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α   :  Alpha        

β   :  Beta  

δ  :  Delta       

One letter codes for nucleotides 

A   : Adenosine 

C   : Cytosine 

G   : Guanosine 

T   : Thymidine 

U   : Uracil   

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I 

INTRODUCTION 



 

 

1.1     Importance of Pearl millet  

Pennisetum glaucum (L.) R.Brown (Pennisetum typhoides (Burm.) Stapfet Hubb.) (Pearl millet) is the most 

important member of the genus Pennisetum of the tribe Paniceae in the family Poaceae. The name Panicum glaucum 

(L.) R.Brown, was adopted by Hitchcock and Chase (1951) in their Manual of Grasses of the United States, and 

hence accepted by American workers. Pearl millet is a dual-purpose crop used for grain and fodder and is grown 

primarily in Asia and Africa, where it occupies some 27 million ha (ICRISAT 1996). It is capable of growing on 

some of the poorest soils in dry, hot regions of Africa and Asia, where, as a poor man’s source of dietary energy, it 

sustains a large proportion of the populace. It is also grown in other countries where, under relatively more favorable 

conditions, it provides grain for bullocks, dairy cows, and poultry.  

 

Pearl millet is the most important member of this genus. With 2n = 14 large somatic chromosomes, it lends itself to 

investigation from the stand points of classical and molecular cytogenetics, gene location by aneuploid analyses, and 

studies on haploid and chromosome pairing. Its short life cycle; protogynous flowers, open pollinated breeding 

system, and ability to set a large number of seeds per ear make pearl millet highly suitable for intra and inter specific 

hybridization. This breeding system facilitates the flow of genes between cultivated annual species and related wild 

species. Pearl millet’s has large chromosomes, larger than in most other species in the tribe Paniceae, and a 

distinctive pair of nucleolar organizers make it possible to study intergenomic and intragenomic chromosome 

pairing in interspecific hybrids (Jauhar, 1968). Its outbreeding nature makes pearl millet an ideal crop for heterosis 

breeding. It is generally agreed that pearl millet is of African origin, although the specific region where it originated 

is controversial. Harlan (1971) suggested the center of origin in a belt stretching from western Sudan to Senegal. 

Based on the present-day distribution, Brunken et al., (1977) considered the Sahel zone of West Africa to be pearl 

millet’s original home, the view favored by Clegg et al., (1984) based on chloroplast DNA studies. Based on the 

available evidence, Appa Rao and de Wet (1999) concluded that pearl millet originated in western Africa some 4000 

years ago. 

 

1.2     In vitro regeneration  

In vitro response of millets shows that strong genotype dependences and production of embryos are limited to 

selected genotypes. Moreover, majority of cereals including pearl millet lose their morphogenetic potential with 

increasing number of subclutures (Kavi Kishor et al., 1992; Pinus et al., 1993; Lambe et al., 1999). Plant 

regeneration in pearl millet was reported from a range of tissues such as immature zygotic embryos (Vasil and Vasil, 

1981; Oldach et al., 2001; Goldman et al., 2003), mature embryos (Taylor and Vasil, 1996), immature inflorescences 

(Vasil and Vasil, 1981) and shoot apices (Devi et al., 2001). Even though major improvements were made in terms 

of regeneration frequency, genotype dependency and the lack of ideal explants are still the major bottlenecks for 

routine high frequency regeneration of fertile plants in pearl millet.  It is therefore necessary to optimize conditions 

for regeneration in selected pearl millet breeding lines/genotypes prior to attempting genetic transformation. In 

general, auxins are the principal growth regulators for callus induction in monocots. Mainly 2,4-



dicholophenoxyacetic acid (2,4-D) alone was sufficient to produce good totipotent callus (Green 1978; Mikami and 

Kinoshita, 1988). Many workers used ethylene inhibitors such as silver nitrate, cefotaxime, cobalt chloride and 

nickel chloride (Pinus et al., 1993) that improved the frequency of regeneration. However, high frequency shoot 

regeneration is still a problem in majority of the pearl millet lines.  

 

1.3     Transgenic plants for downy mildew resistance 

Downy mildew caused by Sclerospora graminicola (Sacc.) J. Schroet is the most widespread and destructive disease 

of pearl millet causing severe economic losses. Other major diseases affecting pearl millet are smut (Moeszimyces 

penicillatiae), ergot (Claviceps fusiformis) and rust (Puccinia substriata). There is 50-60% of these pathogenic 

incidences in India depending upon the season and state and yield losses due to downy mildew disease in pearl 

millet are very high. The pathogen adapts its virulence and continues to threaten popular hybrids all over India. 

Symptoms of this disease often vary as a result of systemic infection. Leaf symptoms begin as chlorosis at the base 

and successively higher leaves show progressively greater chlorosis. Severely infected plants are generally stunted 

and do not produce panicles. Green ear symptoms result from transformation of floral parts into leafy structures. 

Many attempts to get downy mildew resistant plants using conventional plant breeding methods did not succeed till 

date. Therefore, there is an urgent need to evolve a line or variety that is tolerant to this fungus using genetic 

engineering techniques. Some of the pathogenesis related (PR) proteins show antifungal activity. For example, 

chitinase is one among them. In theory, constitutive expression of PR proteins, either singly or combined might 

confer decreased susceptibility to a specific group of pathogens. Pearl millet is generally grown in the form of 

hybrids only. Attempts to obtain downy mildew resistant plants by regular breeding methods did not succeed. 

Therefore, there is an urgent need to evolve pearl millet plants that are tolerant to the fungus Sclerospora and other 

fungi using genetic engineering techniques. As the world population continues to increase, food supplies must also 

grow to meet nutritional requirements. One means of insuring stability of food maintenance is to limit yield loss 

caused by plant pathogens mainly fungus, bacteria and virus. Since pearl millet is one of the most important cereals 

in India, it is of great interest to establish a system for production and generation of transgenic plants. Attempts to 

produce hybrids for downy mildew resistance have failed so far in imparting resistance. Since the fungus can 

reproduce both sexually and asexually, it may be difficult to produce a hybrid that is tolerant to Sclerospora. On the 

other hand, multiple genes if transferred can effectively control this fungus or multiple fungi. Hence, virulence is 

common in this fungus. Because of severe infections, plants are generally stunted and do not produce any panicles. 

This will result in the production of leafy structures instead of reproductive organs. Plants defend themselves from 

pathogenic fungi by a variety of means, including the production of several proteins with antifungal properties. Plant 

intrinsic responses that can be engineered to attain a wider, more durable resistance include the Hypersensitive 

Response (HR) and Systemic Acquired Resistance (SAR). Although these phenomena are complex, plant genes 

encoding cell wall degrading enzymes, especially chitinases have been used to alter plant resistance to fungal 

pathogens. But no single gene can give an adequate level of resistance and very few reports exist for resistance to 

multiple pathogens. It is expected that the use of chitinase and also osmotin as transgenes should produce a high 

level of resistance in crop plants against a variety of fungal pathogens. 



 

 

1.4     Genetic transformation  

Alternately has conducted transformation in pearl millet by Agrobacterium and biolistic approaches using hand gene 

gun and stated that particle gun method of gene transfer was scored over Agrobacterium mediated transformation. 

Biolistic bombardment using particle inflow gun device (Finer et al., 1992) has been a very useful technique to 

introduce foreign DNA into plant cells of monocotyledons and dicotyledonous plants. Particle bombardment is now 

being used as popular and inexpensive device for direct gene delivery into cell, tissue and organ since it requires 

minimum pre and post bombardment manipulations (Sugimura et al., 1999; Somika Bhatnagar et al., 2002). Stable 

genetic transformation by particle inflow gun has also been reported in some plants like, marigold (Vanegas et al., 

2006) and Dendrobium (Suwanaketchanatit et al., 2007).  

 

1.4.1     Functions of osmotin and chitinase genes 

The transcript levels for many pathogenesis-related (PR) proteins and the PR3 chitinase gene have been shown as 

associated in plant defense (Li et al., 2001; Pritsch et al., 2000, 2001). The availability of genes encoding PR-

proteins and the demonstration that PR-proteins exhibit strong in vitro antifungal activity (Mauch et al., 1988) has 

led to their deployment for enhancing disease resistance in crop plants. Several groups have reported that the 

introduction of a single transgene encoding different antimicrobial proteins including PR-proteins resulted in 

enhanced resistance (as measured in greenhouse trials) to a wide range of disease resistance including powdery 

mildew (Bliffeld et al., 1999; Schweizer et al., 1999; Bieri et al., 2000; Oldach et al., 2001), Tilletia tritici (Clausen 

et al., 2000), barley stripe mosaic virus (Zhang et al.,2001), scab (Chen et al., 1999), and other fungal pathogens 

(Leckband and Lorz, 1998). The increase in resistance to the pathogen varied widely and in most cases resistance 

was only partial. Following the initial reports of significant improvement in disease resistance in transgenic plants 

expressing PR proteins (Broglie et al., 1991; Zhu et al., 1994; Jach et al., 1995; Jongedijk et al., 1995; Lin et al., 

1995) there have been numerous studies that have exploited a similar strategy (Datta et al., 1999). Osmotin is a 

member of a family of ubiquitous
 
plant proteins, referred to as plant pathogenesis-related proteins

 
of family 5 (PR-

5), that is implicated in defense against fungi
 
(Veronese et al., 2003). Osmotin gene and protein expression is 

induced by biotic
 
stresses, and overexpression of osmotin delays development of

 
disease symptoms in transgenic 

plants (LaRosa et al., 1992; Li et al., 1999). The specific interactions of osmotin
 
with the plasma membrane are 

responsible for cell death signaling.
 
However, because the cell wall governs access of osmotin to

 
the plasma 

membrane, differences in cell wall composition largely
 
account for the differential osmotin sensitivity of various

 

strains, and specific cell wall components play
 
a significant role in modulating osmotin toxicity (Ibeas et al., 2000, 

2001). Osmotin, like other plant defense antifungal proteins, has specific
 
but broad-spectrum antifungal activity. One 

of the most
 
osmotin-sensitive phytopathogenic fungi is Fusarium oxysporum.

  
F. oxysporum is an ascomycete 

fungus, like S. cerevisiae, and
 
has been touted as an appropriate multihost model for studying

 
fungal virulence. 

 

1.5     New approaches to molecular resistance breeding 



Genetically modified (GM) crops are deployed globally to control various insect pests and virus diseases. The 

development of GM crops to resist fungal and bacterial diseases has been a failure. Interest has now turned to the 

identification and exploitation of the natural diversity at R loci. Gene sequence diversity searches, achieved through 

techniques such as polymerase chain reaction (PCR), targeting induced local lesions in genomes  (TILLING) may be 

targeted to the entire R protein or to specific R domains known to be required for pathogen recognition. Diversity 

searches will also allow us to define novel R sources so that effective R gene pyramiding can be implemented. R 

gene sequences can be used to create precise within the gene (WTG) molecular markers, thereby obviating the need 

for pathogen testing during introgression breeding. Searches for resistance gene analogues (RGAs) in the syntenic 

regions between closely related plant species are now a realistic option. GM approaches are also becoming more 

sophisticated and have a conceptual basis. Some of the focus has shifted to exploiting master-switch defense 

signaling proteins in recent times. Such proteins appear to function at taxonomically greater distances than R 

protein, can activate multiple component defense to provide broader spectrum pathogen control, and ideally would 

be key components of non-host defense. 

 

1.6     Genes resistant to biotic and abiotic stresses 

The expression as well as published reports (Cooper et al., 2003), say that a panel of candidate genes are potentially 

involved in stress tolerance. Candidate gene is used as a target for targeting induced local lesions in genomes 

(TILLING) (Till et al., 2003). These genes are selected based on several criteria: (1) high-quality sequence 

information (2) implicated function based on sequence annotation (3) evidence that they are within QTL regions 

based on mapping studies.  

  

1.6.1     Enhanced disease resistance (EDR2) gene 

Few mutants have been described that do not develop spontaneous lesions but display HR-like lesions only in 

response to a stimulus such as pathogen attack.  Enhanced disease resistant 1 (edr1)-edr3 are examples of such 

mutants. edr1 and edr2, but not edr3, also show elevated defense responses  following powdery mildew attack. 

These phenotypes were suppressed in mutants with defects in the salicylic acid (SA) signal transduction pathway but 

not by those with defects in the ethylene/jasmonate pathway, suggesting that these mutants are hypersensitive to or 

have a lower threshold for responding to stress and activating the SA pathway. EDR1 encodes a kinase, EDR2 a 

novel protein, and EDR3 a dynamin-like protein. The EDR1 and EDR2 mutants have a second phenotype that is SA-

independent; they are hypersensitive to ethylene-induced senescence, implicating these two genes in the regulation 

of senescence as well as defense signaling. The diverse nature of processes interrupted in these mutants suggests that 

much remains to be uncovered about the mechanisms controlling cell death in plants. We initiated a screen for 

mutants that developed an exaggerated cell death response due to downy mildew, caused by Sclerospora 

graminicola in pearl millet as a means of identifying components of the HR programmed cell death. Lesion mimic 

mutants with spontaneous lesions were discarded from this screen to minimize the likelihood of recovering mutants 

with a metabolic dysfunction or that were compromised in the mechanisms protecting plants from the oxidative 

stress that arises during photosynthesis.   



 

 

1.6.2     Dehydration responsive element binding protein (DREB2A) gene 

Plants in the field are not subjected to only a single stress at a time, but they face numerous stresses collectively, 

whether it is biotic or abiotic. Some recent reports have highlighted the connection between disease resistance and 

drought tolerance. Inoculation of Arabidopsis plants with growth promoting rhizobacteria enhanced the protection 

against both Erwinia carotovora and dehydration stress (Timmusk and Wagner, 1999). Also distinct abiotic stresses 

induced the expression of antifungal protein cystatin in Castanea sativa (Pernas et al., 2000). The ABA-independent 

dehydration responsive signaling pathways marked by DREB2A were found to cross talk with adr1, activated 

signaling pathways (Chini et al., 2004). Constitutive or conditional enhanced expression of ADR1 conferred 

significant tolerance to drought but not for thermal and salt stress. The DREB2A expression was SA-dependent, 

since ROIs are also reported to signal DREB2A expression (Desikan et al., 2001). Therefore, DREB2A expression 

might have resulted from SA-amplified ROI synthesis, which suggests redox control of DREB2A expression. 

Microarray analyses of plants containing a conditional adr1 allele demonstrated that a significant number of drought 

responsive genes were up-regulated (Chini et al., 2004). Hence, there may be significant overlap betweenbiotic and 

abiotic stress signaling. This summarizes that DREBs are important transcription factors regulating stress responsive 

gene expression through DRE/CRT cis-elements and its DNA binding domain. They play a crucial role in providing 

tolerance to multiple stresses and display overlapping responses to different stress conditions. DREBs control the 

expression of stress-responsive genes via ABA-independent pathways in both abiotic and biotic stresses. The highly 

conserved domains in DREB proteins are important for their specific biological functions and identifying such 

critical domains will help in achieving efficient crop improvement strategies by genetic engineering.  

 

1.7     Targeting Induced Local Lesions in Genomes (TILLING) 

Targeting Induced Local Lesions in Genomes is a method in molecular biology that allows directed identification of 

mutations in a specific gene. TILLING has been demonstrated to be effective in maize, wheat, Lotus and barley. 

Furthermore, several publicly funded TILLING projects are under development in crops including wheat and 

Triticum monococcum, poplar and brassicas, pea, soybean and Medicago. TILLING has become an accepted and 

commonly used technique for most chemical mutagenesis-based reverse genetics in the plant research community 

and its potential for application in both basic and applied research has been widely recognized. The breakthrough in 

exploiting point mutations for reverse genetics came in 2000, when Claire McCallum and colleagues in Seattle 

developed a general strategy that they christened Targeted Induced Local Lesions in Genomes or TILLING.  EMS 

mutagenesis with a sensitive method for detecting induced point mutations in pooled DNA samples. Since then, the 

emergence of TILLING has been impressive. A patent application was filed and a company (Anawah, Inc., Seattle, 

WA, USA) spun out to exploit TILLING for commercial crop improvement. The function of pearl millet genes is 

the challenge for researchers, particularly to those involved in millet species. Unfortunately, many of the reverse 

genetic tools, such as T-DNA tagging and transposon-tagging are still not available in pearl millet. RNAi has 

emerged as an effective gene knockout/knockdown tool for many but, has yet to be applied to pearl millet. 



Development of RNAi technology requires genetic transformation and very little work on transformation protocols 

in pearl millet due to the regeneration response of millet shows strong genotype dependence. Given these 

limitations, the ability to use traditional mutagenesis techniques coupled to efficient targeting of genes would be 

advantageous. Fast neutron mutagenesis can generate small to medium size deletions in genomes. In contrast to 

transgenic methods, chemical mutagenesis can be applied to most species including pearl millet. Chemical 

mutagenesis does not require gene transfer and is therefore not subject to biosafety and extensive regulatory 

concerns (Henikoff, 2004).  

 

1.7.1     Creating structured mutant populations 

Chemical mutagens have been used for forward genetic screens in a variety of organisms (Guenet, 2004). Ethyl 

methane sulphonate (EMS) induces single nucleotide changes by alkylation of specific nucleotides (Sega, 1984; 

Vogel, 1995), resulting in mutations that are high in density and essentially randomly distributed. Therefore, a 

relatively small population of individuals can provide an allelic series that includes a variety of missense changes 

with differing effects on protein function, and nonsense or splice site changes that cause truncation of the gene 

product. TILLING is a general reverse genetic technique that uses traditional chemical mutagenesis methods to 

create libraries of mutagenized individuals that are later subjected to high throughput screens for the discovery of 

mutations (Comai, 2006; Henikoff, 2003). Indeed, TILLING results have been reported for a variety of plants and 

animals (McCallum et al., 2000). The application of TILLING to pearl millet, however, has been hampered by the 

difficulty in obtaining a population with a sufficiently high mutation density. For reverse genetics, structured 

populations are essential to track any discovered mutations back to the families from which they originated the 

approach adopted in inbreeding Arabidopsis, Lotus, barley and wheat. Arabidopsis had been screened for mutations, 

detecting 5600 mutations that have been distributed back to the community as M2 seed and is the current levy to 

academic laboratories for TILLING of 1 Kb fragments, which is a cost-effective approach and the basic platform.  

 

1.7.2     Mutation detection and verification 

In the original TILLING method, the authors used heteroduplex analysis by endonuclease to detect mutations in 

pooled DNA samples. The development of a DNA mismatch cleavage assay using an endonuclease SNiPerase that 

cleaves heteroduplex dsDNA at single base mismatches is a significant discovery. The SniPerase is distributed by 

Transgenomic kit (http://www. Transgenomic.com). In the present study, TILLING combines SniPerase cleavage 

with gel electrophoresis on LI-COR, fluorescence-based fragment analysis systems. The system is rapid, high 

throughput and relatively tolerant of PCR amplicon quality. In addition, software has been developed that facilitates 

the rapid analysis of the gel images. By adding different fluorescent dye labels to each of the PCR primers, 

SniPerase cleavage generates different sized and coloured fragments that together total the size of the uncleaved 

amplicon. This key piece of information allows potential false positives to be excluded from subsequent analyses 

and provides accurate information regarding the location of the mutation. The equal quantities of the DNA of eight 

individuals are pooled and mutations detected in four steps: PCR amplification, heteroduplex formation, SniPerase 

cleavage and detection of the cleaved products by fragment analysis. In addition to gel electrophoresis, fragment 



analysis by capillary-based DNA sequencers has also been assessed. After de-convoluting pooled DNAs and re-

sequencing alleles from individual plants, sequence comparison with the parental allele will confirm an induced 

mutation, define its nature and determine whether it is consistent with the known mode of action of the mutagen 

used. Mutant alleles are detected as bands running ahead from the main size band. 

 

1.7.3     TILLING gel on LICOR analyzer 

Although our own experience has been exclusively with LICOR 4300  series slab gel analyzer and all of our 

protocols are for these instruments, other slab and capillary instruments should also be adaptable for TILLING 

(Perry et al., 2003; Augustin et al., 2005). The loading capillary instruments and their high throughput make them 

potentially highly desirable for TILLING. The advantage of physically separating tracks with capillaries which 

makes these instruments superior to slab gels may be a disadvantage for TILLING, which currently relies on the 

background patterns present in all lanes to identify novel bands (Colbert et al., 2001). 

 

1.8     SNP detection 

EcoTILLING uses the single-base mismatch discovery method developed for TILLING, but instead of being pooled 

from a standard accession. Because naturally occurring polymorphisms are more frequent than those produced by a 

single round of chemical mutagenesis, TILLING generates many more cleavage fragments: typically a hundred or 

more per gel versus 1–5 for the mutation. Several implementation details facilitate the analysis of TILLING gel 

images. This simplification is feasible because TILLING applications do not require highly accurate fragment length 

calculation and because TILLING images contain a consistent, primer-specific pattern of background bands in each 

lane. The exact nucleotide change is then determined using standard DNA sequencing methods. With eight-fold 

pooling, 200 samples can be screened per day for mutations in a single 1.5 kb gene target using a single LI-COR 

analyzer. Higher throughput and economy of scale can be achieved by using multiple thermal cyclers and analyzers. 

Screening for mutations begins with PCR amplification of a target fragment of up to 1.0 kb using gene-specific 

infrared dye-labeled primers. The forward primer is 5’-end labeled with a fluorescent dye that is detected at B700 

nm (IRDye 700) and the reverse primer is labeled with the IRDye 800, which is detected at B800 nm. In addition, 

TILLING can be performed using alternative readout platforms including slab gel and capillary systems. Although 

many groups use an enzymatic mismatch cleavage approach similar to that described in this protocol, other mutation 

discovery methods can potentially be substituted including denaturing HPLC and resequencing. When choosing a 

single nucleotide polymorphism (SNP) discovery platform, it is important to consider criteria such as equipment 

cost, reagent cost, maintenance cost and automation and assay sensitivity. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II 

REVIEW OF LITERATURE 



 

 

2.1 Distribution and uses of Pearl millet  

Millets are part of the diet of the people of China, Japan, Africa and India. In Western countries they are used 

mainly as birdseed. Millets embrace 10 genera and at least 14 species. They are important because they are grown in 

poor soils with limited inputs and they constitute a major source of food for resource poor farmers of the areas of 

their cultivation. The food demand for 2025 (Borlaug, 2002) will require the yield of millets to rise from 2.5 to 4.5 

million tones. This increase will largely come from improved varieties, transgenetically modified for resistance to 

abiotic and biotic stress, using a tertiary gene pool. It is the fifth most important cereal crop and most important 

millet occupying 55% of global millet production. It is grown over 40 countries, predominantly in Africa and Asia. 

It is staple diet for the vast majority of poor farmers and also forms an important fodder crop for livestock 

population in arid and semiarid regions of India. Pearl millet is the sixth most important cereal crop in the world, 

ranking after wheat, rice, maize, barley, and sorghum. It is a valuable grain and fodder crop and is cultivated in 

many parts of the world, although in the U.S. it is grown primarily as a forage crop on less than 1 million ha. In 

tropical and warm temperature regions of Australia and some other countries, it is grown as a forage crop (Jauhar, 

1981a). It is grown in other countries where, under relatively more favorable conditions, it provides grain for 

bullocks, dairy cows, and poultry. In Brazil, it occupies about 2 million ha and is mainly grown as a mulch crop in 

the soybean production system. The need for collection and conservation of pearl millet germplasm for its 

improvement for present and future needs cannot be over emphasized. Appa Rao (1999) described the status of 

germplasm collections and genetic resources for pearl millet, particularly those at the International Crops Research 

Institute for the Semi-Arid Tropics (ICRISAT) in India. The ICRISAT collection includes the cultivated as well as 

weedy forms of pearl millet that belong to its primary gene pool. 

 

Pearl millet is an ideal organism for basic and applied research. In their extensive reviews, Jauhar (1981a) and 

Jauhar and Hanna (1998) compiled the available literature on cytogenetics and breeding of pearl millet and related 

species. Pearl millet has received several different taxonomic treatments and hence different Latin names. It was 

treated as a constituent of at least six different genera, viz., Panicum, Holcus, Alopecuros, Cenchrus, Penicillaria, 

and Pennisetum (Jauhar, 1981c).   The name Pennisetum typhoides (Burm.) Stapf et Hubb., accepted by Bor (1960), 

was widely used by workers outside of the U.S. and adopted by Hitchcock and Chase (1951) in their Manual of 

Grasses of the United States, and hence accepted by American workers. 

  

2.2 In vitro regeneration in millets 

In vitro culture of multicellular explants has been carried out in all major cereal crops during the past 10 years, and 

plant regeneration has been obtained by either organogenesis or somatic embryogenesis (Vasil, 1987; Bhaskaran and 

Smith, 1990). These studies have contributed to the development of genetic engineering technology for the 

improvement of cereal crops by Agrobacterium or biolistic transformation (Vasil, 1994). However, in most species 

and with both approaches, the in vitro culture step remains the limiting factor for two major reasons. First, in vitro 

culture of cereals shows strong genotype dependence and production of the appropriate culture type is generally 



limited to few cultivars or cell lines (Bhaskaran and Smith, 1990; Christou, 1993). Second, the majority of cereal 

cultures lose their morphogenic capacity after several sub-cultures (Kishor et al., 1992; Pius et al., 1993). The 

culture response is also influenced by media composition, carbon source, genotype, explant source, growth 

conditions of the donor plant, other additives in the medium and the physical conditions of growth of the cultures 

(Morrish et al., 1987; Vasil, 1987). 

 

In Pearl millet (Pennisetum glaucum or P. americanum), procedures for plant regeneration by somatic 

embryogenesis have been described from a range of tissues such as immature embryos (Vasil and Vasil, 1981), 

immature inflorescences (Vasil and Vasil, 1981; Pius et al., 1993) or shoot apices (Botti and Vasil, 1983). However, 

the efficiency of embryogenic callus induction or the regeneration ability was rarely quantified and little is known 

about the behaviour of different explants within a given genotype. In these previous reports, a two-step procedure 

was generally used for plant regeneration, including induction of embryogenic calli on a 2,4-D-containing medium 

followed by onset of embryos on a medium without growth regulator or supplemented with cytokinin or auxin. 

Callus of pearl millet (Lambe et al., 1995) could not be regenerated due to the long period of culture needed for the 

selection of transgenic callus. 

 

Several attempts have been made to develop an efficient, reproducible and genotype independent protocol for pearl 

millet transformation, to compare the embryogenic behaviour of different explants from ten pearl millet genotypes 

and to optimise the rate and efficiency of regeneration via somatic embryogenesis during long-term callus culture. 

Different explants have been used for raising regenerable cultures in millets. Immature inflorescence was used for 

initiating cultures (Table.1). The cultured explants form callus, and then plant regeneration occurs through either 

somatic embryogenesis or organogenesis. Microtillering has also been noted in some cases.  

 

Table 1. In vitro plant regeneration in millets 

 

Species Growth regulators used for callus 

induction/plant regeneration 

References 

Panicum bisulcatum      

 

 

P. maxicum    

 

 

P. miliaceum                  

   

P. milioides          

 

Paspalum dilatatum   

2,4-D 

 

 

2,4-D, NAA 

 

 

2,4-D, 2,4,5-T, BAP        

 

2,4-D      

 

2,4-D    

Fladung and Hasselbach 1986; Akashi 

and Adachi 1991    

                                

Lu and Vasil 1981,1982; Kothari et al., 

1994 

 

Nabors et al., 1983; Jain et al., 2001 

 

Fladung and Hasselbach 1986 

 

Akashi and Adachi 1992 



 

 

P. n otatum   

 

 

 

P. scrobiculatum       

 

 

 

 

 

 

P. simplex   

 

P. vaginatum         

 

Pennisetum americanum 

 

 

 

P. g laucum     

 

 

 

P. typhoides    

 

E. indica        

                                                

Eleusine coracana     

                                

 

 

2,4-D, NAA 

 

 

 

2,4-D, Kn, NAA, BAP  

 

 

 

 

 

 

2,4-D, Kn, NAA, BAP   

 

2,4-D     

 

2,4-D, IAA  

 

 

 

2,4-D, pCPA, Kn, BAP,NAA 

 

 

 

2,4-D, 2,4,5-T, IAA 

 

2,4-D, Kn, GA3   

 

2,4-D, NAA, IBA, BAP, 

Kn,Pic,GA3                    

 

 

Marousky and West 1987, 1990; Bovo 

and Mroginsky 1989; Akashi et al., 

1993; Chen et al., 2001   

                                                                     

Rangan 1976; Nayak and Sen 1989; 

Kavi Kishor et al., 1992; Vikant and 

Rashi 2001;     Arockiasamy et al., 

2001; Vikrant and Rashid 2002a, b; 

Kaur and Kothari 2003, 2004; Vikrant 

and Rashid, 2003  

                                                                                          

Molinari et al. 2003 

 

Cardona and Duncan 1997 

 

Vasil and Vasil 1981a, b; Botti 

andVasil1983, 1984; Taylor and 

Vasil1995,1996                                                                          

 

Mythili et al., 1997, 2001; Devi et al., 

2000; Devi and Sticklen 2001; Oldach 

et al., 2001; srivastav and Kothari 2002                                                                             

 

Nabors et al. 1983 
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Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; NAA,  α-

naphthalene acetic acid; BAP- 6-benzylaminopurine; Kn- Kinetin; IAA, indole-3-acetic acid; pCPA- para 

chlorophenoxyacetic acid; Pic-4- amino-3,5-6-trichloropicolinic acid; TDZ- thidiazuron; IBA- Indole-3-butyric acid; 

GA 3- gibberellic acid. 

 

2.3 Transformation of millets 

Improvement of millets using biotechnology has been overlooked due to economic or regional considerations. 

Development of resistance against biotic and abiotic stresses and improvement of quality for consumer must receive 

top priority. 

 

2.3.1    Explants and transgene delivery method 

Introduction of DNA was feasible by electroporation or chemical methods (Hauptmann et al., 1987). After the 

development of the particle gun, it became possible to introduce DNA into intact cells and tissues and this became 

the preferred mode of gene transfer. Embryogenic calli were bombarded with DNA coated particles to obtain 

transgenic plants. Particle delivery devices such as PDS 1000/He (Du Pont or Biorad, Munich, Germany) or the 

particle inflow gun (PIG) (Finer et al., 1992) were used to introduce gold/tungsten particles coated with desired 

vectors into the cells. Osmotic treatment of explant during the bombardment was reported to be helpful for the 

transformation (Girgi et al., 1992; Goldman et al., 2003). 

 

2.3.2 Vectors 

Promoter, enhancer, introns and polyadenylation regions can affect the expression of transgenes in transgenic plants 

(Birch, 1997). Lambe et al., (1995, 2000) tested several vectors having gus, hph, bar or nptII regions in various 

combinations of CaMV 35S and terminator nos in pCAMBIA. They reported highest transient expression of gus 

gene by using the plasmid having gus gene with recombinant Emu promotor with Adh1 intron and nos terminator in 

their experiments on pearl millet transformation.  

 

2.3.3 Selection and plant regeneration 

In an early report, Hauptmann et al. (1988) used hygromycin, phosphinothricin, kanamycin and methotrexate to test 

their efficacy for protoplast cultures of T. monococcum, Panicum maximum, Saccharum officinarum and a tri-

specific hybrid of Pennisetum species, transformed with resistance genes. Gene integration was confirmed by PCR 

and Southern analysis. All tested cell lines showed resistance to high levels of kanamycin. However, no plants were 

regenerated. Lambe et al., (1995) reported maintenance of hygromycin resistant transformed callus of Pearl millet 

for two years without loss of resistance phenotype, but plants were not regenerated. In a later study on Pearl millet, 

Lambé et al., (2000) reported regeneration of hygromycin resistant plants obtained from callus. 

 

In an important publication on pearl millet, Girgi et al., (2002) reported transgenic plants using bar and gus genes. 

Four breeding lines of pearl millet were bombarded with gus reporter and bar marker genes. The Ti progeny of 



regenerated plants showed co-segregation of both marker genes indicating that both genes integrated at the same 

locus in the pearl millet genotype. Goldman et al., (2003) selected the transgenic tissues bombarded with bar gene 

on a medium containing 15 mg /l phosphinothricin but later on, the embryogenic cultures were transferred to a 

phosphinothricin free medium. The germinated somatic embryos were then exposed to 3–10 mg /1 phosphinothricin. 

In a more recent report, O’Kennedy et al., (2004) reported production of fertile transgenic pearl millet plants 

expressing a phosphomannose isomerase gene under the maize ubiquitin promoter.  

 

2.3.4 Integration and expression of the transgene 

Genetic transformation is being used as a method of choice for introducing beneficial exotic genes into crop 

varieties for improving different agronomic characters. Particle-inflow-gun (PIG) method has been successfully used 

for producing transgenics in diverse crop plants (O’Kennedy et al., 1998, 2001, 2004; Abedina et al., 2000; Zhang 

and Puonti-Kaerlas, 2000; Girgi et al., 2002; Madhavi et al., 2005). However, to date, limited attempts have been 

made to develop protocols for genetic transformation of pearl millet. Taylor and Vasil (1991) and Taylor et al. 

(1993), using microprojectile bombardment method, incorporated gus A gene into the scutellum of immature 

embryos of pearl millet and reported transient GUS expression. Lambe et al., (1995, 2000) transferred gus A, hpt, 

nptII, and bar genes into pearl millet through microprojectile method but could not obtain any transgenic plants. 

Girgi et al., (2002) transferred gus A and bar genes into the scutellar tissue of immature embryos and recovered 

limited number of transformants using particle delivery system (PDS) and PIG methods. Transgenic pearl millet 

plants harboring bar and gfp genes (Goldman et al., 2003), and phosphomannose isomerase gene (O’Kennedy et al., 

2004) were also developed using PDS and PIG methods, respectively. Efforts made, thus far, to improve pearl millet 

through genetic engineering methods proved unsuccessful in developing stable resistance against the downy mildew 

disease. Genetic enhancement of pearl millet by incorporating novel antifungal genes, using molecular approaches, 

is highly desirable to achieve durable resistance against this major pathogen. Using the established protocol for plant 

regeneration from the shoot-tip cultures of pearl millet, a reproducible method for genetic transformation has been 

developed employing gus A gene with PIG method. Further, a chemically synthesized antifungal pin gene (Madhavi 

Latha et al., 2005) has been used for producing transgenic pearl millet resistant to downy mildew. 

 

2.4 PR related chitinase and osmotin functions 

The results for fungal disease resistance have been mixed with some notable failures (Neuhaus et al., 1991). The 

current consensus is that combinations of PR-proteins are required to achieve effective disease control. Transgenic 

wheat lines that stably and constitutively express one or both of two PR-protein genes have been reported (for a 

chitinase and a β-1,3-glucanase). While genetic resistance is the most effective disease control, suitable resistance 

genes are not always available. Resistance to fungal disease might be achieved by overexpressing PR-proteins that 

could degrade structural components of pathogenic filamentous fungi. A large group of pathogenesis related (PR) 

proteins has been shown to be rapidly and massively induced both locally around infection sites and systemically. 

The PR proteins encompass several different classes of structurally and functionally unrelated proteins that have 

been grouped into 11 protein families according to sequence similarities, although additional pathogen-induced 



proteins with potential antipathogenic action are described. Members of several of these families were demonstrated 

to have a damaging action on the structures of the parasite, thus exhibiting antifungal activity in in vitro bioassays 

and supporting a possible role for these proteins in plant defense. These include PR-1 and PR-5 (thaumatin- like 

proteins and osmotins), which are thought to create transmembrane pores and therefore have been named permatins; 

PR-2 (1,3-glucanases) and PR-3, 4, 8, and 11 (chitinases), which attack 1,3-glucans and chitin, respectively, 

components of the cell walls in most higher fungi. Several reports demonstrated that transgenic plants over 

expressing some PR genes show enhanced resistance to fungal pathogens. Although some of these have been shown 

to have specific enzymatic activity i.e. chitinase (PR-3) and glucanases (PR-2), many are known to have catalytic 

function and their mechanisms of action are not understood clearly. Osmotin is a member of the PR-5 family that 

was originally identified as the predominant protein that accumulated in tobacco cells as a function of osmotic 

adaptation. Subsequently osmotin and other osmotin-like proteins were shown to have antifungal activity in vitro 

against a broad range of fungi, including several plant pathogens. Many of the PR proteins, including osmotin, 

exhibit clear specificity and resistance to fungal cells.  

 

2.5 Downy mildew disease 

Pathogen of plants is a significant and growing threat to crop production worldwide. The goal of producing crops 

with increased and durable resistance to spectrum diseases is therefore a major focus in plant research. Increasing 

knowledge of plant defense has led to more sophisticated transgenic approaches to enhancing resistance. The 

number of candidate genes put forward by transcriptomics, proteomics and protein interaction studies gives us a 

large choice of genes to be used. Potentially, these genes can be manipulated by over expression, induced expression 

and tissue specific expression. Downy mildew caused by Sclerosopora graminicola (sacc.). Schroet is the most 

widespread and destructive disease of pearl millet causing severe economic losses. This pathogen not only 

reproduces asexually but also sexually. Hence, virulence is common in this fungus.  Other major diseases affecting 

pearl millet are smut (Mesozimyces penicillariae), ergot (Claviceps fusiformis) and rust (Puccinia substriata). There 

is 50-60% of this pathogenic incidence in India depending upon the season and state and yield losses due to downy 

mildew disease in pearl millet are very high (50%). The pathogen adapts its virulence and continues to threaten 

popular hybrids all over India. Symptoms of this disease often vary as results of systemic infection. Leaf symptoms 

begin as chlorosis at the base and successively higher leaves show progressively greater chlorosis. Severely infected 

plants are generally stunted and do not produce panicles, green ear symptoms result from transformation of floral 

parts into leafy structures. Many attempts to get downy mildew resistant plants using conventional plant breeding 

methods did not succeed till date. Therefore, there is an urgent need to evolve a line or variety that is tolerant to this 

fungus using genetic engineering techniques. 

 

As the world population continues to increase, food supplies must also grow to meet nutritional requirements. One 

means of insuring stability of food maintenance is to limit yield loss caused by plant pathogens mainly fungus, 

bacteria and virus. Since pearl millet is one of the most important cereals in India, it is of great interest to establish a 

system for production and generation of transgenic plants. Attempts to produce hybrids for downy mildew resistance 

have failed so far in imparting resistance. Since the fungus can reproduce both sexually and asexually, it may be 



difficult to produce a hybrid that is tolerant to Sclerospora. On the other hand, multiple genes if transferred can 

effectively control this fungus or multiple fungi. Naturally occurring variation and induced variation caused by 

artificial mutation or genetic engineering technique, shown by single nucleotide polymorphism (SNPs), insertions 

and deletions (Indels), can be indentified and discovered using small-scale to high throughput systems. Currently, 

mutations are mainly discovered by DNA sequencing, where after PCR, primers must be developed for the 

screening of any polymorphism. Several alternatives to sequencing, which is costly for large-scale screening have 

been proposed and were recently reviewed by Yeung et al., (2005). 

 

2.6 Abiotic Stress 

Drought and salinity are two major environmental factors determining plant productivity and plant distribution. 

Drought and salinity affect more than 10% and they are rapidly increasing on a global scale declining average yields 

for most major crop plants by more than 50% (Bray et al., 2000). Plants can perceive abiotic stresses and elicit 

appropriate responses with altered metabolism, growth and development. The regulatory circuits include stress 

sensors, signalling pathways comprising a network of protein-protein interactions, transcription factors and 

promoters, and finally the output proteins or metabolites. Classical breeding approaches revealed that stress 

tolerance traits are mainly quantitative trait loci (QTLs) which make genetic selection of traits difficult. Stress 

tolerant crops have been obtained mainly by introducing traits from stress-adapted wild relatives. Differential stress 

tolerance could be attributed to differences in plant reactivity in terms of stress perception, signal transduction and 

appropriate gene expression programs, or other novel metabolic pathways that are restricted to tolerant plants. The 

hypothesis that the genetic program for tolerance is at least to some extent also present in non- tolerant plants is 

supported by the observation that gradual acclimation of sensitive plants leads to acquisition of tolerance to some 

degree. These plants may need gradual adaptation for proper expression of genes responsible for acquisition of 

tolerance (Zhu, 2001).  

 

2.7 Candidate genes 

2.7.1 Searching candidate drought responsive genes for TILLING 

Drought tolerance is a complex phenomenon controlled by multiple genes. Genes found to control drought tolerance 

in rice, for example, may predict those genes that play an important role in pearl millet. Comparative mapping of 

rice, foxtail millet, sorghum and pearl millet has demonstrated the genomic relationship among the cereal crops. 

Although at present only 2853 ESTs are available for pearl millet in public domain (as on May 2007), various 

genome or EST sequencing projects in major cereal species like rice, maize, sorghum, wheat and barley have 

provided a wealth of sequence information. These gene/EST sequence data can be mined for selecting the promising 

drought responsive genes. In parallel, literature search has been initiated to identify the other interesting candidate 

genes that can be used for TILLING in pearl millet.  

  

2.7.2 DREB2A Gene Function 



Abiotic stress-mediated gene expression is regulated via different transcription factors of which drought-responsive 

element-binding (DREB) proteins play an important role. There are two types of DREBs. Presently, the function of 

DREB1 type protein is well studied; however, much less information is available for DREB2. A cDNA with an open 

reading frame of 332 amino acids, encoding the transcription activation factor DREB2A was isolated from 

Pennisetum glaucum, a stress tolerant food grain crop. Phylogenetic tree revealed that PgDREB2A is more close to 

DREBs isolated from monocots, though it forms an independent branch. The PgDREB2A transcript was up-

regulated in response to drought within 1 h of the treatment, whereas the induction was delayed in response to cold 

and salinity stress. The DREBs belongs to ethylene-responsive element binding proteins (EREBPs)/AP2 

(APETLA2) transcription factor family that is unique to plants. The DREBs bind to a 9-bp conserved sequence 

TACCGACAT, termed the DRE. They are essential for the regulation of dehydration-responsive gene expression in 

an ABA-independent stress signal transduction pathway (Liu et al., 1998).  

  

Although transformation with individual genes has been shown to confer some degree of tolerance in transgenic 

plants, it is felt that regulated expression of more genes via over-expression of transcription factors can lead to 

sustained tolerance. It is important to enhance regulatory ability of an important transcription factor that can activate 

the expression of many target genes controlling correlated characters. In fact in many studies, overexpression of 

stress inducible DREB transcription factor was found to activate the expression of many target genes having DRE 

elements in their promoters and the resulting transgenic plants improved stress tolerance. The level of stress 

tolerance and growth retardation in the 35S:OsDREB1A transgenic Arabidopsis was relatively lower than that in the 

35S:AtDREB1A transgenic Arabidopsis. This might be due to the difference in the number of target stress genes 

induced. The DREBs follow an ABA-independent signal transduction pathway. However, in aba (ABA-deficient) or 

abi (ABA-insensitive) Arabidopsis mutants a number of other genes were induced by drought, salt and cold. This 

suggests that some of the genes do not require ABA for their expression under drought, salt and cold conditions 

(Thomashow, 1994; Yamaguchi-Shinozaki and Shinozaki, 1994). The CBF4 transcription factor is ABA responsive 

and involves CRT/DRE elements in ABA-dependent pathway. Structural studies have shown that the DREB family 

of transcription factors has unique conserved regions in them that allow them to interact with a series of downstream 

genes in an ABA-independent fashion. The involvement of DRE in ABA-dependent regulation of stress response 

suggests a further interaction or a cross talk between the ABA dependent and ABA-independent signal transduction 

pathways. This interaction highlights co-ordination between the stress signals and ABA in the regulation of various 

stress induced genes. 

 

2.7.3 Searching candidate fungal responsive genes for TILLING 

At the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad several candidate 

genes are being evaluated for their biological efficacy against the sorghum shoot fly (Atherigona soccata), spotted 

stem borer (Chilo partellus), tobacco caterpillar (Spodoptera litura) and cotton bollworm or legume pod borer 

(Helicoverpa armigera), which are major crop pests in the semi-arid tropics. The need for genetic transformation of 

crops to improve crop production in the developing world has been discussed by Ortiz (1998), Sharma and Ortiz 



(2000) and Ortiz et al., (2000). Information on candidate genes that can be used for genetic transformation of crops 

has been reviewed to evaluate their potential for genetic improvement of crops for pest management. 

 

 

2.7.4 Enhanced Disease Resistance (EDR2) gene function  

The EDR2 mutants exhibit properties consistent with the assumption that EDR2 acts as a negative regulator of cell 

death. The chlorosis and necrosis phenotypes do not develop spontaneously and do not develop in response to 

various abiotic stresses, such as wounding, heat stress, light stress, or drought stress. The chlorosis and necrosis 

were elicited only following inoculation with the pathogens G. cichoracearum, B. g. hordei or H. parasitica. The 

EDR2 plays a role specifically in the cell death associated with plant-pathogen interactions and do not have a 

general role in cell death. These features distinguish the EDR2 mutants from typical lesion mimic mutants such as 

the acd and lsd classes. The occurrence of chlorotic and necrotic tissue was restricted to inoculation sites and did not 

spread suggesting that EDR2 restricts the initiation of cell death rather than its spread. Because both G. 

cichoracearum and H. parasitica are biotrophic pathogens, the chlorosis and necrosis that develop may be sufficient 

to account for the restricted growth of these pathogens in the EDR2 mutants. The Salicuclic acid (SA) pathway, but 

not the ethylene/jasmonate pathway, appears to be somewhat deregulated in that PR1 transcript levels are elevated in 

EDR2 mutants relative to wild type following elicitation by pathogen attack. Plants deficient in SA accumulation or 

signaling suppress both the development of chlorosis and necrosis as well as the disease resistance phenotypes of 

EDR2 mutants. Thus, it is also possible that SA-dependent defenses unrelated to cell death contribute to the disease 

resistance phenotype of EDR2 mutants. The SA signal transduction pathway is required for the HR elicited by 

incompatible plant-pathogen interactions. Thus, it is difficult to know whether EDR2 acts upstream of SA to limit 

SA activation of cell death or downstream of SA.  That EDR2 may bind lipid-like molecules via both its PH and 

START domains, EDR2 may have a direct or indirect inhibitory effect on PAD4 or EDS1 via a lipid-like 

intermediate. Candidates for this lipid-like intermediate could be a sphingolipid, phosphatidic acid or oleic acid. 

Because loss-of-function mutations in the EDR2 gene confer enhanced disease resistance to powdery mildew, EDR2 

probably functions as a negative regulator of powdery mildew resistance. Combined, these observations strongly 

suggest that EDR1 and EDR2 may function in the same pathway to regulate senescence and cell death.  

 

2.8 Molecular Markers 

DNA markers reveal genetic differences that can be visualized by using a combination of gel electrophoresis and 

staining with chemicals (ethidium bromide or silver) or detection with radioactive or colorimetric probes. Recently 

Mohan et al., (1997), kumar (1999) and Gupta and Varshney (2000) extensively reviewed the details for these 

markers system. Several resources are available for genetic/genomic research in plants are the following: (i)  wild 

species and mutant collections; (ii) marker collections; (iii) F2 synteny mapping population and permanent 

recombinant inbred (RI) mapping populations; (iv) BAC libraries and an advanced physical map; (v) TILLING 

populations; and (vi) microarrays, gene silenced lines, and VIGS libraries (for transient silencing ) 

 



2.8.1 Strutural Genomics 

Beginning in the 1980s, different types of molecular markers have been developed. Now in crop species, the richest 

in the number and type of these genetic markers. The PCR-based markers were developed both as random markers, 

such as random amplified polymorphic DNA (RAPD), including restriction fragment length polymorphisms 

(RFLPs), simple sequence repeats (SSRs), cleaved amplified polymorphic sequence (CAPS), amplified fragment 

length polymorphisms (AFLPs), and single nucleotide polymorphism (SNP) and many of them have been mapped 

onto the high-density tomato genetic map. These sequences are available from the SGN Database, thus allowing 

specific primers for PCR reaction to be designed. 

 

2.8.2 Insertional mutagenesis 

Both classical and insertional mutageneses have been used in tomato. Indeed, together with barley, Arabidopsis, 

sorghum, wheat and maize, tomato was the focus of early, extensive mutagenesis programs. In a paper published in 

1964, Hans Stubbe reviewed over 250 tomato mutants arising from the seminal work of the Gatersleben group.  

Insertional mutagenesis systems exploiting exogenous transposon systems have also been described. Highly efficient 

protocols for transformation of Micro-Tom have been described, which may serve as a tool for extensive T-DNA 

mutagenesis programs also. 

 

2.9 Targeting induced local lesions IN genomes 

In addition to the above, a more recent strategy called targeting induced local lesions IN genomes (TILLING) was 

described by McCallum et al., 2000 for targeting local mutations in the genome. This is a PCR-based strategy that 

provides an allelic series of induced point mutations in genes of interest. As such, it can be applied to most 

organisms, even to those for which an efficient transformation system is not available. TILLING has been used for 

high-throughput isolation of mutants in Arabidopsis as well as in several crop plants.  

 

2.10 Muatagenesis 

TILLING is a chemical mutagenesis with high throughput genome-wide screening for point mutations in genes of 

interest that effectively complements classical forward mutation screening based on phenotype. Chemical mutagens 

like ethyl methanesulphonate (EMS) induce high-density single nucleotide changes that are randomly distributed in 

the genome. These DNA damaging agents induce allelic variation that includes missense mutations in coding 

sequences (leading to altered protein structure and function), mutations of non-coding sequences that may affect 

gene regulation, premature stop codon mutations and splice site changes that may result in knockout/knockdown of 

a protein. TILLING introduces new aspects into plant breeding, such as the possibility of surveying specifically for 

allelic series of economically interesting genes. This is a new reverse genetic strategy that combines the high density 

of point mutations provided by traditional chemical mutagenesis with rapid mutational screening to discover 

induced lesions (McCallum et al., 2000).  The general applicability of TILLING makes it appropriate for genetic 

modification of crops, and there may be agricultural interest in producing phenotypic variants without introducing 

foreign DNA of any type into a plant’s genome. Reverse genetics generally refers to the generation or targeted 



discovery of a mutation in a gene that is known by its sequence. TILLING minimizes the effort required to find 

mutations, ascertaining the resulting phenotype. Chemical mutagenesis introduces background mutations that can 

make phenotypic analysis uncertain, and multiple generations of outcrossing may be desirable. A phenotype 

attributable to the two non-complementing mutations will be found in every heteroallelic individual. 

 

The primary importance is the method that is used to generate chemically induced mutations. To ensure that useful 

mutations are identified, a sensible balance must be struck between the amounts of mutagenesis and the number of 

individuals analysed. There are well-established chemical mutagenesis methods for many organisms and many of 

these are likely to be directly applicable to a TILLING project. 

 

Mutagenesis has remained popular over the past 70 years because it is simple, cheap to perform, applicable to all 

plant species and usable at a small or large scale. By varying mutagen dose, the frequency of induced mutations can 

be regulated and saturation can be readily achieved. Historically, mutation screens have assembled rich collections 

of phenotypic variants. The approach, which couples mutagenesis with sequence-specific mutation detection, 

promises to provide a general and effective platform for ‘reverse genetics’ in a wide range of plants. Today, several 

variants of this basic strategy have been developed and acronyms such as TILLING, Deleteagene and DEALING 

(Detecting Adduct Lesions IN Genomes) have been coined. Reverse genetics is a generic term for approaches that 

attempt to determine the biological function of a gene or protein by analysing individuals in which that gene has 

been deliberately perturbed. In plants, reverse genetics has relied heavily on insertional mutagenesis using mobile 

genetic elements such as T-DNA and endogenous or introduced transposons. In Arabidopsis, rice and maize, large 

populations have been developed that contain insertions dispersed throughout the genome.  

 

2.11 TILLING will give mutants 

S. Henikoff and colleagues have assembled a process that is a good general solution to the problem of identifying 

mutations in genes that are known only by their sequence. In addition to being a general method for the 

identification of mutations in an arbitrary gene, TILLING also provides an ALLELIC SERIES of mutations. Many 

amino-acid substitutions, splicing mutations and stop mutations can be identified by TILLING. This has several 

advantages over other methods. With an allelic series, which is not biased by phenotypic selection, partial loss-of 

function and novel-function alleles can often provide a more informative insight into the true function of a gene 

product. In addition, by using different chemical mutagens, it is possible to identify different constellations of 

mutations. This has the added advantage of increasing the diversity of an allelic series, raising the possibility of 

identifying specific amino-acid changes that are made interesting by results from other biochemical, structural or 

genetic studies.  

 

2.12 TILLING in Plants 

TILLING has been embraced by the Arabidopsis research community and has been made widely accessible through 

the Arabidopsis TILLING Project. The success with Arabidopsis has inspired researchers who work with other 

model organisms to use the method, which has the potential to be applied to many other genetic systems, especially 



animal species for which there are no other, or limited, reverse genetic methods. Although the Arabidopsis research 

community has the distinct advantage that seeds are relatively easy to store and distribute, there are good reasons to 

believe that community-wide efforts to support TILLING for other organisms should be undertaken. In 2003, 

Greene et al. reported that the Arabidopsis TILLING Project (ATP), which was set up and introduced as a public 

service for the Arabidopsis community, had detected 1,890 mutations in 192 target gene fragments. Heterozygote 

mutationswere detected at twice the rate of homozygote mutations. The mutational density for treatment of 

Arabidopsis with EMS was approximately 1 mutation per 300 kb of DNA screened with these mutations distributed 

throughout the genome. The numerous mutations in Arabidopsis thaliana that have been identified via TILLING 

have provided an allelic series of phenotypes and genotypes to elucidate gene and protein function throughout the 

genome for Arabidopsis researchers. Another model plant, Lotus japonicus, has also been the focus of elucidating 

gene function through TILLING. EMS null allele mutants were examined and shown to have reduced sucrose 

synthase activity compared to the wild type; however, mutants still retained the ability for nitrogen fixation. In a 

separate study of pea (Pisum sativum), which also fixes nitrogen and is a member of the legume family, TILLING 

was applied to identify an allelic series of mutations in five genes with a total of 60 mutants identified. Some of the 

mutations discovered in the LE gene, which encodes 3 β-hydroxylase, were further characterized and determined to 

affect internode length. Mutants were backcrossed to the wild type and the segregation of the mutations and their 

respective phenotypes were examined. In 2004, maize, which is an important staple crop with a large genome, was 

shown to be conducive to the TILLING method.  

 

In contrast to transgenic methods, chemical mutagenesis can be applied to most species including sorghum. 

Chemical mutagenesis does not require gene transfer and is therefore not subject to biosafety and extensive 

regulatory concerns. Chemical mutagenesis has been used in sorghum breeding previously; unfortunately, these 

mutagenized populations were not annotated and preserved. Traditional mutagenesis is used extensively in 

floricultural plants and fruit trees. In such material, irradiation of rooted stem cuttings, detached leaves or dormant 

plants is common, although in vitro cultured or micropropagated plants, regenerable callus cultures, stolons, axillary 

or adventitious buds have also been used. The major hurdle is overcoming the need for sex to purify mutations 

biologically. 

 

2.13 Genotyping method 

Another factor to consider is the choice of genotyping method. Although Cel-I is clearly an effective way to detect 

heterozygous mutations, even in pools of individuals, other methods might be more applicable for an existing set-up 

or might provide more information. Perhaps the most complete information is given by resequencing the target 

exons of each individual in the array. This was done on an array of F1 progeny of N-ethyl-N-nitrosourea (ENU) 

mutagenized including 9 amino-acid substitutions and 1 premature stop codon mutation. This method is designed to 

detect premature stop codons in the target gene. This method has the advantage of allowing the efficient detection of 

nonsense mutations and the detection of mutations that are manifested in expressed mRNA, but it cannot detect the 

more subtle alleles that can be identified by the Cel-I or re-sequencing strategies.  

 



2.14 CODDLE 

CODDLE was developed by Nicholas Taylor and Elizabeth Greene (2003) as a general tool that can also be used for 

polymorphism analysis and for conveniently designing primers for any organism and any mutagen. Few researchers 

used protein sequence conservation as the basis for evaluating whether a missense mutation is likely to have an 

effect on the encoded protein. The program CODDLE (for codons optimized to discover deleterious lesions) takes 

genome sequence data as input, determines which exons are most likely to yield nonsense and missense mutations 

given a particular type of mutagen, then runs another program Primer3 to generate PCR primers to amplify selected 

exons. After mutations have been identified and sequenced, the program PARSESNP (for project aligned related 

sequences and evaluate SNPs) shows the locations of induced polymorphisms, including restriction enzyme 

polymorphisms.With a homology model of related sequences for the target protein, PARSESNP produces 

predictions of the severity of missense changes. 

 

Several computer programs have been developed or adapted to facilitate the TILLING process. As described above, 

CODDLE provides the front end for TILLING (Till et al., 2003). It has multiple entry options for submitting a 

genomic sequence and for obtaining an exon-intron model for the gene of interest using public sequence databanks. 

CODDLE also aligns conserved protein regions from the Blocks database (http://blocks.fhcrc.org) with the gene 

model. CODDLE uses the Primer3 algorithm and reports suitable primers for amplification of the chosen fragment. 

CODDLE enters the information automatically into the order form, then a submitted order is checked by BLAST 

searching, the user is billed, and the primers are ordered to initiate the process. For the recovery of mutations after 

identification, it is useful to have a routine method to genotype individual carriers. Neff and colleagues have 

developed a useful method that is known as dCAPS (for derived cleaved amplified polymorphic sequence), which 

uses a mismatched PCR primer to generate restriction enzyme polymorphisms in the amplified product, allowing 

mutant and wild type alleles to be distinguished. A web based program is used to design primers and identify 

restriction sites. 

 

2.15 IR labeling primers 

TILLING and EcoTILLING are based on a common set of methods. Target fragments of 1.5 kb are amplified by 

PCR with gene specific oligonucleotide primers that are 50-end-labeled with fluorescent IRDye 700 or IRDye 800 

dyes. After amplification, samples are denatured and then annealed to form heteroduplexes between strands of DNA 

harboring nucleotide polymorphisms. Heteroduplexes are digested using a singlestrand specific nuclease and then 

size-fractionated by denaturing PAGE. To increase the efficiency of discovery of rare alleles, we applied an 8-fold 

pooling in the discovery.  

 

2.15.1 IRDye 800: 

IRDye 800 is a heptamethine cyanine dye absorbing and fluorescing in the near infrared region of the spectrum. The 

absorption maximum at 787 nm is well matched to the 785 nm laser in the detection microscope. The extremely 

high absorptivity and good quantum efficiency of the dye provide excellent sensitivity. Bands containing less than 

10 attomoles of IRDye 800 label have been detected. 



 
2.15.2 IRDye 700: 

IRDye 700 is a pentamethine carbocyanine dye fluorescing in the near infrared region of the spectrum. The 

absorbtion maximum (681 nm) is just outside the visible region and matches the 685 nm laser of the detection 

microscope. While the absorptivity of IRDye 700 is slightly less than that of IRDye 800, higher fluorescence 

efficiency compensates for the absorption difference. Bands containing less than 10 attomoles of IRDye 700 label 

have been detected. 

 

2.16 Limitations of TILLING 

TILLING project depends on the development of a densely mutagenized population and the preparation of DNA of 

suitable quality for PCR. Because protocols for chemical mutagenesis in different plant and animal species can vary 

dramatically, no single protocol can be considered generally. Although many species have been successfully 

mutagenized, others have been less tractable for reasons that are not clear. In cases where mutagenesis is unfeasible, 

natural nucleotide diversity can nevertheless be discovered by EcoTILLING. In theory, mutation discovery may be 

limited in highly heterozygous species where the large number of bands from natural polymorphisms could 

potentially inhibit the detection of rarely induced mutations. When encountering problems to obtain consistent PCR 

amplification, alternative extraction methods may be developed or additives may be added to the PCR mixture. 

 

2.17 Advantages and Disadvantages of TILLING and EcoTILLING 

As discussed earlier, using chemical mutagenesis and TILLING to pinpoint these mutations has been highly 

effective in the elucidation of gene function in plants and animals without the production of transgenic material. 

TILLING has been demonstrated to be sensitive enough to detect induced mutations and naturally occurring SNPs, 

as well as the detection of heterozygotes. EcoTILLING, which has been less frequently employed in the current 

literature, can also be a valuable tool for mining for SNPs in germplasm, assessing heterozygosity, uncovering 

variants for disease resistance, or ascertaining the function of a gene or regulatory element by detecting natural 

variants. EcoTILLING can be a good technique to employ especially when working with a well established 

population with thoroughly characterized morphological data. One of the main advantages of TILLING is the 

amount of time and money this method can potentially save by not requiring resequencing of all individuals in a 

population to mine for frequent or rare SNPs. As a general rule for a diploid organism, TILLING is performed by 

pooling eight individuals of a population at a time and assessing differences by endonuclease digestion of 

mismatches in a heteroduplex. The majority of the samples screened in TILLING have the same haplotype with very 

few samples in the population having an induced mutation in the gene of interest due to a relatively low frequency 

of induced mutants by utilizing chemical mutagenesis. TILLING is sensitive enough to detect homozygous 

mutations as well as heterozygous mutations in an 8 fold pool. This method allows one to weed out the identical 

individuals and only focus resources on sequencing individuals with rare chemically induced DNA polymorphisms.  

 

TILLING is a non-transgenic, high throughput reverse genetic approach. This technique unlike other SNP detection 

methods provides the approximate location within a few 100,000 base pairs of the induced mutation, which allows 



targeted sequencing in the area of the induced mutation supposed to be sequencing the entire fragment. Therefore, 

through mutagenesis one can obtain partial loss or complete loss of function and new novel functions, which can 

provide valuable insight into the true role of a gene in a species of interest. Another advantage of TILLING is that 

the likelihood of recovering a deleterious mutation can be calculated in advance. A calculation is possible, since 

EMS produces primarily C/G to T/A transitions (Ashburner, 1990). For example, 20 of 23 LEAFY EMS-generated 

mutations are from C to T, resulting in C/G to T/A transitions (http://www.salk.edu/LABS/pbio-w/ lfyseq.html). The 

probability of discovering deleterious alleles can be maximized by judicious choice of the region to be TILLed. By 

choosing coding regions that are evolutionarily conserved, it becomes more likely that missense mutations with 

detrimental effects on gene function will be obtained. Splice junction mutations are also potentially deleterious. 

 

Insertional mutagenesis is an immensely powerful tool but the drawbacks are: (i) insertion sites are non-random, 

with certain genes less susceptible to insertion than others; (ii) induced mutations generally produce a complete loss 

of function allele that might not provide much insight into the normal function of the gene; (iii) the approach has 

been restricted to a few species; (iv) because many insertional-mutagenesis strategies rely on genetic manipulation 

to develop the resource, the incorporation of promising experimental lines directly into breeding programmes is 

highly restricted. 

 

2.18 Application Overview in TILLING 

Rapid acquisition of genomic sequence data has elevated a new discipline, functional genomics, which focuses on 

determination of gene function. Reverse genetics methodologies are an important part of functional genomics. 

Traditional reverse genetic methods, such as the use of transposons to "knock out" a specific gene, can accurately 

determine phenotype but require time consuming transgenic or sophisticated tissue culture methodologies. Such 

"knockout" methods are limiting because the entire gene is knocked out the effects of partial loss of function of an 

active gene cannot be observed. To overcome the limitations of knocking out an entire gene and to expand 

knowledge of active gene mutations, researchers from Fred Hutchinson Cancer Research Center developed a process 

for Targeting Induced Local Lesions In Genomes, or TILLING. Elegantly simple, highly efficient, TILLING uses 

chemical mutagenesis to yield a traditional allelic series of point mutations for virtually all genes. The TILLING 

process is of particular value for essential genes where sublethal alleles are required for phenotypic analysis. The 

value of TILLING for genetic research is enhanced by its proven viability for a rapidly growing range of organisms. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 



MATERIALS AND METHOD 



 

 

    

3.1 In vitro plant regeneration studies in different varieties of Pennisetum gluacum (Pearl millet) 

For callus initiation and subsequent plant regeneration, seeds of different genotypes of pearl millet namely PT 732 

B-P2, LGD-1-B-10, ICMB 99022, 863B-P2, 841-P3, 81B-P6, P1449-2-P1, Tift-23D2B1-P1-P5,  that are susceptible 

and tolerant to fungal pathogens especially to downy mildew were collected from ICRISAT, Patancheru, Hyderabad 

and the germplasm was maintained in the Experimental Farm, Department of Genetics, Osmania University for 

further experimental studies. 

 

3.2 Preparation of medium 

All in vitro experiments were conducted using Murashige and Skoog’s (1962) medium (MS) fortified with different 

plant growth regulators. Test tubes made of Borosil glass (150 mm × 25 mm), plugged with non-absorbent cotton 

and autoclavable plastic caps were used for callus initiation and 250 ml capacity bottles (11 cm height, 6 cm in 

diameter)  containing a plastic cap were used for elongation of shoots. Most of the inorganic salts and chemicals 

were obtained from Hi Media, Merck and Qualigens. Plant growth regulators were of high purity and purchased 

from Sigma Inc., St. Louis, MO, USA. All other chemicals were purchased from the Fermentas Inc., Hanover, MD, 

USA and from Qiagen Inc., CA, USA. MS media with different plant growth regulator combinations were tried for 

callus induction, shoot regeneration and rooting. The composition of MS medium employed in the present study is 

shown in Table 1. All the media stock solutions were prepared according to the composition of the nutrient medium 

using glass-distilled water. The stock solutions were stored in the refrigerator until use. Whenever hydrates of salts 

were used, appropriate corrections were made. All supplements to the basal medium were added prior to the final 

adjustment of volume. Media pH was adjusted to 5.7 with 0.1N sodium hydroxide or 0.1N hydrochloric acid (as 

found necessary) before autoclaving. The media were solidified with 1% Hi Media agar. After adding agar, the 

medium was heated gently with constant stirring, till the agar is dissolved. Later 50 ml of medium was transferred to 

each of the culture vessels. The mouth of the culture vessels was closed immediately with a plastic cap. Sterilization 

of media, test tubes and bottles was performed by autoclaving the contents at 121 ºC and 15 psi (1.05 Kg cm
–2

) 

pressure for 15-20 minutes. Heat labile compounds were subjected to filter sterilization using Millipore filters (0.22 

µM) under pressure. 

 

Table 2. Composition of Murashige and Skoog’s (1962) medium 

 

Nutrients Formula Quantity 

mg/l 



I Macro nutrients 

 1. Ammonium nitrate NH4NO3 1650 

 2. Potassium nitrate KNO3 1900 

 3. Magnesium sulphate MgSO4.7H20 370 

 4. Potassium dihydrogen ortho phosphate KH2 PO4 170 

 5. Calcium chloride CaCl2.2H2O 440 

II Micro nutrients 

 1. Boric acid H3BO3 6.20 

 2. Sodium   molybdate NaMoO4.2H2O 250 µg 

 3. Cobalt chloride CoCl2.6H2O 25 µg 

 4. Manganese sulphate MnSO4.4H2O 22.30 

 5. Zinc sulphate ZnSo4.7H2O 8.60 

 6. Copper sulphate CuCO4.5H2O 25 µg 

 7. Potassium Iodide KI 0.83 

III Fe Na2EDTA 

 1. Ethylene diamine tetra acetic acid  

    disodium salt 

C10H14N2Na2O8.2H2O 373 

 2. Ferrous sulphate FeSO4.7H2O 278 

IV Vitamins 

 1. Thiamine hydrochloride C12H17N4 OSCl.HCl 0.1 

 2. Phyridoxin hydrochloride C8H11NO3 HClS 0.5 

 3. Nicotinic acid C6H5NO2 0.5 

 4. Meso-inositol  100 

V Others 

 1. Glycine NH2 CH2COOH 2.0 mg/l 

 2. Sucrose C12H22O11 20 g/l 

 

3.3 Aseptic conditions: Surface sterilization of plant material 

All operations including inoculations and transfers were conducted in a sterile ultraviolet light (UV) treated laminar 

airflow transfer hood. The surface of the hood was rubbed down first with 5% soap solution, rinsed with water, dried 

and finally sterilized with 70% alcohol prior to each use. The interior of the chamber was saturated with an aerosol 

of 2% thymol and 2% glycerine in 90% ethyl alcohol. All the surgical instruments were sterilized by autoclaving 

before use. Spatula, inoculating loop, anatomical scissors, forceps, needles and scalpels were further sterilized by 

flaming with absolute alcohol inside the laminar flow cabinet. To maintain maximum sterility inside the laminar 

flow hood, it was swabbed with 70% ethanol and the UV lights were switched on for 10–15 minutes before every 

operation. All the test tube cultures were incubated under continuous white fluorescent light (30 µ Em
-2 

S
-1

) at an 

ambient temperature of 24 ± 2 ºC. 



 

3.4 Callus induction  

3.4.1 Callus initiation from different genotypes and explants (immature embryos, mature embryos, 

immature inflorescence and shoot tips) 

Different explants such as shoot tips, mature embryos, immature embryos and immature inflorescences were 

inoculated onto Murashige and Skoog’s medium containing different concentrations of thidiazuron, dicamba, 

picloram, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxypropionic acid (2,4,5-TP), 2,4,5-

trichlorophenoxyacetic acid (2,4,5-T), naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), indole-3-acetic 

acid (IAA), 6-benzylaminopurine (BAP), kinetin, zeatin and 2-isopentenyladenine (2- iP).  The inflorescences were 

cut aseptically into explants and inoculated onto Murashige and Skoog’s medium (MS) containing different 

concentrations of 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, 2,4,5-

trichlorophenoxypropionic acid thiodiazuron (TDZ), dicamba, picloram and napthaleneacetic acid. Similarly, shoot 

tips from different genotypes measuring 5-10 mm were cut and inoculated onto the above media for callus initiation.  

 

Callus was also initiated from mature embryos and shoot tips of different varieties of Pennisetum in Murashige and 

Skoog’s basal medium containing 2 mg/l 2,4-D and 6 mg/l 2,4,5-trichlorophenoxyacetic acid. Calli obtained were 

subcultured onto the same medium with an interval of two-weeks. In all these varieties, 10% callus was found 

embryogenic which was subsequently transferred to MS medium containing different concentrations of BAP and 

kinetin.  

 

Seeds of all the inbreed lines were sown in the field and the immature inflorescences were collected from the boot 

leaves after 35-45 days old plant (from the date of sowing in the field). The boots were collected and 3-7 cm long 

young inflorescences were separated. Then they were surface sterilized with 0.1% mercuric chloride for 5 min and 

the boots were washed again 3 times with sterile distilled water to remove traces of HgCl2 by changing the water 

each time at least for 30 min. The florets were separated from the panicles and inoculated onto MS basal medium 

containing 2,4-dichlorophenoxyacetic acid (2 mg/l). Cultures were maintained at 25+2 
0
C under dark. Callus was 

subcultured after every 20 days and was maintained on MS medium supplemented with 2 mg/l 2,4-D. This callus 

was also transferred onto 2 mg/l 2,4-D +10 mM NaCl for three subcultures and onto 0.01 mg/l TDZ for one 

subculture. Likewise, shoot tips from different genotypes were also used for callus initiation on MS medium 

containing different concentrations of plant growth regulators. 

 

3.5 Shoot regeneration from immature inflorescence explants 

Embryogenic callus and somatic embryos obtained on the TDZ media were later transferred onto regeneration media 

(MS medium plus different growth regulators) supplemented with 6-benzylaminopurine or kinetin in combination 

with indole-3-acetic acid (IAA) and naphthaleneacetic acid (NAA). Cultures were maintained at 25+2 
0
C  under 16 

h light and 8 h dark cycles at a light intensity of 30 µ Em
-2 

S
-1

 provided by white fluorescent bulbs . The influence of 

different concentrations of kinetin and BAP was tested for shoot regeneration from this embryogenic callus.  

 



3.6 Rooting of shoots 

The shoots obtained from callus cultures were rooted in MS basal medium fortified with 0.2 mg/l IAA. After 5-6 

weeks of culture, shoots were excised and transferred to half-strength MS medium containing  0.5mg/l, 1 mg/l and 2 

mg/l IBA and 0.5mg/l, 1 mg/l and 2 mg/l  NAA, 0.5mg/l, 1 mg/l and 2 mg/l IAA and 2% sucrose (w/v) for rooting. 

The percent frequency of root formation and the mean number of roots formed per shoot was recorded after 20-days 

of culture. 

3.7 Acclimatization 

Rooted shoots were carefully taken out of the medium and washed thoroughly in running tap water to remove traces 

of medium attached to roots without damaging the roots. The plantlets were transferred to plastic pots containing 

vermiculite and vermicomposte in 1:3 ratio. Potted plants were covered initially with polythene bags to maintain 

humidity. Hardening was continued for three weeks with mild irrigation during the initial period until they were 

successfully acclimatized. Then after, they were acclimatized to the environment and the plants were transferred to 

clay pots with a potting mixture of sand: soil: dry powdered cow dung (1:1:1). After 2 months, a total of 60 plants 

(20 from each genotype) were transferred to clay pots (15 cm in height) with fresh potting mixture for further 

growth. 

 

3.8 Histological studies on embryogenesis and shoot organogenesis from immature inflorescence and 

shoot-tip derived calli of Pearl millet 

The ontogeny of embryogenesis as well as shoot organogenesis was carried out after fixing embryogenic and shoot 

differentiating callus (derived from inflorescences) in acetic acid and ethanol (3:1). Histological sections were taken 

using a microtome and histological photographs using Nikon Eclipse E 800 Light Microscope (Japan) fitted with 

Nikon DXN 1200C digital camera. This was felt necessary to ascertain the origin of morphogenesis. Shoot 

organogenesis as well as embryogenesis were observed in the histological sections of callus derived from 

inflorescences of three genotypes. 

  

3.9 Studies on calli for antibiotic sensitivity 

To test the sensitivity of kanamycin, phosphinothricin and cefotaxime, callus cultures were sub-cultured onto the 

Petri plates containing MS media with different concentrations of kanamycin (0-300 mg/l) and phosphinothricin (0-

20 mg/l) separately. Regarding phosphinothricin (PPT), the tissues were subjected to 0-20 mg/l. The lethal dose 

(LD) of PPT at which no calli could survive was determined.  

  

3.10 Cloning of osmotin and chitinase double construct into pCAMBIA-2300 and Bar gene 

phosphinothricin marker into pCAMBIA-1300 

3.10.1 Cloning of pCAMBIA2300 containing osmotin and chitinase double construct as a marker free 

construct 

Both osmotin and chitinase genes (full-length cDNAs) were obtained from the laboratory of Prof.P.B.Kirti, 

Department of Plant Sciences, University of Hyderabad, Hyderabad as gifts. Earlier, both osmotin (isolated from 



Solanum nigrum) and rice endochitinase genes were introduced into the vector pCAMBIA2300. This also contained 

a marker gene kanamycin. Since marker free gene constructs are advisable, the construct was prepared without 

kanamycin marker. Plasmid DNA was isolated from E.coli containing osmotin and chitinase genes in binary vector   

pCAMBIA2300 using alkaline lysis method. The binary vector was digested with Xho I to release the Npt II gene.  

Digestion was performed by using the instruction manual of MBI – Fermentas company. 

The reaction mixture contained plasmid DNA (3 µg) 12 µl, 10 X restriction enzyme buffer 3 µl, restriction enzyme 

(XhoI) (5 units/ µl) 1.5 µl, sterile distilled water 12.0 µl, total 30 µl. The reaction mixture was incubated for 

overnight at 37 ºC for complete digestion. 

 

3.10.2 Self ligation of the osmotin and chitinase gene in pCAMBIA2300 

Ligation of osmotin and chitinase gene without NptII after digestion was carried out separately by using the 

instruction manual of quick ligation kit purchased from MBI-Fermentas. The reaction mixture contained linearized 

pCAMBIA2300 plasmid (0.013 pmoles) 1 µl, sterile distilled water 0.5 µl, 10 x ligation buffer1.5 µl, T4 DNA ligase 

2.0 µl, and the total volume was 15 µl. The above reaction mixture was incubated for overnight at 16 ºC in a water 

bath for ligation. 

  

3.10.3 Preparation of competent E. coli cells for transformation 

The protocol used for bacterial transformation is basically that of Inoue et al. (1990) with minor modifications. 

E.coli DH5α cells were cultured on Luria and Bertaini (LB) agar plates and incubated at 37 ºC overnight. Around 10 

- 12 large colonies were inoculated into 250 ml SOB in a one liter flask and incubated at 19 ºC with vigorous 

shaking until an OD of 0.5 at 600 nm was obtained. After attaining the required OD, the flask containing the 

bacterial cells was placed on an ice bath for 10 min. The cells were centrifuged at4000 rpm at 4 ºC for 10 min and 

pelleted.  The cells were re-suspended gently in 80 ml ice-cold Tris-Boric acid (TB) buffer and stored on ice for 10 

min. Again the cells were centrifuged at 4000 rpm for 10 min at 4 ºC. Pellet was re-suspended gently in 20 ml ice-

cold TB and 1.4 ml dimethyl sulphoxide. The cells were made into aliquots of 50 and 100 µl for transformation and 

stored at -80 ºC. 

 

3.10.4 Transformation of ligation mix by heat shock method and screening of recombinants  

Competent cells of E.coli were thawed on ice and 10 µl of ligation mixture was added to competent cells and 

incubated on ice for 30 min. The cells were given a heat shock at 42 ºC for 90-120 seconds and 900 µl of LB liquid 

medium (obtained from Hi-Media) was added and mixed well. The mixture was incubated at 37 ºC on a gyratory 

shaker with an rpm of 250 for 1 h. Finally, 100 µl of the culture was spread on culture plates containing selection 

pressure (kanamycin 50 mg/l) and incubated for overnight at 37 ºC. Colonies were selected randomly from the 

overnight grown kanamycin (50 mg/l) plates and each colony was inoculated into 5 ml of LB liquid medium 

containing kanamycin. Plasmid was isolated by using Qiagen miniprep kit. Molecular characterization of the 

plasmid was carried out by using restriction analysis of the plasmid isolated with restriction enzymes (XhoI, BamHI 

and HindIII). Digestions were performed using user manual instructions. 



 

3.10.5 Cloning of bar gene into pCAMBIA-1300 

This vector contained hygromycin marker for selection.  But a bar gene that encodes phosphinothricin acetyl 

transferase (for phosphinothricin resistance) was cloned into this pCAMBIA-1300 binary vector. Then both the 

constructs (one without any marker and another with bar gene construct) were transferred into Agrobacterium 

tumefaciens GV2600 strain by using freeze and thaw method. Transformants were selected on the kanamycin 

containing media. This strain is used for the pearl millet transformation. 

  

3.10.6 Cloning of bar gene into pCAMBIA1300 binary vector 

The intermediate pPUR vector harboring the Bar gene was obtained and has beencloned into pCAMBIA 1300 

binary vector in order to transfer the genes into Agrobacterium tumefaciens GV2600 strain for plant transformation. 

Plasmid DNA was isolated and digested with the restriction enzyme HindIII and EcoRI to release the Bar gene 

constructs along with CaMV35S promoter and NOS polyA terminator. The pCAMBIA 1300 vector was linearized 

with HindIII and EcoRI. The reaction mixture for this purpose contained: 

 

Bar gene digestion    pCAMBIA 1300 linearization 

Plasmid DNA (3 µg)   =      12 µl  Plasmid   = 12 µl 

10x Restriction enzyme buffer  =      3 µl  Buffer   = 3.0 µl 

Restriction enzyme (HindIII + EcoRI) =      1.5µl   HindIII + EcoR I   = 1.5µl  

                                 (5 units/µl)     (5 units/µl)  

Sterile distilled water   =      13.5 µl  Sterile distilled water = 13.5 µl 

Total     =      30 µl  Total   = 30 µl 

 

The above reaction mixture was incubated for overnight at 37 ºC for complete digestion. 

 

3.10.7 Elution and ligation of bar gene and pCAMBIA1300 by using Qiagen gel elution kit 

To elute the bar gene insert and linearized  pCAMBIA1300 vector, the digested DNA was run on the low melting 

agarose (FMC BioProducts, USA) and stained with ethidium bromide. After running the gel, the inserts (550 bp) 

and pCAMBIA1300 linearized vector (11 Kb) were excised from the gel and eluted according to the protocol 

supplied along with the Qiagen gel extraction kit. 

 

Ligation of bar gene insert along with CaMV35S promoter and NOS poly A terminator into pCAMBIA 1300 was 

carried out separately by using the instruction manual of quick ligation kit purchased from MBI-Fermentas. The 

ligation reaction mixture contained for both sense and antisense inserts was linearized pCAMBIA 1300 plasmid 

(0.015 pmoles) 1.0 µl, bar gene insert (0.003 pmoles) 10.0 µl, sterile distilled water 0.5 µl,10x ligation buffer 1.5 

µl,T4 DNA ligase 2.0 µl, in a total volume of 15 µl. The reaction mixture was incubated for overnight at 16ºC in a 

water bath for ligation. The recombinant vectors were transformed to E.coli by preparing competent cells and by 

heat shock method. Recombinant clones were spread in selection media containing kanamycin (50 mg/l). 



Recombinant clones were confirmed by plasmid isolation and restriction digestion by HindIII and EcoRI enzyme. 

These E.coli pCAMBIA 1300-Bar clones were transferred into the Agrobacterium strain GV2600, confirmed by 

isolating plasmid and digestion by HindIII and ECoRI enzymes. These confirmed pCAMBIA1300 recombinant 

clones were used for plant transformation experiments. 

 

3.11. Genetic transformation studies using Agrobacterium 

pCAMBIA2300 double construct and pCAMBIA1300 with bar gene constructs were transferred into 

Agrobacterium tumefaciens GV2600 strain by using freeze and thaw method. Transformants were selected on the 

kanamycin containing medium.The embryogenic callus derived from 81B-P6 immature inflorescence was used as 

explant for genetic tranformation.  

 

3.11.1 Transformation of pCAMBIA-2300 double construct and pCAMBIA1300 with bar gene constructs 

into Agrobacterium tumefaciens 

The binary vector with desired gene was transformed into Agrobacterium by using freeze-thaw method (An et al., 

1988). Agrobacterium tumefaciens strain GV2600 containing an appropriate helper Ti plasmid in 5 ml of YEP 

medium (1 g/l peptone, 0.4 g/l of yeast extract, 10 g/l mannitol and 0.2 g/l MgSO4 7H2O, 0.5 g/l K2HPO4, 0.1 g/l 

NaCl, 10 g/l agar if necessary) was grown overnight at 28 ºC. Overnight culture of 2 ml was added to 50 ml of YEP 

medium in a 250 ml flask and shaken vigorously (200 rpm) at 28 ºC until the culture reached to an OD of 0.6 at 600 

nm. The culture was chilled on ice and microfuged at 3000 g for 5 min at 4 ºC. Supernatant was discarded and the 

cells were resuspended in 1 ml of 20 mM CaCl2 solution (ice-cold). Aliquots of 0.1 ml cell suspensions were 

prepared into each prechilled Eppendorf tubes and 1 µg of plasmid DNA was added to the cells. The cells were 

immediately frozen in liquid nitrogen and thawed by incubating the tubes in a 37 ºC water bath for 5 min. About 0.9 

ml of the YEP medium was added to each tube and incubated at 28 ºC for 2-4 h with gentle shaking. This time 

period may allow the bacteria to express the antibiotic resistance genes. The suspension was spin for 30 sec in an 

Eppendorf centrifuge, supernatant was discarded and the cells were resuspended in 0.1 ml YEP medium. Finally, 

cells were plated on a YEP agar plate containing 50 mg/l kanamycin. The plates were incubated at 28 
0
C overnight 

and transformants were screened and plated again on YEP medium containing 50 mg/l kanamycin. Colonies were 

selected and glycerol stocks were made with transformed A. tumefaciens culture and were stored at -70 ºC. They 

were then streaked on disposable plastic Petri plates containing YEP agar to obtain single colonies using a sterilized 

platinum loop and the cells were allowed to grow at 28 ºC for 24 hours.  Single colonies were selected and 

inoculated in liquid medium containing 50 mg/l of kanamycin and grown for 24-48 h on a gyratory shaker at 28 ºC 

and 180 rpm in dark. The plasmid was isolated by using Qiagen mini prep kit and the insertion of the genes was 

confirmed with different restriction enzymes (HindIII, EcoRI, BamHI, XhoI) to release chitinase, bar, and osmotin 

genes, and NptII marker. 

 

3.12 Constructs used for genetic transformation 



Plasmids used for the co-bombardment were pCAMBIA2300 double construct rice class I endochitinase gene  and 

osmotin gene from Solanum nigrum and pPUR with bar gene from Streptomyces hygroscopicus that encodes 

phosphinothricin acetyl transferase (PAT) which is activated by acetylation and the active component of bialaphos, 

phosphinothricin (PPT) was isolated with   a concentration of 1 µg/µl. 

 

3.12.1 Agrobacterium mediated transformation using osmotin and chitinase genes in pCAMBIA2300 and 

pCAMBIA1300 with bar gene 

Single colony from freshly grown culture of Agrobacterium with and pCAMBIA2300 and pCAMBIA1300 vector 

containing osmotin and chitinase and bar genes were inoculated  into 50 ml of YEP broth (kanamycin  50 mg/l and 

rifampacin 100mg/l) and grown for a period of 24 h (0.8 O.D.) at 28ºC   using an orbital shaker set to 200 rpm. Cells 

were pelleted and resuspended in MS basal medium. The embryogenic calli was suspended in Ms basal medium for 

3 hours using shaker at 200 rpm and placed in Agrobacterium suspension and shaken gently for 20 minutes at 28ºC 

(200 rpm). After infecting the explants with Agrobacterium, the calli were placed on the sterile Whatmann filter 

papers to blot excess bacteria from the explants and to reduce the overgrowth. The explants were co-cultivated for 2 

days on co-cultivation medium (MS Basal + 100 µM Acetosyringone). After 48 hours, the explants were washed 

with a solution of 300 mg/l cephotaxime for one and half hour hour. The calli were then transferred to selection 

medium containing 3 mg/l phosphinothricin + 0.1 mg/l TDZ in Ms basal. After a week, calli that were growing on 

selection media were further sub cultured into regeneration media (Ms basal + 2 mg/l BAP + 0.2 mg/l NAA). The 

explants were subcultured for every 10 days on the same media. 

 

3.13 Particle-inflow-gun mediated genetic transformation 

3.13.1 Plant materials and establishment of embryogenic calli for bombardment 

Embryogenic calli were pre-cultured in MS medium containing 10 mg/l of 2,4-D,10 mM NaCl,50 mg/l tryptophan 

and 0.2 M mannitol and 0.2 M sorbitol  (as an osmoticum treatment) for 24 h in the dark before bombardment. 

Plasmid DNA of pCAMBIA2300 containing osmotin and chitinase genes and pCAMBIA1300 containing bar gene 

were isolated from E-coli cultures. Spermidine 100 mM stock was prepared and filter sterilized. Calcium chloride 

2.5 M was prepared and autoclaved. Gold particles of 50 mg/ml was prepared by washing with 100% ethanol first, 

mixed and the particles were thoroughly washed with ethanol and then vortexed for 1min and allowed to stand for 1 

min.  It was again vortexed for 1 min and allowed for 1 min and the vortexing was repeated third time and the 

particles were kept for 40 min without disturbance. They were allowed to settle down and the supernatant was 

removed and the particles were resuspended in 100% ethanol. The ethanol wash was repeated for two more times 

and then the particles were washed with double distilled H2O. Finally the particles were dissolved in 1 ml of double 

distilledH2O. Tweleve µl of the DNA-coated microcarrier suspension was loaded into the center of a macrocarrier 

and used for bombardment. Before bombardment the forceps, scalpels, tips, Whatman No.1 filter papers were 

autoclaved. 

 

3.13.2 Establishment of parameters for particle bombardment 



Optimization of the physical parameters for particle bombardment was carried out under the following conditions, 

acceleration pressure (900, 1100 and 1350 psi), distance from rupture disk to the macrocarrier (3, 9 and 18 mm), 

distance from macrocarrier to target tissue (6, 9 and 12 cm), vacuum pressure (24, 26 and 28 in Hg), particle type 

(gold and tungsten), particle size (gold India meters of 0.6, 1.0 and 1.6 µm), coating agents (spermidine, CaCl2 and 

both), number of bombardments (single and double) and time of partial desiccation prior to bombardment (0, 30 and 

60 min). Other DNA and biological parameters included were plasmid type (pCAMBIA 2300 and pCAMBIA 1300), 

DNA concentration (0.5, 1.0, 1.5, 2.5 and µg per bombardment), tissue type (embryogenic callus, somatic embryos, 

shoot tips), osmoticum type (mannitol, sorbitol, sucrose and glucose) and osmoticum concentration (0.0, 0.2, 0.4 and 

0.6 M mannitol). Plasmid DNA was precipitated into gold or tungsten particles and bombarded according to the 

protocols supplied for the Biolistic PDS-1000/He particle delivery system (BioRad, USA) with minor modifications. 

While vigorously vortexing, 50 µl of particle solution (prepared in 50% glycerol), 10 µl of DNA, 50 µl of 2.5 M 

CaCl2 and 25 µl of 0.1 M spermidine and 20µl of double distilledH2O were added and the mixture was vortexed for 

2 min. The microcarriers were allowed to settle for 4 min and then pelleted by spinning for 3 s in a microfuge. After 

removal of the upper liquid, 12 µl of the DNA-coated microcarrier suspension was loaded into the center of a 

macrocarrier and used for bombardment. The pellet was washed twice (without vortexing) with 140 µl of 100% 

ethanol. After adding 82 µl of 100% ethanol and resuspension of pellet by vortexing, 12 µl of the DNA-coated 

microcarrier suspension was loaded into the center of a macrocarrier, air dried and used for bombardment. 

 

3.13.3 Shoot regeneration and selection of putative transgenics 

After bombardment with pCAMBIA2300 double construct and pPUR with bar gene, immature inflorescence 

derived embryogenic calli were cultured for 2 weeks on MS basal medium supplemented with 6-benzylaminopurine 

(2 mg/l) and napthaleneacetic acid (NAA 0.2 mg/l) without phosphinothricin (PPT). The calli were subcultured for 

every 10 days on the same media.  The calli were subcultured two times onto the same medium but without any 

selection pressure during regeneration. This is necessary to allow the calli to regenerate. Then, the selection strategy 

was employed for putative transgenics by selecting them on the PPT containing medium. 

 

3.13.4 Rooting and acclimatization of transformed shoots 

The shoots selected on an antibiotic medium (phosphinothricin) were transferred to MS basal medium containing 

0.2 mg/l IAA for initiation of roots. Shoots with well developed roots were then transferred to pots under controlled 

environmental conditions. Plants that attained a height of 5-10 cm and well developed roots were removed from the 

bottles/tubes and washed gently under running tap water to remove adhered agar and then planted into plastic 

buckets/cups containing  vermiculate and vermicompost in a ratio of 3:1. The cups were covered with a plastic sheet 

to maintain humidity and were put in a glass house. The plants were covered with poly bags for 25-30 days after 

which they were slowly exposed to the ambient environment and transferred  to clay pots with a potting mixture of 

sand: soil: dry powdered cow dung (1:1:1) to the glasshouse. 

 

3.13.5 Basta test for transgenics 



One hundred µl of basta was diluted by adding 1000 µl of distilledH2O and the leaves of transgenic and 

untransformed controls were collected from the net house. They were then dipped in the solution and observation 

was taken up to 5 days. 

 

 

3.14 Molecular characterization of transformed plants 

3.14.1 DNA Isolation 

Total plant genomic DNA was isolated according to the protocol described by Dellaporta (1983). About 5 g of 

young leaf tissue was homogenized in liquid nitrogen and the powder was mixed in 20 ml of preheated (65 ºC) SDS 

buffer [0.1 M Tris-HCl, 0.02 M Na2EDTA, 1.4 M NaCl, 0.2% β-mercaptoethanol, 2% hexadecyl trimethyl 

ammonium bromide (CTAB) pH 8.0] and 20 µl of proteinase K (10 mg/ml) in 50 ml capacity polypropylene 

centrifuge tubes and incubated at 37 ºC in a water bath for 1 h with occasional gentle swirling. The samples were 

mixed  with phenol : chloroform : isoamyl alcohol (25:24:1) and the contents were centrifuged and the aqueous 

phase was transferred to a fresh centrifuge tube and mixed well with double volume of ethanol and 3 M sodium 

acetate  by gently inverting the tube at least six times. This mixture was kept at -20 ºC for 30 min to allow complete 

precipitation of DNA and then centrifuged at 10,000 rpm for 10 min to pellet the DNA. The pellet was washed with 

wash buffer (70 v/v ethanol).  The DNA was dissolved in 1 ml T50E10 buffer (10 mM Tris-HCl and 1 mM Na2EDTA, 

pH 8.0) and the contents were transferred to 2 ml microfuge tubes. The dissolved DNA was treated with 10 mg/ml 

RNase A at 37 ºC for 1 h. The samples were mixed with equal volumes of chloform: isoamylalcohol (IAA) (24:1) 

and mixed thoroughly by inverting the tubes at least for five times and the contents were centrifuged for 10,000 rpm 

for 10 min. The aqueous layer was transferred into fresh tube and mixed well with double the volume of 100% 

ethanol for precipitation of DNA and then centrifuged at 10,000 rpm for 10 min to pellet the DNA. The pellet was 

washed with wash buffer (70 v/v ethanol). Finally, DNA was dissolved in 500 µl T10E1 buffer. The concentration 

and purity of DNA samples were checked by using UV-VIS spectrophotometer. The following formula was used to 

calculate the concentration of DNA, (A260 X 50 X dilution factory)/1000 (µg/ml). DNA from the transformed 

plants was isolated (from the leaf tissue) and was used as template to obtain the amplification product of bar gene 

and osmotin and chitinase genes by using corresponding primers. 

 

3.14.2 PCR analysis 

Primers List: 

I). Primers for the chitinase gene (620 bp): 

Chi F: 5’ACCGCAACGACCAGGCGT 3’ 

Chi R: 5’ GCCCAGCATGTCGCAGTA 3’ 

II). Primers for the bar gene (530 bp): 

Bar F: 5’ CTACCATGAGCCCAGAACG 3’ 

Bar R: 5’ TCAGATCTCGGTGACGG 3’. 

III). Primers for the osmotin gene (750 bp): 



Osm F: 5’ ATGGGCTACTTGAGATCTTCTTTT 3’ 

Osm R: 5’ TTACTTAGCCACTTCATCAGTACT 3’ 

IV). Primers for osmotin gene and chitinase gene (1.5 Kb and 1.6 Kb): 

CamV 35S promoter:  5’ ATGGTGGAGCACGACACTCT 3’ 

Poly A terminator: 5’ ACTGGTGATTTGCGGACTCT 3’ 

 

PCR reaction was setup by using standard PCR reaction conditions by following the Molecular Cloning Manual by 

Sambrook and Russel (2001) and the reaction was run in a thermocycler (Perkin Elmer - 2400). The components of 

PCR were template DNA, gene specific primers, dNTPs, Taq buffer, MgCl2 buffer and Taq DNA polymerase. The 

reaction volume for all PCR reactions was set to 25 µl. PCR amplifications were carried out starting with an initial 

denaturation at 94 ºC for 5 min, denaturation at 94 ºC for 30 seconds, annealing at 60 ºC for 45 seconds for bar 

primers and 59 ºC for 45 seconds for chitinase primers and 58 ºC for 45 seconds for osmotin primers and 61 ºC for 

45 seconds for CMV35S and PolyA and extension at 72 ºC for 45 min. These steps were repeated for 35 cycles 

followed by a final extension for 5 min at 72 ºC. The reaction mixture without a template was run as a negative 

control. Positive controls for bar gene and chitinase were also included. Amplified DNA fragment was separated by 

gel electrophoresis in 1% agarose gel and images (Biorad Gel documentation) were stored after staining with 

ethidium bromide. Whenever required, the PCR products were purified by using QIAGEN quick PCR gel extraction 

kit and stored at –20 ºC until further use. 

 

3.14.3 Extraction of total RNA 

Plant material (0.2 g) was taken in a pestle and mortar (treated with DEPC) and liquid nitrogen was added and 

ground to a fine powder. Total RNA from transformed tissue and untransformed controls were extracted using TRI 

reagent according to the manufacturer’s instructions (Invitrogen, USA) or according to Sachi protocol. Finally, the 

pellet was resuspended in 40 µl of RNase-free water (DEPC treated) and stored at -70 °C until further use. The 

concentration and purity of RNA samples were checked by using UV-VIS spectrophotometer. 

  

3.14.4 First strand cDNA synthesis and reverse transcriptase PCR of chitinase and bar genes 

An amount of  5 µg of total RNA was taken for first strand cDNA synthesis using oligo-dT (20) by using M-MuLV 

reverse transcriptase (MBI Fermentas, Germany), following manufacturer’s instructions. After the first strand cDNA 

synthesis, the reaction was terminated by heat inactivation at 70 °C for 10 minutes. Polymerase chain reaction was 

performed for the amplification of specific chitinase gene sequence using gene specific primers. A total volume of 

25 µl of PCR mix was prepared in a sterile 0.2 ml Eppendorf tube with 10 pmol/µl each of both forward and reverse 

primers, 0.2-2 µl of first strand cDNA as a template, 50 µM of each dNTP, 1.5 mM MgCl2 and 2.5 U of Taq DNA 

polymerase. Each PCR aliquot was mixed and the PCR reactions were performed in Perkin Elmer machine 

(Waltham, Massachusetts 02451, USA) or Eppendorf Mastercycler Gradient (Germany) and / or MJ Research Inc., 

(USA). The standard reaction conditions carried were initial denaturation at 94 °C for 5 min, followed by 35 cycles 

of denaturation at 94 °C for 30 seconds, annealing at 60 ºC for 45 s for Bar primers and 59 ºC for 45 s for chitinase 



primers and, extension at 72 °C for 90 min and a final extension of 10 minutes at 72 °C. An aliquot from the 

amplified PCR product was used to analyze on 1% agarose gel to check the amplification. 

 

 

 

 

3.14.5 Southern blotting analysis 

For Southern hybridization analysis, the genomic DNA (15-20 µg) from each of the putative transformants were 

separately digested with HindIII for the chitinase in pCAMBIA2300 and HindIII  and EcoRI that has restriction sites 

for the bar gene which was in pPUR vector. The digested DNA was run on 0.8% agarose gel in two separate gels 

and the DNA fragments that were transferred onto nylon membranes (Hybond N+, Amersham Biosciences, UK) 

using standard protocols (Sambrook and Russel, 2001). The labeling, hybridization and detection methods were 

performed according to the manufacturer’s instructions. The gene integration was confirmed by digesting the 

pCAMBIA2300 with chitinase and pPUR Bar plasmids with HindIII and EcoRI restriction enzyme, which served as 

a positive control. DNA was isolated from untransformed plants (tissue culture raised) and were loaded which 

served as negative controls. 

 

3.15 Statistical analysis 

All the experiments were repeated two times and the data represent an average of 10 replicates. Percentage 

frequency for each concentration was carried out with Sigma plot. The data pertaining to number of embryos, 

maturation and conversion were subjected to analysis of variance (ANOVA) test using M-Stat software. Mean 

values were calculated using the Sigma plot software. 

 

3.16 EMS mutagenized population development and standardisaion of TILLING technique 

3.16.1 Preparation of ethyl methane sulphonate (EMS) 

Different concentration of EMS was prepared in milli molar concentration based on the literature search.  These 

concentrations were used for developing Targeting Induced Local Lesions in Genome (TIILING) populations in 

other crops; for instance maize (Till et al. 2004), wheat (Slade et al., 2005), barley (Caldwell et al., 2004), tomato 

(Menda et al., 2004) and lotus (Perry et al., 2003). 

 

3.16.2 Optimization of mutagen concentration 

In order to optimize the mutagen concentration, initially 50 seeds of P1449-2-B1 genotype were treated with 

different concentration of EMS i.e.,5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, 35 mM, 40 mM, 45 mM, 50 

mM, 55 mM and 60 mM, for a period of 16 hours. The seeds were soaked in the EMS solution and transferred to the 

12” plastic pots containing soilrite and maintained in glasshouse. Survival and establishment of 50 percent seedlings 

(LD50 value) was chosen as a criterion to find the optimum concentration of EMS for developing TILLING 

population. Out of the above concentrations, 5 mM and 16 hour duration treatments were found to be lethal, hence, 



different durations of treatment at 4 h, 8 h and 12 hour and concentrations of EMS at 1 mM, 2 mM, 3 mM, 4 mM, 5 

mM, 6 mM, 7 mM, 8 mM, 9 mM, and 10 mM were used for the second set of experiments. Now 100 seeds for each 

concentration and at different time intervals were soaked and transferred to 12” plastic pots containing soilrite and 

were maintained in the glass house.  Based on the results of second experiment, three mutagen (EMS) 

concentrations i.e. 5 mM, 7 mM and 10 mM each with 4 hour treatment duration were selected for mutagenesis.  

 

3.17 Generation of M1 lines 

In order to generate the first set of TILLING lines, 2000 seeds were treated with each of three mutagen 

concentrations i.e. 5 mM, 9 mM and 10 mM with 4 h treatment. The treated seeds were sown in 12” diameter pots in 

glass house and after two weeks, the 18-day-old seedlings were transplanted in the field. A total of 4218 seedlings 

(1566 of 5 mM, 1385 of 9 mM, and 1267 of 10 mM) with 1721 seedlings of control were transplanted to field 

containing 36 ridges of 100  m long with a spacing of 30 × 75 cm. Variation for the number of mutant lines 

established after transplanting in the field was observed. From a total of 4218 seedlings transplanted, only 2744 M1 

lines (1120 from 5 mM, 784 from 7 mM and 840 from 10 mM EMS concentrations) reached to maturity. These M1 

lines were selfed and seeds were harvested at maturity.  

3.18 Field arrangements 

The 2 m length, with 0.5 m /0.75 m spacing between each block was made on 56 ridges of 150 m length for M1 

lines and for M2, 30-50 ridges of 100-200 m long with a spacing of 30 × 75 cm was prepared to prevent cross 

pollination. Inially sufficient amount of DAP was added to the field before sowing. The block length varied from 

field to field based on the population size. The spacing between the lines was maintained in the field to reduce the 

cross pollination of the plants. At the time of flowering, fertilizers were added sufficiently. For every two days, 

watering was done with the high throughput pipes. After sowing, the seedlings were maintained carefully from rats 

and birds in the field. 

 

3.19 Advancing of M1 lines to M2 generation 

One M2 line from each M1 line, approximately 20 seeds from 2744 M1 lines each, were sown after taking into 

consideration all possible losses for e.g. embryonic lethality, sterility etc. Each individual M1 line was sown in a 

block of 2 m length, with 0.5 meter spacing between each block made on 56 ridges of 150 meter length. Two rows 

of control were taken up before and after every treatment. There was no germination in case of few M2 lines. 

Standard agronomic practices were followed during the crop period as per the recommendations for the crop.  

3.19.1 Selfing 

From each M2 line, one healthy plant was selected, tagged and labelled, from which leaf sample was collected for 

DNA isolation and was selfed. The rain-proof paper pollination bag (Lawson Bags, Northfield, IL) to prevent cross 

pollination was covered to a panicle of earlier tagged plant and labeling was carried to that bag. Selfed panicle from 

each M2 line was harvested separately during the second week of May. After bagging, each bag was injected with 5 

ml of chloropyrifos (Dow AgroSciences) at 0.5 ml/liter to control corn earworms that could hatch within the bag and 



destroy the seeds. DNA was isolated from one seedling per each M2 line out of the 20 seeds sown. For isolating the 

DNA from each M2 lines, leaf samples were collected from two-week-old seedlings which were tagged. A high 

throughput DNA extraction protocol suggested by Mace et al., (2003) was followed to isolate DNA from each 

individual M2 line. However, in most of the M2 lines the DNA isolated through high throughput method was found 

missing, may be due to the recalcitrant nature of the pearl millet. Hence, we isolated DNA from all 2,744 M2 lines 

following CTAB maxi preparation as per Saghai-Maroof et al., (1984). The quality of these genomic DNA was 

checked on 0.8% agarose gel. The quantification of individual genomic DNA was carried out using Shimadzu 

spectrophotometer. 

 

3.19.2 DNA isolation by CTAB method 

Leaves of P1449-2-P1 mutant lines were collected, frozen in liquid nitrogen, and stored at -70 ºC until use. Nearly 

0.5 g of leaves was grind using mortar and pestle in the presence of liquid nitrogen.  The frozen ground leaf tissue 

was transferred to 15 ml polypropylene centrifuge tubes. Then, 5 ml of 60 ºC extraction buffer and 50 mg 

polyvinylpolypyrrolidone (PVP), 0.5 g leaf tissue were taken. They were mixed by inversion and incubated in a 60 

ºC oven (with shaking) for 60 minutes.  It was removed from oven, and cooled to room temperature for 4 to 6 

minutes. Six ml of chloroform: ethanol (24:1) was added and mixed by inversion to form an emulsion. After mixing 

thoroughly, it was spun at 3000 rpm for 20 minutes in a tabletop centrifuge at room temperature. The top aqueous 

solution was transferred to new 15-ml centrifuge tubes using wide-bore pipette tip. Chloroform-ethanol extraction 

was repeated to remove cloudiness (PVP) in aqueous phase.  Half of the volume of 5 M NaC1was added to the final 

aqueous solution recovered.  They were mixed well. Two volumes of cold 95% ethanol was added to this.  It was 

mixed by inversion. If required, it can be placed in freezer at -20 ºC for 10 minutes to accentuate precipitation. The 

solution was left at 4 to 6 ºC to precipitate overnight.  It was spun at 3000 rpm for 6 minutes.  The supernatant was 

poured off, and pellet was washed with cold (0 to 4 ºC) 70% (v/v) ethanol. The pellet was dried in a 37 ºC oven or 

vacuum for ~1 hour. It was dissolved in 300 µl TE overnight at 4 ºC and transferred to 1.5-ml eppendorff tubes.  

Three µl RNase A (10 mg/ml) was added and incubated in a 37 ºC water bath for approximately I hour. Three µl 

proteinase K (l mg/ml) was added, and incubated at 37 ºC for 15 to 30 minutes.  One hundred and fifty µl of phenol 

and 150 µl of chloroform were added to each eppendorff tube. They were vortexed briefly, and spun (in microfuge) 

at 14,000 rpm for 10 to 15 minutes. The upper layer was collected in new 1.5 ml tubes.  Fifty µl TE was added to 

phenol phase. It was vortexed, spun and the upper layer was removed, and sample was added. To this 1/10 volume 

3M sodium acetate and 2 volumes of absolute ethanol were added and mixed. It was left overnight in a freezer (-80 

ºC) and was spun at 14,000 rpm for 10 to 20 minutes. It was drained and washed with 70% (v/v) ethanol. Ethanol 

was removed, and the tubes were vacuum dried. Hundred to 200 µl TE was added and the time was allowed for 

complete resuspension. DNA concentrations were measured using a fluorescence spectrophototmeter.DNA was 

isolated from all 2,744 M2 lines following CTAB maxi preparation as per Saghai-Maroof et al., (1984). The quality 

of these genomic DNA samples was checked on 0.8% agarose gels. The quantification of individual genomic DNA 

was done using a spectrophotometer and the samples were diluted to 5 ng/l. 

 



3.20 Generation of new set (second set) of M1 lines 

Seed germination of M2 population was not even 50 percent at 9 mM EMS. So, to increase the percentage of 

germination, the mutagen concentration was standardized. The seeds were treated again with concentrations 6 mM, 

6.5 mM, 7 mM, 7.5 mM, 8 mM, 8.5 mM, 9 mM EMS. Based on the germination percentage results in the field, the 

EMS mutagen concentration for the TILLING population was decided as 7.5 mM. In order to enhance the existing 

mutant population, another set of 10,000 seeds of the inbred line “P1449-2-P1” were treated with 7.5 mM EMS. The 

mutagenized seeds were sown in pots and transplanted on to the field. Though the inbred line (P1449-2-P1), chosen 

for generation of TILLING population is a donor parent for downy mildew resistance for the mapping population at 

ICRISAT (PT 732B × P1449-2), some M1 lines were found susceptible to downy mildew. Hence, the new set of M1 

lines generated will be potential candidates to look for allelic variants for downy mildew resistance genes which 

could help us to understand downy mildew resistance. In total, 2400 new M1 panicles were harvested. Of the 2400 

M1 panicles harvested, there was no seed formation in 162 panicles. Approximately, 10 seeds per each M1 line were 

sown in blocks of 0.5 meter long and with a spacing of 0.75 meter between each block. Of 2248 M1 lines sown in 

the field, 2074 M2 lines germinated. Only three seedlings per each M2 line were retained and genomic DNA was 

harvested from one seedling of each M2 line using Neucleo-Spin
® 

96 Plant Genomic DNA Extraction Kit 

(Macherey-Nagel, Germany). The genomic DNA thus isolated was quantified using PICOGREEN and normalized 

to 5 ng/µl using TECAN robotic work station. 

 

3.20.1 Collection of seeds from panicles 

The labeled paper pollination bags containing panicles of mutant lines were harvested from the field and were taken 

to crop work area. Then each panicle was taken separately and crushed manually with the help of labor. The seeds 

collected from panicles were cleaned thoroughly and were stored in yellow packets which were used only for 

storage of seeds. The labeling was done properly with bold marker. These seed packets were stored in ICRISAT 

pearl millet cold storage room for long-term storage. 

 

3.21 Generation of additional mutant lines (third set) to meet ideal population size for TILLING 

candidate genes 

Assuming a population size of 10,000 M2 lines to be ideal for mining allelic variants in drought responsive 

candidate genes, another set of 15,000 seeds of the inbred line “P1449-2- P1” were mutagenized using 7.5 mM 

EMS. The mutagenized seeds were sown in pots initially and transplanted on to the field. Of the 15,000 lines, 9600 

M1 lines were selfed and harvested and these 9600 M1 lines were sown for M2 population. They were sown in 

blocks of 0.5 meter long and with a spacing of 0.75 meter between each block in 2008 summer, 2008 Kharif and 

2009 summer seasons to reach the target population size. 

 

3.21.1 DNA isolation of M2 lines by high through put Macherey-Nagel kit 

Reagents of Macherey-Nagal Kit 

PE buffer, PW2 buffer, RNase A, 96 well plate containing 8 tube strips, PL1 solution, PL3 solution, PC buffer, MN 



square well block, binding plate,PW1 solution,PW2 solution, PE buffer, 96 well V bottomed plate for DNA storage. 

Protocol for isolation of DNA 

Before starting the extraction, the incubator or oven was set to 65 ºC. The buffer PE was equilibrated to 70 ºC. 

Buffer PW2 was prepared and also RNaseA solution. The plant tissues were collected from the young leaves of 

mutant lines. The tissue was cut into small pieces and 100 mg of plant tissue was added into each 8 well tube strips 

of a 96 well plate. Two steel beads were added to each tube, the tubes were closed with caps provided for the strips. 

Cells were disrupted by vigorous shaking using a genome mixer.  It was centrifuged for 5 min and the caps were 

removed.  Five hundred µl buffer PL1 and 10 µl RNase A were added to each sample. Tubes were closed again, 

mixed vigorously and spun briefly for 30 sec at 2500 rpm to collect any sample from the cap strips.  The samples 

were incubated at 65 ºC for 30 min and 100 µl buffer PL3was added and mixed thoroughly and incubated for 5 min 

on ice to precipitate SDS completely. The samples were centrifuged for 20 min at full speed (6000 rpm), the cleared 

lysate of the each sample was collected and 45 µl of binding buffer PC was added to each well of an MN square 

well block and mixed by repeated pipetting up and down. It was mixed at least 3 times. The samples were 

transferred to binding plate which contains silicon membrane and it was centrifuged at 6000 rpm for 5 min. Through 

the solution 400 µl PW1 was added to each well of binding plate and plates were sealed with gas permeable foil and 

the tubes were centrifuged at 5600 rpm for 2 min. Then 700 µl PW2 was added to each well and again centrifuged at 

5600 rpm for 2 min. The above step was repeated. Hundred µl pre-warmed buffer PE was dispensed to each well 

directly onto the membrane. It was incubated at room temperature for 2 min and centrifuged at 5600 rpm for 5 min 

and the DNA was collected in 96 well V bottomed plates and stored in at -80 ºC until further use. 

 

3.22 Agarose gel 

The DNA extracted was checked on 0.8% agaraose gel to see the quality and if the DNA is missing or could not be 

extracted in any sample. 

Gel preparation 

Agarose (0.8 g) was taken in a conical flask and to this 100 ml of 1X TBE was added and boiled in a oven for 2 

minutes until the powder was mixed properly in TBE. The mixture was cooled and 0.2 µl of ethidium bromide was 

added, mixed thoroughly and was poured in a casting tray which was sealed with tape and combs were adjusted to 

the marking of the plate. The plates were left for solidification under room temperature. After solidification, 5 µl of 

DNA samples (2 µl of DNA plus 3 µl of water) were loaded in the wells and the samples were run in gel 

electrophoresis unit at 90V for 20 min. Then the gel was checked in Gel documentation instrument under UV light 

exposure and the gel picture was saved in JEPG format in system connected to Gel doc. 

 

3.23 Chemicals for normalization and dilution  

T : E (10:1), picogreen, 96 well Tecan plates, washing reagent (hypochlorox), double distilled H2O 96 V bottomed 

plates, 1 ml pipette, 200 µl pipette, multi channel pipette. 

3.23.1 Normalization of the DNA by high through put quantification method 



The PicoGreen stem plates were prepared. An aqueous working solution of the PicoGreen reagent was also prepared 

by making a 1:200 dilution of the concentrated solution in TE (1:10) buffer. It is recommended to prepare the 

working solution in a plastic container as the reagent may adsorb to glass surfaces. For best results, this solution 

should be used within a few hours of its preparation. The prepared PicoGreen working solution was poured into a 

block module intended for 96 well reactions which will dispense 99 µl of the PicoGreen solution into each well. The 

solution left over in a falcon tube was stored in the -20 ºC freezer. The method “Magellan_2_Files Measuring 

parameters were set to run and reading of the samples was started in Fluorospectro phototmeter (TECAN make). 

Ninty six well format page is then opened.  The reading was copied and saved in an EXCEL sheet (CSV format) in 

folder D.  The concentrated DNA was diluted in the 3:1 ratio and transferred to 1 µl of DNA to the PicoGreen 

module plate.  It was made sure that none of the samples was empty due to evaporation. The plates were incubated 

for 2 to 5 minutes at room temperature, and protected from light. The samples were taken and the samples were run 

using the method Magellan_2. Again 96 well format pages with the concentration of DNA were opened. The 

reading was copied and saved in the same EXCEL sheet where the PicoGreen readings were already saved. 

Similarly, the normalization was carried out for all 113 plates of DNA isolated in different seasons.  

 

3.24 Dilution of the DNA  

The dilution of the samples was carried out with robotic liquid handling machince/automated pipetting station. The 

Nanodrop™ II and the Safire2 on board the Genesis 200 are manufactured by TECAN company. The CSV file was 

converted to GWL file and the file was uploaded in LIMS, Bioinformatics tool, ICRISAT, for the concentration of 

5ng/l DNA . Then, the 96 well plate containing the isolated DNA and the new plate for dilution of DNA was kept 

ready in liquid handling machine/automated pipetting station. First water was changed and water was filled in the 

system liquid container. The wash buffer hypochlorox (50 µl chlorox + 100 ml water) was filled in one basket and in 

the other, double distilled water was filled. The Gwl files as uploaded to the system in Folder D and software tool 

Gemini was opened.  Then normalized option was selected and clicked on work list, and the GWL file was selected 

to carry out dilution. New page was opened for dilution, first the flush was selected and this flush was repeated 3 

times so that the eight channel liquid handling arm pipette is washed and the start for dilution was selected. The 

DNA was diluted to 5 ng for all the 113 plates of isolated concentrated DNA to prepare the pooled plates and the 

plates were stored at -20 ºC. This was carried out for all the 113 normalized plates. For each plate, the source plate 

was changed and new plate for dilution, the GWL file was uploaded for source plate. 

 

3.25 Phenotypic variants observed in new set of M2 lines generated during the years 2006, 2007, 2008 

The mutant lines sown in field were regularly surveyed for morphologically interesting phenotypes. Although, a 

broad range of phenotypic variants were observed in mutant population generated during 2006, the spectrum of 

phenotypic variants in other set of mutagenized population was mostly confined to chlorophyll mutants. 

 

3.26 Establishing a DNA bank of TILLING populations (DNA pools)   



In order to increase the throughput during allele mining, eight-fold pooling of normalized genomic DNA from a set 

of 9,938 (2694 mutant lines generated in 2006, 2074 lines in summer 2007, 2791 lines in Kharif 2008 and 2379 lines 

in Summer 2008) M2 lines were accomplished. The strategy of DNA pooling is as depicted in the Figure 25.  

 

3.27 Pooling 

Multi channel pipette, 96 well V bottomed plates, thick films, -80 ºC Freezer are needed for pooling. Sixty-four 

samples are arrayed into an 8 x 8 grid on a 96-well plate (leaving the last well for control). The samples were pooled 

using an eight channel pipette, and the combined samples from each of the 12 rows on the plate are put into a single 

column of the pooled plate. The DNA from each plate (8 source plates) bearing the well ID A01  were pooled into 

destiny plate bearing the well ID A01. This ensures the position of A01 of the pooled plate which contains samples 

A01 from normalized plates 1 to 8 of individual plate. This pooling strategy produces 12 pooled columns from 8 

plates. This arraying protocol allows the screening of 768 different individuals in a single assay. Tracking a putative 

mutation from a pool to an individual sample is straightforward. For instance, if a mutation is found in position B2 

of the 96-well pool plate, the eight samples that contributed to this pool are found in samples of B2 from 1-8 plates. 

The missing DNA in each well was replaced by the other DNA. This DNA plate was used separately only for filling 

the missing samples. The gap filling was carried out before pooling and the plates were covered with thick film and 

stored in -80 ºC. Thus, a total of 12 pooled plates, 3 plates from the DNA isolated from the initial set of mutagenesis 

experiments, 4 pooled plats from mutant lines generated during 2007 and 5 from 2008 were prepared.  

 

3.28 Laboratory Information Management Systems (LIMS)  

Further, all the plate records were uploaded into LIMS (Laboratory Information Management Systems) followed at 

ICRISAT for data storage and retrieval. In LIMS, the data were stored in separate options like TILLING Mother 

Plate (TMP), TILLING Normalized Plate (TNP), TILLING Pooled Plate (TPP), and thus, the pools of DNA from 

mutant population is made available for international pearl millet community for allelic mining of candidate genes. 

 

3.29       Seed storage of the population 

The seeds of the 9,938 lines of pearl millet were stored in a cold storage room where the temperature was 

maintained at -20 ºC. M2 seeds were stored in 21 iron boxes with proper labeling and the M1 seeds were arranged in 

Thermocol boxes and the information was uploaded in TWIKI software at ICRISAT bioinformatics center. 

 

3.30 Establishment of infrastructure for allele mining 

Determination of allelic variants for a potential candidate gene of interest in a TILLING population is feasible using 

a LI-COR 4300 DNA analysis platform.  Modules installed will provide analysis of TILLING/EcoTILLING 

samples. 

 

3.31 Initiation of allele mining in DREB2A  



For allele mining, a literature search was initiated to identify candidate genes for drought tolerance and downy 

mildew resistance in pearl millet. As a result of our search for drought tolerance candidate genes, DREB2A 

(>gi|77863910|gb|DQ227697.1| Pennisetum glaucum transcription factor DREB2A gene, complete cds) was chosen 

and sequences were downloaded from NCBI (Error! Hyperlink reference not valid.). A set of 8 nested primer 

pairs were designed to amplify the complete gene. The primers were designed using Primer 3 program22 with 

melting temperatures from 57 to 67 ºC and of a length in the range of 12–16 nucleotides.  

 

 

 

3.31.1 PCR  

After DNA extraction and concentration normalization, the optimal amount of genomic DNA to use for PCR should 

be determined empirically, by following the standard TILLING protocol with varying amounts of genomic DNA. A 

concentration was chosen that provides the best signal-to-noise ratio when a fixed amount of enzyme is used for 

heteroduplex digestion. A higher concentration is required when lower quality genomic DNA samples are used. 

Amplification conditions were optimized on P1449-2-P1 genotype. For these primer pairs, different picomole 

concentrations of DNA, different molar concentrations of dNTP’s, magnesium chloride with buffer and different 

units of Taq DNA polymerase were used for standardization of PCR and a few TILLING lines. The nested primer 

pair combinations were able to generate PCR amplicons that give complete gene coverage. However, few primer (3, 

8, 9 and 14) combinations did not give any amplification. The generated amplicons were sequenced and then the 

primer pairs have been selected to get maximum length of the gene. 

 

3.31.2 DREB2A - Different primer combinations and their attachment site (bp) 

Forward F1:Bases:  

5'GCCATGGTGCAATTGACTGAAGT 3' 

Reverse R1:Bases: 

5'CCGCAAAATGACCCAACAAATGTACC3' 

Forward F2: Bases:  

5'CGCGTGATGGGCCGACCTC 3' 

Reverse R2: Bases:  

5'GCTCCATGCCGCCACCAG 3' 

Forward F3: Bases:  

5'TCTGGGCATCTGTGGGTACCTGT 3' 

Reverse R3: Bases: 

 5'CCGTCTTATTCGAGCTGGATGCA 3' 

Forward original (F0) 

F’ 5’ CCGGAATTCATGCAGTCCTTGACTGATGG 3’  

Reverse original (R0) 

  

  



R’ 5’ CCGCTCGAGCAGTTCCCTGACTACAGGC 3’ 

 

 

 

 

 

 

 

 

 

3.13.3 DREB2A gene and designed primer details 

>gi|77863910|gb|DQ227697.1| Pennisetum glaucum transcription factor DREB2A gene, complete cds 

ATGCAGTCCTTGACTGATGGTGTTGTTGTGACCAGCATTCGGTTAGTTTTGTCTTGTTCATCTCCTACAT

ATTTTTACCTGCTAACTTTGTATGTGGAGTTGCCATGGTGCAATTGACTGAAGTAATATCTGTTGCTGC

TAAGATGGTTTTGTCCTTAATGTGTTCGAAACTCAATTGTAGATTGTTTAATGAGTGAAATGCTATCTG

TGCGTACGACTTCTGATCAAAACACAACTAACAGCGGGTTAGAAGCTAAATAAGTAAATAGTATCTGT

TTCTGTGGAGATGATTGGCATGTAGGAACATCTGGGCATCTGTGGGTACCTGTGTGTGAAATAGTAAC

CTGTTTCTGTGGAGATGATTGTCATGTAGGAACATCTGGACATTTGTGGCTGGTAGTAGATTGAAGTAG

TAACGTTGTTTCAATTTGGTTGAGCTTGCTCTCTACTTATTCATTAAACAGTCCCTGTTAGTCTTTTCTG

TTTAACATGGTACATTTGTTGGGTCATTTTGTTTTATTGTGTACTTGTGCTTACAAATCTGACAGAGATA

CTAAAGTGTTTCTTGTCATTTAGCAGGAAGAAGCGTCCTCGCAGATCGCGTGATGGGCCGACCTCGGT

GGCAGCTGTCATCCAGCGGTGGGCTGAGCACAACAAGCAGTTGGAGCACGATTCTGATGGCGCGAAG

CGACCAAGGAAAGCTCCTGCTAAGGGTTCAAAGAAGGGCTGCATGAAGGGAAAAGGAGGGCCTGAG

AATACGCACTGTGGATACCGCGGAGTGAGGCAGCGTACTTGGGGTAAGTGGGTTGCTGAAATCCGAG

AGCCGAATCGGGTCAACAGACTCTGGCTGGGGACCTTCCCAACTGCAGAGGATGCAGCCAGGGCTTAC

GACGAGGCTGCCAGAGCGATGTATGGAGAACTCGCCCGCACGAACTTCCCCAGTCAGAAAGCAGTGG

CCTCTAGCCAAGCTGCTCGGGTTCCAACCCCTGCCCAGGTTGCTCCAGCAGCTGTTGAAGGTGTTGTAC

CTAGCACATCATGTGAGTCAACGACAACATCAAATCACTCAGATGTTGCATCCAGCTCGAATAAGACG

GAAGCATCTGACATGTCAAGCTCTGTGAAGGTGGAGTGCCCAGAAGCTGTGGGTGCTGGTTCACATAG

GTCTGAGATGGTATCTGGCATTTCGCATCAGCATGAAGACAGTCATCCTAGTATCCAAGCTAGCACAC

CCAATATAAGTGACAAGGAAGTATTCGAGCCACTTGAACCTATTGAAAACCTTCCAGAGGGTGATTTT

GATGGTTTTGATATTGATGAGATGTTGAGAATGATGGAAGCTGATCCGCAGAATGAAGGTGGTGCTGG

TGCTGGTGCTGGTGCTGGTGGCGGCATGGAGCAGACCTTCTTCTTTGATGGGTTGGATCCGAATCTACT

GGAGAGCATGCTCCAGTCAGAGCCAGAGCCATACTCCCTATCTGAGGAACAGGACATGTTTCTTGCTG

GCTTTGAAAGTCCTGGTTTTTTTGAGGGCCTGTAGTCAGGGAACTG 

 

3.31.4 CODDLE 



The web-based program CODDLE (http://proweb.org/coddle) was employed to select gene regions that have the 

highest density of potentially deleterious mutations in the DREB2A gene caused by treatment with chemical 

mutagens. Primers were designed by CODDLE using the Primer 3 program22 with melting temperatures from 67 ºC 

to 73 ºC and of a length in the range of 20–30 nucleotides and the order was placed for IR labeling primers to MWG. 

According to the COODLE results, the primers 1 and 3 combinations which was used for amplification was selected 

for IR labeling. A 100 mM solution of each primer was prepared in TE (10:1) buffer and aliquots were stored at -80 

ºC to avoid repeated freeze thaw cycles that could reduce fluorescent activity. 

 

3.32 Amplification of candidate gene  

Optimization of PCR amplification on the pooled mutant DNA sample using IR labeled primers was accomplished 

using EcoTILLING Kit
TM

 obtained from Frontier Genomics. Allele mining for the available mutant DNA samples 

was initiated. 

 

3.33 Mutation screening of DREB2A gene in pooled plates 

3.33.1 PCR components 

Double distilled H2O, 10X Taq buffer, 25 mM MgCl2, 3 pico moles of unlabelled forward primer, 3 pico moles of 

unlabelled reverse primer, 10 mM deoxynucleotidetriphosphates (dNTPs), 5 units of TaqDNA polymerase, 5 pico 

moles of IR-labeled 700 forward primer, and 5 pico moles of IR-labeled 800 reverse primers. 

 

Primer mix: (1:1:1:1) 

5 pico moles of unlabelled F0 forward primers  

5 pico moles of unlabelled R0 reverse primer 

5 pico moles of IR-labeled 700 F3 forward primer 

5 pico moles of IR-labeled 800 R3 reverse primer 

 

3.33.2 Optimized PCR protocol 

In step -1 PCR :  PCR amplification was carried out in a 25 µl volume containing  5ng of pooled DNA, 10X Taq 

buffer (including 1mM MgCl2), 25 mM MgCl2, 10 mM deoxynucleoside triphosphates (dNTPs), 3PM unlabelled 

forward, unlabelled reverse with F0R0 primer combination and 1 unit of TaqDNA polymerase (Takara Biomedicals, 

Cambrex Biosciences, Wokingh AM, UK.). 

 

In step -2 PCR :  PCR amplification was carried out in a 25 µl volume containing PCR-1 product as template DNA, 

10X SibTaq buffer (including 1 mM MgCl2), 25 mM MgCl2, 10 mM deoxynucleoside triphosphates (dNTPs), 5 PM 

primer mix (unlabelled forward, unlabelled reverse, IR-labeled forward at 700 and IR-labeled reverse at 800 in 

1:1:1:1 ratio), and this primer mix was also optimized with different ratios of labeled and unlabelled combination 

and 1 unit of Taq DNA polymerase (Takara Biomedicals, Cambrex Biosciences, Wokingh AM, UK).PCR cycling 

was performed as described in Colbert et al., (2001). PCR amplification was standardized with different conditions 

like target PCR, touchdown PCR and touch-up PCR at different annealing temperatures and at different times in 



annealing and extension steps. For DREB2A gene, PCR was optimized in a two step process; in the first step, pooled 

DNA was used as template. The first PCR amplified product was used as template in step two (PCR-2), but the 

component concentration used for both the reactions was similar. 

 

3.33.3 PCR conditions 

PCR amplifications were carried out starting with an initial denaturation 94 ºC for 5min and denaturation at 94 ºC 

for 1min and annealing at 66 ºC for 45 s and extension at 72 ºC for 2 min for first 10 cycles and the next 35 cycles 

with denaturation at 94 ºC for 15sec and annealing at 66ºC for 20 s and extension at 72 ºC for 30 s for first and final 

extension at 72 ºC for 10 min for two steps. After PCR amplification the samples were checked in 1.2% agarose gel 

and samples were treated according to the manufacturer’s directions for the survey Mutation detection kit 

(Transgenomics Inc, Omaha, NE, USA). 

3.34 Initiation of allele mining in EDR2 

For allele mining, a literature search was initiated to identify candidate genes for downy mildew resistance. For 

downy mildew tolerance candidate genes, EDR2 susceptible gene (NM_118022 2696bp mRNA linear PLN 21-

AUG-2009, Arabidopsis thaliana EDR2; lipid binding (EDR2) mRNA, complete cds.ACCESSION   

NM_118022,VERSION  NM_118022.4  GI:186512033, db_xref="GeneID:827642",db_xref="TAIR:AT4G19040") 

was chosen and sequences were downloaded from NCBI (Error! Hyperlink reference not valid. primer pairs were 

designed to amplify the complete gene. PCR amplification conditions were optimized for these primer pairs and 

amplification was checked on P1449-2-P1 and a few TILLING lines. The 5 degenerate primer pair combinations 

were able to generate PCR amplicons that give complete gene coverage. However, few primer (3, 8, 9 and 14) 

combinations did not give any amplification. The generated amplicons were sequenced and then the primer pairs 

have been selected to get maximum length of the gene. 

 

3.34.1 CODDLE 

CODDLE (Codons to Optimize Discovery of Deleterious Lesions), a web based program (http:// www.proweb.com) 

was employed to predict the probable regions that are more likely to be prone for mutations in the EDR2 gene of 

EMS treated populations. Further primers were selected in the degenerate primer combinations that were used for 

amplification of the gene to amplify the region identified by CODDLE as a hot spot for the mutation. Then F1R1 

and F1R3 primer combinations were obtained. Using labeled and unlabelled primers, the region of interest was 

amplified using two step process on few samples (eight individual pools). In the first step, complete gene of interest 

was amplified and in the second step, the region of interest was amplified using the first PCR product as template. 

Further, restriction digestion of mutant samples was carried along with the positive and negative controls using the 

SNiPer Eco-Mix.   

 

3.34.2 Primer designing for EDR2 gene 

Degenerate primers were designed from consensus sequences of EDR2. The amplification of the gene was 

standardized in P1449-2-P1 genotype which was used for TILLING population. The degenerate primer sequences 

that were designed for the amplification of EDR2 gene was 



 

EDR2 F1:5’-CGGCCGGCGGAAAGATGGAGCTACG -3’ 

EDR2 F2:5’-GCGGAGGACCACCATHGGNAAYGG-3’ 

EDR2 R1:5’-GGCGGTGTGGCCGTCAGCTACCTTCCTTC-3’ 

EDR2 R2:5’-CGCACGATCCAGGAGCCBTTCTTSGGSAC-3’ 

EDR2F3:5'-GCTGCTGCGGTGCCARAAYGGNYT-3' 

EDR2F4:5'-GCGGACCACCATCGGNAAYGGNCc-3'  

EDR2F5:5'-GGTACTGGCGGCGGAAYGAYGAYGG-3' 

EDR2R3:5'-AGGCCCAGCACGCCRTTNGCNAC-3' 

EDR2R4:5'-CTGCCGCACGATCCANSWNCC-3' 

EDR2 R5: 5'-TCCGCCGCCAGTACCKNACRTARCA-3' 

3.34.3 Amplification of EDR2 gene 

Chemicals for PCR 

For PCR, 50 ng P1449-2-P1 genotype DNA, double distilled H2O, 10x Sib enzyme buffer, 50 mM MgCl2, 10 mM 

dNTP’s, 10 pico moles of  forward primer, 10 pico moles of reverse primer, 1 unit of Sib Taq DNA polymerase, and 

thermocycler were used. 

PCR conditions 

Different conditions were used for the standardization of EDR2 gene amplification in P1449-2-P1 genotype. The 

gene was amplified with target PCR in an initial denaturation step at 94 ºC for 5 min, denaturation at 94 ºC for 1 

min, annealing at 61 ºC for 45 seconds, extension at 72 ºC for 2 minutes. These denaturation, annealing and 

extensions were repeated for 35 cycles followed by final extension at 72 ºC for 10 minutes. The components used 

for PCR amplification was 50 ng of DNA, 10x Sib buffer, 30 mM MgCl2, 10 mM deoxynucleotide triphosphates 

(dNTPs), 10 pico moles of primers and 1 unit of Sib enzyme Taq DNA polymerase. 

 

3.35 Mutation screening  

PCR amplification was carried out in one step for 25 µl volume containing 5 ng of pooled DNA, 10X SibTaq buffer 

(including 1 mM MgCl2), 25 mM MgCl2, 10 mM deoxynucleotide triphosphates (dNTPs), 5 pico moles of primer 

mix (unlabelled forward, unlabelled reverse, IR-labeled forward at 700 and IR-labeled reverse at 800 in 1:1:1:1 

ratio) and 1U SibTaq DNA polymerase (Takara biomedicals, Cambrex Biosciences, WokinghAM, UK.).The 

amplification of pooled samples was carried out in single step and PCR cycling was performed in two-steps as 

described in Colbert et al., (2001). PCR amplifications were carried out starting with an initial denaturation of 94 ºC 

for 5 min and denaturation at 94 ºC for 1 min and annealing at 66 ºC for 1 min and extension at 72 ºC for 2 min for 

first 10 cycles and denaturation at 94 ºC for 45 sec and annealing at 66 ºC for 45 sec and extension at 72 ºC for 1 

min for next 30 cycles and final extension at 72 ºC for 10 min. After PCR amplification, samples were treated 

according to the manufacturer’s directions for the survey using Mutation detection kit (Transgenomics Inc, Omaha, 

NE, USA). 

 

3.36 High throughput method 



3.37 Creation of heteroduplexes by programming the following thermocycler conditions 

At the end of PCR reaction, heteroduplexes were created by programming the following thermocycler conditions;99 

ºC for 10 minutes, held to denature the PCR product and 80 ºC for 20 seconds and 70 cycles of: 80 ºC for 7 seconds 

(reduced by 0.3 ºC each cycle). It was then transferred to 10 µl of the PCR product to a new plate and placed on ice 

or a cold block.  

 

Similarly the control mix was prepared according to kit manufacturer’s direction. Control  mixes  were  provided  

for  both  a  heterozygous  and  a  homozygous individual. Each tube contains labeled IRDye® primers, (700 

nm and 800 nm), unlabeled   primers, and template.  This  allows  the  user  to  troubleshoot  the  amplification  and 

cleavage  reactions  and  for  using  GELBUDDY  or  an  equivalent  image analysis. The control PCR calculator 

was used to create these two master mixes. For each control reaction,  

10X   PCR   buffer    2.5 µl   

50 mM   MgCl2         1.5 µl  

10 mM   NTPs          1.3 µl  

Sharka Taq®            1.0 µl   

Control   mix           18.8 µl  

were added. The full length control PCR product was 1600 bp.  The two cleaved fragments were 1125 bp and 475 

bp. PCR cycling was as follows: Initial denaturation at 94 ºC for 3 minutes and 33 cycles of denaturation at 94 ºC 

for 30 seconds annealing at 57 ºC for 1 minute and extension at 72 ºC for 2 minute and final extension of 72 ºC for 7 

minutes and at last 15 ºC. Freezing of the PCR products overnight at -20 ºC is recommended since this improves the 

signal of the final product.  

 
3.38 Cleavage of mismatch products 

For every 10 reactions, the following 2X cleavage mixture is prepared. One µl   SNiPer Eco -Mix is added to 125 µl 

of 2X reaction buffer. It was vortexed and spun in a microcentrifuge briefly.  

 

PCR plate was removed from thermocycler and caps or film were removed. Using a multichannel pipette, or  a  

repeat  pipetter, 10 µl of  the 2X  cleavage  mix (this  should contain  the 2X  reaction buffer and  the SNiPer Eco -

Mix) was pipette into each well of the PCR  plate. The plate was resealed or recaped, vortexed, and spun in a plate 

centrifuge. Samples were placed in a thermocycler and heated to 45 °C for 15 minutes followed by a 4 °C soak.  As 

soon as the plate was incubated, it was placed on ice and 5 µl of stop buffer was added to each well using a 

multichannel pipette. This is only to inhibit further nuclease activity. The plate was kept in a cool place and 

protected from light. If purification is to be done the following day, the samples were frozen at -20 ºC.  

 

3.39 Purification of the cleavage product 

Chemicals for purification 

For purification of cleavage product, 100% ethanol, 70% ethanol, LICOR loading dye, multi channel pipette (200 

µl, 10 µl) were used. 

Purification of product 



To the purified product, 2/3 volume of 100% ethanol was added and mixed properly until it was precipitated at -80 

ºC for 30 minutes. Then the contents were centrifuged at 5000 rpm at 4 ºC for 30 minutes. The solution was 

decanted and 70% ethanol was added and spun for 15 minutes at 5000 rpm at 4 ºC. Then the solution was decanted 

and the plate was dried in a speed vacuum for 20 minutes. Then  5 µl of  loading  buffer  was added to  each  well  of 

a  clean  96 well  PCR  plate. The samples were denatured at 94 ºC for 5 minutes before loading onto the LICOR 

gel.  

 
3.40 SDS PAGE 

3.40.1 Materials 

Preparation of acrylamide/bisacrylamide 29:1 (w/w), 29 g acrylamide, 1 g bisacrylamide, water (deionised distilled) 

to 100 ml, stored at 4 ºC, 1% (w/w) ammonium C persulphate in water (made fresh stock every week, stored at 4 

ºC), TEMED (N,N,N,N-tetramethylethylenediamine, stored at 4 ºC), binding saline buffer (stored at 4 ºC), 1.5 µl 

binding saline, 5 ml of acetic acid, 993.5 ml ethanol. 

 

3.40.2 Gel preparation 

For 6.5% gel (LICOR plates) 25 ml of gel solution is sufficient). 

        25 ml acrylamide 

        150 µl APS 

        15 µl TEMED 

The above chemicals were vigorously mixed and the solution was prepared properly. The acrylamide was poured 

into the syringe which feeds into to the glass plates and the casting comb was inserted (reverse orientation, so as to 

form a well) and the pressure plate was applied. Excess acrylamide solution was poured onto comb and allowed to 

polymerize for 30-60 min. Gels were stored overnight and as long as the plate ends are wrapped in pre-wet (1X 

TBE) tissue paper, and covered in cling film.  

 

3.40.3 Cleaning of glass plates 

Glass-plates are cleaned thoroughly with the soap water first and then with alcohol. If plates are not thoroughly 

cleaned, then bubbles will get trapped whilst pouring the gel. Few drops of Repel-Silane-ES was applied to the 

back-plate and rubbed over the surface (this makes it easier to separate the plate from the gel). Then plates were 

assembled with spacers. The plates were fixed tightly with the clips that were provided along with the LICOR 

instrument. 

 

3.41 LICOR Preparation 

After polymerization, the gel was setup for running. The combs were removed. The lower tank was filled with 1X 

TBE and approximately 250-300 ml at the back of the plate and also upper reservoir with the same quantity (approx 

400 ml), to ensure that the well is covered. Before use, both the front and back plates were washed thoroughly, the 

casting comb was removed and all acrylamide was removed from the well. The plates were cleaned with 

isopropanol before placing in the LI-COR DNA analyzer, to make sure that the laser detection region is clean. The 



well was cleaned by aspirating the TBE buffer using Pasteur pipette to remove small fragments of gel and tiny 

bubbles if any. The comb tips 1 mm in length were inserted into the gel. After the run, the plates were pulled apart 

carefully so that the gel is attached to one plate.  The gel was then taken out with filter paper and the plates were 

cleaned with soap water. 

 

3.42 Reusing membrane combs 

The combs are cleaned by soaking in a tub of deionized water for at least 30 min. If many combs are washed at 

once, care should be taken to avoid comb damage, and water should be exchanged several times to ensure that the 

combs are thoroughly cleaned. The combs are air dried for several days before reusing. 

 

3.43 LI-COR 4300   

3.43.1 Loading and running gel 

The gel was pre-run to warm it for at least 15 min and the gel was kept ready for run.  It takes twenty minutes for 

pre-run and comb applications, and the 4h run may be used for running the gel. Samples are generally denatured and 

then electrophoresed on a LI-COR 4300 DNA Analysis System. Electrophoresis was performed through a 6.5% 

polyacrylamide, the gel well and glass were cleaned and the plate was assembled into LI-COR DNA analyzer. The 

upper and lower buffer tanks were filled with 1X TBE buffer, 15 min pre-run (recommended) ensuring that the 

lasers focus properly with the following parameters: 1500.0 voltage and 40 W power, 40 mA current and 45 ºC 

temperature on the LICOR analyzer.  Then 0.5 µl samples were loaded on to the 50 tooth membrane combs (LI-

COR membrane combs and dipping tray; LI-COR Biosciences, Lincoln, NE, USA) and started to run approximately 

for 4.5 hours. Then, 5 µl of sample was applied per membrane comb tooth starting with tooth number 4 and ending 

with tooth number 50. The bottom 1/3 of the tooth is stained blue after loading. To teeth 1 and 50, 2.5 µl of 

molecular weight ladder was applied. This asymmetry ensures that sample 1 is never confused with sample 50 in the 

event that the comb is inverted before application to the gel. 

 

Samples can also be loaded directly onto the gel using a sharks tooth or a square tooth comb. Although 96-tooth 

shark’s tooth combs are available, loading can be tricky. Loading fewer than 50 samples on a single LI-COR gel 

reduces throughput without providing any clear benefit for data analysis.  The gels are rinsed well thoroughly using 

a plastic 10 ml syringe with no needle attached. Buffer was removed from the upper tank. Excess liquid is removed 

from the gel well by inserting filter paper into the gel well. The filter paper was removed and 1 ml of ficoll solution 

was added to the gel well. A small bead is formed at the edge of the front glass plate. The loaded membrane comb is 

inserted into the gel well at a 45º angle. Once the teeth touch the ficoll solution, the comb slides smoothly into the 

well. The comb should be gently inserted into the well and the teeth should not be forced into the acrylamide. The 

upper is filled gently with 1X TBE buffer and the top electrode is replaced.  The gel was run for 4 h (40 mA, 40 W, 

1,500 V, 50 ºC, image width 1,028 and scan speed 2). 

 

Optional: After 10 min, the comb is removed and gently rinsed in the ficoll out of the gel well. The top electrode is 

reinserted and the LI-COR door is closed. Since it is a 4300 series machine, the run will remain paused until the 



option continue is selected.  Typically, the machine is started at the end of the day and the machine is left running 

unattended. 

CRITICAL STEP: Excessive washing of the well can disturb the gel and result in lower quality gel data. Hence, care 

is taken. 

 

3.44 Analysis of gel 

In lanes that have a mutation in the pool, a band will be visible below the wild type band on the IRDy 700 image. A 

counterpart band will be visible in the same lane on the IRDye 800 image. This band is the cleavage product labeled 

with IRDye 800 from the complementary DNA strand. The sum of the length of the two counterpart bands is equal 

to the size of the amplicon, which makes it easy to distinguish mutations from amplification artifacts.  After 

detection of a mutation in a pool (lane), the individual DNA samples in the pool are screened again to find out which 

of the eight pooled samples from the crossed population has the mutation. Images were analyzed visually for the 

presence of cleavage products using Adobe Photoshop software (Adobe system Inc, San Jose, CA, USA) positive 

bulks were then analyzed for single mutant identification following the same procedure as described for bulk 

analysis, to analyze the 400 bp fragment at the 700 channel and a 350 bp fragment at the 800 channel. 

 

3.45 Sequencing of the samples 

Once a mutation was revealed, the eight-fold pool (samples: 1–8) was remixed into eight discrete pools consisting of 

two individuals each (samples: 1 & 2, 3 & 4, 5 & 6, 7 & 8, 1 & 3, 2 & 4, 5 & 7, and 6 & 8). If there is a mutation 

present, then the two pools containing the mutated sample will have the cleaved heteroduplexes in two separate gel 

lanes and thus, the individual with the mutation will be clearly revealed. Once the positives are identified, the mutant 

sample, P144-2-P1, and an individual sample from the positive pool was amplified and prepared for sequencing. 

Amplicons were sequenced either in India or sent to Macrogen, South Korean Biotechnology facility for sequencing 

on a 16 capillary 23 ABI 3730XLs. Prior to sequencing, samples were treated with 1 µl Exonuclease I (10 U/µl) and 

1 µl shrimp alkaline phosphatase (SAP, 1 U/µl) (GE Healthcare; Piscataway, NJ) and purified with a Qiagen PCR 

clean up kit (Valencia, CA) to remove all excess nucleotides, primers, enzymes or other impurities. After 

purification, samples were sent for sequencing to Macrogen, 908 World Meridian Venture Center, #60-24, Gasan-

dong, Geumchun-gu, Seoul 153-781, Korea. All samples were sequenced multiple times bidirectionally to verify the 

induced mutation identified from TILLING. 

 

3.46 SNP analysis 

Once the sequences were ready in the forward and reverse frame, they were aligned in forward and reverse 

directions to each mutant line with control sequence. Blast search was performed for the sequence to see the 

homology with original sequence and the complement strands of the sequence were also taken into consideration. If 

one of the strands (reverse or forward sequences) was reverse complement with that of original sequence, the 

sequence was changed to + stands with Reverse compliment tool. Now the control sequence that was taken for 

primer designing and the forward and reverse sequences were aligned using MultAlin software for SNP analysis. 



The mismatch is detected in forward and reverse strands. The restriction sites was analysed between control and 

mutant line sequence with NEB cutter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER IV 

RESULTS  

 

4.1 Callus initiation and whole plant regeneration 

Plant regeneration either via organogenesis or somatic embryogenesis is necessary for subsequent genetic 

transformation. Plant regeneration in pearl millet is highly explant and genotype dependent. Further, the frequency 

of plant regeneration is low and cultures often loose their ability to regenerate within 80 to 120 days. Hence, 

protocols for callus initiation and plant regeneration from callus cultures derived from different explants and 

genotypes have been standardized in the present endeavour.   

 

For callus induction, Murashige and Skoog’s media containing 2% sucrose and different plant regulators were used. 

Immature inflorescences measuring 8-12 cm in length were used for initiation of callus. About 50 explants were 

inoculated from each pearl millet line and for each concentration of the plant growth regulator used. Callus initiation 

was observed in immature inflorescence explant after 7-8 days of culture. Out of the six lines, 81B-P6 and 843-P2 

gave 95.33% and 94% frequencies of callus induction in presence of 2 mg/l 2,4-D (Table 3) from immature 

inflorescence. On the other hand, dicamba at the same concentration (2 mg/l) gave 65% and 67% frequencies, but 

picloram induced callus with 21% and 27.6% frequencies in the above two genotypes respectively from mature 

embryo and immature inflorescences. However, after two subcultures, the callus turned brown and the shoot 

regeneration could not be seen in any of the lines used in this study. The lowest response of 2.7% was noticed in the 

genotypes TIFT D238 in presence of 1 mg/l dicamba from mature embryo explants and in 5 mg/l picloram in the 

genotypes P1449 from shoot tips. But, this callus was not embryogenic. With an increase or decrease in the auxin 

concentration from 2 mg/l, there was a decline in the percentage frequency of callus initiation (Table 3). Pale yellow 

or cream coloured embryogenic callus that is compact in nature was noticed when 2,4-D was incorporated into the 

medium (Fig. 1), but not in presence of dicamba and picloram. The percentage frequency of somatic embryogenesis 

was 17.7 in the line 843B-P2 and 3.33 in 81B-P6. In other genotypes, embryogenic callus was not observed. To 

improve embryogenic callus formation, antioxidants (0.1% activated charcoal, 0.1% ascorbic acid and 0.1% 

polyvinylpolypyrrolidone), and different concentrations of auxins alone (NAA, 2,4,5-trichlorophenoxyacetic acid 

and 2,4,5-trichlorophenoxy  propionic acid) and also in combination with cytokinins (kinetin, BAP, MAP, adenine 

hemisulphate) were tried, but these attempts were not successful in the induction of embryogenic callus. However, 

incorporation of 10 mM NaCl along with 2 mg/l 2,4-D in the medium improved the percentage frequency of 



embryogenic callus from 3.3 to 19 in the line 81B-P6 (Table 4). Callus cultures from other genotypes were also 

subjected to salt stress, but neither somatic embryo formation nor shoot regeneration were noticed. After three 

subcultures (15 days each) under salt stress, (10 mM NaCl), calli from the two lines were transferred to MS medium 

fortified with 0.01 mg/l or 0.05 mg/l thidiazuron. Lower concentration (0.01 mg/l) profoundly influenced the 

embryogenic callus frequencies with 36.7% and 37.3% in the lines 843B-P2 and 81B-P6 respectively. So, the callus 

derived from the genotype 81B-P6 was used for genetic transformation studies since the number of somatic embryos 

per callus mass was more and also the subsequent shoot forming ability of callus. Higher concentration of 

thidiazuron, however, decreased the frequency of somatic embryogenesis as well as shoot forming ability in both the 

genotypes (Table 4). Globular-shaped somatic embryos were observed in 2 mg/l 2,4-D + 10 mM NaCl containing 

medium (Fig. 1) in both the lines. Embryogenic callus growing in the presence of 0.01 mg/l TDZ (120-day-old) was 

transferred to MS medium containing BAP or kinetin along with IAA and NAA for plantlet regeneration. A 

combination of kinetin (2 mg/l) and NAA (0.2 mg/l) gave 97.5% (843B-P2) and 15% (81B-P6) frequency of shoot 

differentiation in the two lines. But 2 mg/l BAP plus 0.2 mg/l NAA stimulated the shoot differentiation in the line 

81B-P6 considerably (95%), while it was 10% in 843B-P2 (Table 5 and Fig. 2). In other combinations (BAP + NAA 

and kinetin + NAA), shoot differentiation frequency ranged between 5 to 56.6%. The number of shoots formed per 

100 mg of callus also varied depending on the genotype and growth regulator concentration. The number of shoots 

differentiated per 100 mg of callus varied from 2.33 to 28.5 in the genotype 81B-P6 (Table 5), while it ranged from 

2.6 to 32 in the line 843-P2 (Table 5). However, if the callus was transferred directly from 2 mg/l 2,4-D medium, the 

frequency of shoot differentiation was only 10-15% and the number of shoots formed was 2-3 in both the lines. But 

the calli grown both on 2 mg/l 2,4-D plus 0.01 mg/l TDZ lost their ability to regenerate shoots after 200-days in 

culture. The shoots formed on kinetin plus NAA or BAP plus IAA media were green and healthy in both the lines. 

 

4.2 Histological studies  

Histology of the shoot forming callus derived from the genotype 81B-P6 is shown in the figure 3. Shoot forming 

calli displayed globular shaped somatic embryos, and simultaneously shoot differentiation also via organogenesis 

(shoot apex surrounded by leaf primordia). 

 

4.3 Rooting of shoots and maintenance of regenerants 

Shoots were excised and transferred to MS basal medium incorporated with 0.2 mg/l indole-3-acetic acid for root 

differentiation. Shoots developed roots with 100% frequency irrespective of the genotype within 3-4 weeks on the 

above medium (Fig. 2f). Well-developed plantlets were transferred to plastic pots containing vermiculite and 

vermicompost in 1:3 ratios. The plantlets were later transferred to clay pots containing sand and soil mixture. Plants 

were covered with glass beakers to maintain humidity and watered with Hoagland nutrient solution at 2-3-day 

intervals. Beakers were removed after two weeks of transfer to the pots. The frequency of survival was 60% in both 

the genotypes and morphologically the plants looked like that of seed-raised plants. 

 

4.4 Effect of age of inflorescence  



The age of the immature inflorescence and callus initiation potential showed an inverse relationship. The number of 

explants producing callus declined with the increase in the age of the donar plants. Explants isolated from 35- day-

old plants showed the highest response (Fig. 4). Not much variation in callus initiation frequency was noticed in 

explants isolated from 45 to 55-day-old plants.There was a significant decline in callus differentiation with increased 

age (60 days and above) of the donor plants. However, callus produced from immature inflorescences isolated from 

35-day-old plants was embryogenic compared to the callus initiated from 50-day-old field grown plants. These 

observations clearly suggest that 35-day-old plants are the best source for generating the embryogenic callus in P. 

glaucum from immature inflorescences.  

 

 

 

4.5      Antibiotic sensitivity of callus 

Calli isolated from the genotype 81B-P6 were exposed to different concentrations of the phosphinothricin in order to 

find out the threshold level. Calli that were exposed to 300 mg/l kanamycin survived even at this high concentration. 

Callus of 81B-P6 were also subjected to 0-20 mg/l phosphinothricin (Fig. 5a) to find out the threshold concentration. 

Nearly 100 percent of callus tissues turned dark brown and died eventually at 5 mg/l phosphinothricin. The % 

frequency of embryogenic calli that became dark brown in presence of different concentrations of phosphinothricin 

was recorded. The lethal dose (LD) of phosphinothricin (5 mg/l) at which no calli could survive was determined. 

Calli were able to tolerate up to 300 mg/l cefotaxime and hence this concentration was used to inhibit the excess 

growth of Agrobacterium in the shoot regeneration media. 

 

4.6     Genes used for the transformation studies 

pCAMBIA2300 and pCAMBIA1300 vectors (Fig. 6) were used for the genetic transformation studies. The chitinase 

gene was isolated from Oryza sativa (class I endochitinase) and osmotin from Solanum nigrum and both of them 

were inserted into pCAMBIA2300 because the activity of one gene may not be sufficient to impart resistance to the 

pathogens. The bar gene was isolated from Streptomyces hygroscopicus and introduced into pPUR vector to impart 

resistance to the calli for phosphinothricin. Callus initiated from the genotype 81B-P6 was used for genetic 

transformation studies. Since the percent frequency of regenerations from callus cultures and also the survived rate 

against phosphinothricin is high in the genotype 81B-P6 than 843B-P2, for subsequent studies genotype 81B-P6 was 

used. 

 

4.7     Cloning of genes into pCAMBIA binary vectors 

Chitinase and osmotin genes were put into the vector pCAMBIA2300 and E.coli were transformed with this vector. 

Digestion of NptII with XhoI (Fig. 7) removed the selection marker and the gene was self ligated into the vector 

pCAMBIA2300. Now the osmotin and chitinase genes without the selection marker are ready for use. The pPUR 

intermediate vector harboring the bar gene was digested with HindIII and EcoRI along with CaMV35S and NOS 

PolyA. The pCAMBIA1300 vector was linearized with Hind III and EcoRI to ligate the bar gene with promoter and 



terminator. The bar gene insert and vector were eluted after electrophoresis and purified. The concentration was 

checked on the gel before ligation.  The ligation mix was transformed into DH5-α competent cells by giving heat 

shock. The transformed colonies with the recombinant plasmid were selected on LB medium containing kanamycin 

(50 mg/l). Recombinant plasmid was isolated and checked on 1% agarose gel. Presences of the chitinase, osmotin 

and bar genes in pCAMBIA binary vector were confirmed after digestion with the HindIII, PstI and HindIII + EcoRI 

(Fig. 8). The T-DNA maps of recombinant plasmids are shown in figure 6. pCAMBIA2300 with chitinase and 

osmotin and pCAMBIA1300 with bar genes were also transferred successfully into the Agrobacterium tumefaciens 

(GV2260) and the transformed colonies were selected on kanamycin (50 mg/l) and rifampicin (50 mg/l) containing 

media. They were checked for gene insertion by digestion, which showed 620 bp of chitinase, 750 bp of osmotin 

and 550 bp of bar gene (Fig. 9). 

 

4.8     Transformation of pearl millet calli by Agrobacterium mediated method 

The standardization of Agrobacterium mediated genetic transformation with calli as was carried out in the present 

study. The transformed calli were capable of producing multiple shoots on regeneration media containing 

phosphinothricin as a selection agent (Fig. 5b). The number of shoots formed is 2-4 and the shoots were rooted on 

rooting media containing phosphinothricin selection. The survival rate of the in vitro regenerated plantlets was over 

10% and a total of 3 healthy putatively transgenic (T0) plants were produced through Agrobacterium mediated gene 

transfer with the pCAMBIA2300 containing osmotin and chitinase and pCAMBIA1300 with bar gene. However, 

these plants did not survive in the Net house when transferred (Table 6). After co-cultivation of calli with 

Agrobacterium for 2 days, the calli were transferred onto selection media. Optimal conditions for transformation 

based on resistance to phosphinothricin were investigated since no GUS intron is there in the construct. Some calli 

co-cultivation with Agrobacterium was able to grow in presence of phosphinothricin. In contrast, untransformed 

controls did not show any resistance to phosphinothricin at 3 mg/l level. Multiple factors play a role in efficient T-

DNA transfer and transformation of pearl millet. The concentration of bacterium (O.D), concentration of 

acetosyringone, and time mode of co-cultivation were examined. However, the three plants recovered from 

Agrobacterium mediated transformation did not survive in the Net house. 

 

4.8.1     Addition of acetosyringone on the transformation efficiency 

Acetosyringone (AS) is known to enhance the transfer of T-DNA from Agrobacterium to plant cells in many plants 

like cotton and others. The primary step in genetic transformation is the attachment of Agrobacterium to the host 

plant. This is facilitated by the genes present on the bacterial chromosome. Compounds like AS are known to induce 

Agrobacterium virulence genes that help in transfer of T-DNA to the host plant genome at the site of injury. In many 

cases, AS is known to induce expression of vir genes, which is necessary for the generation of T strands and their 

transfer to the plant cells. Addition of 100 µM AS increased the efficiency of Agrobacterium transformation (Fig. 

10). This indicates that the vir- inducing compounds such as AS had a positive effect on the T-DNA transfer. After 

transforming the calli with Agrobacterium, calli were co-cultivated with 100 mM acetosyringone for 48 hours in 

dark. 



 

4.9 Transformation by bombardment 

Optimum parameters were standardized for co-bombardment mediated genetic transformation with pCAMBIA2300 

containing osmotin and chitinase and pPUR containing bar genes. Maximum frequency (80%) of transformation 

was noticed when various established parameters, viz., 18 Kg/cm
2
 of helium pressure; 12 cm of target distance; 1 µg 

of DNA; 50 mg/ml gold particles; 0.25 M sorbitol and 0.25 M mannitol as osmoticum; 8 h of pre-bombardment 

osmotic treatment; and 24 h of post-bombardment osmotic treatment were used. Transformation frequency was 

reduced to 40% when 10 Kg/cm
2
 of helium pressure; 8 cm of target distance; 2 µg of DNA; 100 mg/ml tungsten 

particles; 0.2 M sorbitol and 0.2 M mannitol as osmoticum; 6 h of pre-bombardment osmotic treatment; and 24 h of 

post-bombardment osmotic treatments with 0.2 M each of sorbitol and mannitol were used. The bombarded 

embryogenic calli were cultured on MS medium supplemented with 0.1 mg/l TDZ and 2 mg/l BAP + 0.2 mg/l IAA 

but without selection pressure initially. Then the calli were transferred onto fresh regeneration medium i.e. MS 

medium supplemented with 2 mg/l BAP + 0.2 mg/l NAA containing phosphinothricin (Fig. 5c). Selection of calli 

exhibiting resistance to phosphinothricin were separated and frequently subcultured onto regeneration media. Out of 

70 selected calli from 100 inoculated; only 50 resistant calli could give rise to shoot regeneration. Once the multiple 

shoots were regenerated successfully, they were then transferred to MS medium supplemented with 0.2 mg/l IAA 

(called as rooting medium). The regenerated putative transformants with well-developed roots on MS basal medium 

were transferred to plastic pots containing vermiculite and vermicompost (1:3) and the plants were covered tightly 

with beaker. The well developed plantlets were established in pots (Fig. 11) and four plants were grown to maturity 

in the net house (Table 7).  

 

4.10 Molecular analysis of putative transgenic plants obtained in bombardment method 

PCR was carried out on the genomic DNA isolated from the basta-tolerant putative transformants generated through 

bombardment (T0 generation) and the untransformed control, using gene specific primers for bar gene. Upon 

performing PCR, various transformants and the positive control (pBar35S) showed amplification of 560 bp. PCR for 

the genes chitinase and osmotin was also carried out and amplification products of 600 bp and 700 bp were observed 

respectively. Conversely, no such band was observed in the untransformed control under identical conditions (Fig. 

12). After observing the expression of bar gene in putative (T0) transformants, four of the putative transformants 

were subjected to basta (0.25%) leaf dip assay which disclosed tolerance to the herbicide. The leaves of three basta-

tolerant transformants retained their healthy green appearance, whereas leaves of untransformed control plants were 

scorched within 72 h of basta treatment (Fig. 12D). Total RNA was isolated from the leaves of Southern-positive 

transgenics plants and untransformed control plants were subjected to RT-PCR analysis using chtinase probe. A 

clear band of chitinase gene at 600 bp was observed only in three transgenics plants (Fig. 13). In contrast, no such 

band was observed in the untransformed control plants. Southern blot analysis was carried out using chitinase 

coding sequence as a probe on transformants that are tolerant to basta and PCR-positive for bar, chitinase and 

osmotin genes. Three transformants, showed more than one hybridizable band, while one showed only one 



hybridizable band. In these transformants, however, the hybridizable bands were at 600 bp, whereas, no such band 

was observed in the untransformed control plants (Fig. 14).  

 

4.11 Sterility in transgenic lines 

The highest transformation frequency of immature inflorescence callus was obtained with the bacterial strains 

GV2260 (OD 0.3) and by co-bombarding the callus with particle gun. Such calli when exposed to phosphinothricin 

showed resistance with a frequency of 60%. Thus, these results establish that A. tumifaciens and bombardment can 

be employed for stable genetic transformation in immature inflorescence derived callus of pearl millet. These 

experiments were repeated for finding out if the protocols are reliable and repeatable. A total of 40 independent 

transgenic lines were developed using particle gun method. Though these plants were grown to maturity in the Net-

house, they turned to be totally sterile, though pollen is produced. Hence, these transgenic lines could not be carried 

to the next generation for testing their resistance to fungi. 

4.12 PEARL-TILL    

4.12.1 Genotype background 

To generate the TILLING population in pearl millet, the inbred line “P1449-2-P1” has been chosen, as it is one of 

the parental genotypes of a mapping population (PT 732B × P1449-2-P1) developed and maintained at ICRISAT 

and segregates for plant height (d2), downy mildew resistance, stover and grain quality. It is the tall parent, which 

serves as a good source of downy mildew resistance for the improvement of local cultivars. The chemical mutagen 

ethyl methanesulfonate (EMS) was selected to develop the TILLING population, as it generates mostly single 

nucleotide polymorphisms or SNPs (in genes) and can be controlled to produce a high density of point mutations 

causing a variety of lesions including nonsense and mis-sense mutations. 

 

4.12.2 Current status of mutant or TILLING lines 

The current status of available M1 and M2 lines is represented in Table 8 and Fig 15. A total of 9,938 M2 lines are 

available and DNA has been extracted from them. A total of 9928 pearl millet M2 lines were developed and DNA 

has been isolated from 9938 of the plants. In 2006, a total of 2581 mutant lines were generated in 2006, 2074 lines in 

summer 2007 and 7500 M2 lines in Kharif 2007 were generated.  

 

4.13 Mutagenesis 

The chemical mutagen, EMS, was used to generate the mutagenized population because of its high rate of success in 

many plant species. Previously published reports demonstrate that it is a beneficial strategy to try a range of 

concentrations of the chemical mutagen to evaluate the toxicity and sterility on germinal tissue before preparing 

large mutant populations. Therefore, as a first step, the effect of EMS on pearl millet seed germination was tested. 

 

Initially 50 seeds were treated with different concentrations of EMS i.e. 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 

mM, 35 mM, 40 mM, 45 mM, 50 mM, 55 mM and 60 mM, for a period of 16 hours. Survival and establishment of 

50 percent seedlings (LD50 value) was chosen as a criterion to find the optimum concentration of EMS for 

developing TILLING population. The concentrations above 5 mM and 16 hour duration treatments were found to be 



lethal, hence, different durations of treatment like 4, 8 and 12 hours (Fig. 16) and concentrations of EMS (1 mM, 2 

mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, and 10 mM) were used for the second set of experiments 

(Fig. 17a). Based on the results of second experiment, three mutagen concentrations i.e. 5 mM, 9 mM and 10 mM 

each with 4 hour treatment duration were selected for mutagenesis. Treatment of pearl millet seeds with these 

mutagen concentrations provides 60%, 50% and 40% survival of the seedlings. In order to generate the first set of 

TILLING lines, 2000 seeds were treated each with three mutagen concentrations i.e. 5 mM, 9 mM and 10 mM (each 

4 h). A total of 4218 seedlings (1566 of 5 mM, 1385 of 9 mM, and 1267 of 10 mM) along with 1721 seedlings of 

control were transplanted to field. Variations for the number of mutant lines established after transplanting in the 

field was observed (Table 9 and Fig. 17b). From a total of 4218 seedlings transplanted, only 2,744 M1 lines (1120 

from 5 mM, 784 from 9 mM and 840 from 10 mM EMS concentrations) reached to maturity. The M1 plants were 

selfed and harvested. Approximately, 20 seeds from 2744 M1 lines each, were sown for M2 generation (Table 10) 

after taking into consideration all possible losses e.g. embryonic lethality, sterility etc. Two rows of control were 

taken up before and after every treatment. There was no germination in case of five M2 lines (60194, 63597, 63598, 

63599, and 63600). Standard agronomic practices were followed during the crop period as per the recommendations 

for the crop. From each M2 line, only one earlier tagged plant was chosen, from which leaf sample was collected for 

DNA isolation.  

 

In order to enhance the existing mutant population, another set of 10,000 seeds of the inbred line P1449-2-P1 were 

treated with 7.5 mM EMS. The mutagenized seeds were sown in pots and transplanted on to the field. This treatment 

had about 24% survival of seedling in the field. The survival percent was lower than expected because of the 

incidence of downy mildew. Though the inbred line (P1449-2-P1), chosen for generation of TILLING population is 

a donor parent for downy mildew resistance for the mapping population at ICRISAT (PT 732B × P1449-2), some 

M1 lines were found susceptible to downy mildew (Fig. 18). Hence, the new set of M1 lines generated can serve as 

potential candidates to look for allelic variants for downy mildew resistance genes. In total, 2400 new M1 panicles 

were harvested. Of the 2400 M1 panicles harvested, in 162 (6.75%) panicles, there was no seed formation. Of 2248 

M1 lines sown in the field, 2074 (92.25%) lines germinated. 

 

4.14 Generation of additional mutant lines to meet ideal population size for TILLING candidate genes  

Assuming a population size of 10,000 M2 lines to be ideal for mining allelic variants for candidate genes, another 

set of 15,000 seeds of the inbred line “P1449-2- P1” were mutagenized using 7.5 mM EMS. The mutagenized seeds 

were sown in pots initially and transplanted on to the field. To avoid cross pollination in the M1 generation, plants 

were self fertilized and M2 population were grown. Of the 15,000 lines, 9600 (64%) M1 lines were selfed and 

harvested. The untreated P1449-2-P1 plants set about 20 g (2000 seeds) per panicle. After EMS treatment, not only 

the number of seeds per panicle was reduced but the number of panicles that set seeds also decreased with increasing 

concentrations of EMS treatment. At 7.5 mM EMS, about 50% of the bagged panicles set seeds. At a 9 mM EMS 

concentration, the set seeds were few (most of them produced less than 20 seeds). Moreover, the seeds from the 9 

mM treated M1 plants had poor germination rates and very few lines produced healthy plants that set seeds in the 

field. Overall, a concentration of 9 mM EMS was the highest dosage at which treated seeds developed into healthy 



M1 plants (40%) with M2 seeds. The germination of M2 seeds is only 20%. But in the case of 7.5 mM EMS treated 

plants; the percent germination of seeds was 35. EMS concentrations used to generate this mutagenized pearl millet 

population was relatively low compared with that used in other plants. The seeds produced by M1 plants in the 

different seasons were selfed (Fig. 19), harvested and collected to rise M2 generation. Ten to twelve seeds for each 

line at three points in each block of 2 m length with space of 0.5 meter (to prevent cross pollination) between each 

block made on 56 ridges of 150 m length were arranged of M1 mutant lines and two rows of control (untreated) 

were sown for advancement of M2 generation. To the field DAP was added initially before sowing of the seeds and 

at the time of flowering urea was supplemented for the healthy growth of the plant. Among three plants for each M2 

line, one panicle from each row was labeled, bagged before anthesis. To prevent redundancy of mutations, only that 

one fertile plant from each M2 row were selected to collect M3 seeds and the leaf tissues were taken for DNA 

preparation from the labeled plants. This was done only to avoid sampling the same mutation in TILLING screens. 

To Pearl-TILL development at ICRISAT, the seed mutagenesis strategy was almost like the carried for TILLING 

Arabidopsis. In this strategy, seeds were soaked with mutagen, and each fertile seedling with the unique mutations 

was tagged and samples collected.  

 

4.15 Phenotypic mutants in M2 population observed in the years 2006, 2007 and 2008 

A regular and systematic phenotypic survey was conducted on M2 population and a wide range of phenotypic 

plasticity was observed. Strikingly, the mutants exhibited a large range of morphological modifications, such as 

changes in plant architecture, modified leaf morphology, or altered pigmentation. The observed phenotypic variants 

for instance, include: (i) the leaf color such as - dark green, pale green, yellow, albino, and variegated, (ii) leaf 

appearance - curly, twisted, smooth, hairy, more erect, and less erect; (iii) leaf size phenotypes- width, length, and 

thickness (Fig. 20A) and, (iv) shoot appearance phenotypes – fewer tillers, more tillers, branched, and thickness 

(Fig. 20B), (v) stature appearance- taller, shorter, and extremely short, (vi) plant development phenotypes- seedling 

emergence time, flowering time, and time of senescence and (vii) panicle mutants- bifurcating, partially sterile, 

completely sterile, long and short panicles when compared with control. All the 2744 M1 were sown after taking 

into consideration all possible losses e.g. embryonic lethality, sterility. There was no germination in case of five M 2 

lines (60194, 63597, 63598, 63599, and 63600) (Table 11; Fig. 21). The mutant lines sown in the field were 

regularly surveyed for interesting phenotypes. Although a broad range of phenotypic variants were observed in 

mutant population generated during 2006, the spectrum of phenotypic variants in new set of mutagenized population 

during 2007 and 2008 was mostly confined to chlorophyll mutants (Table 12; Fig. 22). The probable reason for 

limited phenotypic variants can be attributed to the mutagen concentration used. The mutagenized population 

showed various mutant characters including albino, chlorine, and stunted plants, indicating that mutagenesis was 

effective. Phenotypic notes were taken on a sample of 9938 M2 plants and are summarized in Tables 11 and 12. 

 

4.16 DNA isolation and pooling by high-throughput method 

A quick DNA preparation kit was used for DNA isolation. One hundred µg of DNA concentration was ensured per 

µl without RNA and protein contamination. The quality of these genomic DNA was checked on 0.8% agarose gel 



(Fig. 23) and measured using a fluorescent spectrophotometer to do normalization of the DNA to 5 ng/µl for 

pooling. DNA concentration was also checked on 0.8% agarose gel and also to see the missing samples if any (Fig. 

24) using pooled DNAs from eight individuals (Fig. 25). Genomic DNA of M2 lines was isolated from the 25 day 

old leaves using Machery-Nagel plant genomic DNA isolation kit. DNA concentration was measured using 

PicoGreen reagent through Tecan spectrafluor plus and normalized to 5 ng/µl using Tecan Genesis workstation 200 

(Fig. 26). Therefore, it has been chosen to pool samples eightfold for pearl millet TILLING. Prior to pooling, 

genomic DNAs were normalized to a standard concentration. Thus, a total of 12 pooled plates, 5 plates from the 

DNA isolated from the initial set of mutagenesis experiments, 4 pooled plates from mutant lines generated during 

2007 and 3 from 2008 were prepared. Pooling of normalized genomic DNA from a set of 9,938 (2694 mutant lines 

generated in 2006, 2074 lines in summer 2007, 2791 lines in Kharif 2008 and 2379 lines in Summer 2008) M2 lines 

was accomplished. Eight-fold pools of genomic DNA from leaf tissues of M2 plants were used to shorten the time 

for validation of putative mutations. Two gene targets were selected for high- throughput TILLING (Fig. 26). With 

an aim to identify allelic variant for DREB2A transcription factor which plays a key role in drought tolerance, a set 

of 9,938 M2 TILLING lines have been generated using reference genotype “P1449-2-P1” with an optimized 

concentration of ethyl methane sulfonate (EMS). The mutagenised seeds were grown into M1 plants and allowed to 

self pollinate. Further population was advanced to M2 generation (Fig. 27). Further to increase throughput 

screening, eight-fold pooling of 9,938 M2 lines yielded 12 pooled plates. Of these, screening of DREB2A is 

completed for 12 pooled plates using standard TILLING protocol. Screening of 9938 lines yielded two positive bulk 

.Analysis of positive bulk for single plant identification was carried out. Figure 27 represents different stages of 

TILLING population (sowing, seedling, plantlet development, labeling, and collection of leaf material for DNA 

isolation and selfing of mutated plants) in the field.  

 

4.17 Amplification of DREB2A and EDR2 genes with CODDLE primers   

The amplified fragment of DREB2A (Fig. 28) was single band without non-specifics when nested primers were 

used. The amplification of DREB2A for screening TILLING was proceeded in a two step process on few samples 

(eight individual pools). In the first step, complete gene of DREB2A was amplified with unlabelled F0R0 primer 

combination (Table 13.1)  and a product size of 1.5 kb was obtained using unlabeled primers in PCR-I. In the second 

step, the region of interest was amplified in PCR-II with the amplified product of PCR-I as template (Table 13.2). 

This was carried out with unlabeled primers F0R0 and IR-labeled primers F3R3 combinations that were selected 

according to hotspot region of CODDLE (Fig. 29) ranging 780 bp (Fig. 30). EDR2, a candidate gene for downy 

mildew resistance was amplified in the reference genotype P1449-2-P1. The amplification of the EDR2 with 

different sets of degenerate primers was carried. However, few primer sets did not work but with the primer 

combination F1R3, the amplified fragment size was 1.2 kb (Fig. 31). Some faint, nonspecific bands were also 

observed. CODDLE software was used to predict the most probable regions prone for mutations in EDR2 gene (Fig. 

32) and the primer pair used for the amplification was found in the hot spot region. So, for standardizing TILLING 

protocol, EDR2 gene amplification was standardized in the pooled samples. The amplification of the target was 



obtained with F1R3 primer combination in one step process (Table 14) with IR-labeled and unlabelled primers, 

though some non-specificity was noticed. 

 

4.18 Mutation detection in LICOR analyzer 

For TILLING, gene-specific primers were designed with the target selected regions of the genome (Table 15). 

Forward-strand primers were end-labeled with IRDye 700 and reverse-strand primers with IRDye 800 (Fig. 33). The 

standard high throughput TILLING protocol was followed for mutation discovery. After PCR amplification, 

products were denatured and annealed to form heteroduplexes between complementary strands. Heteroduplexes 

were then cleaved using SniPerase (an endonuclease from frontiers genomic kit) and the products were size-

fractionated on denaturing polyacrylamide gels using a LI-COR DNA analyzer. Cleaved heteroduplexes produced 

two smaller molecular weight products, one labeled with IRDye 700 and the other with IRDye 800, whose sizes 

added up to the size of the full length product (Fig. 34). For the DREB2A gene according to CODDLE, the mutation 

was expected at 350bp in the amplified fragment of 800 bp. So, the 350 bp fragment was observed at IRDye 700 

channel and the other 400 bp fragment was detected at IRDye 800 channel in LICOR gel image for analyzed mutant 

lines. The pearl millet population was screened for DREB2A mutants and two were identified. The pools containing 

the mutants were complex to determine the individual for the mutant genotype. PCR was performed on the template 

DNA of each individual of the pool, as well as on a 1:1 mixture of individual template to wild-type template (for 

heteroduplex formation). The products were heteroduplexed, digested, and visualized. Because the individuals 

digested product produced the cleavage banding pattern, it was determined that they were heterozygotes 

(homozygous mutants would require the addition of wild-type DNA to produce the banding pattern). Analysis of 

LICOR gel was based on this band and when compared with control, two mutants were found. These pools were 

analyzed individually to confirm the mutation in the gel. Once the DREB2A gene mutants were analyzed in the gel, 

the pooled DNA was amplified for the target and sequenced for sequencing for allele mining. After discovery on a 

TILLING gel, the identity of each change was determined by sequencing results.  

 

The LICOR gel was analyzed at two different channels one at 700 and the other at 800 because of the cleavage of 

endonulease enzyme. This cleavage was observed after amplifying the gene with IR labeling primers forward with 

700 and reverses with 800. So, the two bands of the total amplified product were analyzed in the Adobe Photoshop. 

To attain a higher throughput on the 48-lane LICOR global IR
2
 gel amplification, mutation detection was allowed in 

384 lines per run, corresponding to about 307200 base pairs. Figure 35 Shows of a true gel image where a mutation 

in the pearl millet DREB2A gene. Because the LICOR system is capable of detecting both florescent dyes fully 

independent, the same mutation can be detected on both complementary strands, allowing immediate visual 

confirmation of the mutation. In addition, the sizes of the two fragments correctly add up to full size of the PCR 

product. More frequent stronger bands in the gel are perhaps caused by single nucleotide polymorphism (SNPs) 

present in the pearl millet population.  

 

4.19 TILLING of candidate genes - molecular mutation frequency  



In order to survey the mutation frequency of the composite population at the molecular level, two genes were 

screened. This work was performed in parallel to the late stages of population development, so 9,938 M2 lines used 

for TILLING. The mutation frequency per gene fragment was estimated by dividing the total base pairs screened by 

the total number of mutations identified. The density of mutations was calculated in the established pearl millet 

population as an average frequency of all screened fragments. Scoring of mutations located either in the proximal or 

distal 50 bp of each amplicon was compromised because of priming and systematic artifacts on the LICOR gels 

(Fig. 35).  Gene fragments ranging from 700 bp to 1,200 bp in length were designed to cover either whole open 

reading frames (ORFs) or selected coding regions of the respective target genes. The screen revealed a total of two 

independent mutations located in exons. The exon located mutations induced a change in the amino acid (AA). A 

total of two mutations were detected in DNA analyzed by TILLING in DREB2A gene. This was calculated by 

dividing the total number of mutations revealed by TILLING by the total base pairs screened, which includes the 

sum of the total length of the two amplicon sizes × the total number of individuals screened per run (1600 bp × 384 

individuals). Previous studies have reported the difficulty of tracking mutations on the ends of the fragment (~100 

bp); therefore, 200 bp was subtracted from each amplicon. To estimate the density of mutations for the population, 

total number of mutations identified was divided by the total base pairs screened. This technique and the protocols 

employed appear to have a moderate ability to detect mutations in the terminal 100 base pairs of each of the 

amplicon as also reported by earlier workers. Therefore, 200 base pairs were subtracted from the size of each 

amplicon to obtain the effective screening window size. To determine the total number of base pairs screened, the 

adjusted size of each amplicon was added and multiplied by the total number of samples screened. For the 

population, 79, 50,400 base pairs were examined for mutations (800 bp × 9938 individuals).  

 

4.20     Allele mining of DREB2A gene 

A detailed analysis was performed for the DREB2A gene. A 1.5 kb region covering the entire open reading frame of 

DREB2A gene was screened in 9,938 M2 lines by analyzing two overlapping fragments, giving a total 800 bp of 

gene sequence. In the allele mining, six missense mutations were identified. Majority of these mutations were GC to 

AT transitions. Four of the missense mutations were detected in the conserved region. The average mutation 

frequency was 0.3% for 800 bp fragment. One mutant identified was sequenced as a confirmation and showed a 

mis-sense mutation, changing asparagine to serine and from threonine to proline and histidine to asparagine. 

Missense mutations induced the changes in the amino acids (Table 16) with altered physicochemical properties in 

regards to polarity and/or hydrophobicity. In the case of chemically-induced mutations, frequent transition changes 

are expected because EMS alkylates predominantly G residues and result in GC->AT changes. It is concluded that 

most or all changes were induced by mutagenesis and detected by MultAlin analysis (Fig. 36). First, target amplicon 

lengths were trimmed by 500 bp to compensate for the ends of the PCR products where mutants are undetectable. 

Overlap between amplicons was also subtracted from the amplicon lengths. The trimmed amplicon lengths were 

multiplied by the number of M2 populations screened, and the products were summed to give the total number of 

base pairs screened. The total number of base pairs screened was divided by the number of mutants found. A total of 

1.6 kb was screened for pearl millet. Dividing this value, i.e., 1.6 kb by a total of three mutants, gives mutation 



frequency. A total of 800 base pairs were screened, and the SNP’s (Fig. 36) were observed. Most of them are 

transition mutations from GC > AT. But some transversions, deletions were also observed (Fig. 37 and Table 16). 

The change in the amino acid in the mutant line and control was clear after analysis of the sequence in NEB cutter 

(Table 16). Because of change in the sequence, the restriction sites found in mutant lines are different from that of 

the control line. The conserved amino acids of the homeodomain of DREB2A were affected by substitutions in the 

phenotypic mutants analyzed. From the pearl millet population, a total of four mutants were obtained in LICOR 

analysis that was affected in this region; the mutant line 8408-1, contained mutations at amino acid positions 

identical to induced alleles. The mutation frequency of 20 bp per mutation was clearly observed. Therefore, the 

entire population of 9,938 M2 lines translates to an average of two to three mutations for any 800 bp DNA fragment. 

The mutations in DREB2A provide an interesting allelic series that is anchored by a predicted loss of function and 

contains eight other mis-sense changes, including deletions (Fig. 37). In the mutant line 84081, changes in 

nucleotide sequences and the corresponding amino acids were seen clearly and also in the restriction positions upon 

SNP analysis. Perhaps this DREB mutant line can be tested for drought tolerance or susceptibility. Partial knock out 

of the gene can also exhibit some tolerance to drought. Thus, these results contribute to a better understanding of the 

functionally relevant sites of the DREB2A protein and also for detecting a mutant plant that perhaps may be 

associated with drought.  

 

4.21 Mutation detection of EDR2 gene 

Three primer sets were initially tested for amplification of a specific target. All three primer sets yielded an expected 

band on an agarose gel, along with three non-specific bands (Fig. 32). So, three more sets of degenerate primers 

were designed, and in two sets, good quality amplification was observed with one non-specific band. Of 10 primer 

combinations tested, 3 primer sets amplified more than one target. With the high proportion of tested primer sets that 

amplified more than one target, one has to wonder whether it is possible to screen for mutations in these targets by 

eliminating extra templates in the genomic DNA. Amplification products resulted in TILLING gels with multiple 

cleaved fragments in every lane, suggesting that more than one target was amplified and digested. Following this 

observation, subsequent primers were tested by agarose gel analysis and the bands were eluted and given for 

sequencing (Fig. 38). Two sequences were obtained upon sequencing the EDR2 PCR product, one sequence 

corresponded to EDR2 target but the other sequence showed homology with the unknown gene. These results point 

out to the fact that the primers amplified more than one target probably because of homology with other genes since 

it belongs to a multiple family. Multiple bands were observed when TILLING assays were performed on unpooled 

DNAs and unknown sequence was detected upon sequencing individuals. So, the detection of mutant alleles has 

become difficult as far as EDR2 was concerned. 

 

4.22 TILLING population resource at ICRISAT 

The availability of TILLING resources in different germplasm is important while studying specific traits. A 

TILLING population of 9938 lines was generated in the ICRISAT pearl millet variety P1449-2-P1 and is now 

available at ICRISAT with Dr. R. K. V. (Fig. 39). The seeds are stored in pearl millet cold room and the seed line 



numbers are stored in TWIKI software and the DNA at -80ºC and data was stored in LIMS software. The DNA 

plate’s information was uploaded in three parts. First is the TILLING MOTHER PLATE (113 plates) which 

contains the DNA isolated from the field, next is the TILLING NORMALISED PLATE (113 plates) which contains 

the diluted DNA information and the third one is TILLING POOLED PLATE (12 plates) information. Access to 

TILLING resources in different genetic backgrounds could also be of importance if mutant traits have be utilized in 

plant breeding programs. Every individual of a TILLING population typically accumulated a high density of 

mutations. Thus, the results obtained demonstrated that the TILLING technique works well and can be exploited for 

detecting point mutations in mutagenized populations of pearl millet.  

 

 

 

 

 

Table 3. Percent frequency of callus initiation from immature inflorescences of different genotypes of 

Pennisetum glaucum (L) on MS medium supplemented with auxins. 

Genotypes Growth 

regulators(mg/l) 
81B-P6 843B-P2 863B-P3 P1449 PT732 TIFT-D238 

2,4-D 

1 68.3 (+ 1.4 ) 77 (± 1.4 ) 27.7 (± 1.5) 8.0 (±1.0) 28.6 (±0.3) 10.0 (±1.0) 

2 95.3 (±2.9)* 94 (±3.0)* 71.0 (±2.1) 13.6 (±3.4) 36.66 (±3.3) 19.3 (±0.6) 

5 26.3 (± 2.4) 16.7 (± 2.4) 7.0 (±  2.0) 3 (±1.5) 26.33 (±1.4) 13.3 (± 0.3) 

Dicamba 

1 26 (±3.0) 36.0 (±3.0) 7.0 (±0.6) 6.3 (±0.8) 16.7 (±2.0) 2.7 (±1.2) 

2 65 (±2.8) 67.0 (±2.0) 26.0 (±3.0) 10.0 (±2.8) 22.3 (±1.4) 7.0 (±2.1) 

5 7.6 (± 1.4) 5.6 (±2.3) - 5.0 (±2.5) 11.7 (±1.6) 3.0 (±1.7) 

Picloram 

1 8.7 (±1.3) 8.7 (±0.7) 3 (± 1.5) 5.6 (±2.3) - - 

2 21 (±2.0) 27.6 (±1.5) 18 (±1.0) 10.6 (±0.7) - - 

5 9.7 (±1.5) 7.7 (±1.2) 6.7 (±0.7) 2.7 (±1.7) - - 

  
*Analysis of variance was performed using M-Stat software. 

  Values are significant among different genotypes and growth regulators. 

  Values are significant at P ≤ 0.6. 

 
 
 

Table 4. Effect of NaCl and TDZ on embryogenic callus formation in Pennisetum glaucum (L.) genotype 

843B- P2 and 81B-P6 

Media tested (mg/l) % Frequency of embryogenic 



callus 

843B-P2 81B-P6 

2,4-D alone                                                                                                 17.7 (± 0.5) 3.3 (±0.7) 

2,4-D + 10 mM NaCl (callus was grown for three subcultures on NaCl 

medium)                                                   

17.7 (±0.5) 19 (±1.0) 

0.01 TDZ  (callus was grown for one subculture on TDZ medium)        36.7 (±2.4) 37.3 (±2.9) 

0.05 TDZ  (callus was grown for one subculture on TDZ medium)           6.7 (± 1.3) 7.7 (±1.4) 

 

*Analysis of variance was performed using M-Stat software. 

  Values are significant among media tested and % frequency of embryogenic callus 

  Values are significant (at 5% loss) P ≤ 0.10. 

 

 

 

Table 5. Frequency of shoot differentiation from embryogenic callus of different pearl millet genotypes 

(843B-P2 and 81B-P6) and the number of shoots formed per callus mass 

 

% Frequency of shoot differentiation No. of shoots/callus mass 

Genotypes 

 

Plant growth regulators 

(mg/l) 

843B-P2 81B-P6 843B-P2 81B-P6 

BAP                       IAA     

0.5                          0.1 32.5 46.7 8.5(±0.5) 11(±1.0) 

1.0 0.1 42.5 51.7 9.5(±0.5) 13(±1.0) 

2.0 0.1 30 46.7 6.5(±0.5) 10.5(±1.5) 

Kinetin  IAA      

0.5 0.1 5 8 4 (±0.5) 2.3(±0.3) 

1.0 0.1 6.7 5 6.6(±0.6) 5(±0.6) 

2.0 0.1 21.7 10 9(±0.5) 4(±0.1) 

Kinetin  NAA      

0.5 0.2 17.5 15 7(±0.6) 3.3(±0.2) 

1.0 0.2 25 17.5 10.6(±0.7) 4.3(±0.3) 

2.0 0.2 97.5* 15 32(±1.5) 5.3(±0.3) 



BAP  NAA      

0.5 0.2 10 50 5(±1.0) 12.3(±0.3) 

1.0 0.2 8.5 57 2.6(±1.0) 12.5(±0.5) 

2.0 0.2 10 95* 3.6(±0.3) 28.5(±1.0) 

 

   
*Analysis of variance was performed using M-Stat software. 

  Values are significant among different genotypes and growth regulators for shoot differentiation. 

  Values are significant at P ≤ 0.06 for % Frequency of shoot differentiation. 

  Values are significant at P ≤ 0.05 for No. of shoots/callus mass. 

 
 

 
 
 

 

Table 6. Transformation of pearl millet using Agrobacterium strain GV2260 containing pCAMBIA 2300 with 

osmotin and chitinase double construct and pCAMBIA 1300 with bar gene constructs 

Number of 

embryogenic calli 

infected 

Co-cultivation  

period  (days) 

No. of explants 

survived on 

selection media after 

first week 

No. of explants 

survived on 

selection media 

after second week 

% Frequency of 

survival  of explants 

 

100 

 

2 

 

30 

 

15 

 

10 

No. of calli regenerated on 

selection media 

 

No. of tillers 

formed per plant 

No. of plantlets 

survived on  

rooting media 

 

No. of  plants 

survived after 

transplantation to 

pots 

No. of plants 

grown in Net 

House 

 

 

10 

 

4-5 

 

8 

 

6 

 

6 

 

 

 

Table 7. Efficiency of biolistic transformation of pearl millet genotype 81B-P6 using  

osmotin and chitinase genes in pCAMBIA2300 and pPUR with bar gene.   

 

Parameters Response 

No. of  embryogenic calli bombarded 100 

No. of calli found resistant to 5 mg/l phosphinothricin 70 



Total No. of shoots regenerated 60-65 

No. of tillers formed per plant 10-25 

Total No. of shoots rooted on rooting 50 

No. of plants survived after transplantation 40 

No. of plants maintained  in the Net House 10 

% Frequency of transformation 50 

 

 

 

 

 

                     

 

 

 

 

 

               

                             



                              

 

           Figure 1. Different stages of in vitro shoot regeneration from immature inflorescence  

          derived callus cultures of the pearl millet genotype 81B-P6. 
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            Figure 2. Different stages of in vitro plantlet formation from immature inflorescence derived  

            callus cultures of the pearl millet genotype 81B-P6. 
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  Figure 3. Histological studies on regeneration (embryogenesis and shoot organogenesis)  

  from immature inflorescence derived callus cultures of Pennisetum glaucum 

 

 

 

 

                   
                                  Figure 4.  Effect of the age of the immature inflorescence 
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Figure 5. Effect of phosphinothricin on the survival of pearl millet (genotype 81B-P6) calli. 

Fig. 5a. Calli growing on different concentrations of phosphinothricin in Petri dishes. Calli exposed to 5 mg/l 

phosphinothricin turned brown and died eventually. However, calli survived at lower (1, 2 and 3 mg/l level) 

concentrations. 

Fig. 5b. Calli growing on 3 mg/l phosphinothricin after Agrobacterium mediated transformation. 

Fig. 5c. Calli growing on 5 mg/l phosphinothricin after bombardment.   
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                    Figure 6. Vectors and gene constructs used for genetic transformation studies  

 

 

 

 

 

 

 

 



 Figure 7. Plasmids of pCAMBIA 2300 containing osmotin and chitinase and pCAMBIA1300  

 with bar gene digestion 
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 Plasmid DNA of pCAMBIA2300        Digestion of   pCAMBIA vectors        Digestion of bar gene and     

                                                                                                                             osmotin and chitinase genes  

 
                                                                                 Lane 1. Ladder  of   1 Kb                             Lane 1. Digestion of bar gene 

                                                                                 Lane 2. Plasmid of  pCAMBIA 1300                                        (Hind III; EcoRI) 

                                                                                 Lane 3. Plasmid of  pCAMBIA 2300                        Lane 2. Ladder of 1 Kb  

                                                                                                (marker free construct)          

                                                                                 Lane 4. Plasmid of  pCAMBIA 2300                        Lane 3. Digestion of chitinase gene    

                                                                                                (with kanamycin construct)                         Lane 4. Digestion of osmotin gene   

             Lane 5. Digestion of chitinase gene                                          (Pst I; 1000 and 500 bp) 

                                                                                                 (HindIII; 1.6 Kb )                               

 

 

 

 

 

 

 

 

 

 



    Figure 8. Confirmation of cloning of chitinase and bar genes by restriction digestion in E.Coli 

DNA of p2300 marker free                                      Digestion of chitinase gene in p2300                     

construct and p1300 containing                               marker free construct and plasmid1300   

Bar gene in E.coli                                                    containing Bar gene in E.coli 
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           Lanes 1 to 11. Plasmid DNA of  pCAMBIA2300                           Lanes 1 to 11. Digestion of chitinase gene (HindIII; 1.6Kb)                                                                        

          Lanes 12, 13, 14.  Plasmid DNA of  pCAMBIA1300                      Lanes 12, 13, 14. Digestion of Bar gene (HindIII and EcoRI; 1.6Kb)                                       

 

                          

          Figure 9. Confirmation of plasmid pCAMBIA2300 with chitinase and osmotin genes and     
          pCAMBIA1300 with bar gene insertion in Agrobacterium 

 

 

 

 

 

 

 

                           

  

 
                           Lane 1. Chitinase gene digestion with HidIII 

                           Lane 2. Osmotin gene digestion with PstI 

                           Lane 3. Bar gene digestion with Hind III and EcoRI 

 

   



      Figure 10. Percentage frequency of Agrobacterim transformation verses acetosyringone         
      concentration in milli Molar 
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               Figure 11. Transgenics generated through bombardment method growing in Net House  

 

      
                                        

 

 

 

 



Figure 12.  Amplification of chitinase, osmotin and bar genes in putative transgenics generated by 

bombardment 

  12A. Amplification of chitinase gene from 

  putative transgenics (620 bp)                                                    12B. PCR Amplification of bar gene (560 bp)  

                                                   

 

  12C. Amplification of osmotin gene (700 bp)                                            12D. Basta leaf dip assay 

 

                                      
 

M        = Marker 

C         = Positive control (Plasmid DNA) 

1 to 12 = Transgenics 

 

 

620 bp 

560 bp 

700 bp 

M   C  1   2    3   4   5   6   7  8   9  10 11 
  M  C 1  2   3   4  5  6  7  8  9  10 11 12 

M   C  1   2   3   4   5   6   7  8   9  10 11 12 

C        1                   2           3 



                    Figure 13. Extraction of total RNA and RT-PCR   analysis   

                 RNA (From transgenics)                           RT-PCR of chitinase gene (600bp) 

       

M      = Marker 

C       = Positive control (Plasmid DNA) 

1 to 5 = Transgenics 

 

 

                                Figure 14. Southern blotting of chitinase gene 

 

 

+C      = Plasmid DNA 

  C      = Untransformed plant 

1 to 6  = Transgenics  

                              

 

 

 

600 bp 

C           1             2          3 M       C      1        2           3        4         5 

+C                       C                         1                         2                        3 



                                 Table 8 & Figure 15. Statistical Analysis of TILLING Population 
 

 

 

 

 

 

 

 

 

 

 

 

 

Year Mutagenised 

Seed sown 

Germinated M1 panicles 

obtained 

M1 lines 

Sown 

M2 DNA 

Isolated 

M2 panicles 

harvested 

Pooled 

Plates 

2006-2008 31000 16218 12644 12486 9938 9938 12 



 

 

Table 9. Seedling survival and establishment status in field with different concentration of EMS  

at different developmental stages  

 

No. of seedlings survived and established in field at Mutagen  

treatment 

( conc.) 

No. of 

seeds 

treated 

No. of seeds 

germinated 

0 week 1 week  2 week 3 week harvested 

5 mM 2000 1566 1566 1566 1487 1125 1120 

7 mM 2000 1385 1385 1385 1032 786 784 

10 mM 2000 1267 1267 1267 1203 841 840 

Total (treated) 6000 4218 4218 4218 3724 2752 2744 

Control 2000 1721 1721 1721 1721 1721 1721 

 

 

Table 10. Details of M2 lines sown, germinated, DNA isolated, sterile lines and lines harvested in M2 

population    

Conc. No. of  M2 lines 

sown 

No. of M2 lines 

germinated 

DNA obtained from 

M2 lines 

M2 lines 

harvested 

5 mM 1118 1117 1097 1117 

9 mM 784 784 781 784 

10 mM 836 832 816 832 

Total  2738 2733 2694 2733 

Control 932 932 3 3 

 

 

 



 

 

 

       Table 11. Salient features of the mutants observed in M2 population generated in 2006.  

 

Mutant line Salient features Mutant line Salient features 

62020 Dwarf, DREB relevant pathway mutant 60732 Thicker stem 

62149 Half functional ovary and anthers  63817 Dark green leaves 

63019 No tillering 61119 Chlorophyll mutant 

63234 Semi dwarf 60157 Froked panicle 

60607 Dwarf 60089 Froked panicle 

63473 Early senescence mutant 62078 Partially sterile mutant  

60226 Broad leave, spreading   62204 Short sterile mutant 

60620 Broad leave, spreading   60156 Lesion mimic mutant 

60337 Stunted growth 60153 Leaf blade lesion  

60393 Early flowering  63109 Non tillering  

60675 Narrow and erect leaves 63808  Vigorous 

60807 Stunted growth 63736  Broad leaves 

63629 Narrow and erect leaves 63043 Longest panicle 

63561 Spreading 60941 Short panicle 

60180 Tallest plant 63281 Lethal 

 

 

 

 



 

 

 Table 12. Phenotypic variant observed in M2 population generated during 2007-08 

 

Mutant line  Salient features  

70119 Chlorophyll mutant 

70229 Chlorophyll mutant 

70237 Chlorophyll mutant 

70591 Stunted growth 

70579 Chlorophyll mutant 

71319 Chlorophyll mutant 

71986 Chlorophyll mutant (variegated leaf) 

71075 Chlorophyll mutant 

81710 Chlorophyll mutant 

82335 high tillering 

84581 Early flowering 

83438 Early flowering 

81642 Early flowering 

87011 Early flowering 

80195 Early flowering 

 

 

 

 

 



 
Figure 16. Effect of different concentrations of EMS and treatment durations on seed  
germination   
 

 

 

    Figure 17. Optimized mutagen concentration and field view of M1 lines  

 

a                                           b 



 

 

Figure 18. Occurrence of downy mildew in M1 lines, panicle reduced to leaf like structure can be   
visualized  

 

    

 

 

 

                               Figure 19. Selfing of the mutant lines with polythene bags  

 

  

 

 

 

 



                   Figure 20. Phenotypic variant observed in M2 population generated during 2006  

  

Figure A. Different form of morphological variation at early stage of plant development a) twisted seedling, b -f) 

variation in growth form  

Figure B. Leaf mutants a) Broad and narrow, b) curly, c) green and yellowish and d-h) different form of chlorophyll 

mutants  

 

          Figure 21. Different forms of Panicles observed during M1 generation due to EMS treatment  

     

Figure A. Different form of observed mutants at later stage of plant development, a) early flowering, b) partial grain 

filling, c) sterile panicle d) nil to full grain filling, e) branched, f) forked panicle, g) deformed panicle h) early 

senescence 

Figure B. Variation in panicle size, thickness and grain fillings  
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     Figure 22. Phenotypic variant observed in M2 population generated during 2007 and 2008  

 

   a, b, j - Chlorophyll mutants 

          c - Early flowering mutant 

      d, f  - Albino mutants 

      e, g - Downy mildew susceptible mutant 

  

 

 

 

 
   Figure 23. Genomic DNA of M2 lines isolated using Neucleo-Spin® 96 Plant 
   Genomic DNA Extraction Kit  

 

 

 

 

 



 

 

Figure 24. Normalised DNA (5ng/l) of 96 samples in a plate 

 

 

 

 

             Figure 25. Schematic representation of 8-fold pooling of genomic DNA of M2 lines                  

 

                                  Source Plates                                                                                    Destiny/ Pooled Plate       

 

 

 

                                                  



 

 

Figure 24.High throughput method 

                                                     
    Chopping        the leaf tissue                                                          Robot machine      used for dilution 

                                                         
 96 well plate       ready for DNA isolation                                    Spectrophotometer        used for Normalisation 

                                                       

 Centrifuge for         spin upto 6000rpm                                                             DNA        storage plate          

     

 Inoculation hood for DNA isolation                                                    Pipetting with multichannel 



       

                     Figure 25. Different Stages of TILLING population in Field  

 

                        Seedlings                                                     M2 mutanted  plants  

  

            Labelling of Plants                                               Selfing of mutant line 

 

             Leaf collection for DNA isolation                                   Harvesting  

 

 
 



              

 

 

 

               Figure 28. Amplification of DREB2A gene with nested primers  

 

1.F0+R0= 1-1548 (1548 bp)     2.F0+R1= 1-514 (514 bp)         3.F0+R2= 1-1397 (1397 bp)   

4.F0+R3= 1-1094 (1094 bp)     5.F1+R1= 102-514 (413 bp)     6.F1+R2= 102-1397 (1296)  

7.F1+R3= 102- 1094 (993 bp)  8.F2+R2= 600 -1397 (798 bp)  9.F2+R3= 600 -1094 (495 bp)   

10.F3+R3= 307-1094 (788 bp)   11.F3+R1= 307-514 (208 bp)    12.F3+R2= 307-1397 (1091 bp) 

13.F1+R0=102-1548 (1446 bp)  14.F2+R0=600-1548 (948 bp)  15.F3+R0= 307-1548 (1241 bp)  

M = 100 bp ladder  

 

 

 

 

 

 

 

 



Table 13. PCR amplification was carried out in a 25 µl volume for DREB2A 

Table 13.1.  Complete gene amplification: PCR-1: F0R0 (1.6Kb)  

Components for PCR  

Stock Components Volume 10 µl RXN 104X 

 

10 X 

50 mM 

10 mM 

0.5 U 

5 PM 

5 PM 

5 ng 

DDH2O 

Buffer 

MgCl2 

dNTP’s  

Shakara Taq  

Forward Primer  

Reverse Primer 

Template 

5.3 

1 

0.4 

0.2 

0.2 

0.4 

0.4 

2 

556.4 

104 

41.6 

20.8 

20.8 

39 

39 

 

Conditions for PCR 

Temperature H:M:S 

94 

94 

65 

72 

94 

65 

72 

72 

4 

00.05.00 

00.00.30 

00.00.30 

00.02.00           10 cycles  

00.0015 

00.00.20 

00.00.30         35 cycles  

00.20.00 

Hold 

 

 

 



 

Table 13.2. Target gene amplification - PCR-2: F3R3 (780bp)  

Components for PCR 

Stock Components Volume  

10 µl 

RXN 104X 

 

10 X 

50 mM 

10 mM 

0.5 U 

3 PM 

10 ng  

DDH2O 

Buffer 

MgCl2 

dNTP’s  

Shakara Taq  

 Primer cocktail 

Template 

8.5 

1.5 

0.9 

0.8 

0.3 

1 

2 

884 

156 

93.6 

83.2 

31.2 

104 

 

Conditions for PCR 

Temperature    H:M:S 

94 

94 

65 

72 

94 

65 

72 

72 

4 

00.05.00 

00.00.30 

00.00.30 

00.01.00        10 cycles  

00.00.15 

00.00.20 

00.00.30       35 cycles  

00.20.00 

Hold 

 

 

 

 



                                                         Figure 29. CODDLE 

 

 

Most probable site prone for EMS mutagenesis identified using CODDLE for DREB2A is at 877bp 

 

Figure 30. PCR amplification of candidate alleles prone for mutation in DREB2A gene using IR- labeled 

primers on 8-fold pooled mutant DNA samples M = 100 bp ladder 

 

 



Table 14. PCR amplification was carried out in a 25 µl volume for EDR2 

Target gene amplification: F1R3 (800 bp) (Touchdown PCR -1ºC) 

PCR Components 

Stock Components Volume 25µl 

 

10 X 

25 mM 

10 mM 

1 U  

10 PM 

10 PM 

50 ng 

DDH2O 

Buffer 

MgCl2 

dNTP’s  

Shakara Taq  

Forward Primer  

Reverse Primer 

Template 

 

2.5 

1.5 

1.0 

1.0 

1.0 

1.0 

3 

 

Conditions for amplificaion 

Temperature    H:M:S 

94 

94 

70 

72 

94 

6o 

72 

72 

4 

00.05.00 

00.01.00 

00.01.00 

00.02.00        10 cycles                        

00.00.45 

00.00.45 

00.01.00       35 cycles  

00.20.00 

Hold 

 

 

 



Figure 31. EDR2 amplification with different degenerate forward and reverse primer combinations (1 to 5) in 

control unmutagenized plants  

    1  2 3 4  5 

 

 

          60.5ºC      61.5          62.5         63.5         64.5        65.0 – At different annealing temperatures 

 

Primer combinations: 

Lane: 1 F1R3-2kb    Lane: 2 F2R3    Lane: 3 F3R2    Lane: 4 F4R2    Lane: 5 F5R2 

 

                                           

Figure 32. CODDLE 

 

            Most probable site prone for EMS mutagenesis identified using CODDLE for EDR2 

 



 

                            Figure 33. IR 700 and IR 800 Labelling Primers  

                             

 

                         Table 15. Genes and primers used for screening the mutant population 

 
Target name 

 
Locus 

 
Forward primer 

 
Reverse primer 

 
Amplicon 
size (bp) 

 
 

DREB2A >gi|77863910|g

b|DQ227697.1 
ATGCAGTCCTTGACTGAT

GG 

 

TCTGGGCATCTGTGGGTA

CCTGT 

GCCTGTAGTCAGGGAACT

G 

 

CTGGTGGCGGCATGGAG

C 

 

 

 

1.5 kb 
 
 
780 bp 

EDR2 NM_118022.4  

GI:186512033 
CGGCCGGCGGAAAGATG

GAGCTACG 

 

 

CGGCCGGCGGAAAGATG

GAGCTACG 

GGCGGTGTGGCCGTCAGC

TACCTTCCTTC 

 

AGGCCCAGCACGCCRTTN

GCNAC 

3.5 kb 
 
 
1.2 kb 

 

 

 

 

 

 

 



 

 

 

                                                     Figure 34. Protocol for TILLING Technique 

 

 

 

 

 

 

 

 

 

 



        Figure 35.  Identification of positive bulk for the gene DREB2A on mutated individuals 

  

LI-COR TILLING Image 

Even on these highly reduced gel images,bands of mutations are clearly visible(circled red). When heteroduplexes 

created during PCR are cleaved at base mismatches, the result is two cleavage fragments labeled with different 

IRDyes. With this imaging, a true mutation has two mutant bands with LICOR standards from 50-800 in the last 

lanes. One band is on the IRDye 700 image and the other on the IRDye 800 image. Additionally, the sum of the 

molecular weights of the mutant bands in a lane must equal the molecular weight of the wild type band in order for 

the mutation to be confirmed. Using this two-color detection method, the 4300 System virtually eliminates false 

positive mutation identifications.  

 

 

 

 

 

 

 



                     Figure  36.  SNP’s in DREB2A mutant line by MultAlin program 

 DREB2A      AGGAACATCT GGGCATCTGT GGGTACCTGT GTGTGAAATA GTAACCTGTT          

 M280717R   TCCGCTTTTT   TGGTTTTTGG  GGGGACNAAT GTGTGAAATA GTAACCTGTT            

 M280717F    CTGTTATGCT GAGGTGACGG GGCCCCNTTT   CT...TATAA      GTAACGTGTT         

 Consensus      ..g...tt.T              .gG.tt.tGg             GGg.aCnt.T         gTgtgaAatA        GTAAcctGTT  

  

 DREB2A     TCTGTGGAGA TGATTGTCAT GTAGGAACAT CTGG.ACATT TGTGGCTGGT            

 M280717R  TCTGTGGAGA CGATTGTCAT GTAGGAAAAT CCGC.ACATT TGTGGCTGGT           

 M280717F   T .TGTGAA .A  TGATTGTCAT GTTGGAACAT CTGCCACATT TGTGGCTGGT           

 Consensus    tcTgTGgAgA     tgATTGTCAT    GTaGGAa.AT     CtGc.ACATn       tGTGGctGGT                      

  

 DREB2A      AGTAG.ATTG AAGTAGTAAC GTTGTTTCAA TTTGGTTGAG CTTGCTCTCT            

 M280717R   AGTAG.ATTG AAGTAGGAGC GTTGTTTCAA TTTGGTTGAG CCTGCTCTCT            

 M280717F   AGAAACACTGAAGTAGTAAC G.GGTTTCAC  TTGGGTTGAG GGTGGACTCT           

 Consensus    aGtAg.AtTG       AnGtAG.Aac      Gt.GTTTCAa        tTtGGtTGAG   ..tGctCTCT  

 

 DREB2A     ACTTATTCAT TAAACAGTCC CTGTTAGTCT TTTCTGTTTA ACATGGTACA           

 M280717R  ACTTTTTCAT TAAACAGTCC CTGTTAGTCT GTTTTGTTTA ACATGGTACA      

 M280717F  AATTATTCAT AAAACGGTCC ATGTTTTTCT TTTCGGAAAATCATGGTACA           

 Consensus   AcTTaTTCAT  tAAACaGTcC      ctgTT.gTcT        .TtctGtttA aC     aTGGTACA  

 

 DREB2A      TTTGTTGGGT CATTTTGTTT TATTGTGTAC  TTG  ....    TAC  AAATCTGACA            

 M280717R   TTTGGTGGGT CATTTTGTTT TATTCTGTAC  CTGCGGTTAC  AAATATGACA          

 M280717F   TTAGTTGGGT CATTAAGTTT TATTGTGTAC TTGTGGTAAC AAATCTGACA         

 Consensus    Tn.GtTGGGT    CaTTttGTTt       TAtTgtGtAC       tTG.g.ttAC          AAATcTGAcA                   

 

                               Hot spot region for mutation according to CODDLE  

 DREB2A     GAGATACTAA  AGTGTTTCTT GTCATTTAGC AGGAAGAAGC  GTCCTCGCAG            

 M280717R  GAGATACTAA  AGTGGTTCTT GTCATTTAGC AGGAAGAAGC  GTCCACCCAG            

 M280717F   GAGATAATAA AGTGTTTATT GTCATTCAG.   AGGAAGAAGC  GTCCTCGCAG           

 Consensus   gAGaTAcTAA    AGTGtTTcTT    GTCATT.AGc    aGGaAGaAGn       GTCCtCgCAG                    

 

 DREB2A      ATCGCGTGAT GGGCCGACCT CGGTGGCAGC TGTCATCCAG CGGTGGGCTG          

 M280717R   ATCGCCTGAT GGGCCGACCT CGGTGGCAGC TGTCCTCCAG CGGTGGGCTG           

 M280717F   ATCGCGTGAT GGGCCGAACT AGGTGGCCGC TGTAATCCAG CGGTGGGCTG            

Consensus     AtcGC.TGAT    GGGCCGAcCT  cGGTGGCaGC    tGTcaTccAG      CGGTGGGcTG                     

 

 DREB2A      AGCACAACAA GCAGTTGGAG CACGATTCTG ATGGCGCGAA GCGACCAAGG         

 M280717R   AGCACAACAA GCAGTTGGAG CACGATTCTG ATGGCGCGAA GCGACCAAGG             

 M280717F   AGCACAACAA GCAGTTGGAG CACAATTCTG ATGGCGCGAA GCGACCAAGG         

 Consensus   AGCACAACAA GCAGTTGGAG CACgATTcTG  ATGGCGCGAA  GCGAccAAGG  

 

 DREB2A       AAAGCTCCTG CTAAGGGTTC AAAGAAGGGC TGCATGAAGG GAAAAGGAGG            

 M280717R    AAAGCTCCTG CTAAGGGTCC AAAGAAGGAT TGCCTGAAAG GAAAAGGAGG      

 M280717F    AAAGTTCCTG  CTAAGGGTTC AAAGAACGGC TGCATGAAGG GAAAAGGAGG     

 Consensus     AAAGcTCcTG   CTAAGGGTtC    AaAGAA.Ggc      tGC.TGAAgG    GAAAAGGAGG   

 

DREB2A     GCCTGAGAAT  ACGCACTGTG GATACCGCGG AGTGAGGCAG CGTACTTGGG           

M280717R  GCCTGAGAAT  ACGCCCTGTG GATACCGCGG ACTGCGGCAG  CGTCCCTGGG             

M280717F   GCCTGAGAAT ACGCACTGTG GATTCCGCGG ACTGAGGCAG  CGTACTTGGG            

Consensus   GCCTGaGAAT  ACgCaCtGTG     GATaCCGCGG  AcTGaGGcAG     CGTaC.TgGG                 

 

 

 



 

 DREB2A     GTAAGTGGGT TGCTGAAATC CGAGAGCCGA ATCGGGTCAA CAGACTCTGG     

 M280717R  GTAAGTGGGT TGCTGAAATC  CTAGAGCCGA ATCGGGTCAA CAGACTCTGG           

 M280717F  GCAAGTGGGT TGGTGAAATC  CCAGAGCCGA ATCGTATCAA CAGTATCCGT           

 Consensus   GtAAGTGGGT    TGctGAAATC   C.AGAGccGa     ATcGggTCAA    CAGacTC.Gg                   

 

 DREB2A     CTGGGGACCT TCCCAACTGC AGAGGATGCA GCCAGGGCTT ACGACGAGGC        

 M280717R  CTGGGGACCT TCCTAACTGC CGAGGATGCA  TCCAGGGCTT  ACGT CGAGGC         

 M280717F   TTGGCCAGTT TCCCCCCTGC AGATGACCCC  TTCACTTTTT   C ..   C CGAGTC            

Consensus    CTGGggAccT     TCccaaCTGC     aGAgGAtgCa        tcCagggcTT         aCg.CgAGgC                 

 

  DREB2A     TGCCAGAGCG ATGTATGGAG AACTCGCCCG CACGAACTTC CCCAGTCAGA         

  M280717R  TGCCAGAGCG AAGTATGGAG AACTCGCCCG CACGAACTTC CCCAGTCACA          

  M280717F   CTCCAGAGCC CC. CATCCCA  ACTTCCACCG  CACCG..CTTC  TCCAGTCAGA      

  Consensus    tgCCAnAgCg     a.gtAtggag A        acTcg.CCg            caCGaaCTTC    cCCaGTCAgA                  

  

DREB2A       AAGCAGTGGC CTCTAGCCAA GCTGCTCGGG TTCCAACCCC  TGCCCAGGTT         

M280717R    AAGCAATGGC CTCTC.TCAA    TCTAGTGAGT TTCCACCCCA  ..CCCAGATG             

M280717F    CAGTC.CGGC    CTCTTGCCC. .   CCAGTACCT   TTCCAAACCC  TGCCTTGCTT       

 Consensus    aAGca.tGGC        CTcT.gcCaa .        Cta. T..gt            TTcCAacCCc          tgCCc.G.Tt     

 

 DREB2A       GCTCCAGCAG CTGTTGAAGG TGTTGTACCT AGCACATCAT GTGAGTCAAC         

 M280717R    GGTCCC.CAG CTTTTTTNGG GG......CT CCCNCNGAAT NNNC.CCCTC          

 M280717F     ACATCG.... .......... .........T ACC.CTTCAT GNNGTNCAAC           

 Consensus    gctcC..cag ct.tt...gg .g......cT acC.C.tcAT gnn...CaaC                                                                  

 

 DREB2A      GACAACATCA AATCACTCAG ATGTTGCATC CAGCTCGAAT AAGACGGAAG           

 M280717R   GATTTCCAC. .....CGCCG TNATNAAAAG NGNCN..... ..........            

 M280717F   AACATC.... .......... .NTTTTA... .....CGAAN GGTACAGCAT            

Consensus     gAcatC..c. .....c.c.g .n.Tt.aa.. ...c.cgaa. ...ac.g.a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   Figure 37.                              Genomic DNA sequence of DREB2A gene 

         1 1551 

 

 Sequence control DNA 

Mutant line forward sequence 

Mutant line Reverse sequence                 

                                                                      Target amplified sequence 

                                                                          800bp 

                                                                               

        

 Table 16.  Mutations discovered in the Pearl-Till populations mutagenized with 7.5mM EMS  

No. Nucleotide 
change 

Amplicon 
position 

Aminoacid 
change 

Restiction enzyme difference 
Gained in Variant       Lost from reference 

1 G->T 205 G-E   

2 C->T 231 T-R   

3 A->C 245 K-T BaeI  

4 C->A 265 E-K BfaI  

5 C->T 276 K-Q   

6 C->A 318 P-A BpmII  

7 C->A 328 S-R   

8 C->A 344 P-K MmeI BstAPI 

9 G->A 374 E-K   

10 C->T 419 T-N   

11 G->A 429 K-N  BpmI 

12 G->A 439 K-R   

13 C->A 465 P-H BciVI  

14 C->A 485 A-E   

15 C->A 545 T-K   

16 G->T 550 R-R NspI  

P output for mutations discovered in both test populations 

Figure 37. The pearl millet target DREB2A showing mutations discovered in test populations:  

At top, the gene model is shown in red with boxes corresponding to CODDLE target of the gene. Green boxes 

represent target sequence. Circles indicate the location and type of mutation found. The red circles denote 

transversion a black transition changes a blue silent changes and green represents deletion change. The table 

summarizes the position and nucleotide change of each mutation and the respective effect on the protein sequence 

Restriction endonuclease sites that are either gained or lost due to the mutation are also listed. 

 

 



 

 

                            Figure 38. Partial length of EDR2 gene sequence in Pearl millet 

 

GTAGTTAGTAGCGAGAGTAAAACCACTCAAGAGAGGAGCAGAAGGAGATTCTGACTACTTTTTCTCAA

ATGGGCTCAAAATTTAAAATGGTTCACCGTATCGAGGGGGAGGGGAAAGAGAGATGGCGAGCTCAAC

AGTGCAATGGGCCAGAAGAACTTGATCCTTGTGGTTCTTCCGACCGGCCCCCCCATGACCACGCCTTA

ACGTGTGCGTCCCCCCAAAGGGGGGTCCCGGACCGGAAGCAAATTCTGGAAAAATGGATGGGTTGAC

CCCCCTAACGAAGCTAATGAAAGGGGGGAAATTTTTTTTGGGAAGAAAAAACCGGGGAAAATAGTTC

TTTTTGCCGGTACAGAAGGGGGGGGAGAAAAAATCCCCGGGCCCCAAGGGTAATAAAGGGGCTTGGG

GAAAGGGGCTTTAAAAAACCTCGGGGGGGGGGCGCCAACCTTATTGGTTAAACCTCCCCCCCTATACC

CGGGGGGAGAAATTTCTCCCACTTTTCGCTCCCCCAATCCTGGGGGCTGCTGTCGTGATCCTATAATAC

TAGTAGATACTTGCTAGAAAAAAATACTCACAAAAAAGTGCATCACCGACGTTTGTTTATAGTTGGCG

CGCGGCAACCCATATGTATTCTCTCTCACCGCGCATAGAGATGAGAGAGAGTTGATCACAATGGTAGT

AGTGCTGCGTTTAGGAAGGAGGATACCTCTCTCACACTACTGCATCGCTACACAGAAAGCTAGTTAGT

GTCATTGCACACGCTACCATACACATCACCCGCACGAAGAAAGAATAGAAAATACAGATAGCCGTAG

CGACAGATGG 

 

 

 

 

 

 

 

 

 

 

 

 



                                          Figure 39. Pearl -TILL development at ICRISAT 

                                                           

EMS treared seeds              M1 Lines                                            M2 Lines                            DNA from     M2 lines                                                                                                                              

                                                                                             

Stnadardisation of PCR with Control DNA                           Selfing                           Dilution     of DNA to 5ng/µl                                                                                                           

                                                                                                             

PCR Amplification in pooled samples                                              8-fold Pooling of Normalised DNA                    

                                  Heterodulpex formation and SNiPerase Endonuclease cleavage 

                                                   

                                                 

                              LICOR gel image                                           LICOR instrument for screening of candidate gene 
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CHAPTER V 

DISCUSSION 

 



 

Downy mildew is a major fungal disease in pearl millet caused by the fungus Sclerospora graminicola. There is 50-

60% of the incidence of downy mildew in India depending upon the season and state and yield losses due to downy 

mildew disease in pearl millet are very high. Pathogensis related (PR) proteins, for example, are a group of diverse 

proteins whose accumulation is triggered by pathogen attack or abiotic stress. In a sense, PR proteins constitute a 

point where various response networks interact by reacting with different inducers such as salicylic acid, jasmonic 

acid, systemin and ethylene. Pathogens of plants are a significant and growing threat to crop production worldwide. 

The goal of producing crops with increased and durable resistance to a spectrum disease is therefore a major focus in 

plant research. Increasing knowledge of the plant defense has led to more sophisticated transgenic approaches to 

enhance resistance. The number of candidate genes put forward by transcriptomics, proteomics and protein 

interaction studies gives us a large choice of genes to be used. Potentially, these genes can be manipulated by over 

expression, induced expression and tissue specific expression. 

 

5.1 In vitro plant regeneration 

An attempt was made in the present study to initiate callus from the mature embryos and shoot tips of six lines of 

pearl millet. But the shoot derived calli from the two lines (843B-P2 and 81B-P6) regenerated shoots or plantlets 

with 3-5% frequency and the number of shoots formed per callus mass was only 3-4. Therefore, immature 

inflorescences were used as explant source for callus induction and multiple shoot formation. Immature embryos 

and immature inflorescences were earlier used in other cereals like Eleusine corocana (George and Eapen, 1990), 

Paspalum (Vikrant and Rshid, 2001; Kaur and Kothari, 2004), Panicum maximum (Lu and Vasil, 1982), Pennisetum 

(Devi et al., 200; Srivastav and Kothari 2002) Setaria italic (Vishnoi and Kothari, 1996) and Sorghum (Jogeswar et 

al., 2007). The general consensus has therefore been that immature tissues like inflorescences are most responsive 

for induction of embryogenic callus. However, there is no universal recipe for the good percentage frequency of 

callus induction and it varied depending on the genotype and explants in cereals especially with pearl millet. While 

2,4-D has been the mostly used for callus induction and somatic embryogenesis in majority of cereals including 

pearl milet genotypes (Krishna Rao et al., 1988; Lambe et al., 1995,1999), other auxins such as para-chlorophenoxy 

acetic acid (Srivastav and Kothari, 2002), picloram (Kaur and Kothari, 2004), cytokinins like thidiazuron Ganeshan 

et al (2003), a combination of auxins and cytokinins (Devi et al., 2000; Sharma et al., 2004), ethylene inhibitors like 

silver nitrate (Pinus et al., 1993) also influenced significantly the formation of embryogenic callus. In the present 

study, though 2,4-D induced the embryogenic callus, the frequency was very less. Incorporation of NaCl into the 

callus proliferating medium followed by sub-culture into thidiazuron appeared essential for somatic embryogenesis 

in the genotypes tested in this study. The use of thidiazuron for cell and tissue cultures of monocots was rarely 

reported. (Ganeshan et al., 2003) used thidiazuron to test the competency of mature embryos of wheat, oat, barley 

and triticale for multiple shoot induction. However, this cytokinin has been bound very effective in induction of 

somatic embryos in pearl millet callus. Our findings are consistent with the earlier reports of Sharma et al (2005), 

who observed that thidiazuron is necessary to maintain long-term meristematic cultures and induction of somatic 

embryos in high frequency in wheat. Callus induced on 2,4-D was often found to be difficult to maintain in an 



embryogenic state for long periods and also for shoot differentiation especially in Pennisetum (Lambe et al., 1999). 

While kinetin plus NAA combination was better for shoot differentiation for the genotype 843B-P2, BAP plus IAA 

was ideal for the 81B-P6. Similar results were reported earlier in Pennisetum scrobicutatum (Nayak and Sen, 1989) 

and Paspalum (Cardona and Duncan, 1997) whereas Sticklen and Oraby (2005) observed that BAP is effective in 

multiple shoot production but along with low concentration of 2,4-D. Long-term retention of shoot differentiating 

ability is desirable in cereals especially in pearl millet but is highly difficult to achieve it (Srivastav and Kothari, 

2002; Kennedy et al., 2004). However, the use of NaCl for a minimum of three subcultures in the callus proliferating 

medium followed by thidiazuron (0.01mg/l) treatment to callus proved excellent for subsequent regeneration of 

shoots up to 200 days in the present study. In contrast, Srivastav and Kothari (2002) achieved it using para-

chlorophenoxyacetic acid in the callus proliferating medium. The percentage frequency of shoot differentiation in 

2,4-D proliferated callus was only 3 in both the genotypes (data not shown). But serial subculturing of callus into 

NaCl and thidiazuron media enhanced it to 95-97.5%. The number of shoots formed per culture also varied (1-52) 

depending on the genotype and plant growth regulator concentration in several cereals (Varshney et al, 1999; Devi 

et al., 2000; Ganeshan et al., 2003).In the present study, the number of shoots (25-32 per culture) formed per 100 mg 

of callus is high and also varied based on the growth regulator concentrations in the medium. In summary, an 

efficient and reproducible method for pearl millet shoot regeneration from callus cultures in two genotypes is 

achieved in the present study that can pave the way for genetic transformation studies. This exercise was necessary 

since establishment of a high frequency regeneration system is an essential pre-requisite for generation of transgenic 

plants. 

 

5.2 Genetic transformation 

Transfer of genes to crop plants can be achieved using several methods such as Agrobacterium mediated DNA 

transfer and particle bombardment (Christou, 1992; Sheng and Citovsky, 1996; Zhao et al., 200). Developments in 

genetic transformation of monocots, including pearl millet, made it possible to produce transgenic plants that 

express desired genes such as pathogenesis related genes to enhance resistance against diseases. Agrobacterium 

mediated transformation of millets has been repoted by a number of authors (Taylor, 1991; Oldach, 2001; Madhavi 

Latha, 2005; Lamb, 1995) but it is highly explant and genotype dependent. Further, concentration of acetosyringone 

and co-cultivation period plays a crucial role. The present study deals with the development of a reproducible 

method for genetic transformation of pearl millet by osmotin and chitinase double construct by co-bombardment 

mediated method and production of downy mildew resistant transgenic plants.  The plant expression vector pPUR, 

has been used for optimising the bombardment parameters for transformation of embryogenic calli. However, <18 

Kg/cm
2 

helium pressure, >12 cm target distance and 2 µg DNA, 100mg/ml tungsten particles produced lesser 

frequency of phosphinothricin (PPT) resistant calli, probably, because of less efficient dispersion of particles into the 

target tissue. In Sorghum, a higher helium pressure and lower target distance was found to cause increased tissue 

damage leading to low frequency of transformation (Casas et al., 1995). However, >1 µg DNA/mg tungsten 

particles invariably increased the frequency of gene expression due to particle agglomeration, which accorded was 

recorded for finger millet and maize by Klein et al., (1988). The high frequency of resistant calli to PPT was 



observed in the present study, by applying various pre- and post-bombardment osmotic treatments, may be ascribed 

to the decreased cell damage caused by increased permeability and rapid cell recovery. In earlier reports, similar 

osmotic treatments were found to increase the efficiency of both transient gene expression and stable genetic 

transformation in finger millet (Madhavi Latha et al., 2005), pearl millet (Girgi et al., 2002; Goldman et al., 2003), 

maize (Vain et al., 1993), wheat (Bilang et al., 1993) and tobacco cells (Russell et al., 1992). Utilizing the various 

optimised parameters for transient expression of the marker gene, stable transgenic pearl millet plants were 

successfully produced by employing pCAMBIA2300 osmotin and chitinase, CMV35S and PolyA terminator and 

pPUR bar 35S constructs. The four-step selection strategy using PPT was found effective for selecting the 

transformed calli and for producing stable transgenic plants. These findings are in agreement with those of Goldman 

et al., (2003) who could minimize the chances of escapes by applying higher concentrations of antibiotic to different 

transformed tissues of pearl millet. PCR analysis using bar, chitinase and osmotin gene specific primers revealed an 

amplification of 560 bp, 600 bp and 700 bp fragment in all the three Basta-tolerant putative transformants. This 

clearly indicated the presence of bar gene in various transformants similar results were reported by Madhavi Latha 

et al in finger millet but there is a difference in concentration of Basta used for selection. The high frequency of 

resistant calli to PPT observed in the present study, by applying various pre- and post-bombardment osmotic 

treatments, may be ascribed to the decreased cell damage caused by increased permeability and rapid cell recovery. 

In earlier reports, similar osmotic treatments were found to increase the efficiency of both transient gene expression 

and stable genetic transformation in finger millet (Madhavi Latha et al., 2005), pearl millet (Girgi et al., 2002; 

Goldman et al., 2003), maize (Vain et al., 1993), wheat (Bilang et al., 1993) and tobacco cells (Russell et al., 1992). 

Four transformants, tolerant to basta and PCR-positive for bar, were also found Southern positive for the chitinase 

gene, thereby suggesting the stable integration of chitinase gene into genome. HindIII digested genomic DNA with 

the chitinase probe disclosed the presence of hybridizable bands at 600 bp. Three of the primary transformants, 

exhibited the hybridizable band. Further, RT-PCR was carried out to see expression of the gene at the transcript 

level. The phenomenon of multiple copy integration is commonly encountered in particle-bombardment-mediated 

genetic transformation of plants (Finnegan and McElroy, 1994; Flavell, 1994; Kohli et al., 1996). In earlier studies, a 

variable number of incorporated transgene copies ranging between 1 and 20 were reported in diverse crop plants 

(Lambe et al., 1995; Hadi et al., 1996; O’Kennedy et al., 1998, 2004; Maqbool and Christou, 1999; Zhang et al., 

1999; Lambe et al., 2000; Girgi et al., 2002; Goldman et al., 2003).  

 

Previous research in other cereal crops such as wheat presented successful transformation and co-expression of a 

combination of antifungal genes such as chi, tlp and glucanase which are currently being used to breed disease 

resistant wheat (Chen et al., 1999; Anand, 2003a, b). Previous studies on transgenic cereals and other crops 

transformed with rice chi11 or tlp have shown protein expression in leaf tissue (Datta et al., 1999; Chen et al., 1999; 

Anand et al., 2003b; Velazhahan and Muthukrishnan, 2003). Transgene silencing is an important phenomenon that 

frequently occurs in transgenic plants (Iyer et al., 2000) and has significant impact in transgenic research and 

breeding. Direct DNA transfer through bombardment frequently results in the insertion of multiple copies and 

rearrangement of the transgene (Matzke and Matzke, 1995; Meyer and Saedler, 1996) which can result in gene 

silencing. Differential transgene silencing even among progeny within a transformation event has been observed in 



barley (Bregitzer et al., 2002, Kohli et al., 1999), and rice (Kumpatla and Hall, 1999). Meng et al (2003) showed that 

transgene silencing in barley T3 homozygous population was related to the methylation of the first untranslated exon 

and 5 end of the intron in the Ubi1 promoter complex. Moreover, there is a general concern that the Bar gene can be 

transmitted via pollen to wild relatives of Sorghum producing herbicide resistant weeds such as Johnson grass and 

shuttercane. Consequently, bar resistant commercial sorghum might be difficult to pass the regulatory hurdle 

especially in South Africa. Furthermore, the bar gene as a selectable marker has biosafety advantages. Transgenic 

pearl millet plants have been generated using bar, osmotin and chitinase genes in the present study and the particle 

gun method of genetic transformation has been found effective. For our study we used two different vectors pPUR 

for bar (marker gene) and pCAMBIA with pathogen related genes. However, the three transgenics generated in this 

study, did not set seed though flowered. Consequently, transgenics (T0) could not be taken to the next generation. 

 

5.3       Target Induced Local Lesions in Genomes 

A TILLING service could provide allelic series in genes of scientific or agronomic importance. Millets have unique 

biological and agronomic characteristics that cannot be investigated in either Arabidopsis (Till, 2001) or maize 

model (Till et al., 2004) systems. Individual mutations may not result in phenotypic changes due to the redundant 

nature of the pearl millet genome. This would greatly facilitate progress in the study and breeding of pearl millet.  

 

Two critical steps appear in TILLING: one mutagenesis and second high throughput mutation discovery. TILLING 

population requires eightfold pooling and amplified product size ranges from 800 bp -1.5 kb. With increasing 

mutagen concentration the rate of mutation also increases (Greene, 2003) but developing a well-mutagenized 

population is also challenging because diverse species and even varieties of the same species display a different 

response to mutagenic treatments (Wu, 2005). Doses of mutagen that result in high lethality of the treated seed in 

species such as barley (Caldwell, 2004) and rice (Till et al., 2007), may not yield the high mutation density that is 

seen with much less lethality in another species, such as Arabidopsis (Till, 2003) or wheat (Slade, 2005). In the 

present study also, we experienced such a diffiulty and showed low mutation densities (Till et al, 2003). Phenotypic 

analysis of M2 individuals can estimate the mutation rate. In Arabidopsis, it is possible to reliably score embryo 

lethals, a phenotype resulting from deficiency at any of hundreds of genes. This measure has been incorporated in 

routine mutagenesis for TILLING (Henikoff, 2004). Comparison of phenotypic versus molecular mutation rates in 

these populations should provide phenotypic markers for assessing future TILLING populations.  

 

The success of chemical mutagenesis in plants depends on the seed set of the mutagenized plants and the frequency 

of induced mutations.  The factors that affect the induced mutation rate are mutagen concentration, length of 

mutagen application, wash length, treated organs (pollen or seeds), and chosen ecotype (or genotype) of the target 

species. For example, pearl millet seeds are small and seed coat is a very thin layer. This may be one reason why 

pearl millet seeds need a lower dosage for mutagenesis than Arabidopsis, Barley and Sorghum. The concentration of 

7.5 mM EMS was used in our pilot TILLING study as pearl millet appears to be very sensitive to EMS treatment. 

Only about 30% of the M1 plants set seeds even at 5 mM EMS concentration. At 0.3%, the commonly used 

concentration in Arabidopsis, very few M1 pearl millet plants set seeds. Moreover, the seed from fertile M1 plants 



had poor germination rates. The highest concentration of EMS that produced an acceptable number of fertile plants 

was in 7.5 mM. Embryo lethality, however is not easily ascertained in pearl millet. The frequency of albino mutants 

is surprisingly high (8%) in pearl millet populations this optimal mutation rate was determined by TILLING (Wu, 

2005). Through optimization of mutagenesis treatments and by choosing the lower mutagen concentration 

compatible with acceptable seed survival, a satisfactory mutation rate has been achieved in the present study. 

Nipponbare populations treated either with 1.5% EMS or by sequential soaking in 1 mM sodium azide and 15 mM 

MNU, showed a density of putative mutations in TILLING, ~1/300 kb. This mutation density is well suited to high-

throughput mutation discovery. 

 

Additional mutations were discovered in the present study by digesting the template DNA to eliminate an 

extraneous amplicon that was hampering mutation identification.  An adequate mutation frequency is required to 

keep the number of PCR reactions associated with TILLING to a manageable number. In Till et al. (2007), the 

authors argued that efficient TILLING requires a population with mutation frequency of ≥ 1 mutation/500 kb to 

ensure that at least one mutation is found per gel run in the LI-COR DNA analyzer. Achieving this goal requires a 

high concentration of mutagen or special treatments. The experience of the Seattle TILLING Project is that, a library 

of mutagenized individuals is optimally suited for TILLING when in average at least one mutation is found per LI-

COR gel run. Till et al., (2007) have also tested the ability to detect mismatches in pools of germplasm. Pooling is 

an approach that is routinely used in TILLING and may be advantageous for EcoTILLING as a first-pass screen 

among lines that are considered closely related. Our results indicate that pools of up to 8-fold are possible, which 

will allow 768 accessions to be screened in a single run for preliminary analysis.  

 

EMS mutagenesis of pearl millet seed resulted in populations with mutation frequencies that are feasible for use in a 

high-throughput TILLING operation. The mutation frequencies in this pearl millet population are similar or lower 

than have been found in our Arabidopsis populations. Although the population was treated with the same 

concentration of EMS, the resulting mutation frequency is lower. It is possible that the genetic background could 

have an effect on the efficiency or toxicity of the mutagen, as has been observed in rice (Till, 2007), but differences 

due to other environmental or experimental conditions cannot be ruled out. It is noted that treatment of Arabidopsis 

seed batches with the same concentration of mutagen can vary in mutation frequency from experiment to 

experiment, probably because of the effect of environmental conditions on the plant response. So, it is expected that 

mutagenesis experiments performed at different locations with different mutagen concentrations may result in very 

different mutation frequencies.  About 20% will be un-compatible mutations, and perhaps one fourth of these will be 

homozygous. Therefore, each M2 plant will theoretically contain at least ten profoundly affected genes per genome. 

This background of mutations is seen to be a major obstacle for utilizing TILLING-derived mutant alleles in plant 

breeding. The background mutational load needs to be removed by recombination in multiple generations of 

backcrossing or cross-breeding. After backcrossing for six generations, theoretically only 1.5% residual 

heterozygosity will remain in a mutant, so the true efficiency of removing linked, undesired mutant variation may 

differ significantly depending on the region of the genome (Slade and Till, 2003). 

 



A TILLING service is currently available for Lotus japonicus (Perry, 2003). While much knowledge will be gained 

using L. japonicus as a model system for legume gene function, the application of that knowledge to modification of 

cereal (Bidinger, 2005; Hash, 2001) traits remains difficult. Given the limits of other functional genomics 

approaches in pearl millet (Paterson, 2008) a TILLING service could provide allelic series in genes of scientific or 

agronomic importance. However, the high mutation frequency combined with the ability to screen individual targets 

allows one to screen homeologs or gene family members individually and then combine the mutant alleles through 

breeding. This would greatly facilitate progress in the study and breeding of pearl millet and other polyploids in 

which the efficiency of mutation breeding might otherwise be low. One public service may be developed in the 

future at ICRISAT. A TILLING service for the pearl millet community is planned and will be accessible at the 

following URL: http:/ /pearltill.icrisat.org. 

 

5.4 Collection of germplasm and maintenance 

Several factors impact the establishment of useful TILLING populations in plant system such as Pearl millet and 

sorghum Cross pollination must be vigorously controlled to produce a high quality mutagenized population. Under 

normal growth conditions, pearl millet is predominantly self-fertilized with cross-fertilization (Bidinger and Hash, 

2005). In Sorghum mutagenesis attempt was unsuccessful when cloth bags failed to prevent cross pollination 

(Zhanguo Xin, 2008). Cross pollination was prevented by covering the panicles of each mutant generation with rain-

proof paper pollination bags (Lawson Bags Northfield) before anthesis. This approach effectively minimized cross 

pollination. In the present study, it has been found that the mutagenized pearl millet population has an adequate 

mutation density and low cross-fertilization, providing a useful community resource for functional analysis of pearl 

millet genes. The variety of visible phenotypes observed in the mutant population is a good indicator of the depth of 

the genetic lesions, strongly suggesting that the mutant population is altered for multiple traits of agronomic 

importance. 

 

5.5 Pre-testing the amplification 

Pre-testing unlabeled primers by amplifying DNA followed by agarose gel electrophoresis and sequencing should 

reduce the number of primer sets chosen for TILLING that amplify more than one target. It has ben found that pre-

testing was successful for pearl millet targets which are known to be members of gene families. The maize 

TILLING service, which faces a similar problem, has successfully implemented such pre-testing in a high-

throughput manner (Till, 2004). In this study, it has been found that only 80% of pearl millet primers passed pre-

testing and of those, only 60% produced high quality TILLING data (similar resuls have been found in soyabean). 

Our observation that amplification of multiple products derived from homeologous templates reduces the ability to 

detect mutations agrees with that of Slade and colleagues, (2005). Clearly, robust amplification of a single target 

will be a requirement for pearl millet TILLING. Sequence information from homeologous or paralogous genes 

could be used to direct primer design toward less conserved regions. In cases, where a primer set that only amplifies 

one target cannot be identified, it is possible to use sequence information gathered while testing the primers to find a 

restriction enzyme that digests only one homeolog or paralog thus eliminating amplification from the corresponding 



template DNA. Restriction digestion adds an extra step and requires larger amounts of template DNA. The step, 

however, can easily be done in a high throughput manner by digesting templates in 96 well formats prior to PCR and 

even the additional amount of DNA required would allow the many genes to be screened with the present DNA 

yield (1 µg/µl individual plant). To determine whether pearl millet is suitable for high-throughput mutation 

discovery, two targets were screened in mutagenized populations. The incompletely sequenced genome makes it 

difficult to define primers specific for a single gene, so that amplification of multiple products becomes a significant 

issue for a high-throughput pearl millet TILLING service. 

 

5.6 IR-labelling of primers 

The PCR part of the tailed primer is designed following standard rules for primer design. Having established the 

sequence of the PCR primer, a standard primer sequence is added. Any sequence can be used as a tail, but generally 

established sequencing primers are commonly employed. Typical tailed primers are 36-45 bases in length. The tailed 

primer method provides high quality sequence data from PCR products while using standard labeled primers. This 

method employs a two-part primer where a standard sequencing primer sequence or "added to the 5'-end and 3’-end 

of the PCR primer sequence. Such a primer essentially contains two primer sequences on one oligonucleotide. The 

tailed primer sequence is incorporated into the PCR product during the amplification reaction. Following 

purification, the PCR product is sequenced with the appropriate sequencing primer using standard labeled-primer 

protocols. Bi-directional sequencing strategies can be run with IR
2
 systems (dual dye systems) to obtain the 

sequence of both strands in the same set of reactions. This approach is particularly useful in mutation analysis. In 

this case the forward and reverse PCR primers would contain different tail sequences. The tracking of probes labeled 

with IRDye 800CW has become popular for optical imaging (Fig. 33) because near-infrared fluorophores minimize 

the optical challenges of detecting photons in tissues. A fundamental consideration in optical imaging is maximizing 

the depth of tissue penetration, which is limited by the absorption and scattering of light. Scattering decreases as 

wavelength increases. Dyes and fluorescent proteins absorbing below 700 nm are difficult to detect in small amounts 

at depths below a few millimeters. In the NIR region (700 - 900 nm), the absorption coefficient of tissue is at its 

lowest, and light can penetrate to depths of several centimeters. Above 900 nm, light absorption by water begins to 

cause interference. The IRDye 680LT is highly soluble in water and is significantly brighter and more photostable 

than many other 700 nm near-infrared dyes tested. The spectral characteristics of IRDye 680LT are well suited for 

use on LI-COR imaging instruments with absorbance and emission maxima in aqueous solution and methanol of 

676 and 693 nm, respectively. 

 

5.7 Mismatch cleavage with endonuclease 

The hydrophobic IRD dyes at each 5’end perform an inadvertent end-blocking function, stabilizing perfectly base-

paired heteroduplexes to end-cleavage activities, whereas imperfectly base-paired PCR failure products that 

constitute the background are not as well stabilized and so are digested. No such improvement was seen when using 

endonuclease (Oleykowski, 1998) for TILLING, because binding of Taq polymerase to ends of DNA duplexes acts 

to protect them, and the presence of Taq in a standard TILLING reaction carried over from the amplification step. 



Nibbling would not be a limiting factor when SNiPerase are used to cleave heteroduplexes that are detected on 

agarose electrophoretic gels by ethidium bromide staining, because the slight shortening that removes the terminal 

5’ base will be almost imperceptible. In higher concentrations of enzyme are needed to cleave both strands 

simultaneously, which increases both the rate of nibbling and the number of ends that would be attacked during the 

reaction. It has been found that SNiPerase (From Frontiers Genomics kit) are also capable of double-strand cleavage 

when assayed by agarose gel analysis (data not shown), an activity that has been documented for the Surveyor
TM

 

preparation of SNiPerase. Their model can also account for nicking of supercoiled plasmids, for cleavage at sites of 

Y junctions and damaged base pairs and for digestion of looped-out regions by these enzymes. Single base pair 

mismatches are the smallest bulged-out regions and are the least susceptible to cleavage. Unless conditions are 

optimal for SNiPerase to bind and cleave these small bulges, nibbling of end-labeled duplexes predominates, 

decreasing sensitivity. The ability of a variety of SNiPerase to cleave mismatches in our TILLING assay has 

implications for genetic technologies. At present, high-throughput TILLING appears to be the method of choice for 

mutation scanning and has potential for SNP discovery applications. By default, our TILLING project uses 8-fold 

pooling and obtains consistent detection of heterozygous bands present at 1/16th the level of wild-type; higher levels 

of pooling would increase efficiency and lower the cost of the overall process. Higher efficiency might be achieved 

in part from continuing improvements in PCR technology that would reduce the intensity of the nuclease-resistant 

background banding pattern. As has been noticed in the present study, optimization of SNiPerase conditions can also 

improve detection by increasing mismatch cleavage relative to end. SNiPerase from kit of choice for TILLING and 

EcoTILLING of highly polymorphic regions. It is anticipated growing understanding of the mechanism by which 

these enzymes discriminate between mismatches and duplexes will result in improved genomic methodologies. 

 

5.8 LICOR 

The strength of the 4300 System for TILLING is being proven every day in multiple labs around the world.When 

heteroduplexes created during PCR are cleaved at base mismatches, the result is two cleavage fragments labeled 

with different IRDyes. With two color imaging, a true mutation has two mutant bands below the wild type band in 

the same lane. One band is on the IRDye 700 image and the other on the IRDye 800 image. Additionally, the sum of 

the molecular weights of the mutant bands in a lane must equal the molecular weight of the wild type band in order 

for the mutation to be confirmed. Using this two-color detection method, the 4300 System virtually eliminates false 

positive mutation identifications. TILLING can be used as a high throughput screening technique. With the 4300 

System as the enabling technology, the following TILLING performance results can be achieved with a single 

instrument. 

• Up to 750,000 base pairs can be screened per run. 

• Up to 2000 samples can screened per day. 

• Up to 2 million base pairs can be screened per day. 

• 1000 base pairs can be screened per sample. 

Results are dependent on species and other factors. 

• The 4300 System is fast and efficient. 



• It takes 2-4 hour run time (dependent on the size of the amplicon). 

• Pre-mixed acrylamide gel formulations are available. 

• Gels can be reloaded. 

LI-COR sequencers can routinely provide 800-1100 nucleotide one-pass reads with accuracy levels better than 99% 

on single and double stranded DNA templates. The four lane presentation format also permits the rapid review and 

editing of sequence reads, however, this format allows the analysis of fewer reactions on a single gel. 

 

5.8.1 Requirements for TILLING in LICOR 

Point mutations of genes making discovery a challenge for the researcher and the detection instrument. Sensitivity of 

the instrument is critical for detection. The ability to distinguish false positives is of equal importance. Gel images 

from slab gel electrophoresis have emerged as a data format well suited for TILLING. On gel images produced by 

an instrument with high sensitivity, new bands resulting from mutations are easily identified. 

 

5.8.2 Generating high quality TILLING images 

The LI-COR4300 DNA Analysis System is uniquely suited for TILLING because it uses two color infrared 

fluorescence detection to generate two true gel images during electrophoresis.  LI-COR is a leading innovator in the 

development of infrared fluorescence labeling and detection systems for proteomic, molecular imaging, and 

genomic research.  

 

5.8.3 Infrared detection for highest sensitivity 

The high sensitivity of infrared detection in LI-COR4300 System is critical because endonuclease activity in 

TILLING results in some lost signal. The inherent low background of infrared detection compared to visible 

detection, combined with LI-COR IRDyes, results in another key advantage wide dynamic range. Wide dynamic 

range is critical for resolving weak mutation bands along with strong wild type bands. Low infrared background 

from amplification artifacts makes it easy to resolve mutations with the 4300 System. 

 

5.9 CODDLE 

The Codons Optimized to Detect Deleterious Lesions (CODDLE) program facilitates the choice of the gene regions 

more suitable for TILLING of genes by assessing the probability of obtaining deleterious lesions and then 

interpreting the results obtained, which is an important part of the TILLING procedure. CODDLE identifies the 

gene region with the highest frequency of potential G to A changes that are likely to produce truncations of the gene 

product of missense alleles predicted to be damaging to the gene product. These predictions are based primilarly on 

the asssumption that blocks of conserved amino acid sequences are functionally important and the non-conserved 

amino acid changes within these blocks are more likely to be severely deleterious. A key component in TILLING 

has been the bioinformatics tool CODDLE, developed by the proWeb group (http://proweb.org), which is used to 

select regions of a gene most likely to yield useful mutations. 

 

 



5.10 SNP in DREB in pearl millet TILLING 

An adequate mutation frequency is required to keep the number of PCR reactions associated with TILLING to a 

manageable number. In Till et al. (2007), the authors argued that efficient TILLING requires a population with 

mutation frequency of ≥ 1 mutation/500 kb to ensure that at least one mutation is found per gel run in the LI-COR 

DNA analyzer. Achieving this goal requires a high concentration of mutagen or special treatments. In the present 

study 4 differen mutant lines were observed under LI-COR ou of 9938 mutant lines. This means, detectable 

mutattion rate is 0.04%.  The estimated mutation density was reported for Arabidopsis is 1/300 kb (Greene, 2003), 

but it is slightly higher in barley (Caldwell, 2004) or rice (1/Mb) (Wu, 2005), but similar to the mutation density 

reported in soybean 1/550 kb (Cooper, 2008) and pea 1/669 kb (Triques, 2007). Given an average mutation 

frequency of 1mutation/0.5 Mb, a haploid genome size of 5,000 Mb for barley, and genes with an average ORF 

length of 1.5 kb at an average G/C content of approximately 80%, the presence of approximately 100 induced SNPs 

that affect ORFs can be assumed for every plant of the TILLING population. Of these, about 20% will be non-

synonymous mutations, and perhaps one fourth of these will be homozygous. Therefore, each M2 plant will 

theoretically contain at least ten profoundly affected genes per genome. This background of mutations is seen to be a 

major obstacle for utilising TILLING derived mutant alleles in plant breeding. The background mutational load 

needs to be removed by recombination in multiple generations of backcrossing or cross-breeding. After 

backcrossing for six generations, theoretically only 1.5% residual heterozygosity will remain in a mutant, so the true 

efficiency of removing linked, undesired mutant variation may differ significantly depending on the region of the 

genome. 

 

In tests of DREB2A on TILLING population, two putative SNP have been detected in 9938 pearl millet mutant lines. 

Many SNPs was detected in these distant contrasts lines, that appears to be absent from most wild species but 

present in mutant lines were found in our pearl millet DREB2A analysis has been found similar wih that of rice 

OsDREB sequence analysis in mutant population (Till, 2007). Till et al., have also tested the ability to detect 

mismatches in pools of germplasm. Pooling is an approach that is routinely used in TILLING and may be 

advantageous for EcoTILLING as a first-pass screen among lines that are considered closely related. Our results 

indicate that pools of up to 8-fold are possible, which will allow 768 accessions to be screened in a single run for 

preliminary analysis. By improving the throughput of the system, we will be in a position to identify variants in the 

large collection of germplasm accessions in the International Pearl millet Genebank Collection held at ICRISAT. 

 

EMS is reported to have a mutational bias for 5'-PuG-3' sites or a middle G base in a stretch of three or more G 

bases (Till, 2001). Therefore, TILLING gene targets with an elevated G/C content may yield higher mutational 

densities. The mutational density may change after additional screening of other genes and/or more mutant lines 

from the population or by changing the pooling strategy. In these systems, EMS-induced changes were mostly 

GC>AT transitions, as expected from the frequent alkylation by EMS of guanine residues (Sega, 1984; Greene, 

2003). In our EMS-treated pearl millet population, we found 80% GC->AT, 3% AT->GC, 10% GC->TA, and 10% 

AT->TA in the analysed DREB2A sequence. Pearl millet, therefore, might differ from Arabidopsis, maize, rice and 

wheat in its mutagenic response to EMS. Both transitions (GC->AT, and AT->GC) and transversions were observed 



after sodium azide treatment in barley (Olsen, 1993). In Arabidopsis, maize, and wheat, more than 99% of EMS-

induced mutations are G/C to A/T transitions (Greene, 2003; Comai, 2006). In contrast, the percentage in rice, 

barley, and Drosophila ranges from 70-84% (Vogel, 1995; Wienholds, 2003; Perry, 2003). In EMS-treated soybean 

populations, the percentage of G/C to A/T transitions was in the range of these previously published frequencies (A 

= 92%; B = 75%; C = 92%). Given the sequences of the DREB2A targets, the distribution of mutations was as 

expected. The majority of induced mutations were G/C to A/T transitions. But, one can discover additional 

mutations by digesting the template DNA to eliminate an extraneous amplicon that was hampering mutation 

identification. 

 

Stress-related genes are found in all plant species; earlier studies have shown that the over-expression of AtDREB2A 

and OsDREB2A in Arabidopsis was not sufficient for the induction of target stress inducible genes (Liu et al., 1998; 

Dubouzet et al., 2003) and it was assumed that some post-translational modifications, probably phosphorylation 

and/or dephosphorylation events, may be necessary to play a role in activating the expression of stress-responsive 

genes. In eukaryotes, reversible phosphorylation is one of the common mechanisms through which extra-cellular 

signals regulate transcription of genes (Hunter and Karin, 1992). Reversible phosphorylation can modulate 

transcription factor activity by affecting their translocation from the cytoplasm to nucleus, their transactivation 

capacity and/or their DNA-binding activity (Hill and Triesman, 1995; Hunter and Karin, 1992).  

 

The Arabidopsis TILLING project has provided the most comprehensive set of data available upon which to assess 

the spectrum of mutations induced by EMS. In 99% of cases, EMS generated G to A and C to T transition point 

mutations and its effectiveness in inducing a high frequency of point mutations in a wide range of organisms in the 

absence of gross chromosomal abnormalities, as expected from its established mode of action and induced changes 

in genes that were randomly distributed across the Arabidopsis genome. Mutations in DNA can be categorized as 

silent, missense or truncation depending upon how they affect the encoded protein. Across all 1890 mutations in 

Arabidopsis, the observed distribution of silent, mis-sense and truncation events was close to the expected 

distribution, as was the overall heterozygous: homozygous ratio of 2:1. The one clear exception was that truncation 

events were detected 3.6 times as often in heterozygotes, suggesting that such severe lesions are frequently 

deleterious to plants in the homozygous or haploid condition.  

 

5.11 EDR2 gene amplification 

EDR2, a candidate susceptible gene for downy mildew resistance was amplified in the reference genotype P1449-2-

P1. With the assumption that EDR2 acts as a negative regulator of cell death, it is known to activate the salicylic 

acid signal transduction pathway in adjacent living tissue in a positive feedback loop that amplifies signal 

transduction via this defense pathway. Because loss-of-function mutations in the EDR2 gene confer enhanced 

disease resistance to powdery mildew, EDR2 probably functions as a negative regulator of downy mildew 

resistance. The amplification of the EDR2 with different sets of degenerate primers was carried. Some faint 

nonspecific bands were observed along with the target band amplification. So, it became difficult for standardizing 

TILLING protocol in control and pooled DNA samples, because after digestion with endonuclease, more bands 



were observed in the pooled samples (mutant lines) than in the control. So, the target bands in LI-COR gel could not 

be detected. However, the amplified product was sequenced, which showed 20% similarity with pathogen related 

protein sequences of rice and sorghum.  

 

5.12 High-throughput large-scale applications of TILLING 

TILLING is a high-throughput, low-cost method that is suitable for a large-scale production operation. The first 

production-scale TILLING service to be offered was the Arabidopsis TILLING Project (ATP; http://tilling.fhcrc. 

org:9366/). Several computational tools were adapted to provide a completely web-based system for target selection, 

primer design and evaluation of sequence-verified mutations. Mendelian ratio of heterozygous to homozygous 

mutations in samples pooled eight-fold in Arabidopsis. Approximately 90% of orders supplied by users are 

successful, with occasional failures usually attributable to primer design. ATP was used as a model to create maize 

(http://genome.purdue.edu/ maizetilling/) and Drosophila (Fly-TILL, http://tilling.fhcrc.org:9366/fly) TILLING 

services. There are alsoseveral independent TILLING services, including a service for lotus 

(http://www.lotusjaponicus.org/tillingpages/homepage.htm) and barley which illustrates the value of the method for 

production scale reverse genetics (http://www.scri.sari.ac.uk/programme1/BarleyTILLING.htm). The high 

throughput TILLING in pearl millet TILLING population of 9938 lines at ICRISAT (http/www. pearltill. icrisat.org 

/stauts.html) will be developed in future. This should serve the scientists across the globle who are interested in 

mutation screening and subsequent utilization in breeding programs that are aimed at crop improvement. 

 

Taking cognizance of the entire work, following conclusions are drawn. 

 

5.13 Genetic transformation studies in pearl millet 

 

• Both organogenic and embryogenic calli from immature inflorescences of the genotypes 81B-P6 and 843B-

P2 was initiated in MS medium containing 2,4-dichlorophenoxyacetic acid. This was confirmed by 

histological studies of the callus.  

 

• Shoot formation from callus cultures was obtained with different frequencies. Whole plant regeneration was 

achieved and plantlets were successfully transferred to the pots with 60% frequency. 

 

• Different parameters such as concentration of DNA, microcarrier size, vacuum pressure, distance from 

rupture disk to the microcarrier and to the target tissue were standardized using callus for Agrobacterium 

mediated genetic transformation in the genotype 81B-P6. 

 

• Concentration of acetosyringone versus the percent frequency of transformation was standardized. Putative 

transgenics were selected on phosphinothricin selection media and whole plants were regenerated and 



transferred to net house, though the percent frequency is low. A total of 44 plants were generated from the 

line 81B-P6 using microprojectile bombardment and Agrobacterium methods.  

 

• T0 generation plants were confirmed by PCR amplification (using gene specific primers) of osmotin, chitinase 

and bar genes and RT-PCR (chitinase). But the plants could not be taken to the next generation since all the 

transformants were found to be sterile. But the experiment was repeated and the transgenic nature of these 

plants was confirmed with PCR analysis, RT-PCR and BASTA test. Putative transgenics obtained from the 

second batch of callus tissue also appeared to be sterile. 

 

5.14 TILLING population and screening for point mutations 

 

• A mutant population in pearl millet genotype P1449-2-P1 was generated using EMS-mutagenesis. Different 

concentrations of EMS were standardized and all seeds were treated with 7.5 mM EMS for M1 germination 

in two batches to reach the target population. 

 

•  M1 lines were grown and selfed and seeds were collected for developing M2 generation. M2 lines were sown 

and phenotyping was performed in the field. 

 

• A total of more than 9938 pearl millet M2 lines were developed and DNA was isolated from 9938 lines and 

selfing of the plants was carried. Seeds were collected for raising M3 populations and for phenotyping 

analysis after the confirmation of mutants by screening M2 plants. 

 

• The DNA was quantified on agarose gel and fluorescence spectrophotometer and the DNA was normalized to 

5 ng /µl in liquid handling robotic machine and eight-fold pooling was prepared. 

 

• The DNA information from the 9938 lines was kept in LIMS, a bioinformatics tool for data storage and 

retrieval. The DNA plate’s information was uploaded in three parts. First, it was the TILLING MOTHER 

PLATE (113 plates) which contains the DNA isolated from the field, next was the TILLING NORMALISED 

PLATE (113 plates) which contains the diluted DNA information and the third one TILLING POOLED 

PLATE (12 plates) information. Standardization of TILLING protocol and screening for mutants in EDR2 

and DREB2A genes in TILLING population was carried out subsequently.  

 

• EDR2 and DREB2A gene amplifications were standardized using forward and reverse primers and 

heteroduplexes were formed by denaturing and annealing and the mismatch cleavage was performed with 

SniPerase endonuclease and purification was continued after cleavage and samples were loaded onto the SDS 

page gel and analyzed in a LICOR4300 machine. 

 



• Once the mutants were confirmed, samples were given for sequencing for SNP analysis. The forward read 

and reverse read and the mutant line were aligned in MultAlin online software for SNP detection. 

 

• From the pearl millet populations, a total of two mutants were detected for DREB2A, a gene that is associated 

with drought stress. In the mutant line 84081, a change in nucleotide sequence and the corresponding amino 

acid change showed clearly in the restriction positions upon SNP analysis. Perhaps this DREB mutant line 

can be tested for drought tolerance/susceptibility and can be utilized to analyze the loss of function of this 

gene. 

 

• The present research covers practical aspects of the technology, ranging from building the mutagenized 

population to mutation discovery, and discusses the possible improvements to current protocols and the 

impact of new genomic methods for mutation discovery in relation to the future of the TILLING approach. 

The high mutation frequency combined with the ability to screen individual targets allows one to screen 

homologs or gene family members individually and then combine the mutant alleles through breeding.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI 

SUMMARY AND CONCLUSION 

 



 

 

 

6.1 Regeneration and transformation 

 

Pennisetum glaucum L. (pearl millet or cattail millet) is an important cereal crop of India. It is the fifth most 

important cereal crop and the most important millet crop occupying 55% of global millet production. It is grown 

by poor farmers on marginal lands. It is grown over 40 countries, predominantly in the continents of Africa and 

Asia. It is the staple diet for the vast majority of poor farmers and also forms an important fodder crop for 

livestock population in arid and semiarid regions of India and elsewhere in the world. It is cultivated in 29 million, 

hectares of land supporting more than 100 million people – the poorest of the poor. India is the largest producer of 

this crop, both in terms of area (9.1 million hectares) and production (7.5 million tons) with an average 

productivity of 780 Kg per hectare. 

 

Pearl millet is an important cereal crop of India. As the world population continues to increase, food supplies must 

also grow to meet nutritional requirements. One means of insuring stability of food maintenance is to limit yield 

loss caused by plant pathogens mainly fungus, bacteria and virus. Downy mildew is a major fungal disease in 

pearl millet caused by a fungus. Millets rank as the world’s sixth most important food crops among cereals and are 

primarily grown in Asia and African countries. Plant breeding efforts over the past six decades have contributed 

tremendously to the genetic improvement of cereals in terms of yield and quality.  However, traditional 

approaches to crop improvement have several limitations. Therefore, yield and productivity cannot be sustained 

indefinitely (Vasil, 1994) so as to meet the food demands of growing population. Tissue culture and genetic 

engineering techniques can supplement traditional methods and thus help to enhance the yield.  

 

Different genotypes of pearl millet that are susceptible and tolerant to fungal pathogens especially to downy 

mildew have been collected from ICRISAT, Hyderabad and the germplasm was maintained in the green 

house/field. Callus cultures were raised from immature inflorescences on Murashige and Skoog’s media 

containing different plant growth regulators. Somatic embryogenesis and organogenesis was achieved from callus 

cultures and these cultures were used for regeneration of whole plants. Rooting of the shoots was observed and 

whole plants were recovered. Regenerated plants were later transferred successfully to the pots. Embryogenic 

callus was subjected to transformation using Agrobacterium tumefaciens and by micro projectile bombardment 

methods.   

 

Downy mildew is a major fungal disease in pearl millet caused by the fungus Sclerospora graminicola (Sacc.) 

Schroet. Other major diseases affecting pearl millet are smut (Moeszimyces penicillariae), ergot (Claviceps 

fusiformis) and rust (Puccinia substriata). There is 50-60% of the incidence of downy mildew in India depending 



upon the season and state and yield losses due to downy mildew disease in pearl millet are very high. Pathogen 

related (PR) proteins, for example, are a group of diverse proteins whose accumulation is triggered by pathogen 

attack or abiotic stress. In other words, PR proteins constitute a point where various response networks interact by 

reacting with different inducers such as salicylic acid, jasmonic acid, systemin and ethylene. Pathogens of plants 

are a significant and growing threat to crop production worldwide. The goal of producing crops with increased 

and durable resistance to a spectrum of diseases is therefore a major focus in plant research. Increasing knowledge 

of the plant defense has led to more sophisticated transgenic approaches to enhance resistance. The number of 

candidate genes put forward by transcriptomics, proteomics and protein interaction studies gives us a large choice 

of genes to be used. Potentially, these genes can be manipulated by over expression, induced expression and tissue 

specific expression. 

 

Some transgenics have been developed in pearl millet, but no single gene is capable of giving complete resistance 

to the fungi and on the other hand, multiple genes if transferred can effectively control this fungus or multiple 

fungi. In the present study, we introduced two genes namely osmotin and chitinase into pearl millet. Immature 

inflorescence derived embryogenic calli were co-bombarded with plasmids containing osmotin and chitinase in 

pCAMBIA 2300 and bar gene in pPUR vector driven by CaMV35S promoter. Bombarded calli were cultured on 

MS medium with phosphinothricin as a selection agent. Transgenic pearl millet lines (primary transformants) 

expressing osmotin and chitinase genes have been recovered (T0) in the present study. These transgenics were 

characterized by gene specific amplification of osmotin, chitinase and bar genes and also by RT-PCR method for 

chitinase gene expression. Southern blotting was performed in the untransformed controls and also in putative 

transgenics to ascertain gene integration into host genome. However, these transgenics appeared totally sterile and 

hence, second generation (T1) plants could not be recovered. 

 

6.2 Target induced local lesions in genomes (TILLING) 

 

Induced variation caused by artificial mutation or genetic engineering technique, shown by single nucleotide 

polymorphism (SNPs), insertions and deletions (InDels), can be indentified and discovered using small-scale to 

high throughput systems. TILLING (Target Induced Local Lesions in Genomes) is a method to detect and 

discover new mutations, insertions and deletions in DNA. TILLING is a technique which can be used in 

chemically induced mutation populations with high throughput genome-wide screening for point mutations in 

genes of interest. TILLING will be comparably efficient for plants with larger genomes because ethyl 

methanesulfonate (EMS) toxicity is expected to scale with the number of functional genes, which is likely to be 

similar for all higher plants. This method effectively complements classical forward mutation screening based on 

phenotypes. TILLING has several advantages as a general reverse genetic tool, especially for organisms for which 

other options are limited. The high density of mutations resulting from chemical mutagenesis means that, relative 

to insertional or deletional mutagenesis, far fewer plants are required for screening and much smaller genes can be 

effectively targeted. TILLING provides an allelic series of mutations, and is the only method that can focus the 

search for missense mutations to just part of a protein, such as in a single domain of a multidomain protein. 



Mutation detection in large populations, were mainly discovered by DNA sequencing, as the cutting efficiency of 

the endonuclease enzyme allows for the discovery of multiple mismatches in a DNA duplex, and also specific 

PCR primers must be developed for the screening of any polymorphism. This method is both quick and cheap as it 

is based on PCR reactions, followed by digestion and subsequent fragment analysis, and allows for the screening 

of many individuals simultaneously. Thus, this technique can further be used to construct linkage map for group 

genes involved in biotic/abiotic stresses. 

 

It is known that EMS is a nearly perfect mutagen for inducing G to A and C to T mutations and that all classes of 

mutations can be recovered at the expected frequencies. All other reports, although less comprehensive, generally 

support and extend this conclusion. Given the high regulatory and intellectual property costs associated with 

transgenics and the current concerns about genetically modified crop plants, there is likely to be agricultural 

interest in producing phenotypic variants without introducing foreign DNA of any type into a plant's genome.  

 

A mutant population in pearl millet was generated using EMS as a mutagen. Phenotyping performed in the field, 

combined with TILLING, demonstrated that chemical mutagenesis is an effective approach to generate mutants 

with altered agronomic traits for genetic studies and to predict the gene function through identification of an 

allelic series by TILLING. EMS mutagenesis of pearl millet seed resulted in populations with mutation 

frequencies that are feasible for use in a high-throughput TILLING operation. The mutation frequencies in this 

pearl millet population are lower than what has been found in Arabidopsis populations. Although the population 

was treated with the same concentration of EMS, the resulting mutation frequency was lower. It is possible that 

the genetic background could have an effect on the efficiency or toxicity of the mutagen, as has been observed in 

rice (Till, 2007) but differences could be due to other environmental or experimental conditions.  

 

Assuming a population size of 10,000 M2 lines to be ideal for mining allelic variants in candidate genes, a set of 

10,000 and 15,000 seeds of the inbred line “P1449-2-P1” were mutagenized using 7.5 mM EMS. The 

mutagenised seeds were grown into M1 plants and allowed to self pollinate. The population was advanced to M2 

generation. In each M2 line, one panicle from each row was labeled, and bagged before anthesis. To prevent 

redundancy of mutations, only one fertile plant from each M2 row were selected to produce M3 seeds and the 

plants leaf tissues were sampled for DNA preparation for the labeled plant. From mutagenized populations, DNA 

samples were isolated using high-throughput method and pooled and arrayed in microtiter plates. Genomic DNA 

of M2 lines was isolated from 25-day young leaves using Machery-Nagel plant genomic DNA isolation kit. DNA 

concentration was measured using PicoGreen reagent through Tecan spectrafluor plus and normalized to 5 ng/µl 

using Tecan Genesis workstation 200. Further to increase throughput screening, eight-fold pooling of 9,938 M2 

lines was carried which yielded 12 pooled plates. Two gene targets were selected for high throughput TILLING. 

 

Phenotypic evaluation of portions of the M1 and M2 generations revealed the presence of a wide spectrum of 

morphological diversity, which is a further indication of the forward genetic potential of this resource. The 

phenotypic variants observed in 2006 included: the leaf color- dark green, pale green, yellow, albino, and 



variegated, leaf appearance – curly, twisted, smooth, hairy, more erect, and less erect; leaf size phenotypes- width, 

length, and thickness and shoot appearance phenotypes like fewer tillers, more tillers, branched, and thickness, 

stature appearance phenotypes such as - taller, shorter, and extremely short, plant development phenotypes - 

seedling emergence time, flowering time, and time of senescence and  panicle mutants - bifurcating, partially 

sterile, completely sterile, long and short. The mutant lines sown in field were regularly surveyed for spotting 

interesting phenotypes. Although a broad range of phenotypic variants were observed in mutant population 

generated during 2006, the spectrum of phenotypic variants in new set of mutagenized population during 2007 

and 2008 was mostly confined to chlorophyll mutants. 

 

The screening of DREB2A and EDR2 was done for 12 pooled plates using standard TILLING protocol. The pools 

were then amplified by PCR using gene-specific primers. PCR amplification products were incubated with the 

SNiPerase endonuclease, a member of the nuclease family of single strand-specific nucleases. SNiPerase cleaves 

to the 3´side of mismatches and loop outs in heteroduplexes between wild-type and mutant DNA while leaving 

duplexes intact. Cleavage products were electrophoresed using the LI-COR gel analyzer system, and a standard 

commercial image processing program, to examine the gel readout. Differential double-end labeling of 

amplification products allows for rapid visual confirmation because mutations are detected on complementary 

strands and so can be easily distinguished from amplification artifacts. Upon detection of a mutation in a pool, the 

individual DNA samples were similarly screened to identify the individual carrying the mutation. The double-end 

labeling strategy provides confirmation within the pool screen, and further confirmation comes from identifying 

the same fragments in tracking down individuals. Therefore, sequencing was carried out with near certainty that a 

mutation exists within a small interval.  

 

With an aim to identify allelic variant for dehydration responsive element binding factor (DREB2A, a transcription 

factor), which plays a key role in drought tolerance, a set of 9,938 M2 TILLING lines have been generated using 

reference genotype “P1449-2-P1” with an optimized concentration of EMS. Screening of 9938 lines yielded two 

positive bulk DNA. Analysis of positive bulk for single plant identification was later carried out. A detailed 

TILLING analysis was performed for detecting the point mutation. In the mutant line 84081, a change in 

nucleotide sequence and the corresponding amino acid change showed clearly in the restriction positions upon 

SNP analysis. Perhaps this DREB mutant line can be tested for drought tolerance and can be utilized as a drought 

tolerant line. We were able to detect the change in one of the amino acids, i.e. arginine to serine in the DREB2A 

protein. These results contribute to a better understanding of the functionally relevant sites of the DREB2A protein 

and also for detecting a mutant plant that would be drought tolerant. EDR2, a candidate gene for downy mildew 

resistance is amplified in the reference genotype P1449-2-P1. The amplification of the EDR2 with different set of 

degenerate primers was carried. However, the target band was observed along with some non-specific bands. 

Multiple bands were observed when TILLING assays were performed on unpooled DNAs and multiple 

heterozygous sites were detected upon sequencing individuals. These results point out to the fact that the primers 

amplified more than one target, probably because of homology with other genes since it belongs to a multigene 

family. Two sequences were obtained upon cloning the EDR2 PCR product, one sequence corresponded to the 



EDR2 target but the other sequence showed homology with an unknown gene. So, the detection of mutant alleles 

has become difficult as far as EDR2 was concerned. 

 

 

Conclusions 

  

� Protocols for in vitro plantlet regeneration in pearl millet and genetic transformation using inflorescence 

derived callus cultures via Agrobacterium and microprojectile methods were standardized. Transgenic 

pearl millet plants were confirmed by gene specific amplification of chitinase and osmotin and also the 

bar genes. However, the transgenics turned out to be sterile, though pollen was produced. 

 

� Mutagenized population of pearl millet from inbred line P1449-2-P1 was produced using the chemical 

mutagen ethylmethane sulfonate and M2 generation was raised. Phenotypic analysis was carried out in 

M2 generation. The mutagenized population was screened for point mutations using the TILLING 

technique.  

 

� The mutant lines (9,938 lines) were screened for two candidate genes, one associated with water stress 

(dehydration responsive element binding factor, DREB2A) and the second associated with pathogen 

resistance (enhanced disease resistance, EDR2).  

 

� Allele mining was carried out for DREB2A gene; amino acid arginine was changed to threonine and 

serine to proline in the hot spot region that was predicted by the CODDLE software. It is hoped that these 

amino acid changes would bring loss of function of this gene and thus can help to find out the function of 

the gene under water stress conditions. 

 

� TILLING was performed for EDR2 gene; but because of non-specificity, the mutations could not be 

detected in the LICOR gel.           
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APPENDIX 



 

 

 

Composition of Solutions, Reagents and media 

 

LB media 

Tryptone       - 10 g 

Yeast extract  - 5 g 

Sodium chloride   - 10 g 

Make up the volume to 1000 ml by adding distilled water 

Agar (if required)   - 15 g/l 

 

YEM medium 

Yeast extract   - 0.4 g 

Mannitol    - 10 g 

MgSO4 7H2O   - 0.2 g 

K2HPO4   - 0.5 g 

NaCl    - 0.1 g 

pH     - 7.0 

Make up the volume to 1000 ml by adding distilled water 

Agar (if necessary)  - 15 g/l 

 

YEP medium 

Peptone   - 10 g 

Yeast extract  - 10 g 

NaCl   - 5 g 

pH   - 7.0 

Make up the volume to 1000 ml by adding distilled water 

Agar (if necessary)  - 15 g/l 

 

Induction medium  

2 mM NaH2P04                - 2 ml 

75 mM MES   - 10 ml  

1% Glucose   - 1g 

100 µM Acetosyringone  - 100 µl    

1X AB salts   - 5 ml 

Make up the volume to 100 ml with distilled water. 



 

Composition of AB salts 

373 mM NH4Cl  - 20 g 

MgS04.7H2O  - 6 g 

40 mM KCl  - 3 g 

0.1 mM FeSO4.7H2O - 0.05 g 

Make up the volume to 1litre with distilled water. 

 

ABG media 

0.5% Glucose  - 5 g 

1X AB salts  - 50 ml 

1X AB buffer  - 50 ml 

Make up the volume to 1 litre with distilled water 

Agar   - 15 g 

 

 Composition of AB buffer 

 K2HPO4  - 78.6 g 

 NaH2PO4  - 23 g 

Make up the volume to 1 litre with distilled water 

 

Co-cultivation medium 

MS basal + 2% sucrose and 1% agar containing 100 µM acetosyringone 

 

Selection medium  

MS + 4 mg/l BAP + 500 mg/l cephotaxime + 5mg/l phosphinothricin+ 3% sucrose and 1% agar- for pearl millet. 

 

Osmoticum medium 

MS basal medium + 36.4 g/l mannitol and 36.4 g/l sorbitol + 30 g/l sucrose (pH 5.8) and 1% agar 

 

PM Callus M medium 

MS medium+ 2.0 mg/l 2,4-D + 100mg/l NaCl + 3% sucrose (pH 5.7)and 1% agar 

 

PMRM medium 

MS+ 2.0 mg/l Kinetin + 0.1 mg/l NAA + 3% sucrose (pH 5.7) and 1% agar 

 

0.1M CaCl2 Solution:  

Dissolve 1.47 g of calcium chloride in 100 ml of distilled water and store at 4 
o
C. 



 

20 mM CaCl2 Solution 

Dissolve 294 mg of calcium chloride in 100 ml distilled water and store at 4 
o
C 

  

RNase (10 mg/ ml) 

Dissolve Rnase in water, place in a tube in a boiling water bath for 10 minutes. Allow this to cool on a bench and 

store at -20 ºC. 

 

Tris HCl (1 M, pH 8.0) 

Dissolve 121.1 g Tris in 800 ml of water. Adjust pH to 8.0 with conc. HCl make volume up to 1 liter and autoclave. 

 

EDTA (0.5 M, pH 8.0)  

Dissolve 186.1 g Na2EDTA.2H2O in 800 ml water. Adjust pH to 8.0 with sodium hydroxide pellets. Make up 

volume to 1 liter and autoclave.  

 

T10E1 buffer 

1M Tris HCl pH 8.0 - 10 ml 

1M EDTA pH 8.0  - 1 ml 

And make up to 1 liter with sterile distilled water. 

 

10X Tris-Borate Buffer (TBE) 

Tris buffer  - 108 g 

Boric Acid  - 55 g 

EDTA   - 9.3 g 

Distilled wate made up to 1 litre. 

pH   - 8.3 

 

Plasmid Isolation Solutions 

Solution-I  

15%Glucose   - 7.5 g   

25 mM Tris-HCl pH 8.0 - 1.97 g 

10 mM EDTA  - 1 ml     

100 µg/ml RNase A - 2 µl   

Make up the volume to 50 ml with distilled water  

Solution-II 

0.2N NaOH  - 0.4 g    

1% SDS   - 0.5 g    



Make up the volume to 50ml with distilled water  

Solution-III 

3M Potassium acetate pH 4.8. - 14.72 g 

Dissolve 14.72 g of sodium acetate in 25 ml water. Adjust pH to 4.8 with glacial acetic acid and make volume up to 

50ml. 

 

6X Gel loading buffer (0.25 % Bromophenol blue, 40 % sucrose) (10 ml) 

Sucrose     - 4 g 

Bromophenol Blue   - 2.5 ml 

dH2O     - up to 10 ml 

Store at 4 
o
C. 

 

Ethidium bromide (10 mg/ml) 

Dissolve 100 mg ethidium bromide in 10 ml of distilled water; wrap tube in aluminium foil and store at room 

temperature. 

Caution: Ethidium bromide is extremely mutagenic. 

 

CTAB (Cetyl Trimethyl Ammonium Bromide) (2 %) buffer 

CTAB      - 20 g 

1 M Tris       - 200 ml 

5 M NaCl       - 280 ml 

0.5 M EDTA         - 40 ml 

Na2SO3       - 2.5 g 

pH    - 8.0 

Distilled water      - 460 ml 

Add mercaptoethanol (0.1 %) fresh while using CTAB (2 %) solution. 

 

Chloroform: isoamyl alcohol (24:1) 

Chloroform   - 240 ml 

Isoamyl alcohol    - 10 ml 

Store in dark at room temperature. Make up and dispense the solution in a fumed cupboard. 

 

Ethanol (70 %) 

Absolute alcohol                   - 70 ml 

Distilled water                         - 30 ml 

 

100 base pairs/1kb ladder (50 ng/ml) 



Ladder (stock conc. 1 µg/µl) - 50 µl 

Blue (6X dye)    - 165 µl 

T10E1 buffer    - 785 µl  

Protein extraction buffer   

 50 mM NaH2PO4                - 6.5 ml 

50 mM  Na2HPO4               - 93.5 ml 

 

Solutions used for Southern blotting 

Denaturation solution: 

1.5M NaCl                - 43.83 g 

0.5M NaOH                - 10 g 

Make up the volume to 500 ml with distilled water. 

 

Depurination solution:  

0.2 N HCl                - 4.38 ml of HCl 

Make up the volume to 200 ml with distilled water. 

 

Neutralisation solution:  

1 M Tris-HCl  pH 8.0              - 60.55 g  

1.5 M NaCl               - 43.83 g 

Make up the volume to 500 ml with distilled water 

 

20x SSC  

3 M NaCl               - 86.75 g 

0.5 M sodium citrate pH 7.0           - 44.1 g 

Make up the volume to 500 ml with distilled water. 

 

Primary wash buffer (per liter) 

2 M Urea               - 120 g 

0.5 M NaH2PO4  pH 7.0              - 7.8 g 

150 mM NaCl               - 8.7 g 

1 M MgCl2               - 1 ml from1M stock 

2% Blocking reagent              - 2 g 

 

Secondary wash buffer: (20x stock) 

1 M Tris Base              - 121 g 

2 M NaCl              - 112g 



pH               - 7.0 

Make up the volume to 1 liter with distilled water 

Working Stock: Dilute 1:20 and add 2 ml/l of 1 M MgCl2 to give a final concentration of 2 mM. 

 

Preparation of EMS 

Formula of EMS: C3H8O3S 

Molecular weight of EMS is (3×12) + (8×1) + (3×16) + (1×32) = 124 g EMS/mole 

5mM EMS: 

For 1Litre solution: 

(5 mMoles EMS/l) × (1 mole/1000 mMoles) × 1L = 0.005 moles EMS 

124 g EMS/mole × 0.005 moles = 0.6 g/l = 600 mg/l 

Like this calculation for all the concentrations 5 mM EMS,10 mM EMS,15 mM EMS, 20 mM EMS,30 mM EMS,40 

mM EMS,50 mM EMS,60 mM EMS was done and prepared the mutagen chemical. 

 

DNA isolation Solutions 

Chloroform:ethanol 24:1 (v/v),5 M NaC1, TE buffer: 10mM tris-HC1, 1mM EDTA, pH 8.4, RNase A: 10 mg/ml, 

Proteinase K: 1 mg/ml ,Chloroform:Phenol: (25:25:1) , Extraction buffer:100 mM Tris, 1.4 M NaC1, 20 mM EDTA, 

pH 8.0, 2%, CTAB, 0.3% Mercaptoethanol  

 

CTAB (Cetyl Trimethyl Ammonium Bromide) 2 % buffer  

CTAB                                        - 20 g 

1M Tris                                     - 200 ml 

0.5M Nacl                                 - 280 ml 

0.5M EDTA                              - 40 ml 

Na2So3                                     - 2.5 ml 

Distilled water                          - 460 ml 

Add Mercaptoethanol (0.3%) fresh while using CTAB (2%) solution. 

 

RNase (10mg/ml) 

Dissolve RNase in water, place in a tube in a boiling water bath for 10minutes. Allow this to cool on a bench and 

store at -20 ºC. 

 

Chloroform: Ethanol (24:1) 

Chloroform                              - 240 ml 

Ethanol                                    - 10 ml 

Store in dark at room temperature. Make up and dispenses the solution in a fumed cupboard. 

 



Ethanol (70%) 

Absolute alcohol                    - 70 ml 

Distilled water                        - 30 ml 

NaCl (5 M) 

Dissolve 292.2 g NaCl in 750 ml water.Make up to 1 liter with water, filter and autoclave. 

 

Phenol/ Chloroform  

Mix equal volume of the buffered Phenol: Chloroform: Isoamyl alcohol (24:25:1).Store at 4 ºC 

 

Sodium acetate (2.5 M, pH 5.2) 

Dissolve 340.2 g sodium acetate in 500ml water, Adjust pH to 5.2 with glacial acetic acid and make volume up to 1 

liter and autoclave. 

 

Tris HCl (1 M, pH 8.0) 

Dissolve 121.1 g Tris in 800 ml water. Adjust pH to 8.0 with Conc. HCl make volume up to 1 liter. and autoclave 

 

EDTA (0.5 M, pH 8.0) 

Dissolve 186.1 g Na2EDTA.2H2O in 800 ml water. Adjust pH to 8.0 with Sodium hydroxide pellets. Make up 

volume to 1 liter and autoclave. 

 

T10E1 buffer 

1M Tis HCl pH 8.0                - 10 ml 

1M EDTA pH 8.0                  - 1 ml 

And make up to 1 liter with sterile distilled water 

 

T50E10 buffer              

1M Tris HCl pH 8.0              - 50 ml 

0.5M EDTA pH 8.0              - 20 ml 

Make volume upto 1 liter with sterile distilled water. 

 

10X Tris-Borate Buffer (TBE) (per liter) 

Tris buffer 

Boric Acid 

EDTA 

108 g Tris base, 55 g Boric acid and 9.3 g EDTA, Add deionised H2O to 1 liter. The pH is 8.3 and requires no 

adjustment. 

 



6X Gel loading buffer (0.25% Bromophenol blue, 40% sucrose) (10ml) 

Sucrose                     - 4 g 

Bromophenol Blue    - 2.5 ml 

dH2O      - 10 ml 

Store at 4 ºC 

 

Ethidium bromide (10 mg/l) 

Dissolve 100 mg ethidium bromide in 10 ml of distilled water; wrap tube in aluminium foil and store at room 

temperature 

Caution: Ethidium bromide is extremely mutagenic. 

 

Acrylamide / bisacrylamide 29:1 (w/w) 

Acrylamide                                      - 29 g 

Bisacrylamide                                  - 1 g 

Water (deionised distilled) up to 100 ml 

Store at 4 ºC for 1month 

 

Acrylamide/bisacrylamide 29:1 (v/v) 

Acrylamide                                     - 87 ml 

Bisacrlamide                                   - 3 ml 

Add deionised water to 300 ml. Solution can be stored up to 1 month at 4 ºC 

 

10% (W/V) Ammonium per Sulphate  

 Ammonium per Sulphate              - 1 g 

Water   (deionised distilled)           - 10 ml 

Make fresh stock every week and store at 4 ºC 

 

Binding silane 

0.15 ml Bind silane 

0.5 ml acetic acid 

99.35 ml ethanol  

Mix the ingredients and store at 4 ºC 

 

100 base pairs ladder (50 ng/l) 

100 bp ladder (stock conc. 1 µg/µl)  - 50 µl 

Blue (6X dye)                                    - 165 µl 

T10E1 buffer                                       - 785 µl 



  

Repel silane  

Readymade, store at 4 ºC 

Components of Frontier Genomic Kit 

10X PCR Buffer  

50mM MgCl2 

10mM dNTPs 

Shakara Taq 

2X Reaction Buffer 

SNiPerase 

Eco-Mix Buffer 

Stop Buffer 

Loading Buffer 

Homozygous Control Mix 

Heterozygous Control Mix 

 

Primers Suspension 

All stock primers are suspended to a final concentration of 100 µM in TE pH 7.4. The volume required to achieve 

this concentration varies between primers and is listed on the MWG datasheet under Volume for 100 pmol/µl. 

Double and triple check the correspondence of the name on the lid of a stock tube to the name on the side. Check the 

appearance of the lyophilized primers before suspension. 

Add T10E1 to primer stock tubes or a final concentration of 100 µM. Do this at a genomic DNA/non-PCR product 

bench with the lights dimmed or off. Use PCR-clean tube racks and pipettes. Let TE stand in primer tube for several 

numbers to allow primers to go into solution. Thoroughly vortex primer tubes until primers are in solution. This may 

take some time for IRD 700 and IRD 800 primers. Repeat vortexing and centrifuge tubes for 10sec and prepare 

aliquots. 

 

Aliquots: Make 3 sets of 20 µl aliquots of forward and reverse primers. The more aliquots the better, but try to leave 

50 µl of master stock tube. Store 2 sets of primer aliquots at -80 ºC in a box. 

 

Primer Mixtures 

Primer mixtures should be made fresh whenever possible. The fluorescent dye is unstable in the mixture and the 

breakdown products may be be inhibitory to PCR annealing and elongation. 

Mix primer cocktails in a 1.5ml microfuge tube as follows. 

 

Unlabelled forward Primer   (100 µM) 

IR 700 blue forward Primer   (100 µM) 

Unlabelled reverse primer      (100 µM) 



IR 800 green Reverse Primer (100 µM) 

 

 

 

Primers of DREB2A gene 

1     Forward Primer 1 (F1) 

Name: 54 deg 102-124 Len:23 Score:93 

Predicted Melting Temperature: 54 degrees Celsius 

GeneTool Score: 93 

Start: 102 End: 124 Length: 23 

Bases:5'GCCATGGTGCAATTGACTGAAGT 3' 

2     Reverse Primer 1 (R1) 

Name: 55 deg 306-328 Len:23 Score:91 

Predicted Melting Temperature: 50 degrees Celsius 

GeneTool Score: 91 

Start: 492 End: 514 Length: 23+3=26 

Bases:5' CCGCAAAATGACCCAACAAATGTACC 3'  

3      Forward Primer 2 (F2)                                                      

Name: 59 deg 20-38 Len:19 Score:94 

Predicted Melting Temperature:59 degrees Celsius 

GeneTool Score: 94 

Start: 20 End: 38 Length: 19 

Bases: 5' CGCGTGATGGGCCGACCTC 3' 

4      Reverse Primer 2 (R2) 

Name: 56 deg 800-817 Len:18 Score:91 

Predicted Melting Temperature: 56 degreesCelsius 

GeneTool Score: 91 

Start: 800 End: 817 Length: 18 

Bases: 5' GCTCCATGCCGCCACCAG 3' 

5      Forward Primer 3 (F3) 

Name: 56 deg 97-119 Len:23 Score:90 

Predicted Melting Temperature: 56 degrees Celsius 

GeneTool Score: 90 

Start: 97 End: 119 Length: 23 

Bases:5' TCTGGGCATCTGTGGGTACCTGT 3' 



6     Reverse Primer 3 (R3) 

Name: 57 deg 862-884 Len:23 Score:91 

Predicted Melting Temperature: 57 degrees Celsius 

GeneTool Score: 91 

Start: 862 End: 884 Length: 23 

Bases:5' CCGTCTTATTCGAGCTGGATGCA 3' 

 

7     Forward original (F0) 

F-5’CCGGAATTCATGCAGTCCTTGACTGATGG 3’  

 

8     Reverse original (R0) 

R- 5’ CCGCTCGAGCAGTTCCCTGACTACAGGC 3’ 

 

Preaparation of PicoGreen 

No. of Samples or Plates T10E1 in µl PicoGreen in µl 

1 99.5 µl 0.5 µl 

1 Plate or 96 samples  10,000 µl 50 µl 

2 Plates 20,000 µl 100 µl 

 

Quantification of DNA using PicoGreen 

           Switch on the TECAN SPECTRAFLOUR PLUS machine.  

           Switch on the respective computer 

o Press Ctrl+Alt+Del  

o Press enter (No password) 

o Double click ‘Magellan2”  software icon 

o Press cancel 

o In the menu bar: Click the Insert � Measurement Parameters. 

 

Do the following changes in Measurement Parameters 

o General: Fluroscence icon is already selected (Keep the default settings) 

o Meas. Params:  

• Others: Excitation Wavelength = 485 

   Emission Wavelength = 535  

Gain: Manual = 103 

  Number of Flashes = 10 

o Shaking:  

Shaking before measurement: Duration = 15 seconds  



Moving Plate (FLUOTRAC200) into the Machine: 

Instrument �  Move Plate & filter  �  Move Plate   In �Ok 

Prepare your plate (FLUOTRAC 200) 

1. First with Picogreen and T10E1 solution without DNA for taking RFU reading “Blank reading” 

2. Next add DNA and take the RFU reading “Sample reading or DNA reading”. 

 

Blank Reading:  

Instrument � Move Plate & filter � Move Plate Out Ok � Keep the plate (FLUOTRAC 200) on the tray � 

Instrument � Move Plate & filter � Move Plate � In Ok  

 

Instrument � Start Measurement � Start � (After measurement is finished) Edit � copy to Excel sheet 

andsaveitwithrelavantname.(Ex.File�Saveas“Plate1_Project1”) 
 

Remove plate (FLUOTRAC200) Instrument � Move Plate & filter � Move Plate � Out Ok. 
 

Then add DNA. 

 

Sample Reading:  

Instrument �  Move Plate & filter  �  Move Plate Out Ok � Keep the plate (FLUOTRAC 200) on the tray � 

Instrument �  Move Plate & filter �  Move Plate In Ok 

 

Instrument � Start Measurement � Do you want to overwrite Yes  (Note: Check if you saved earlier reading or 

else overwriting will erase earlier data) � (After measurement is finished) Edit � copy �Paste it below the Blank 

reading in the same excel sheet � Save it in excel �Output is in CSV format containing both PicoGreen and DNA 

in PicoGreen.  

 

Preparing your plate (FLUOTRAC 200) 

1. For Blank Reading:  

- Take a washed and dried MG plate 

- Prepare the T10E1 & Picogreen mix according to the number of samples. 

- Take the solution in a tray. 

- Into each well of MG plate add 100 µl of “T10E1 & PicoGreen” mixed solution.  

- Then take the “Blank reading” 

2. Sample Reading or DNA reading: 

            Add 1 µl of mother DNA into respective wells of MG plate.  

            Formula= -2.78273+0.002019*(DNA reading – Blank reading) 

 

If the concentration of Mother DNA is expected to be more than 110 ng/ul  

o Then dilute the Mother DNA 3 times in a PCR plate. i.e. 4 µl of DDW and 2 µl of Mother DNA. 

o From this diluted DNA solution take 1 µl DNA and add in the respective wells of MG plate with 

the T10E1 & Picogreen solution. 



Formula= 3{-2.78273+0.002019*(Blank reading – DNA reading)}. 

 

Dilution of DNA using Gemini software in Tecan machine 

• Convert CSV files of Normalised data of DNA to GWL files 

• Switch on the TECAN machine.  

• Switch on the respective computer 

o Press Ctrl+Alt+Del  

o Press enter (No password) 

o Double click Gemini” software icon. 

 

Preparing plates (TECAN machine) 

• In Two 96 well stands place the source plate (in first stand toward left) and the empty plate (next stand at 

right side). 

• Fill the double distilled autoclaved water in one container and the florox for washing the needle in other 

container. 

• Fill the can with double distilled water that was provided along with the machine. 

 

Gemini software for Dilution of DNA 

            Open Gemini tool        Upload the GWL file         Strat Dilution          new page opened For Dilution         

Click wash the neddle         Repeat the step for 3 times           Click Run           Dilution of samples was started for 

96 well plate of DNA isolated (Mother Plate).  

 

 

 

 

                         

 


