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Abstract: We deployed field-based high-throughput phenotyping (HTP) techniques to acquire trait
data for a subset of a peanut chromosome segment substitution line (CSSL) population. Sensors
mounted on an unmanned aerial vehicle (UAV) were used to derive various vegetative indices as well
as canopy temperatures. A combination of aerial imaging and manual scoring showed that CSSL 100,
CSSL 84, CSSL 111, and CSSL 15 had remarkably low tomato spotted wilt virus (TSWV) incidence,
a devastating disease in South Georgia, USA. The four lines also performed well under leaf spot
pressure. The vegetative indices showed strong correlations of up to 0.94 with visual disease scores,
indicating that aerial phenotyping is a reliable way of selecting under disease pressure. Since the
yield components of peanut are below the soil surface, we deployed ground penetrating radar (GPR)
technology to detect pods non-destructively. Moderate correlations of up to 0.5 between pod weight
and data acquired from GPR signals were observed. Both the manually acquired pod data and GPR
variables highlighted the three lines, CSSL 84, CSSL 100, and CSSL 111, as the best-performing lines,
with pod weights comparable to the cultivated check Tifguard. Through the combined application
of manual and HTP techniques, this study reinforces the premise that chromosome segments from
peanut wild relatives may be a potential source of valuable agronomic traits.

Keywords: peanut; phenomics; high-throughput phenotyping; ground penetrating radar; tomato
spotted wilt virus; leaf spot; pod weight

1. Introduction

A key challenge in peanut breeding is increasing the genetic diversity of the crop.
Unlike their wild relatives, cultivated varieties have severely limited variation as a result
of their genetic heritage and the process of domestication [1]. What is now recognized as
cultivated peanut arose from the hybridization of two wild species, namely A. duranensis
and A. ipaensis. Spontaneous doubling of the chromosomes of the hybrid resulted in
tetraploid A. hypogaea [2,3]. The resultant ploidy barrier restricted the ability of cultivated
peanut to exchange genetic material with the wilds. This limitation was further enforced
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by the process of human selection and domestication [4,5]. Consequently, peanuts are
under the constant threat of biotic pressures, such as insects and diseases, as well as abiotic
stresses, such as drought, which are exacerbated by the effects of climate change. In
contrast, because of their diversity, wild peanut relatives are more adaptable since they
have maintained genes that enable them to cope with these pressures. This makes them
precious sources of diversity for cultivated peanut [6–9].

One of the ways that breeders sought to harness genetic diversity from the wild was
by creating a chromosome segment substitution line (CSSL) population [1]. This was
achieved by crossing the two known diploid ancestors of peanut to result in a diploid
hybrid. The genome of the hybrid was doubled to form a synthetic tetraploid, essentially
recreating the allotetraploid ancestor of cultivated peanut [10]. The synthetic allotetraploid
was crossed with Fleur 11, a cultivated variety of peanut that is popularly grown in West
Africa. Subsequent judicious selection resulted in a population comprised of 122 individual
lines. Each line is genetically similar to the cultivated variety; however, the selection was
made such that each line retained a small segment of the synthetic genome. Therefore, each
line is distinguished by the portion of the synthetic genome it contains, while at the same
time, the whole genome of the wild tetraploid is captured in the entire population [1]. The
CSSL population, thus, constitutes a critical peanut genetic resource, with the potential to
enable understanding of the basis of genetic variation in peanut.

High-resolution genetic characterization of wild introgressions in this population has
been achieved previously, made possible by taking advantage of technological improve-
ments and reduced costs, which have made it easier to obtain genotype data. These factors
have enabled peanut researchers to achieve the phenomenal feat of releasing high-quality
whole genome sequences of the tetraploid species [11], as well as the A and B genome
progenitors of cultivated peanut [12]. Other genetic resources, including two high-quality
SNP arrays [13–16], a reference transcriptome [17] as well as a comprehensive genomics
database [18], have ensured the graduation of peanut from an orphan crop status [19].

Despite the ease of access and routine deployment of high-throughput genotyping,
peanut phenotyping is mostly carried out at low throughput. Typically, this involves study-
ing single plants in controlled environments such as greenhouses and growth chambers,
or in small field plots for traits such as disease resistance. At the same time, it is often
necessary to harvest plants destructively and at fixed growth stages. Greenhouse and
growth chamber conditions fail to capture the true attributes of the plants since, when they
are grown in the field, they behave differently at the various growth stages and as a result
of competition for water, nutrients, and sunlight [20–22]. Additional drawbacks of such
manual phenotyping include the fact that it is time-consuming, labor and cost intensive,
and prone to human error and biases. This phenotyping challenge forms a bottleneck in the
peanut breeding pipeline that curtails the full exploitation of available genetic and genomic
resources for association studies.

A practical way of alleviating this bottleneck is the use of phenomics, or high-
throughput phenotyping (HTP), a novel approach that is increasingly finding applica-
tion in plant breeding research. It combines cutting-edge technologies such as spectroscopy,
noninvasive imaging, and high-performance computing to capture phenotypic data at high
resolution and throughput to address breeding problems [22]. HTP involves the use of
equipment that can facilitate the collection of large quantities of high-quality data in a short
period, thus availing the possibility of linking genotype data with phenotype data of equal
throughput obtained in a “real world” environment. Field-based HTP, in particular, enables
the accurate measurement of plant growth, architecture, and performance non-destructively
and in the complexity of their true environment [22–24]. Such phenomic approaches can
facilitate the effective use of genetic data to discover novel variations that could improve
the quality and yield of crops [25].

Two commonly used field HTP techniques in studying crop plants involve remote
sensing using visible light cameras (RGB) and multispectral cameras. These are typically
borne on unmanned aerial vehicles (UAV) and can be useful for evaluating plant biotic
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and abiotic stress, plant vigor and phenology, soil characterization, and field mapping [26].
Examples of studies utilizing such techniques include studying the response to nitrogen
and fertilizer treatment in maize [27,28], evaluation of water and nitrogen use efficiency in
rice [29,30], and evaluation of pest pressure and yield estimation in soybean [31,32].

In peanut, UAV-based remote sensing has been used to acquire data on NDVI, canopy
temperature, and RGB images to discriminate between various varieties based on yield
under drought and late leaf spot pressure [33,34]. An attempt was made to derive canopy
spectral signatures for predicting pod maturity, though without significant success [35].
Patrick et al. [36] experimented with various multispectral indices to determine the best
one for detecting TSWV and settled on NDRE, which detected TSWV as early as 93 days
into the season. Sarkar et al. [37] used a digital camera mounted on a UAV to successfully
evaluate leaf wilting for irrigation triggering using indices derived from red–blue–green
images. Manual and UAV-based HTP were compared for their utility to assess key traits
in the US mini-core collection by Sarkar et al. [38]. The study showed good correlations
between NDVI and RGB indices with traits such as plant height, lateral growth, leaf wilting,
thrips damage, and yield, suggesting that vegetative indices could be used as surrogates
for trait selection. Bagherian et al. [39] combined the use of aerial hyperspectral imaging
with machine learning to predict biomass, pod count, and yield. Correlations of up to 0.73
were observed between measured biomass and its prediction.

Of equal novelty is the use of ground penetrating radar (GPR) for belowground
studies. GPR works by emitting electromagnetic waves into the ground and detecting the
waves that are reflected back to a detector. This enables the detection and rendering of 3D
images of belowground biomass [40]. GPR has been effectively used for the non-destructive
study of belowground biomass, especially for trees under various soil conditions [41], in forest
systems [42], tree intercropping systems [43], and other agroforestry systems [44,45]. However,
its application in studying fine belowground biomass, characteristic of agricultural crops,
has been limited [46].

Most studies of the application of GPR to belowground phenotyping have used image
analysis and image-thresholding analysis to extract GPR features, which are then correlated
to crop characteristics such as biomass [40,46]. Dobreva et al. [47] demonstrated the limita-
tions of this approach for the assessment of peanut yield. Specifically, it was demonstrated
that the information about peanut yield is located within narrow vertical strips of the
radargram. Moreover, due to the sensitivity of the GPR signal to soil heterogeneity, apply-
ing the same approach to a different geographic site or even to the same geographic site
with different soil moisture conditions results in a different depth from which maximum
peanut information can be detected. A frequency-based approach to agricultural GPR in-
volves transforming the radar information from the time to the frequency domain. Agbona
et al. [48] demonstrated the application of Fourier transform to belowground phenotyping
of cassava. The advantage of this implementation is that a larger vertical portion of the
radargram can be analyzed, which eliminates the need to determine the narrow vertical
location of maximum peanut yield if image thresholding is applied. It is also expected
that this approach is less sensitive to the specific soil conditions of different geographic
sites. Peanut is a geocarpic plant that flowers aboveground but sets seed belowground [49],
and, therefore, the most important biomass of peanut is below the ground. Consequently,
the phenotyping of peanut pods requires a destructive harvest. This makes peanut an
important candidate for the development of non-destructive belowground phenotyping
techniques such as GPR.

Thus, the peanut CSSL population was an ideal candidate for deploying HTP tech-
niques to bridge the genotype-phenotype gap. In this study, we incorporated HTP into
the screening of a subset of the CSSLs that exhibited contrasting morphological attributes
for canopy and belowground traits. Initially, the objective was to capture morphological
diversity inherent in the population as a result of the differences in their genetic composi-
tion. However, as serendipity would have it, increased tomato spotted wilt disease and
leaf spot pressure afforded the opportunity to evaluate the performance of the lines under
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disease pressure. Aerial images were collected and correlated with manual disease ratings.
In addition, GPR was used to evaluate pod weight prior to harvest.

2. Materials and Methods

A subset of 26 lines from a CSSL population originally developed by [1] was used for
this study. In addition, Fleur 11, the cultivated parent, as well as Tifguard and Florunner,
which are morphologically distinct from the CSSLs, were also planted as adapted high-
yielding leaf spot and TSWV-resistant checks for a total number of 29 lines. Two field trials
were conducted with the lines planted in May 2018 at the University of Georgia Tifton
Campus’ Bowen and Gibbs farms, with the soil type being Tift loamy sand (fine-loamy,
kaolinitic, thermic Plinthic Kandiudults). The experimental setup in each field was RCBD,
with three replicates in each field except for CSSL 15, which had 2 replicates in both fields,
and CSSL 100, which had 2 replicates at Gibbs due to seed shortage. Each 3 m long plot
had two rows with the seeds sown with a spacing of 7 cm between seeds. Normal cultural
practices, including scheduled pesticide and fungicide application and irrigation, were
followed. Ratings for mid-season TSWV were recorded at approximately 80 days after
planting (DAP) for both fields, as well as RGB and thermal aerial imaging. At the end of
the season (110 DAP), ratings for leaf spot were carried out on both fields, while TSWV
was rated on the Gibbs farm only. For TSWV, the ratings entailed assessing canopy TSWV
symptoms on a scale of 0 to 10, with 0 being no symptoms observed and 10 being the
presence of symptoms in the entire plot. An immunostrip assay was carried out to confirm
the presence of TSWV in susceptible lines and its absence in lines that were asymptomatic.
Leaf spot ratings were carried out without making a distinction between early and late leaf
spot on a scale of 1, indicating no leaf spot symptoms, to 10, indicating complete defoliation
and plant death. Thermal and multispectral images were collected on the same day that
TSWV rating was undertaken. All cameras used for aerial imaging were mounted on a
3 DR Solo quadcopter.

GPR data were collected at 117 DAP, which was 1 day before plot inversion. The
GPR imaging system was an experimental prototype consisting of an array of 7 antennas
developed by IDS GeoRadar systems. Both rows in each of the 85 plots were scanned at
Gibbs farm; however, only 49 of the 86 plots had both rows scanned at Bowen, with the
rest having only single rows scanned. Post-harvest, manual data was collected by taking
the total pod weight of each plot.

Analysis

Indices derived from RGB images were the Visible Atmospherically Resistant Index
(VARI), Green Vegetation Index-R (GRV), and Green Leaf Index (GLI). Multispectral indices
were the Chlorophyll Index-RE (CIRE), Difference Vegetation Index (DVI), Green Nor-
malized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index
(NDVI), Normalized Green (NG), Optimized Soil Adjusted Vegetation Index (OSAVI),
Ratio Vegetation Index (RVI), Soil Adjusted Vegetation Index (SAVI), and Triangular Vege-
tation Index (TVI). Canopy temperature depression (CTD, a measure of the temperature
difference between the canopy and the surrounding area) was derived from the thermal
images. Collected images were stitched using the photogrammetry software Pix4D (Prilly,
Switzerland) and resulted in whole-field orthomosaics. ArcGIS [50] was used for further
downstream analysis. Briefly, the various indices were calculated to extract data from
the RGB, multispectral, and thermal orthomosaics. Boundaries were manually drawn to
delineate each plot in the fields with appropriate buffering to ensure no overlap between
plots. Pixels outside the plot boundaries were eliminated. Within the plots, thresholds
of pixels representing soil were manually determined using the identity function and
eliminated. Canopy pixels were averaged to derive quantitative data for each line. CTDs
were calculated by subtracting the average plot temperature value from the air tempera-
ture which was obtained for each field from the University of Georgia Weather Network
(www.weather.uga.edu, accessed on 20 March 2023).

www.weather.uga.edu
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GPR data were processed using the Python software platform GPR-Studio (Hays,
pers. Comm.). Data from channel 3 were used for downstream signal processing. To
begin with, the radargrams were split into plots based on electronic markers that had been
incorporated into the images at the time of GPR acquisition. In an ideal HTP setting, the
radargrams should be split into plots using the electronic markers alone, but in this study,
each agricultural plot was examined manually, and the markers adjusted to ensure that all
plots were of the same length. The radargrams were also subset vertically to remove the
top and bottom portions of the radargram. Specifically, the analysis was performed on the
portion of the radargram that started at pixel row 160 and for a depth of 200 pixel rows.

Three GPR processing pipelines were tested. In the first pipeline, no processing was
applied other than the vertical subset of the radargram. In the second and third pipelines,
subset radargrams were filtered with Kirchoff migration and a migration window of 5
and 35, respectively. Migration focuses the signal, and a migration window refers to the
width around each sample that is used to perform the migration, with a small window
corresponding to a smaller effect of the migration. The output of the three pipelines was
subjected to discrete Fourier transformation (DFT), and similar to Agbona et al. [48], the
results of the DFT were averaged for each agricultural plot. Raw data following processing
with the three pipelines and application of DFT are available in Tables S1–S3. The GPR
features were derived from the power of the Fourier coefficients for specific frequency bins.
The features were within the frequency ranges of 1–13, with each frequency delineated to
7 sub-frequencies (such that frequency 1 contained sub-frequencies 1, 1.143, 1.286, 1.429,
1.571,1.714, and 1.857, and so on) for a total of 91 features per single row scanned. The
7 sub-frequencies were combined to derive one variable per frequency by a trapezoidal
approximation of the area under the sub-frequency curve (AUFC) using the formula:

AUFC =
n−1

∑
i=1

di + di+1

2
× (si+1 − si) (1)

where di is the value of DFT at the ith observation, si is sub-frequency at the ith observation,
and n is the total number of observations. The AUFC variables were regarded as the
quantitative data points representing belowground pod variation for the population. The
variables were labeled by prefixing the pipeline and suffixing the frequency from which
it was derived; for example, p1_freq_1 was the variable for the first frequency of pipeline
1. Thirteen variables were derived for each pipeline to yield a total 39 quantitative GPR
variables.

All aerial, belowground, and manual quantitative data were analyzed using R [51].
The partitioning of variance was carried out using mixed model linear regression with the
lmerTest package [52] in R with FDR used for multiple hypothesis correction. Trait sum-
maries and correlations were derived from the obtained coefficients. Where appropriate,
broad sense heritability was obtained by calculating the ratio of genetic variance to the total
variance. For statistically significant traits (p < 0.05), lines that were significantly different
from Fleur 11 (p < 0.05) were determined by running a Dunnett’s multiple comparison
test [53]. The relative effects of introgression on the traits were calculated by taking the
difference between the coefficients of each line and Fleur 11 and getting the percentage
relative to Fleur 11 ((CSSL−Fleur 11)/Fleur 11) × 100). Pearson correlation was used to
investigate the relationship between the HTP data and the appropriate manual data.

3. Results
3.1. Manual Phenotyping

Ratings for TSWV were produced in the middle and at the end of the season. Due
to more severe leaf spot incidence at the Bowen farm, it was not possible to accurately
collect TSWV data at the end of the season. For mid-season TSWV, there were significant
differences among the lines with no interaction between the fields. Late-season ratings at
the Gibbs farm also revealed significant differences between the lines (Tables 1 and S4).
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The line with the best rating mid-season was CSSL 100, which outperformed the cultivated
check Tifguard. CSSL 111 was ranked third, while Fleur 11 ranked last (Table 2). End-season
data from Gibbs showed that CSSL 100 was still the best-ranked within the population;
however, Tifguard outperformed it (Figure 1 and Table 2). Overall, the best-performing
CSSL lines under TSWV pressure were CSSL 100, CSSL 84, CSSL 15, and CSSL 111.

Table 1. Summary statistics for manually collected traits and spectral indices for the chromosome
segment substitution line (CSSL) population.

Name a Field Significance Mean Min Max Fleur 11 SE b Heritability c

Leaf spot late-season Bowen *** 5.39 2.55 7.33 6.17 0.273 0.64

Leaf spot late-season Gibbs *** 5.00 3.00 7.00 6.36 0.212 0.57

TSWV mid-season Bowen *** 2.11 −0.12 4.67 4.67 0.243 0.57

TSWV mid-season Gibbs *** 2.89 0.67 5.33 5.00 0.219 0.40

TSWV late-season Gibbs *** 4.98 1.00 8.17 5.67 0.354 0.48

Pod weight (g) Bowen *** 688.64 414.00 1320.00 498.00 45.189 0.54

Pod weight (g) Gibbs *** 898.82 540.67 1610.00 705.33 44.817 0.74

GLI Bowen *** 0.17 0.14 0.19 0.14 0.002 0.37

GLI Gibbs *** 0.18 0.15 0.20 0.15 0.002 0.74

GRV Bowen *** 0.13 0.11 0.16 0.11 0.003 0.56

GRV Gibbs *** 0.15 0.13 0.16 0.13 0.002 0.70

VARI Bowen *** 0.19 0.16 0.26 0.16 0.006 0.72

VARI Gibbs *** 0.22 0.19 0.28 0.20 0.004 0.76

Mid CTD Bowen NS −9.29 −10.62 −8.37 −9.74 0.076 0.00

Mid CTD Gibbs NS −10.79 −11.53 −10.10 −11.28 0.076 0.03

End CTD Bowen *** −9.14 −11.01 −6.76 −10.30 0.178 0.22

End CTD Gibbs *** −10.31 −11.36 −9.01 −10.91 0.093 0.25

CIRE Bowen *** −0.56 −0.73 −0.47 −0.48 0.015 0.55

CIRE Gibbs *** −0.59 −0.70 −0.46 −0.48 0.012 0.69

DVI Bowen *** 0.31 0.22 0.45 0.23 0.013 0.64

DVI Gibbs *** 0.35 0.27 0.43 0.28 0.008 0.65

GNDVI Bowen *** 0.70 0.62 0.82 0.66 0.010 0.78

GNDVI Gibbs *** 0.73 0.68 0.81 0.69 0.006 0.62

NDVI Bowen *** 0.71 0.59 0.86 0.63 0.014 0.66

NDVI Gibbs *** 0.76 0.67 0.84 0.69 0.008 0.64

NG Bowen *** 0.13 0.08 0.15 0.14 0.004 0.76

NG Gibbs *** 0.12 0.09 0.14 0.13 0.002 0.66

OSAVI Bowen *** 0.60 0.47 0.76 0.50 0.015 0.65

OSAVI Gibbs *** 0.65 0.55 0.74 0.57 0.009 0.64

RVI Bowen *** 7.37 4.05 14.88 4.62 0.579 0.76

RVI Gibbs *** 8.72 5.63 13.26 6.04 0.384 0.73

SAVI Bowen *** 0.49 0.37 0.65 0.40 0.016 0.64
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Table 1. Cont.

Name a Field Significance Mean Min Max Fleur 11 SE b Heritability c

SAVI Gibbs *** 0.54 0.44 0.63 0.46 0.009 0.65

TVI Bowen *** 18.62 13.08 27.34 13.73 0.814 0.61

TVI Gibbs *** 21.33 15.94 25.99 16.84 0.504 0.65

NS: p > 0.05; *** p ≤ 0.001. a Abbreviations for names: TSWV—tomato spotted wilt virus, GLI—Green Leaf Index,
GRV—Green Vegetation Index-Red, VARI—Visible Atmospherically Resistant Index, CTD—canopy temperature
depression, CIRE—Chlorophyll Index-Red Edge, DVI—Difference Vegetation Index, GNDVI—Green Normalized
Difference Vegetation Index, NDVI—Normalized Difference Vegetation Index, NG—normalized green, OSAVI—
Optimized Soil Adjusted Vegetation Index, RVI—Ratio Vegetation Index, SAVI—Soil Adjusted Vegetation Index,
TVI—Triangular Vegetation Index; b standard error; c broad-sense heritability.

Table 2. Rankings for the chromosome segment substitution lines (CSSLs) based on manually
collected data for both Bowen and Gibbs fields.

Sample TSWV
(MS)

Rank TSWV
(MS)

TSWV
(LS)

Rank
TSWV (LS) Leaf Spot Rank Leaf

Spot
Pod

Weight (g)
Rank Pod

Weight

CSSL 009 4.67 28 7.33 27 6.00 19 681.67 22

CSSL 010 3.50 21 8.17 29 6.17 20 705.67 18

CSSL 013 3.17 18 6.50 24 6.42 24 805.33 7

CSSL 014 2.67 13 6.33 22 5.25 9 747.67 9

CSSL 015 1.26 4 3.50 6 4.25 6 589.83 27

CSSL 022 3.83 27 7.83 28 6.42 25 732.00 11

CSSL 025 3.50 23 5.67 16 6.67 27 702.67 19

CSSL 027 3.67 26 6.67 25 6.50 26 681.67 21

CSSL 031 2.17 8 4.00 7 5.67 13 696.00 20

CSSL 044 2.33 12 4.83 11 5.83 15 713.33 16

CSSL 051 2.17 9 5.00 13 5.83 16 717.67 15

CSSL 053 3.00 16 4.50 9 5.75 14 512.67 29

CSSL 055 2.33 10 4.33 8 5.00 7 547.33 28

CSSL 056 3.67 25 4.67 10 6.25 22 666.33 23

CSSL 058 3.33 20 6.17 19 6.83 28 725.33 13

CSSL 060 2.33 11 6.17 18 5.33 11 828.33 6

CSSL 061 3.17 19 7.00 26 6.92 29 709.00 17

CSSL 062 2.83 14 5.33 14 5.92 18 661.33 24

CSSL 069 3.67 24 6.17 20 5.25 10 832.33 5

CSSL 084 1.33 5 3.17 4 4.17 5 1465.00 1

CSSL 100 0.41 1 2.00 2 3.33 2 994.10 4

CSSL 111 1.00 3 3.50 5 3.75 3 1299.33 2

CSSL 112 3.00 15 4.83 12 5.58 12 728.00 12

CSSL 113 3.17 17 6.50 23 5.83 17 722.33 14

CSSL 115 1.67 6 6.33 21 5.17 8 743.67 10

CSSL 121 3.50 22 5.67 15 6.17 21 645.67 25

Fleur 11 4.83 29 5.67 17 6.25 23 601.67 26

Florunner 1.83 7 2.67 3 3.83 4 802.00 8

Tifguard 0.50 2 1.00 1 3.25 1 1014.67 3

MS: mid-season; LS: late-season.
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Figure 1. Manually collected end-season tomato spotted wilt virus (TSWV) scores for the chromo-
some segment substitution lines (CSSLs) showing multiple lines with a lower disease rating than 
Fleur 11, highlighted in blue. Adapted checks are highlighted in purple. The data were collected at 
Gibbs farm at 110 DAP. 

Leaf spot was rated at the end of the season at both Gibbs and Bowen farms. The data 
revealed significant differences among the lines with no interaction between the fields 
(Tables 1 and S4). Overall, the best lines were CSSL 100 and CSSL 111, which were just 
below Tifguard, while CSSL 84 and CSSL 15 were third and fourth and ranked below the 
other check variety, Florunner (Figure 2 and Table 2). 

 

Figure 1. Manually collected end-season tomato spotted wilt virus (TSWV) scores for the chromosome
segment substitution lines (CSSLs) showing multiple lines with a lower disease rating than Fleur 11,
highlighted in blue. Adapted checks are highlighted in purple. The data were collected at Gibbs farm
at 110 DAP.

Leaf spot was rated at the end of the season at both Gibbs and Bowen farms. The
data revealed significant differences among the lines with no interaction between the fields
(Tables 1 and S4). Overall, the best lines were CSSL 100 and CSSL 111, which were just
below Tifguard, while CSSL 84 and CSSL 15 were third and fourth and ranked below the
other check variety, Florunner (Figure 2 and Table 2).
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Pod weight data showed significant differences between the lines with some interac-
tion between the fields (Tables 1 and S4). Overall, the best lines were CSSL 84 and CSSL
111, which performed better than the checks. CSSL 100 was the third best, ranking just
below Tifguard (Figure 3 and Table 2). From Gibbs, the order of the top-ranked lines was
CSSL 84, CSSL 111, and CSSL 100, followed in the fourth rank by Tifguard. At Bowen,
CSSL 84 and CSSL 111 were at the top, followed by Florunner and Tifguard, with CSSL
100 falling to the seventh rank (Table S5). This could be attributed to the fewer number
of seeds available for planting that resulted in two reps planted at Bowen for CSSL 100.
Comparison of introgression lines showed consistently superior performance of CSSL 84
and CSSL 111 in both fields, with CSSL 100 being significantly different from Fleur 11 only
at Gibbs. The analysis also highlighted CSSL 69 as having a superior pod weight relative to
Fleur 11, but only at Gibbs (Table S6).
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3.2. Aerial Phenotyping

A total of 14 traits that included 3 RGB indices, 9 multispectral indices and 2 canopy
temperature traits were derived from aerial images. RGB images were acquired in the
middle of the season, and the derived indices showed significant differences between the
genotypes with significant line-by-field interaction for VARI and GRV (Table S4). GLI
had some correlation with late-season TSWV at the Gibbs location (R of 0.53) but not
significantly with any other traits. At Gibbs, VARI had a correlation of −0.78 with mid-
season TSWV, which became increasingly negative to −0.92 with end-season TSWV and
−0.83 with leaf spot (Table 3). At Bowen, the correlations were −0.8 for mid-season TSWV
and −0.88 for leaf spot. At Gibbs, the correlation of GRV with mid-season TSWV, end-
season TSWV, and leaf spot was −0.82, −0.85 and −0.79, respectively. At Bowen, the
correlations were −0.75 for mid-season TSWV and −0.83 for leaf spot. The two indices also
correlated well with pod weight, especially at Bowen, where the correlation was 0.82 and
0.81 for VARI and GRV, respectively (Table 3).
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Table 3. Correlations between red green blue (RGB) indices and manually collected data.

Trait Spectrum Formula Citation Field Pod
Weight

TSWV
(MS)

TSWV
(LS)

Leaf Spot
(LS)

Visible Atmospherically
Resistant Index (VARI) RGB (G − R)/(G

+ R − B) [54] Bowen 0.82 −0.8 NA −0.88

Visible Atmospherically
Resistant Index (VARI) RGB (G − R)/(G

+ R − B) [54] Gibbs 0.6 −0.78 −0.92 −0.83

Green Vegetation
Index-R (GRV) RGB (G − R)/(G

+ R) [55] Bowen 0.81 −0.75 NA −0.83

Green Vegetation
Index-R (GRV) RGB (G − R)/(G

+ R) [55] Gibbs 0.58 −0.82 −0.85 −0.79

Green Leaf Index (GLI) RGB
(G × 2 − R
− B)/(G ×
2 + R + B)

[56] Bowen 0.01 −0.02 NA 0.16

Green Leaf Index (GLI) RGB
(G × 2 − R
− B)/(G ×
2 + R + B)

[56] Gibbs −0.18 0.14 0.53 0.40

MS: mid-season; LS: late-season.

Mid-season CTD showed no significant differences between the lines (Table 1). There
were significant differences among the lines for end-season CTD with no sample-by-field
interaction (Tables 1 and S4). There was a strong correlation between end-season CTD and
leaf spot (R = −0.82) and some correlation with end-season TSWV at Gibbs (−0.63). For
pod weight, the correlation was 0.82 at Bowen and 0.65 at Gibbs (Table 4).

Table 4. Correlations between multispectral indices and manually collected data.

Trait Spectrum Formula Citation Leaf
Spot TSWV a Pod Weight

Gibbs
Pod Weight

Bowen

Chlorophyll Index-RE (CIRE) Multispectral IR/(RE − 1) [57] −0.95 −0.80 0.43 0.84

Difference Vegetation Index
(DVI) Multispectral IR − R [58] −0.95 −0.85 0.45 0.84

Green Normalized Difference
Vegetation Index (GNDVI) Multispectral (IR − G)/(IR + G) [59] −0.92 −0.94 0.49 0.81

Normalized Green (NG) Multispectral G/(IR + R + G) [60] 0.92 0.94 0.52 0.80

Ratio Vegetation Index (RVI) Multispectral IR/R [61] −0.93 −0.90 0.55 0.84

Normalized Difference
Vegetation Index (NDVI) Multispectral (NIR − R)/(NIR + R) [62] −0.93 −0.86 0.49 0.81

Optimized Soil Adjusted
Vegetation Index (OSAVI) Multispectral (1 + 0.16)(IR −

R)/(IR + R + 0.16) [63] −0.94 −0.85 0.48 0.82

Soil Adjusted Vegetation Index
(SAVI) Multispectral (1 + 0.5)(IR − R)/(IR

+ R + 0.5) [64] −0.95 −0.85 0.47 0.83

Triangular Vegetation Index
(TVI) Multispectral 0.5 × (120 × (IR − G)

– 200 × (R − G)) [65] −0.95 −0.83 0.45 0.83

End season canopy temperature
depression Thermal NA NA −0.82 −0.63 0.65 0.82

a Data for Gibbs late-season.

The multispectral indices were all significantly different, without interaction, and
generally showed strong correlations with the disease scores (Tables 4 and S4). For leaf
spot, CIRE, DVI, SAVI, and TVI were best correlated with an R of 0.95. In the case of TSWV
ratings which were only collected at Gibbs, the best correlations were derived from GNDVI
and NG with an R of 0.94. The range of correlations with pod weight were 0.43–0.55 at
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Gibbs and 0.8–0.84 at Bowen. Consistent with the strong correlations, the indices ranked
the lines comparably with the manual data (Table S5).

Generally, the mean of most traits was comparable to the value of Fleur 11 (Table 1) and
varied from the cultivated checks, Florunner and Tifguard, which had better performance
than the population. This was expected, since the CSSLs have the genetic background of
Fleur 11. For the agronomic traits studied, the broad sense heritabilities were comparable
between fields and ranged from 0.4 for mid-season TSWV to 0.74 for pod weight at Bowen.
This is indicative of significant and reliable genetic influence on trait variations, a fact also
attested by the low standard errors of the trait means. The lowest heritability for significant
traits was 0.2 for end-season CTDs, while the rest of the indices, with the exception of GLI
at Bowen, had generally high heritabilities. Since the genetic background of the population
is known to be uniform, any variation is hypothesized to be a result of introgression effects
from wild chromosome segments.

Multicomparison testing was carried out to evaluate how the individual lines differ
from Fleur 11 in the different traits (Table S6). It was evident that the three lines, CSSL 84,
CSSL 100, and CSSL 111, were the most outstanding in all traits, with the introgressions
making them clearly distinct from Fleur 11.

3.3. Belowground Phenotyping

The initial output of a GPR scan is a radargram of the reflected waveform over time,
known as a B Scan. The various pipelines for signal processing resulted in the conversion
of the B Scans to 13 variables of quantitative data for each pipeline that could be evaluated
as proxies for manually collected pod weight data (Table S7). The GPR variables showed
significant differences between the genotypes at Bowen. However, the opposite observation
was made for Gibbs, as the variables did not show significant differences between the
genotypes (Table 5).

Table 5. Summary of GPR variables that showed significant correlations with pod weight.

GPR
Variable Pipeline Field

Significance
of GPR

Variable
Mean Max Min SE Fleur

11 Correlation
Significance of

Correlation with
Pod Weight

p1_freq_1 1 Bowen * 0.37 0.459 0.254 0.009 0.35 −0.512 **

p2_freq_1 2 Bowen * 0.37 0.464 0.259 0.009 0.35 −0.512 **

p3_freq_1 3 Bowen * 0.34 0.438 0.222 0.010 0.32 −0.518 **

p1_freq_1 3 Gibbs NS 0.29 0.352 0.246 0.0038 0.35 −0.391 *

p2_freq_1 2 Gibbs NS 0.29 0.350 0.247 0.0038 0.35 −0.407 *

p3_freq_1 3 Gibbs NS 0.23 0.266 0.206 0.0026 0.27 −0.453 *

p3_freq_3 3 Gibbs NS 0.07 0.077 0.063 0.0007 0.07 −0.405 *

p3_freq_4 3 Gibbs NS 0.06 0.071 0.057 0.0006 0.07 −0.420 *

p3_freq_5 3 Gibbs NS 0.06 0.068 0.054 0.0006 0.06 −0.409 *

p3_freq_6 3 Gibbs NS 0.06 0.066 0.053 0.0006 0.06 −0.449 *

p3_freq_7 3 Gibbs NS 0.06 0.066 0.054 0.0005 0.06 −0.432 *

p3_freq_8 3 Gibbs NS 0.06 0.065 0.053 0.0005 0.06 −0.440 *

p3_freq_9 3 Gibbs NS 0.06 0.064 0.052 0.0006 0.06 −0.428 *

p3_freq_10 3 Gibbs NS 0.06 0.064 0.051 0.0006 0.06 −0.411 *

p3_freq_11 3 Gibbs NS 0.06 0.064 0.051 0.0006 0.06 −0.430 *

p3_freq_12 3 Gibbs NS 0.06 0.064 0.052 0.0006 0.06 −0.409 *

p3_freq_13 3 Gibbs NS 0.06 0.065 0.052 0.0006 0.06 −0.437 *

NS: p > 0.05; * p ≤ 0.05; ** p ≤ 0.01.

Considerable correlations were observed between the coefficients of GPR variables and
those of manual pod weight of the genotypes. At Bowen, three variables had significant
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correlations (p < 0.05). The variables corresponded to frequency one of pipeline one
(p1_freq_1, R = −0.512), pipeline two (p2_freq_1, R = −0.512), and pipeline three (p3_freq_1,
R = −0.516) (Figure 4a–c). Similarly, at Gibbs, the variable representing the first frequency
for the pipelines had a significant correlation with pod weight (p < 0.05) with values of
R = −0.391, R = −0.407 and R = −0.453 for p1_freq_1, p2_freq_1, and p3_freq_1, respectively
(Figure 4d,e). However, at Gibbs, contrary to the observation at Bowen, all frequency
variables derived from pipeline three, with the exception of frequency 2, also had significant
correlations with pod weight at p < 0.05 and R between −0.449 and −0.405 (Table 5).
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The ranking capacity of the variables with significant correlations were evaluated
by comparing their ability to rank the top and bottom ten genotypes in comparison to
manual pod weight (Figure 5 and Table S8). For Bowen, frequency one of all three pipelines
captured five of the top genotypes while pipeline one and two captured six of the bottom
genotypes and pipeline three captured five of the bottom genotypes. Among the top
genotypes detected by all pipelines were the cultivated checks, Florunner (ranked first)
and Tifguard (ranked third), as well as CSSL 84 (ranked second). CSSL 111 was ranked
seventh by pipelines one and two, and eleventh by pipeline three, while CSSL 100 had an
intermediate rank for all pipelines. Curiously, the lowest-performing CSSL 55 was ranked
among the top ten at rank four for all pipelines. At Gibbs, frequency one of pipelines one
and two captured four of the top genotypes, while pipeline three captured five. For the
bottom ranks, frequency one of pipelines one and two captured five, and pipeline three
captured seven of the bottom genotypes. The rest of the frequencies of pipeline three that
had significant correlations performed marginally worse than frequency one, capturing
four of the top genotypes (except frequency seven, which captured five) and three of the
bottom genotypes (except frequency four, which captured two). This indicated that, similar
to Bowen, the first frequency is sufficient for detecting pod weight. All three pipelines
ranked among the top for the cultivated check Tifguard (ranked first by pipelines one and
two, and seventh by pipeline 3), CSSL 100 (ranked second by all three pipelines), and CSSL
84 (ranked third by pipeline one and two and five by pipeline 3), while CSSL 111 had an
intermediate rank.
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4. Discussion

Since the cultivated background of the population, Fleur 11, is a Spanish variety
predominantly grown in West Africa, there was little expectation that the CSSLs would
have agronomic performance similar to those of runner varieties that are highly adaptable
in Georgia. The genotypes Tifguard and Florunner were used as adapted runner-type
checks. Tifguard is a high-yield cultivar with field resistance to TSWV [66], while Florunner
is high-yielding but susceptible to TSWV [67,68]. Both genotypes are susceptible to early
and late leaf spot. TSWV causes spotted wilt disease in peanut and was first reported in
the US in 1974 [69]. The virus is transmitted by thrips and leads to drastic losses of yield on
infected peanut plants [70,71]. In the 1980s and 1990s, severe epidemics that resulted in
yield losses of up to USD 40 million were reported in Georgia alone by Bertrand [72], cited
in Srinivasan et al. [73]. The use of insecticides to control thrips does not provide sufficient
protection against TSWV [74]. This means that the primary strategy for combating the
disease is by using cultivars with genetic resistance. Examples of released TSWV-resistant
cultivars include Southern Runner [75], Georgia Green [76], Georgia-06G [77], Tifguard [66],
and Georgia-09B [78].

Of equally devastating consequences to peanut production are leaf spot diseases.
These are classified into early leaf spot, caused by Passalora arachidicola (Hori) U. Braun
(syn. Cercospora arachidicola) and late leaf spot, caused by Nothopassalora personata (Berk. &
M.A. Curtis) U. Braun, C. Nakash., Videira & Crous (syn. Cercosporidium personatum) [79].
The two are distinguishable by the color and location of the lesions that they form. ELS
typically forms brown lesions on the adaxial (upper) side of the leaves, while LLS forms
black lesions on the abaxial (under) side of the leaves [79]. While the diseases can co-occur
in the field, the onset of ELS is usually earlier in the season, while for LLS, it is later
in the season [80,81]. Management of both diseases is primarily by the costly, regular
application of fungicides [82,83]. As with TSWV, sources of genetic resistance for both
leaf spots are available, which when used in combination with optimum management
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practices lead to reduced costs and losses. Georganic is a cultivar with resistance to leaf
spot. Georganic and Tifrunner, both of which were derived from PI 203396, also have
resistance to TSWV [84,85]. The most widely utilized source of genetic resistance to leaf
spot was from the wild diploid Arachis cardenasii, that was introduced into A. hypogaea
via the hexaploid route to interspecific hybridization [86]. From these introgression lines,
GP-NC WS 16, which is resistant to multiple diseases such as ELS, Cylindrocladium black
rot (CBR), Sclerotinia blight (SB), and TSWV, was developed [87]. This line has been used
as the source of resistance to several populations, including the peanut nested association
mapping (NAM) population [88]. Other leaf spot-resistant cultivars derived from the A.
cardenasii resistance source are the Indian cultivars ICGV 87165 [89] and GPBD 4 [9,90], as
well as the Brazilian cultivar IAC Sempre Verde [91].

4.1. Performance of the CSSLs under TSWV and Leaf Spot Pressure

The occurrence of both TSWV and leaf spot diseases provided the opportunity to
evaluate the CSSL population for the diseases. CSSL 100, CSSL 84, CSSL 15, and CSSL 111
had superior performance relative to Fleur 11 and the rest of the CSSLs. This indicated that
wild chromosome segments conferred some level of disease protection for these lines. Their
performance was comparable to that of the resistant check Tifguard. Paradoxically, this
good performance was also comparable to that of the notoriously susceptible Florunner.
However, qualitative assays of the root tips of the resistant CSSLs and Fleur 11 using
immunostrips confirmed that the absence of typical canopy chlorosis was due to the
absence of TSWV in the resistant lines [69]. The CSSLs, being Spanish varieties, have a
short growing cycle of fewer than 120 days, in contrast to the runner checks that mature at
140 days. With more days of observation, the contrast between the two runner checks and
CSSLs may have been more apparent, though the possibility of reduced disease pressure
in the year of study cannot be ruled out. However, for these CSSLs, the combination of
disease resistance and shorter growing cycle were sufficient to provide adequate protection
against TSWV in the Georgia growing environment.

At the time of rating, both early and late leaf spot were observed in the field, with
ELS being predominant. As such, the leaf spot rating did not distinguish between the two
diseases. The same four lines were superior to Fleur 11 and the rest of the CSSLs, with
their performance comparable to Tifguard and Florunner. Under the management practices
employed, it was clear that the superior CSSLs had genetic-based suppression of leaf spot.
Previously, [A. ipaensis X A. duranensis]4X, which is the source of introgressions for the
CSSLs, was observed to have late leaf spot resistance. BC1F5 lines derived from crossing
this allotetraploid to IAC-886, a derivative of the leaf spot susceptible Florunner, were
shown to have resistance to LLS [92,93]. Our results suggest that, indeed, wild derived
introgressions may have conferred some level of leaf spot resistance to these lines.

4.2. Evaluation of TSWV and Leaf Spot using Vegetative Indices

Strong correlations were observed between disease scores and various image-based
vegetative indices. Among the RGB indices, VARI and GRV, which were derived from
mid-season ratings, were able to accurately estimate TSWV and leaf spot disease at the end
of the season. VARI was designed to remotely estimate the vegetation fraction of canopies
with less sensitivity to differences in atmospheric conditions [54]. The index is closely
associated with the leaf pigment components, chlorophyll, and carotenoids [94]. It has
been used to study green biomass in maize [95], to discriminate between water stress and
nitrogen stress in maize [96], and in harvest date optimization in soybean [97]. The GRV
index was a modification of VARI and, thus, it had a similar performance with slightly
greater sensitivity than VARI. These indices were derived from RGB images taken by a
GoPro digital camera. Their informativeness and ability to select the best lines (Table S5)
show that, together with the availability of low-cost UAVs, they may be a convenient way
to deploy HTP for disease phenotyping by exploiting electromagnetic radiation within the
visible range.
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Multispectral indices are derived from the canopy reflectance of specific wavelengths
in the near-infrared (NIR; 750–1350 nm) as opposed to visible (350–750 nm) regions of the
electromagnetic spectrum [98]. Their informativeness is premised on the fact that healthy
vegetation absorbs visible light while strongly reflecting NIR. On the contrary, vegetation
in poor health absorbs most of the NIR (Mullan, 2012). Spectral indices take advantage of
these properties and typically depends on the maximization of differences between the red
wavelengths and NIR wavelengths to indicate plant health [98,99]. Examples include the
simplest index, known as the ratio vegetative index (RVI) [61], and the most widely used
NDVI [62]. While maintaining the same principles, other indices have been developed
by modifying parameters to increase their sensitivity to various physiological properties
of plants [100]. An example of this is the incorporation of the green channel into NDVI
to form GNDVI [59]. Another example is increasing the reflectance of leaf chlorophyll by
incorporating red edge (RE) in the index, as in the case of CIRE, which is a modification of
the simple index, RVI [61]. Examples of other modifications include adjustments to correct
for soil background in indices such as SAVI [64] and its optimized form, OSAVI [63].

Taking these relationships into consideration, it is no surprise that all the multispectral
indices we used were comparable with each other and had very strong correlations with
the manual disease ratings. Essentially, the indices were detecting the state of the canopy
health and not necessarily discriminating between the two diseases nor determining the
underlying pathophysiology. The superior CSSLs that were previously not known to have
resistance were ranked high by all the indices, showing their sufficiency in phenotyping
for this population. All the same, we considered GNDVI to be a representative index for
multispectral phenotyping of the population in this study (Figure 6).
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The four lines with significantly superior pod weight compared to Fleur 11 showed
that introgressions from the wild could be used to improve this important economic trait.
In fact, CSSL 69 has been demonstrated to have beneficial introgressions that increase pod
and seed size and is a source for pyramiding 100-seed weight QTLs [101]. However, intro-
gressions that conferred protection from the disease were also responsible for the improved
performance. This is apparent, especially considering that CSSL 69 had significantly higher
pod weight than Fleur 11 at Gibbs, but its disease susceptibility reduced its performance
relative to the other three. At Bowen, because of the higher disease pressure, its pod weight
performance was reduced to normal. It was impressive that the pod weight of the un-
adapted CSSLs with a Spanish background were comparable to those of the high-yielding
Tifguard and Florunner. A factor that may have reduced the pod weight of the checks was



Agronomy 2023, 13, 1223 17 of 23

the earlier harvest time. Hence the pod-filling process may not have been complete, leading
to reduced weight. Even with that taken into account, the performance of the CSSLs is no
less impressive. The RGB, multispectral, and CTD indices correlated strongly with pod
weight, particularly at Bowen, where the leaf spot pressure was more severe. This points
more to a relationship between plant health and pod weight rather than the ability to select
for pod weight based on the indices.

4.3. Use of GPR for Pre-Harvest Pod Weight Phenotyping

This is among the first research demonstrating the use of GPR as a peanut phenotyping
tool, and the first evaluation of peanut belowground biomass using a frequency-based
analysis. Preharvest evaluation of belowground biomass is an area of interest in peanut
research. While canopy traits are important due to the pervasiveness of a plethora of
foliar diseases, the geocarpic nature of peanut makes belowground phenotyping an area
of particular importance. So far, any subsurface evaluation of traits such as white mold,
root system architecture, and most importantly, yield and its components, has necessitated
destructive digging of the plants at the end of the season. This study implemented a
potentially revolutionary technique in studying peanut pod traits prior to harvest.

GPR technology has been used extensively as a noninvasive way to detect a coarse large
structure belowground biomass, primarily tree roots, with considerable success [102–104].
However, its application for fine biomass structure detection, which would be ideal for
agricultural research, has been limited by the fact that such structures are typically below
the detection threshold of commonly used GPR frequencies, which are typically in the
500–1500 MHz range [105–107]. Still, the technology has been applied in root phenotyp-
ing of crops such as winter wheat and energy cane, though rather than describing root
architecture, root cohort parameters such as biomass and density were studied [46,107].
An important case where it was used was the study of the root bulking rate of cassava, a
crop whose economic potential is stored belowground. In this case, GPR detection was
sufficient, with a correlation of up to 0.65 [48] and 0.79 with the ability to discriminate
between varieties [40].

Like cassava, the economic yield component of peanut is situated belowground, since
after flowering, the peanut develops a peg that grows downwards, penetrates the soil,
and elongates sideways to form the pods. Pod formation occurs in the pod zone, a region
that is approximately 4 cm below the surface and hence shallower than the root zone.
This made the choice of a GPR system with a high central frequency antenna (1800 MHz)
appropriate for this study, since higher frequencies promise higher radar resolution at
shallow depths [107]. The resultant radargrams were processed using three different
pipelines to derive quantitative data from the reflectance of GPR frequencies ranging from
1–13 GHz for association with pod weight. The features were grouped into 13 variables,
each representing a frequency band, such that variable 1 represented frequencies within
1 GHz and so on.

These variables yielded useful information that could be related to the belowground
biomass properties of the population, suggesting that GPR had potential utility for the non-
destructive preharvest HTP of peanut. Statistical analysis of the variables showed disparity
in the performance of GPR between the Gibbs and Bowen fields. This may be attributed to
the more intense disease pressure at Bowen, particularly leaf spot. This may have resulted
in severe penalties, as observed by the more intense inverse correlation between pod weight
and late-season leaf spot at Bowen than at Gibbs (R = −0.79 and R = −0.47, respectively).
Hence, the variation in GPR-detectable biomass may have been more pronounced at Bowen
than at Gibbs. It is also worth considering that the soil condition differences between the
two fields may have contributed to the difference in results. While standardization of
the GPR processing pipeline would be ideal for the automation and applicability of the
technology across different geographic sites, with respect to the current implementation,
optimization of the processing pipelines for each specific site may be required.
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For all three analysis pipelines used to derive quantitative GPR features, variable one,
corresponding to the seven frequency bands within 1 GHz was the most informative. This
was within expectation since the central frequency of the GPR system used was 1.8 GHz.
The comparable performance of the three pipelines indicated that either was sufficient
for GPR processing with only a slight bias for pipeline three. Combining the features by
calculating the area under the frequency curve for the DFTs was also an effective way to
derive variables from GPR output that could be implemented into a breeder’s analysis
protocol similar to other conventional data. Linear regression of these variables yielded
coefficients that correlated relatively well with the coefficients of manual pod weight data.
Specifically, there was a negative correlation between the GPR features based on Fourier
transform and pod weight. The amplitude of the Fourier coefficients is typically related to
greater or smaller GPR signal variability at the specified frequency. With this assumption,
the negative correlations reported in this study imply that smaller GPR signal variability is
associated with greater peanut pod weight for these frequencies. A plot with more pods
belowground may mean a greater clustering of peanut pods with less soil in between
the peanut pods and thus the smaller GPR signal variability, as opposed to a plot with
fewer pods where more soil is present between the peanut pods resulting in greater signal
variability. Since this is the first application of a frequency-based GPR analysis to peanut
pod weight assessment, our interpretations are only based on the results of this study.
Image thresholding analysis demonstrated a negative correlation to GPR features based on
the mean of the signal amplitude and positive correlations based on the standard deviation
of the signal amplitude [47].

The R values of up to −0.51 compare well with the R = 0.65 and 0.79 observed in
cassava [40,48], considering the much smaller belowground biomass characteristic of
peanut. Despite the moderate correlations, the variables gave reasonable ranking by pod
weight for the population when compared with the manual data, with the top CSSLs and
check varieties consistently featuring at the top. A sticking anomaly was the observation
of CSSL 55, which has a lower pod weight among the top genotypes based on GPR ranks,
which contributed to lowering the correlations. This may be attributed to the fact that
GPR detects reflections of electromagnetic frequencies that are converted to an image from
which the volumetric mass is estimated as pod weight. On the other hand, the manual
pod weight measures only mass. Generally, genotypes with bigger pod sizes tend to have
more pod weight mass; however, this is not always the case since other factors, such as
the number of pods per plant, pod filling, and maturity at harvest, also affect the final
pod weight. An example is CSSL 100, which generally has smaller pods but is among the
best-performing genotypes by weight. With more research towards the improvement of
GPR methods and analysis for fine biomass detection, it is conceivable that belowground
HTP will be adopted with higher frequency in peanut research.

5. Conclusions

The findings of this study highlight novel phenomic approaches by which the peanut
breeding pipeline can maintain and improve its current state. Examination of the CSSL
population shows that alleles from peanut wild relatives can confer agronomically beneficial
traits to the cultivated. The use of both aerial and belowground phenomic techniques
has the potential to radically transform the peanut breeding pipeline by increasing the
speed and precision of phenotype data acquisition. These techniques will facilitate the
identification and speedy release of novel and better-adapted peanut varieties, hence
improving the process of peanut breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13051223/s1. Table S1: GPR DFT raw data based
on pipeline 1 for all plots; Table S2: GPR DFT raw data based on pipeline 2 for all plots; Table S3:
GPR DFT raw data based on pipeline 3 for all plots; Table S4: Summary analysis of interactions
between samples and field for manually collected data and spectral indices; Table S5: Ranking of the
chromosome segment substitution lines (CSSLs) based on Green Normalized Difference Vegetation
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Index (GNDVI), Visible Atmospherically Resistant Index (VARI), and Green Vegetation Index-R
(GRV). The indices generally rank the lines similarly to the manual data, showing their capacity for
selection in this population; Table S6: The effects of introgressions on the traits that were manually
collected. Lines with significant introgression effects are presented. For TSWV late season, CSSL 10,
CSSL 84, and CSSL 111, which are not statistically significant, are highlighted because of their high
numeric effects. The introgression effects were calculated as percentages relative to the cultivated
Fleur 11; Table S7: Summary statistics of all GPR variables; Table S8: Comparison of CSSL ranking
ability between manual pod weight data and GPR variables that showed significant correlations with
pod weight at Bowen and Gibbs. The CSSLs are ranked based on pod weight performance. The
ranking by the GPR variables is indicated in the respective columns for each variable. Green font
indicates the top 10 CSSLs as ranked by pod weight, while purple font indicates the bottom 10 CSSLs
as ranked by pod weight.
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