner (http://www.peanutbase.org, accessed on 20 October 2022). A
total of 3,034,414 polymorphic SNP markers meeting the quality control criteria (MAF > 0.05
and integrity > 0.1) were identified using GATK, SAMtools, and ReseqTools. These SNP
markers were employed for population structure definition, phylogenetic tree construction,
and GWAS analysis. The distribution of SNPs was non-uniform across the 20 chromosomes,
with the number of SNPs ranging from 56,837 in A08 to 209,586 in B09 (Figure 2A,B).
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Figure 2. Single-nucleotide polymorphisms (SNP) distribution across the 20 chromosomes of the
cultivated peanut. (A) The number of SNPs across each chromosome in peanut genome. (B) SNP
density on each chromosomal pseudomolecule of peanut. The horizontal axis shows the length of the
SNPs per 1 Mb window.
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3.3. Population Structure and Phylogenetic Tree

Principal component analysis of the 202 accessions grouped the panel into two groups,
namely G1 and G2 (Figure 3A). The population structure was determined using PLINK
and fastStructure software based on the genotypic data of the panel. When K = 2, the
accession panel was divided into two subpopulations, G1 and G2 (Figure 3B), which
corresponded to the two subspecies, fastigiata and hypogaea, respectively (Table S1). Of
the 202 accessions, 104 were classified into G1 and 98 were classified into G2. Most of the
accessions (99 out of 104) in G1 belonged to subsp. fastigiata, while most of the accessions
(84 out of 96) in G2 belonged to subsp. hypogaea. In subpopulation G1, 34.62% of the
accessions was from southern China, 29.81% was from the Yangtze River region, 14.42%
was from northern China, and 21.15% was from other regions. In subpopulation G2, 42.86%
of the accessions originated from northern China, 13.27% originated from southern China,
27.55% originated from the Yangtze River region, and 16.33% originated from the other
regions. The phylogenetic tree was constructed using the unweighted pair group method
with arithmetic average (UPGMA) and maximum likelihood methods, showing that the
202 accessions were primarily divided into two clusters (Figure 3C). A total of 98 accessions
were classified in cluster 1, which was similar to subpopulation G1, while 104 accessions
were classified into cluster 2, which was similar to subpopulation G2. The results of the
population structure and the phylogenetic tree were consistent.
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3.4. Identification of Loci Associated with Stem Rot Resistance Using GWAS

The Manhattan plot and quantile–quantile (Q-Q) plot revealed that 121 SNP mark-
ers were detected by the FarmCPU model (Figure 4), 104 SNP markers were detected
by the GLM model (Figure S1), and 2 SNP markers were detected by the MLM model
(Figure S1, Table S5) based on the significance threshold of −log10 (1/3,034,414) = 6.48.
The SNP markers detected by MLM were also detected by FarmCPU, while the SNP mark-
ers detected by GLM were also detected by FarmCPU. Therefore, SNP markers detected
by FarmCPU were considered significant and used for further analysis. The 121 SNP
markers explained 12.23% to 15.51% of the phenotype. The SNP markers were detected
on 11 chromosomes, namely A03, A04, A07, and A10 in the A genome and B02, B03, B04,
B05, B08, B09, and B10 located in the B genome (Figure 5). Of the 121 SNPs, 4, 116, and
1 SNP markers were identified in environment 2019-A, 2021-A, and 2021-B, respectively.
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Figure 5. The significant SNPs conferring stem rot resistance in peanut identified using the
FarmCPU model.

Three significant SNPs on chromosome A04 were located in the genomic region from
120,110,031 bp to 122,646,296 bp, spanning 2.54 Mb, with the most significant SNP explain-
ing 13.82% of the phenotypic variation. A total of 20 SNPs located on chromosome A10,
from 17,040,050 bp to 66,057,341 bp, spanning approximately 49.02 Mb, with the most
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significant SNP having a phenotypic variation explained (PVE) of 14.57%. On chromo-
some B04, there were three significant SNPs in a genomic region from 137,391,933 bp to
139,559,492 bp, spanning 2.17 Mb, with the most significant SNP explaining 13.23% of
the phenotypic variation. Thirteen significant SNPs were located on chromosome B05, in
the genomic region from 15,951,630 bp to 155,781,790 bp, spanning 139.83 Mb, with the
most significant SNP explaining 14.61% of the phenotypic variation. A set of 76 significant
SNPs located on chromosome B08 in the genomic region from 20,423,727 bp to 106,147,465,
spanning approximately 85.72 Mb, with the most significant SNP having a PVE of 15.51%.
There was only one significant SNP distributed on chromosomes A03, A07, B02, B03, B09
and B10, respectively (Figure 5).

3.5. Identification of Putative Candidate Genes for Stem Rot Resistance

The putative candidate genes surrounding the significant SNPs in the peanut genome
sequence ±100 kb upstream and downstream of the significant SNPs were identified.
A total of 292 genes were found surrounding 62 significant SNPs, while 27 genes were
considered putative candidate genes associated with peanut stem rot resistance surround-
ing 23 significant SNPs. Some SNPs were associated with one candidate gene (Table S6),
such as B04-137391933 and B04-137407408, which were associated with arahy. WVAI17;
B08-32412160, B08-3241216, and B08-32426809 were associated with arahy. CE0NJE;
B08-32618254, B08-32668028, and B08-32668886 were associated with arahy. 7DSU2J; and
B08-32830034, B08-32850779, B08-32883804, and B08-32904050 were associated with the
arahy. LUID63 gene. The potential candidate genes were located on five chromosomes,
namely A04, B02, B04, B05, and B08. Functional annotation of the 27 potential candidate
genes revealed that 12 genes were related to recognition, such as disease-resistance protein
(TIR-NBS-LRR, LRR receptor-like kinase, protein kinase superfamily protein, receptor ki-
nase, receptor-like protein, receptor-like protein kinase, receptor-like serine/threonine
kinase). Thirteen genes were related to signal transduction, including ATPase, ATP-
binding protein/serine and threonine kinase, Calcium-binding EF-hand family protein,
glutathione S transferase, myb transcription factor, signal peptide peptidase, thioredoxin
superfamily protein, transcription factor, WRKY family transcription factor, and zinc finger.
Two genes were associated with defense response, namely peroxidase and terpene synthase
(Tables S6 and 4).

Table 4. Putative candidate genes associated with stem rot resistance in peanut.

Function Annotation Number of
Genes

Recognition (12) disease-resistance protein (TIR-NBS-LRR) 1
LRR receptor-like kinase 1
protein kinase superfamily protein 2
receptor kinase 2
receptor-like protein 1
receptor-like protein kinase 3
receptor-like serine/threonine kinase 2

Signal transduction (13) ATPase 1
ATP-binding/protein serine/threonine kinase 1
calcium-binding EF-hand family protein 1
glutathione S-transferase 1
myb transcription factor 1
signal peptide peptidase 1
thioredoxin superfamily protein 1
transcription factor 1
WRKY family transcription factor 2
zinc finger family protein 3

Defense (2) peroxidase superfamily protein 1
terpene synthase 1
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4. Discussion

Stem rot, caused by A. rolfsii, is a highly destructive and economically significant
soil-borne fungal disease that affects the yield and quality of peanuts worldwide. Utilizing
resistant varieties is the most cost-effective and efficient approach for managing this disease.
In this study, we evaluated a panel of 202 peanut accessions, 81.8% of which originated
from China, for their resistance to stem rot. The genotypic and phenotypic data of the panel
were used for GWAS to gain insight into the genetic base of resistance.

Previous studies have evaluated resistance to stem rot in peanut germplasm. Mehan
et al. (1995) [43] evaluated a total of 859 germplasm accessions, breeding lines, and inter-
specific hybrid derivatives for stem rot resistance and found 16 accessions were resistant.
Bennett et al. (2020) [44] evaluated 71 accessions of the U.S. germplasm mini-core collection
for stem rot resistance and found that 4 accessions had low levels of disease. Although some
resistant accessions were identified in those reports, the difference in resistance between
the two subspecies of peanut have not been compared. In this study, for the first time,
resistance to stem rot in two subspecies was compared. A total of 110 accessions of subsp.
fastigiata and 92 accessions of subsp. hypogaea were tested in three environments. The
mean disease index values (47.86, 52.06, 58.47) of accessions in subsp. fastigiata was slightly
lower than that (49.34, 53.31, 61.95) of accessions in subsp. hypogaea in 2019-A, 2021-A, and
2021-B, but the difference was not significant (Table 2). Resistant materials against stem
rot were identified in both subsp. fastigiata and subsp. hypogaea (Table S4); it suggested
that resistance sources exist in both subspecies. Resistance to diseases in both subspecies
have also been found in other reports. Ding et al. (2022) [26] found accessions with seed
infection of Aspergillus flavus, and aflatoxin production resistance existed in both subsp.
fastigiata and hypogaea. Yu et al. (2020) [27] also found accessions with aflatoxin production
resistance in both subsp. fastigiata and hypogaea. The results implied that breeding for stem
rot resistance could use sources from either subsp. fastigiata or subsp. hypogaea.

Resistance to stem rot in peanut varies among accessions originating from different
geographical regions. In the current study, accessions from southern China exhibited
the lowest disease index (48.89) compared to those from the Yangtze River region (56.28)
and from northern China (51.98) across three environments (Table 3). It suggested that
accessions from southern China are more resistant to stem rot compared to those from the
other two regions. Among the 202 peanut accessions tested in this study, 7 were identified
as resistant to stem rot, with 5 of them originating from southern China. In a previous
study, Jiang et al. (2002) [45] evaluated 700 accessions for resistance to A. flavus invasion
and found that all genotypes with a low invasion percentage were from southern China.
These findings suggest that accessions from southern China may harbor more sources of
resistance to some peanut diseases.

Resistance to stem rot in peanut is a complex quantitative trait that is controlled by
multiple genes. GWAS presents a powerful genetic mapping tool for the dissection of
complex traits, including disease resistance, in many other crops [46–49], as well as in
peanut. This study is the first report of the identification of SNPs associated with stem
rot resistance using GWAS. A total of 121 SNP markers have been identified as being
associated with stem rot resistance. Several earlier studies identified QTLs related to stem
rot in peanut, all of which were detected by linkage analysis with RIL populations from a
narrow genetic background. Regarding the different populations and methods in previous
studies, those QTLs were found to be located in different genomes. Some studies detected
QTLs in the A genome [10,13], while others found QTLs in the B genome [11]. In the
present study, QTLs were identified in both the A and B genomes, which is consistent
with the results of Luo et al. [12], who also detected QTLs in both the A and B genomes
(Table S7). This suggests that both genomes are a source of resistance to stem rot. Previous
studies detected QTLs related to stem rot resistance on different chromosomes. Bera et al.
(2016) [10] identified one QTL on chromosome A01. Dodia et al. (2019) [11] detected seven
QTLs on chromosome B03, B04, B06, B08, and B10. Cui et al. (2020) [13] identified two QTLs
on chromosome A01 and A05. Luo et al. (2020) [12] detected 33 QTLs on chromosome
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A01, A03, A04, A05, A06, A07, A08, A10, B03, B04, B05, B06, and B08. In the present study,
significant SNPs related to resistance to stem rot have been identified on nine chromosomes
reported in earlier studies, i.e., A03, A04, A07, A10, B03, B04, B05, B08, and B10, and two
chromosomes (B02 and B09), previously unreported, have been identified in the present
study (Table S7). The genetic alleles related to stem rot resistance are located on different
chromosomes, indicating that markers pyramiding might be an effective way to increase
stem rot resistance in peanut breeding.

In this study, 121 significant SNPs were aligned to the reference genome of cultivated
peanut Tifrunner with the previously detected QTLs linked to stem rot resistance [10–13].
The results show that 56 significant SNPs identified in this study were located in the QTL
regions reported by others (Table S7). For instance, SNP 04-121157345 and 04-122646296
detected in this study were located in the QTL qSR.A04-2 region identified by Luo et al.
(2020) [12]. In addition, a total of 53 significant SNPs were detected in chromosome B08
(54475586-106147465) within the QTL q9DAI_S1B08.1 region [11], and another significant
SNP marker B10-80733496 identified in this study was located within the region of QTL
q9DAI_S3B10.2 [11]. The results suggest these significant SNPs identified in this study
are reliable markers associated with stem rot resistance in peanut. Among these markers,
04-121157345 was located in the QTL qSR.A04-2 region identified in environment 2021-A,
while another significant SNP marker 04-122646296 was identified in environment 2021-B.
The findings suggest that the QTL qSR.A04-2, detected in two environments, is considered
a conserved QTL. These reliable SNPs related to stem rot resistance in peanut can help
establish diagnostic markers for breeding programs and aid in the discovery of putative
candidate genes associated with stem rot resistance in peanut.

5. Conclusions

In summary, our study found no significant difference in peanut stem rot resistance
between subsp. fastigiata and subsp. hypogata. However, accessions from southern China
exhibited higher resistance compared to those from other regions. We identified a total
of 121 significant SNPs associated with stem rot resistance in peanut using GWAS and
annotated 27 candidate genes that may confer resistance to peanut stem rot.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes14071447/s1, Figure S1: Manhattan plot by GLM and MLM
across three environments; Table S1: Phenotypic data of the 202 peanut accessions used in this
study in three environments; Table S2: Pearson correlation analysis of disease index of stem rot
for the 202 accessions in three environments; Table S3: ANOVA analysis of disease index in three
environments; Table S4: The resistant and susceptible accessions identified in this study; Table S5:
Putative candidate genes associated with stem rot resistance in peanut; Table S6: A summary of
genomic region associated with peanut stem rot resistance; Table S7: Significant SNPs associated with
stem rot resistance within the reported QTL regions.

Author Contributions: Conceptualization, and methodology, L.Y. and W.S.; formal analysis, Z.W.;
investigation, D.Y. and Y.K.; writing—original draft preparation, L.Y. and W.S.; writing—review and
editing, H.S., Y.C., D.H. and X.W.; visualization, Q.W.; supervision, B.L.; project administration, Y.L.;
funding acquisition, L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (31971981),
the earmarked fund for CARS-13, Central Public-interest Scientific Institution Basal Research Fund
(16101720210039) and Key Area Research and Development Program of Hubei Province (2021BBA077).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Chaobo Tong and Taihua Yang for data analysis.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/genes14071447/s1
https://www.mdpi.com/article/10.3390/genes14071447/s1


Genes 2023, 14, 1447 12 of 13

References
1. Chen, R.H.; Fang, X.L.; Zeng, S.C.; Li, S.Y. Occurrence and control measures of main peanut diseases in Jiangxi. Acta Agric. Jiangxi

2009, 21, 106–109. [CrossRef]
2. Fu, J.F.; Liu, B.; Zhou, R.J.; Wang, S.W. Identification of biological characteristics of Sclerotium rolfsii causing peanut stem rot in

Liaoning Province. Chin. J. Oil Crop Sci. 2014, 36, 635–640. [CrossRef]
3. Li, M.; Li, S.; Zhang, Z.X.; Du, P.Q.; Lin, Z.; Dong, W.Z. Sensitivity to carboxin and population diversity of Sclerotium rolfsii from

peanut in Henan province. J. Henan Agric. Sci. 2021, 50, 64–73. [CrossRef]
4. Xiao, X.; Chen, X.L.; Deng, M.G.; Xu, D.G.; Pan, R.Q. Preliminary research on distribution and biological characteristics of

Sclerotium rolfsii, the pathogen of peanut stem rot in Guangdong province. Guangdong Agric. Sci. 2012, 17, 71–73. [CrossRef]
5. Chen, K.R.; Ren, L.; Xu, L.; Liu, F.; Fang, X.P. Research progress on peanut southern stem rot caused by Sclerotium rolfsii. Chin. J.

Oil Crop Sci. 2018, 40, 302–308. [CrossRef]
6. Yan, L.Y.; Song, W.D.; Lei, Y.; Wan, L.Y.; Huai, D.X.; Kang, Y.P.; Chen, Y.P.; Liao, B.S. Evaluation of peanut accessions for re-sistance

to Sclerotium stem rot. Chin. J. Oil Crop Sci. 2019, 41, 781–787. [CrossRef]
7. Branch, W.D.; Culbreath, A.K. Registration of ‘Georgia-10T’ Peanut. J. Plant Regist. 2011, 5, 279–281. [CrossRef]
8. Branch, W.D. Registration of ‘Georgia-12Y’ Peanut. J. Plant Regist. 2013, 7, 151–153. [CrossRef]
9. Tillman, B.L. Registration of ‘FloRun ‘331’ peanut. J. Plant Regist. 2021, 15, 294–299. [CrossRef]
10. Dodia, S.M.; Joshi, B.; Gangurde, S.S.; Thirumalaisamy, P.P.; Mishra, G.P.; Narandrakumar, D.; Soni, P.; Rathnakumar, A.L.;

Dobaria, J.R.; Sangh, C.; et al. Genotyping-by-sequencing based genetic mapping reveals large number of epistatic interactions
for stem rot resistance in groundnut. Theor. Appl. Genet. 2019, 132, 1001–1016. [CrossRef]

11. Bera, S.K.; Kamdar, J.H.; Kasundra, S.V.; Ajay, B.C. A novel QTL governing resistance to stem rot disease caused by Sclerotium
rolfsii in peanut. Australas. Plant Pathol. 2016, 45, 1–8. [CrossRef]

12. Luo, Z.; Cui, R.; Chavarro, C.; Tseng, Y.-C.; Zhou, H.; Peng, Z.; Chu, Y.; Yang, X.; Lopez, Y.; Tillman, B.; et al. Mapping quantitative
trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Theor. Appl.
Genet. 2020, 133, 1201–1212. [CrossRef]

13. Cui, R.; Clevenger, J.; Chu, Y.; Brenneman, T.; Isleib, T.G.; Holbrook, C.C.; Ozias-Akins, P. QTL-seq derived molecular markers for
selection of stem rot (Sclerotium rolfsii) resistance in peanut (Arachis hypogaea). Crop. Sci. 2020, 60, 2008–2018. [CrossRef]

14. Zou, K.; Kim, K.S.; Kim, K.; Kang, D.; Park, Y.H.; Sun, H.; Ha, B.K.; Ha, J.; Jun, T.H. Genetic Diversity and Genome-Wide
Association Study of Seed Aspect Ratio Using a High-Density SNP Array in Peanut (Arachis hypogaea L.). Genes 2020, 12, 2.
[CrossRef]

15. Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant Methods 2013, 9, 29. [CrossRef]
[PubMed]

16. Geng, X.; Sha, J.; Liu, S.; Bao, L.; Zhang, J.; Wang, R.; Yao, J.; Li, C.; Feng, J.; Sun, F.; et al. A genome-wide association study in
catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genom. 2015,
16, 196. [CrossRef] [PubMed]

17. Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Schmutz, J. The genome sequence of segmental allotetraploid peanut
Arachis hypogaea. Nat. Genet. 2019, 51, 1–8. [CrossRef] [PubMed]

18. Chen, X.P.; Lu, Q.; Liu, H.; Zhang, J.N.; Hong, Y.B.; Lan, H.F.; Li, H.F.; Wang, J.P.; Liu, H.Y.; Li, S.X.; et al. Sequencing of Cultivated
Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Mol. Plant 2019, 12, 920–934. [CrossRef]

19. Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.-C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The
genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet.
2019, 51, 865–876. [CrossRef]

20. Liu, N.; Huang, L.; Chen, W.G.; Wu, B.; Jiang, H.F. Dissection of the genetic basis of oil content in Chinese peanut cultivars
through association mapping. BMC Genet. 2020, 21, 60. [CrossRef]

21. Zhang, X.; Zhang, J.; He, X.; Wang, Y.; Ma, X.; Yin, D. Genome-wide association -study of major agronomic traits related to
domestication in peanut. Front. Plant Sci. 2017, 8, 1611. [CrossRef] [PubMed]

22. Wang, J.; Yan, C.; Shi, D.; Zhao, X.; Yuan, C.; Sun, Q.; Mou, Y.; Chen, H.; Li, Y.; Li, C.; et al. The genetic base for peanut
height-related traits revealed by a meta-analysis. Plants 2021, 10, 1058. [CrossRef] [PubMed]

23. Pandey, M.K.; Upadhyaya, H.D.; Rathore, A.; Vadez, V.; Sheshshayee, M.S.; Sriswathi, M.; Govil, M.; Kumar, A.; Gowda, M.V.C.;
Sharma, S. Genomewide association studies for 50 agronomic traits in peanut using the ‘Reference Set’ comprising 300 genotypes
from 48 countries of the Semi-Arid Tropics of the world. PLoS ONE 2014, 9, e105228. [CrossRef]

24. Wang, J.; Yan, C.; Li, Y.; Li, C.; Zhao, X.; Yuan, C.; Sun, Q.; Shan, S. GWAS discovery of candidate genes for yield-related traits in
peanut and support from earlier QTL mapping studies. Genes 2019, 10, 803. [CrossRef] [PubMed]

25. Zhou, X.; Guo, J.; Pandey, M.K.; Varshney, R.K.; Huang, L.; Luo, H.; Liu, N.; Chen, W.; Lei, Y.; Liao, B.; et al. Dissection of the
genetic basis of yield-related traits in the Chinese peanut mini-Core collection through genome-wide association studies. Front.
Plant Sci. 2021, 12, 637284. [CrossRef] [PubMed]

26. Ding, Y.B.; Qiu, X.K.; Luo, H.Y.; Huang, L.; Guo, J.B.; Yu, B.L.; Sudini, H.; Pandey, M.; Kang, Y.P.; Liu, N.; et al. Comprehensive
evaluation of Chinese peanut mini-mini core collection and QTL mapping for aflatoxin resistance. BMC Plant Biol. 2022, 22, 207.
[CrossRef]

https://doi.org/10.3969/j.issn.1001-8581.2009.12.032
https://doi.org/10.7505/j.issn.1007-9084.2014.05.012
https://doi.org/10.15933/j.cnki.1004-3268.2021.05.009
https://doi.org/10.16768/j.issn.1004-874x.2012.17.040
https://doi.org/10.7505/j.issn.1007-9084.2018.02.018
https://doi.org/10.19802/j.issn.1007-9084.2019042
https://doi.org/10.3198/jpr2010.11.0635crc
https://doi.org/10.3198/jpr2012.11.0048crc
https://doi.org/10.1002/plr2.20141
https://doi.org/10.1007/s00122-018-3255-7
https://doi.org/10.1007/s13313-016-0448-x
https://doi.org/10.1007/s00122-020-03542-y
https://doi.org/10.1002/csc2.20047
https://doi.org/10.3390/genes12010002
https://doi.org/10.1186/1746-4811-9-29
https://www.ncbi.nlm.nih.gov/pubmed/23876160
https://doi.org/10.1186/s12864-015-1409-4
https://www.ncbi.nlm.nih.gov/pubmed/25888203
https://doi.org/10.1038/s41588-019-0405-z
https://www.ncbi.nlm.nih.gov/pubmed/31043755
https://doi.org/10.1016/j.molp.2019.03.005
https://doi.org/10.1038/s41588-019-0402-2
https://doi.org/10.1186/s12863-020-00863-1
https://doi.org/10.3389/fpls.2017.01611
https://www.ncbi.nlm.nih.gov/pubmed/29018458
https://doi.org/10.3390/plants10061058
https://www.ncbi.nlm.nih.gov/pubmed/34070508
https://doi.org/10.1371/journal.pone.0105228
https://doi.org/10.3390/genes10100803
https://www.ncbi.nlm.nih.gov/pubmed/31614874
https://doi.org/10.3389/fpls.2021.637284
https://www.ncbi.nlm.nih.gov/pubmed/34093605
https://doi.org/10.1186/s12870-022-03582-0


Genes 2023, 14, 1447 13 of 13

27. Yu, B.; Jiang, H.; Pandey, M.K.; Huang, L.; Huai, D.; Zhou, X.; Kang, Y.; Varshney, R.K.; Sudini, H.K.; Ren, X.; et al. Identification
of two novel peanut genotypes resistant to aflatoxin production and their SNP markers associated with resistance. Toxins 2020,
12, 156. [CrossRef]

28. Zhang, H.; Chu, Y.; Dang, P.; Tang, Y.Y.; Chen, C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis
hypogaea L.) through GWAS analysis. Theor. Appl. Genet. 2020, 133, 2051–2061. [CrossRef]

29. Fan, P.; Song, W.; Kang, Y.; Wan, L.; Lei, Y.; Huai, D.; Chen, Y.; Wang, X.; Jiang, H.; Yan, L. Phenotypic identification of peanut
germplasm for resistance to southern stem rot. Oil Crop. Sci. 2020, 5, 174–179. [CrossRef]

30. Shokes, F.M.; Weber, Z.; Gorbet, D.W.; Pudelko, H.A.; Taczanowski, M. Evaluation of peanut genotypes for resistance to southern
stem rot using an agar disk technique1. Peanut Sci. 1998, 25, 12–17. [CrossRef]

31. Yan, L.; Song, W.; Yu, D.; Sudini, H.K.; Kang, Y.; Lei, Y.; Huai, D.; Wang, Z.; Chen, Y.; Wang, X.; et al. Genetic, phenotypic, and
pathogenic variation among Athelia rolfsii, the causal agent of peanut stem rot in China. Plant Dis. 2022, 106, 2722–2729. [CrossRef]
[PubMed]

32. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

33. Li, H.; Handsaker, B.; Wuspler, A.; Fennell, T.M.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence
alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

34. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.
The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010,
20, 1297–1303. [CrossRef] [PubMed]

35. Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational inference of population structure in large SNP data sets.
Genetics 2014, 197, 573–589. [CrossRef]

36. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol.
Biol. Evol. 2013, 30, 2725–2729. [CrossRef]

37. Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005,
21, 263–265. [CrossRef]

38. Sardos, J.; Rouard, M.; Hueber, Y.; Cenci, A.; Hyma, K.E.; van den Houwe, I.; Hribova, R.; Courtois, B.; Roux, N. A Genome-wide
association study on the seedless phenotype in Banana (Musa spp.) reveals the potential of a selected panel to detect candidate
genes in a vegetatively propagated crop. PLoS ONE 2016, 11, e0154448. [CrossRef]

39. Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. rMVP: A Memory-efficient,
visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19,
619–628. [CrossRef]

40. Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [CrossRef]

41. Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh Bi, I.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.;
et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006,
38, 203–208. [CrossRef] [PubMed]

42. Liu, X.; Huang, M.; Fan, B.; Buckler, E.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient
genome-wide association studies. PLoS Genet. 2016, 12, e1005767. [CrossRef] [PubMed]

43. Mehan, V.K.; Mayee, C.D.; McDonald, D.; Ramakrishna, N.; Jayanthi, S. Resistance in groundnut to Sclerotium rolfsii caused stem
and pod rot. Int. J. Pest Manag. 1995, 41, 79–83. [CrossRef]

44. Bennett, R.; Chamberlin, K. Resistance to Athelia rolfsii and web blotch in the U.S. mini-core collection. Peanut Sci. 2020, 47, 17–24.
[CrossRef]

45. Jiang, H.F.; Wang, S.Y.; Ren, X.P. Reaction of groundnut germplasm to Aspergillus flavus invasion. Chin. J. Oil Crop Sci. 2002, 24,
23–25.

46. Guo, Z.L.; Liu, X.; Zhang, B.; Yuan, X.J.; Xing, Y.Z.; Liu, H.Y.; Luo, L.J.; Chen, G.X.; Xiong, L.Z. Genetic analyses of lodging
resistance and yield provide insights into post-Green-Revolution breeding in rice. Plant Biotechnol. J. 2021, 19, 814–829. [CrossRef]

47. Pang, Y.L.; Wu, Y.Y.; Liu, C.X.; Li, W.H.; Amand, P.S.; Bernardo, A.; Wang, D.F.; Dong, L.; Yuan, X.F.; Zhang, H.R.; et al. High-
resolution genome-wide association study and genomic prediction for disease resistance and cold tolerance in wheat. Theor. Appl.
Genet. 2021, 134, 2857–2873. [CrossRef]

48. Zhao, N.; Wang, W.R.; Grover, C.E.; Jiang, K.Y.; Pan, Z.X.; Guo, B.S.; Zhu, J.H.; Su, Y.; Wang, M.; Nie, H.S.; et al. Genomic and
GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint
percentage and Fusarium wilt resistance. Plant Biotechnol. J. 2022, 20, 691–710. [CrossRef]

49. Zhao, Y.L.; Chen, W.; Cui, Y.L.; Sang, X.H.; Lu, J.H.; Jing, H.J.; Wang, W.J.; Zhao, P.; Wang, H.M. Detection of candidate genes
and development of KASP markers for Verticillium wilt resistance by combining genome-wide association study, QTL-seq and
transcriptome sequencing in cotton. Theor. Appl. Genet. 2021, 134, 1063–1081. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/toxins12030156
https://doi.org/10.1007/s00122-020-03576-2
https://doi.org/10.1016/j.ocsci.2020.12.001
https://doi.org/10.3146/i0095-3679-25-1-4
https://doi.org/10.1094/PDIS-08-21-1681-RE
https://www.ncbi.nlm.nih.gov/pubmed/36094427
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
https://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1101/gr.107524.110
https://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1534/genetics.114.164350
https://doi.org/10.1093/molbev/mst197
https://doi.org/10.1093/bioinformatics/bth457
https://doi.org/10.1371/journal.pone.0154448
https://doi.org/10.1016/j.gpb.2020.10.007
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1702
https://www.ncbi.nlm.nih.gov/pubmed/16380716
https://doi.org/10.1371/journal.pgen.1005767
https://www.ncbi.nlm.nih.gov/pubmed/26828793
https://doi.org/10.1080/09670879509371927
https://doi.org/10.3146/PS19-18.1
https://doi.org/10.1111/pbi.13509
https://doi.org/10.1007/s00122-021-03863-6
https://doi.org/10.1111/pbi.13747
https://doi.org/10.1007/s00122-020-03752-4

	Introduction 
	Materials and Methods 
	Plant Materials and Field Evaluation of Stem Rot Resistance 
	Samples Preparation and Genotyping 
	Population Structure Analysis and Phylogenetic Tree Construction 
	Genome-Wide Association Analysis and Candidate Genes’ Predication 

	Results 
	Phenotypic Variation among Peanut Accessions 
	Genome-Wide Distribution of SNPs 
	Population Structure and Phylogenetic Tree 
	Identification of Loci Associated with Stem Rot Resistance Using GWAS 
	Identification of Putative Candidate Genes for Stem Rot Resistance 

	Discussion 
	Conclusions 
	References

