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Abstract: The production of soybean is gaining more attention in West Africa. In light of pro-
jected changes in climate, there is a need to assess the potential impacts on yield productivity and
variability among farmers. An evaluated GROPGRO module of the Decision Support System for
Agro-technological Transfer (DSSAT) was used to simulate soybean productivity under both historical
(1980–2009) and projected climate scenarios from multiple general circulation models (GCMs) under
two representative concentration pathways (RCPs): 4.5 and 8.5. Agronomic data from 90 farms, as
well as multiple soil profile data, were also used for the impact assessment. Climate change leads to a
reduction (3% to 13.5% across GCMs and RCPs) in the productivity of soybean in Northern Ghana.
However, elevated atmospheric carbon dioxide has the potential to offset the negative impact, result-
ing in increased (14.8% to 31.3% across GCMs and RCPs) productivity. The impact of climate change
on yield varied widely amongst farms (with relative standard deviation (RSD) ranging between 17%
and 35%) and across years (RSD of between 10% and 15%). Diversity in management practices, as
well as differences in soils, explained the heterogeneity in impact among farms. Variability among
farms was higher than that among years. The strategic management of cultural practices provides an
option to enhance the resilience of soybean productivity among smallholders.

Keywords: climate change; agriculture; Ghana; climate variability; elevated atmospheric carbon dioxide

1. Introduction

Soybean (Glycine max (L.) Merrill) is becoming an increasingly important crop in
Ghana due to rising demand within the poultry sector, as well as its demand as a raw
material for the expanding oil industry. Northern Ghana contributes about 96% of the total
soybean produced in Ghana, and its cultivation is a key livelihood opportunity in this
region. Unlike other cereals, which require the use of considerable amounts of fertilizer,
notably, nitrogen [1], soybean improves soil fertility by fixing atmospheric nitrogen into
the soil (through biological nitrogen fixation) which then becomes available to subsequent
cereals grown in crop rotation schemes. Its cultivation is also associated with a reduction
in Striga hermonthica, a noxious weed that limits the yield of other crops. Soybean crop
residue also serves as an important feed for livestock, due to its high nutrient content [2].
The increasing demand for the crop for industrial processing has made it a cash crop, thus
significantly contributing to poverty reduction among smallholder farmers. Its demand
for domestic purposes is also on the rise, thus playing an important role in the nutrition of
households due to its high protein content.

The cultivation of soybean, similarly to many other crops in Sub-Saharan Africa (SSA),
is largely undertaken by smallholder farmers with low external input and who are heavily
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reliant on rainfall; hence, yield levels are generally very low. Unlike other major soybean-
producing countries such as Brazil, the United States of America (USA), and China, where
a significant proportion of soybean is cultivated under irrigation, it is mainly rain-fed in
Ghana. Several factors limit the productivity of soybean in Ghana. Prominent among
them is the over-reliance on rainfall, which has increasingly become erratic [3], resulting in
drought spells which are detrimental to optimal growth and yield [4]. Another weather
parameter which is known to impact the yield of soybean is high temperature. Changes in
temperature influence the physiological, biochemical, metabolic, and molecular functions
of plants [5], affecting the growth and yield of crops [6]. Higher temperatures have been
associated with higher nutrient contents of soybean by a number of studies [7]. Future
climatic changes are likely to have substantial impact on soybean production, depending
on the magnitude of variations in temperature and CO2 from baseline conditions [8,9].
An increased temperature from 26 ◦C to 30 ◦C resulted in soybean yield decline, whereas
yield increases were reported in cooler environments where the base temperature was
19 ◦C. Hatfield et al. [10] indicated that a projected rise in temperature and increasing CO2
coupled with an increase in the variability of precipitation will create a complex set of
interactions on plant growth and water use, with a consequential effect on yield. However,
insurance (provision of financial protection services) against environmental stress factor is
almost non-existent. Indeed, even under current weather conditions, climate factors and
management side-by-side, as well as their interaction, contribute to low yields [4,11].

Climate change in SSA, characterized by projected increases in temperatures and more
erratic rainfall distributions [12], poses a major threat to sustainable agricultural growth,
food security, and development in Africa. As a result, the efforts of African countries to
achieve the Millennium Development Goals may be seen as a mirage if the adverse effects
of climate change are not addressed [13] and appropriate adaptation measures put in place
to either benefit or reduce its negative impact. The potential effect of climate change on
soybean production is, however, not well addressed [14,15]. Additionally, most studies
on climate change impacts on soybean have been restricted to cooler regions [16,17] and
were carried out at scales that do not capture the heterogeneity in input, management,
and resources which are peculiar to smallholder systems in SSA [14,18–20]. Adaptation
strategies must be carried out at farm level; therefore, there is a need to assess the diversity
in climate change impacts across smallholder farming systems and to capture its underlying
factors. The aim of this study was to assess (i) the potential climate change impacts on
the yield of soybean in Northern Ghana, and (ii) the heterogeneity of this impact among
smallholder farmers.

2. Materials and Methods
2.1. Description of the Study Area

This study was conducted in three districts; Tolon, Kumbungu and Savelugu-Nanton,
of the Northern Region of Ghana (Figure 1). The Tolon and Kumbungu districts lie between
latitude 9.25◦ N and longitude 53.02◦ W. Annual rainfall is uni-modal, ranging between
950 mm and 1200 mm and occurs from May to October with peaks in July–August. This
is followed by a dry season spanning November to March with mean daily temperatures
ranging from 33 ◦C to 39 ◦C, while the mean night temperature ranges from 20 ◦C to
25 ◦C. The Savelugu-Nanton District lies between 9.62◦ N and –0.82◦ W. The elevation
of the district ranges between 122 and 245 m above sea level. The soils are generally
coarse textured, relatively shallow in depth, and with low soil organic carbon content. The
dominant soil type is Alfisol (FAO classification) [21,22].
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Figure 1. Map showing study sites in northern Ghana, West Africa.

The annual average rainfall ranges from 650 mm to 1600 mm (Figure 2). The district is
characterized by high temperatures, with an average of 34 ◦C. The maximum temperature
could rise to as high as 42 ◦C, with a minimum of 19 ◦C.
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were monitored throughout the growing season. Data were collected on crop manage-
ment (variety, planting date, planting density, flowering dates, etc.), rainfall amounts and 
distribution during the growing season, biomass at flowering, and grain yield data at final 
harvest. Additional information was collected on soil type and depth, farm size, variety 
and sources of seed, crop insurance purchase, etc.  
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Annual rainfall is marked by a high inter-annual variability that influences crop
production. Agriculture in the study area is mainly rain-fed. The majority of the districts’
inhabitants are smallholder farmers (with farm sizes ranging from less than 1 to 2 ha),
cultivating a range of cereals (maize, millet, sorghum, and rice) and legumes (cowpea,
peanut, and soybean). Additionally, livestock plays an important role in the functioning of
the farming system through the use of crop residues as feed, and the provision of manure
for farming.

2.2. Agronomic Field Survey and Data Collection

An agronomic survey was conducted from June to October, 2017, to gather reference
agronomic and crop management data on soybean in Northern Ghana to calibrate and
evaluate the soybean model for local varieties and conditions. The data collection involved
ninety (90) farms from seven (7) farming communities within the Tolon/Kumbungu and
Savelugu/Nanton districts. Eight (8) lead farmers were selected and trained on data collec-
tion and record-keeping. Locally manufactured rain gauges [23] were mounted on the lead
farmers’ farms to record rainfall amounts. This was useful in capturing the spatial variation
in rainfall, and hence, improving the model output. The soybean fields were monitored
throughout the growing season. Data were collected on crop management (variety, planting
date, planting density, flowering dates, etc.), rainfall amounts and distribution during the
growing season, biomass at flowering, and grain yield data at final harvest. Additional
information was collected on soil type and depth, farm size, variety and sources of seed,
crop insurance purchase, etc.

The planting window of soybean in the study area spanned from the first week in June
to the third week in July 2017 (Figure 3). A follow-up visit was carried out between 10 and
14 September (which is about 6 to 9 weeks into the growing season after planting) to collect
aboveground biomass data from a 4 m2 area on each farm, oven-dried to a constant weight
to assess plant performance at flowering. In addition, pre-planting soil samples were taken
(Table 1). Two varieties, namely, Afayak (63.3%) and Jenguma (36.7%), were cultivated.
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Table 1. Soil parameters used in the evaluation of the model.

Location L
(cm)

SLL
(cm3/cm3)

SDUL
(cm3/cm3)

SAT
(cm3/cm3)

BD
(g/cm3)

OC
(%)

pHH2O
(-)

Dimabi

5 0.012 0.176 0.359 1.34 0.508 5.1
15 0.012 0.176 0.359 1.34 0.508 5.1
30 0.016 0.176 0.359 1.64 0.475 5.3
45 0.027 0.192 0.360 1.7 0.237 5.7
60 0.045 0.192 0.360 1.78 0.102 6.2

Kpalsogu

15 0.078 0.138 0.476 1.34 0.68 5.13
30 0.090 0.151 0.353 1.64 0.48 5.26
45 0.105 0.175 0.332 1.70 0.38 5.7
60 0.124 0.202 0.314 1.78 0.17 6.16

Nyankpala

5 0.145 0.32 0.48 1.3 0.75 6.5
15 0.145 0.32 0.475 1.3 0.65 6.5
30 0.144 0.3 0.482 1.3 0.5 6.5
45 0.182 0.33 0.475 1.35 0.45 6.5
60 0.201 0.36 0.466 1.35 0.45 6.5

Nasia

5 0.06 0.237 0.362 1.39 0.41 6.2
15 0.05 0.224 0.356 1.39 0.41 6.2
30 0.05 0.224 0.341 1.59 0.32 6.0
45 0.105 0.226 0.342 1.59 0.28 5.8
60 0.12 0.201 0.342 1.63 0.28 5.7

Tibogu

5 0.04 0.247 0.359 1.36 0.61 6.7
15 0.05 0.227 0.359 1.39 0.51 6.7
30 0.05 0.228 0.340 1.59 0.42 6.4
45 0.105 0.229 0.342 1.59 0.38 6.1
60 0.122 0.205 0.342 1.63 0.38 6.1

Langa

5 0.083 0.159 0.394 1.54 0.71 −99
15 0.086 0.158 0.395 1.54 0.58 −99
30 0.086 0.163 0.397 1.53 0.56 −99
50 0.083 0.157 0.365 1.62 0.45 −99

L, depth of the soil layer; SLL, soil lower limit or wilting point; SDUL, soil drained upper limit or field capacity;
SAT, saturated water content; BD, bulk density; OC, organic carbon; pHH2O, soil pH in water.

2.3. Calibration of the DSSAT CROPGRO Module for Soybean

Calibration of the two varieties (Afayak: TGX 1834-5E and Jenguma: Tax 1445-2E;
both—maturing between 105 and 115 days) which are widely used in Northern Ghana [24]
was performed using information from eighteen farms (18; 8 farms that cultivated Afayak
and 10 farms that cultivated Jenguma) in different communities in the Northern Region
of Ghana during the 2017 growing season for the Decision Support System for the Agro-
technology Transfer (DSSAT v. 4.6) crop model. Both varieties are determinate, resistant
to pod shattering, lodging, and pest infestation. They are also effective in the control of
Striga hermonthica [25] . Data on crop management such as planting dates and densities,
crop phenology (flowering and maturity dates), crop growth (biomass at flowering), and
grain yield at harvest were collected. Other weather parameters, including solar radiation
and temperature (maximum and minimum), were obtained from the National Aeronautics
and Space Administration (NASA-POWER) website using the GPS coordinates taken from
the farms. Soil information (Table 1) was also used as an input for the DSSAT CROPGRO
model. The soil profile data were taken 2 weeks prior to sowing. Soil organic carbon
(OC) was determined following the procedure developed by Walkely and Black [26].
The pH of the soils was determined in 1:10 soil-to-water suspensions. For bulk density
(BD), the core sampler method was used as described by Blake and Hartge [27]. Soil
moisture at wilting point, field capacity, and saturation were determined as described
by Hoogenboom et al. [28]. Model calibration was conducted first with crop phenology,
followed by growth, and finally, yield parameters.
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2.4. Evaluation of the DSSAT CROPGRO Module for Soybean

Management information from 49 farms which were cultivated with Afayak and
23 farms which were cultivated with Jenguma were used for the model evaluations. The
genetic coefficients obtained during calibration are presented in Table 2.

Table 2. Genetic coefficients of the soybean varieties used.

Genetic
Coefficient

Description Cultivars

Jenguma Afayak

CSDL Critical short-day length, below which reproductive development
progresses with no day length effect (for short-day plants) (hour) 11.88 11.88

PPSEN Slope of the relative response of development to photoperiod with
time (positive for short-day plants) (1/hour) 0.34 0.34

EM-FL Time between plant emergence and flower appearance (R1)
(photothermal days) 32 30

FL-SH Time between first flower and first pod (R3) (photothermal days) 16.5 16
FL-SD Time between first flower and first seed (R5) (photothermal days) 25 24

SD-PM Time between first seed (R5) and physiological maturity (R7)
(photothermal days) 41 38.5

FL-LF Time between first flower (R1) and end of leaf expansion
(photothermal days) 28 26

WTPSD Maximum weight per seed (g) 0.19 0.19
SDPDV Average seed per pod under standard growing conditions (#/pod) 2.25 2.25

THRSH
Threshing percentage. The maximum seed to (seed + shell) ratio at

maturity. Causes seeds to stop growing as their dry weight
increases until shells are filled in a cohort.

72.3 77.8

CSDL Critical short-day length below which reproductive development
progresses with no day length effect (for short-day plants) (hour) 11.88 11.88

PPSEN Slope of the relative response of development to photoperiod with
time (positive for short-day plants) (1/hour) 0.34 0.34

2.5. Evaluation of the DSSAT CROPGRO Module for Soybean

For the period 1980 to 2009, the 30-year historical baseline weather data were obtained
from the Ghana Meteorological Agency and used to build future climate scenarios based
on the modified delta methodology, as described in [29,30]. The baseline data consisted
of daily minimum and maximum temperature, daily rainfall amount, and solar radia-
tion. The future, mid-century climate scenarios (2040–2069) were selected from a list of
29 GCMs that adequately captured the West African climate [31] under two representative
concentration pathways (RCPs), namely, RCP 4.5 and RCP 8.5. The ambient atmospheric
CO2 concentration used in the study was 390 ppm for the baseline period. RCP 4.5 used
499 ppm CO2 concentration, whereas RCP 8.5 used 571 ppm. For each RCP, a scatterplot
of all 29 GCMs was derived based on the differences in temperature and rainfall amount
(also considering the number of rainy days) over the growing season (June–September)
(Figure 4). The median of the GCMs under each quadrant and the middle GCM were then
selected to represent 5 plausible climate scenarios, namely, cool/wet, cool/dry, middle,
hot/wet, and hot/dry scenarios.
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Figure 4. Scatterplots of changes in precipitation and temperature over the growing season
(JJAS—June, July, August, and September) for Tamale, Ghana, for 29 general circulation models
(GCM) under 2 representative concentration pathways (RCP), namely, (A) RCP 4.5 and (B) RCP 8.5.
The letters denote each of the 29 GCMs that best capture West African weather variability. The 5 dots
in each of the 5 clusters of GCM represent the median for the respective cluster. The 5 GCMs selected
under RCP 4.5 are: W, CMCC-CMS; Z, IPSL-CM5A-LR; F, CESMI-BGC; Y, HadGEM2-AO; and C,
BNU-ESM; and for RCP 8.5: O, MIROC5; Z, IPSL-CM5B-LR; I, GFDL-ESM2; D, CanESM2; and K,
HadGEM2-ES.

2.6. Assessment of Model Performance

Various statistical criteria were used to assess the ability of the model to reproduce
observed crop phenology, biomass yield at flowering, and grain yield at maturity. These
include the root mean squared error (RMSE), relative root mean square error (RRMSE) [32],
mean absolute error (MAE) [32], Willmott d-value [33], Nash–Sutcliffe modeling efficiency
(EF) [34], and coefficient of determination (R2).

2.7. Assessing Climate Change Impact and Variability

To assess the impact of climate change among soybean farms in the study area, agronomic
data described in Section 2.2 for the 90 farms were used together with soil data presented
in Table 1 to set up simulations using the DSSAT-CROPGRO model. The simulations were
performed with 30 years of historical weather data (1980–2009) as the reference years, while
5 projected GCM data values from 30 years (2040–2069) per each RCP (4.5 and 8.5) were used
as projected climate data. The outputs of the simulations were then used to estimate climate
change impacts on the yield of soybean (dijk) of each farm (i = 90) under each GCM (j = 5), and
RCP (k = 2). The climate change impact was defined as in Equation (1):

dijk(%) = 100 ×
(

f uture Xijk − historical Xi

Historical Xi

)
(1)

where the average grain yield is denoted as X. The overall average impact of climate
change (∆jk) on soybean grain yield under each climate scenario and RCP was estimated in
Equation (2) as:

∆jk(%) =
n

∑
i=1

dijk

N
(2)
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where N is the total number of farms. Variability in climate change impact across farms (hh)
due to differences in management practices (Vm) was estimated as in Equation (3):

Vm =

(√
1
h ∑

y
i=1

(
Xhhi − Xhh

)2
)

X
(3)

where y is years. Variability in climate change impact due to inter-annual differences in
weather parameters (Vw) was estimated as shown in Equation (4):

Vw =

(√
1
y ∑hh

i=1
(
Xyi − Xy

)2
)

X
(4)

2.8. Assessing the Impact of Climate Parameters

Changes in yield relative to the respective changes in each of the two main weather
parameters (rainfall and temperature) were evaluated to determine the sensitivity of yield
to the respective changes in each of the parameters.

3. Results
3.1. Model Calibration

The durations from emergence to flowering for both cultivars were calibrated with
RMSE values of 2.9 and 2.3 days and RRMSE values of 6.4% and 5.2% for Afayak and
Jenguma, respectively. The duration from emergence to maturity was also calibrated with
RMSE values of 4.1 and 4.0 days and RRMSE values of 3.9% and 3.7% for Afayak and
Jenguma, respectively. The calibration statistics for biomass at flowering and final grain
yield of the two cultivars are presented in Table 3. The model adequately captured the
observed biomass produced at flowering for the two cultivars with d-values of 0.99 and
0.95 for Afayak and Jenguma, respectively. The final grain yield was well calibrated with
d-values of approximately 0.87 and above and RRMSEs below 28%.

Table 3. Calibration statistics at flowering and maturity for the two soybean varieties.

Description RMSE
(kg/ha)

RRMSE
(%)

MAE
(kg/ha)

d-Value
(-)

No. of
Farms

Afayak (biomass at flowering) 328 10.6 22.9 0.99 8
Jenguma (biomass at flowering) 457 15.4 34.4 0.95 10

Afayak grain yield 323 22.7 32.2 0.95 8
Jenguma grain yield 665 27.7 54.2 0.87 10

3.2. Evaluation of Model Performance

The evaluation statistics for final grain yield of the two cultivars are presented in
Table 4 and Figure 5. The model adequately captured observed grain yield for the two
cultivars with d-values of 0.83 and 0.86 for Afayak and Jenguma, respectively. The final grain
yield was well calibrated with RRMSE values below 30%.

Table 4. Model evaluation statistics at maturity for grain yield.

Description RMSE
(kg/ha)

RRMSE
(%)

MAE
(kg/ha)

EF
(-)

d-Value
(-)

No. of
Farms

Afayak grain yield 628 28.1 10. 0.53 0.83 49
Jenguma grain yield 476 21.9 17.2 0.48 0.81 23
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3.3. Analysis of Climate Data

The changes in daily temperature, annual rainfall, and rainfall events were analyzed
to ascertain the similarities and differences between the baseline and the projected weather.
All the GCMs generally projected higher temperatures compared with the baseline with
increases ranging from 1.15 (IPSL-CM5B-LR) to 2.19 ◦C (BNU-ESM) and 1.73 (GFDL-ESM2)
to 3.23 ◦C (HadGEM2-ES) under RCP 4.5 and 8.5, respectively (Figure 6).
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Figure 6. Projected changes in monthly temperature for 5 general circulation models 
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period 2040-2069. 

 

Figure 6. Projected changes in monthly temperature for 5 general circulation models under two
representative concentration pathways (A is RCP 4.5 and B is RCP 8.5) for the period 2040–2069.

Annual rainfall over the 30-year period ranged from 695 to 1580 mm, with an average
of 1062 mm. Percentage change in the amount of rainfall ranged from −3.97% to 2.17%
under RCP 4.5 and −7.21% to 9.51% for RCP 8.5 (Figure 7).
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served. The number of rainy days ranged from 40 to 77 days across the years. All the 
GCMs projected a reduced number of rainfall events, except the Middle scenario (CESMI-
BGC and GFDL-ESM2) under both RCPs, which projected a marginal increase in the num-
ber of rainy days (Figure 8). Reductions ranged from 7 days to an increase of 1 day under 
RCP 4.5 and −10 to an increase of 3 days for RCP 8.5. The dry scenarios recorded the high-
est reductions under both RCPs. 

  

Figure 7. Projected changes in rainfall amount for 5 general circulation models under two rep-
resentative concentration pathways (RCP 4.5 and 8.5; A and B respectively) and for the period
2040–2069.

Rainfall was counted as an event if a minimum value of 2.5 mm rainfall was observed.
The number of rainy days ranged from 40 to 77 days across the years. All the GCMs
projected a reduced number of rainfall events, except the Middle scenario (CESMI-BGC
and GFDL-ESM2) under both RCPs, which projected a marginal increase in the number of
rainy days (Figure 8). Reductions ranged from 7 days to an increase of 1 day under RCP
4.5 and −10 to an increase of 3 days for RCP 8.5. The dry scenarios recorded the highest
reductions under both RCPs.
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3.4. Spatial Grain Yield and Variability

Simulated grain yield distribution under both ambient and elevated CO2 conditions
and two RCPs are presented in Figure 9. The simulated baseline mean grain yield of
soybean among farms was 2093 kg/ha, with a variability of 19%. Under a climate change
scenario assuming ambient CO2 concentrations under RCP 4.5, the mean grain yield among
farms ranged from 1919 kg/ha to 2019 kg/ha. Under elevated CO2 concentrations, yield
increased to between 2416 and 2528 kg/ha.
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Figure 9. Distribution of simulated grain yield under ambient and elevated CO2 conditions, two
RCPs 4.5 (A) and 8.5 (B), each with 5 different climate scenarios.

The variability in grain yields among farms under RCP 4.5 was between 18% and
23% and 16% and 21% with and without elevated CO2 concentrations, respectively. In
both cases, the hot wet scenario yielded the highest variability and lowest mean grain
yields. Under RCP 8.5, simulated grain yields assuming ambient CO2 resulted in yield
declines as with RCP 4.5; thus, the distribution of yields under all GCMs were to the left
(towards lower grain yields) of that of the baseline yields (Figure 9). As with RCP 4.5, the
hot wet climate scenarios yielded the lowest mean grain yield among the climate scenarios
irrespective of CO2 concentration used, while the middle scenarios exhibited the highest
grain yield. Simulated grain yields were between 1842 and 2011 kg/ha under ambient
CO2 concentrations and between 2497 and 2717 kg/ha under elevated CO2 concentrations.
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Variability in grain yields was generally higher under ambient CO2 conditions (17–26%)
than under elevated CO2 concentrations (15–24%).

3.5. Temporal Grain Yield and Variability

Simulated inter-annual grain yield ranged between 1913 kg/ha under the hot and
wet climate scenario (HadGEM2-AO) to 2019 kg/ha under the hot dry climate scenario
(BNU-ESM), assuming ambient CO2 concentrations under RCP 4.5 conditions. Under
elevated CO2 concentrations, grain yield ranged from 2410 kg/ha under the hot/wet
climate scenario (HadGEM2-AO) to 2527 kg/ha in the hot dry climate scenario (BNU-ESM).
Thus, grain yields were higher under elevated CO2 concentrations. Inter-annual variability
in yields within the various climate scenarios were low, ranging from 10.1% to 11.4% under
both ambient and elevated CO2 conditions, respectively.

Under RCP 8.5 and ambient CO2 conditions, inter-annual grain yields were gener-
ally marginally lower than those obtained under RCP 4.5, with yields ranging between
1842 kg/ha (hot/wet: CanESM2) to 2009 kg/ha (middle: GFDL-ESM). Inter-annual vari-
ability in grain yield among the climate scenarios under RCP 8.5 was as equally low as with
RCP 4.5, ranging from 9.8% to 14.5% and from 9.7% to 14.4% under ambient and elevated
CO2 conditions, respectively.

3.6. Climate Change Impact on Soybean Grain Yields

Simulated soybean yields declined relative to the baseline yields under ambient CO2
conditions under both RCP 4.5 and 8.5. Under RCP 4.5, yield declines were between 3.0%
and 9.2% among the climate scenarios, representing a difference in yield of 6.2% between
the two extreme climate scenarios. Under RCP 8.5, grain yield decline was generally higher
than that obtained under RCP 4.5, ranging from 3.5% to 13.5%. This indicated differences
in yield of about 10% between the two extreme climate scenarios (Figure 10).
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Figure 10. Impact of climate change on simulated soybean yield under (A) ambient and (B) ele-
vated carbon dioxide concentrations, two RCPs (4.5 and 8.5) and 5 different climate scenarios. 
Each box in the graph shows the distribution of relative yield change across farms. The line within 
the box marks the median, the dots depict the means. 

Under elevated CO2 conditions, simulated grain yields increased relative to baseline 
yields under both RCP 4.5 and 8.5. Grain yields increased by between 14.8% and 22.0% 
(hot/wet and hot/dry scenarios, respectively), indicating a difference of about 7.2% in 
mean yield change between the two extreme climate scenarios under RCP 4.5. Grain yield 
increases were generally higher under RCP 8.5 than under RCP 4.5 due to the higher CO2 
projection under RCP 8.5. Simulated mean yield increases were between 18.0% and 31.3% 
(hot/wet and middle scenarios, respectively). This represents about a 13.3% difference in 
the mean yield change between the two extreme climate scenarios under RCP 8.5. 
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values ranging between 17% and 26%. Under elevated CO2 conditions, the simulated var-
iability in climate change impact among farms was generally lower than those simulated 
under the ambient CO2 conditions. The RSD under RCP 4.5 with elevated CO2 ranged 
from 20% to 31% (cool/dry and hot dry scenarios, respectively) and from 18% to 35% 
(cool/wet and hot/wet scenarios, respectively) for ambient CO2. Generally, the hot scenar-
ios exhibited higher spatial variability than the cool scenarios. 

  

Figure 10. Impact of climate change on simulated soybean yield under (A) ambient and (B) elevated
carbon dioxide concentrations, two RCPs (4.5 and 8.5) and 5 different climate scenarios. Each box in
the graph shows the distribution of relative yield change across farms. The line within the box marks
the median, the dots depict the means.
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Under elevated CO2 conditions, simulated grain yields increased relative to baseline
yields under both RCP 4.5 and 8.5. Grain yields increased by between 14.8% and 22.0%
(hot/wet and hot/dry scenarios, respectively), indicating a difference of about 7.2% in
mean yield change between the two extreme climate scenarios under RCP 4.5. Grain yield
increases were generally higher under RCP 8.5 than under RCP 4.5 due to the higher CO2
projection under RCP 8.5. Simulated mean yield increases were between 18.0% and 31.3%
(hot/wet and middle scenarios, respectively). This represents about a 13.3% difference in
the mean yield change between the two extreme climate scenarios under RCP 8.5.

3.7. Variability in Climate Change Impact among Farms

The impact of climate change among farms was diverse irrespective of CO2 concentra-
tion and climate scenario. The relative standard deviation (RSD) in climate change impact
among farms under ambient CO2 conditions ranged between 18% and 23% across the cli-
mate scenarios under RCP 4.5. The RSDs were generally higher under RCP 8.5, with values
ranging between 17% and 26%. Under elevated CO2 conditions, the simulated variability
in climate change impact among farms was generally lower than those simulated under
the ambient CO2 conditions. The RSD under RCP 4.5 with elevated CO2 ranged from 20%
to 31% (cool/dry and hot dry scenarios, respectively) and from 18% to 35% (cool/wet and
hot/wet scenarios, respectively) for ambient CO2. Generally, the hot scenarios exhibited
higher spatial variability than the cool scenarios.

3.8. Inter-Annual Variability in Climate Change

The variation in climate change impact was noticeable among the 30-year data used
under elevated CO2 concentration. The RSD due to inter-annual variation in weather
parameters was higher under RCP 8.5 than under RCP 4.5 (from 10% to 11% for RCP 4.5
and from 10% to 14% for RCP 8.5). For both RCPs, the hot wet scenarios exhibited the
highest variability in climate change impact. Under ambient CO2 concentration, inter-
annual variation in climate change impact was from 10% to 11% for RCP 4.5 and between
10% and 15% for RCP 8.5. As with elevated CO2 concentrations, the hot climate scenarios
generally exhibited higher variability compared with relatively cool scenarios.

3.9. Sources of Variations in Climate Change Impact among Farms

Analysis of variance revealed that soil type, sowing window, cultivar and their in-
teractions markedly influenced the variation in climate change impact among farms in
this study under both CO2 scenarios. Irrespective of CO2 concentration and RCP used,
soil type contributed most to the variability in climate change impact among farms (with
RSD values ranging from 6% to 150%). The magnitude of the RSD was, however, much
higher for the simulations under ambient CO2 condition (Figure 11). The contribution
of the differences in sowing windows also contributed markedly to variability in climate
change impact among farms under both RCP and CO2 scenarios. The contributions of
cultivars to the variability were, however, marginal under both RCPs under elevated CO2
concentrations. The RSD of cultivar ranged between 0 and 11 across RCPs under ambient
CO2 conditions and between 0% and 4% under elevated CO2 conditions.
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Figure 11. Source of variation for soybean yield under ambient CO2 ((A) RCP 4.5, (B) RCP 8.5) and 
under elevated CO2 ((C) RCP 4.5 and (D) RCP 8.5). 

Figure 11. Source of variation for soybean yield under ambient CO2 ((A) RCP 4.5, (B) RCP 8.5) and
under elevated CO2 ((C) RCP 4.5 and (D) RCP 8.5).

3.10. Relationship between Changes in Grain Yield, Temperature, and Rainfall Amount

Under the same temperature change, the magnitude of change in yield varied, imply-
ing that other factors such as time of planting impacted on the magnitude of changes in
yields under climate change. However, as temperature increased, the variation in yield
changes also increased, irrespective of the CO2 concentration (Figure 12). The relationship
between the projected differences in rainfall amount and grain yield changes (Figure 13)
was rather weak compared with that of temperature. There was a higher diversity in
the differences in rainfall amount under RCP 8.5 than under RCP 4.5, which may have
contributed to the higher diversity in grain yield and climate change impacts among farms.
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Figure 12. Relationship between average change in temperature over the growing season and the
corresponding simulated change in grain yield under (A) RCP 4.5 with ambient CO2, (B) RCP 8.5
with ambient CO2, (C) RCP 4.5 with elevated CO2, and (D) RCP 8.5 with elevated atmospheric CO2

for Tamale, Ghana.



Agronomy 2022, 12, 2614 15 of 20
Agronomy 2022, 12, x FOR PEER REVIEW 17 of 23 
 

 

C

Rainfall difference (%)

-10 0 10
-10

0

10

20

30

40
D

-10 0 10 20

A

Y
ie

ld
 d

iff
er

en
ce

 (%
)

-30

-20

-10

0

CMCC-SMS
IPSL-CM5A-LR
CESM-BGC
HadGEM2-AO
BNU-ESM

B

MIROC5
IPSL-CM5B-LR
GFDL-ESM2
CanESM2
HadGEM2-ES

 
Figure 13. Relationship between average change in total rainfall amount over the growing season 
and the corresponding simulated change in grain yield under (A) RCP 4.5 with ambient CO2, (B) 
RCP 8.5 with ambient CO2, (C) RCP 4.5 with elevated CO2 and (D) RCP 8.5 with elevated atmos-
pheric CO2, for Tamale, Ghana. 

4. Discussion 
4.1. Model Performance 

Soybean is becoming an increasingly important and promising cash crop in Ghana, 
particularly in Northern Ghana, where it provides additional benefits of nutritional sup-
port for smallholder communities in addition to its cash benefit, hence the motivation to 
assess the impact of projected climate change on its yield. The CROPGRO simulation 
model was able to adequately capture the phenology and yield pattern for the two soy-
bean varieties investigated in this study. Recently, Bebeley et al. [35] reported that the 
CROPGRO model adequately reproduced grain yields of three soybean varieties of vary-
ing maturity duration in northern Nigeria. Naab et al. [36] successfully calibrated and 
evaluated the CROPGRO model to simulate peanut yields in Northern Ghana. The two 
soybean varieties investigated in this study are widely cultivated in Northern Ghana, and 
hence, are appropriate for assessments of climate change impacts on soybean yield for this 
region. The choice of CROPGRO in this study was informed by its good performance 
(least error in predicting seed yield) in a recent study by Kothari et al. [37] that used 10 
crop models to test their readiness for climate change impact assessment. 

4.2. Baseline Grain Yields 
On the whole, soybean yields under the contemporary climate vary in response to 

differences in management practices (cultivar, time of planting, etc.), as illustrated in the 
variation in yields among farmers. The simulated average yield of 2.3 t ha−1 across farms 
and years is comparable to the average grain yield of 2.2 t ha−1 obtained from the agro-
nomic survey. These yields are, however, above a typical farmer’s average yield for the 
study region, but within the values reported by Ulzen et al. [38]. There is a growing mid-
dle class in the subregion, with the consequent growing demand for animal products, 

Figure 13. Relationship between average change in total rainfall amount over the growing season
and the corresponding simulated change in grain yield under (A) RCP 4.5 with ambient CO2, (B) RCP
8.5 with ambient CO2, (C) RCP 4.5 with elevated CO2 and (D) RCP 8.5 with elevated atmospheric
CO2, for Tamale, Ghana.

4. Discussion
4.1. Model Performance

Soybean is becoming an increasingly important and promising cash crop in Ghana,
particularly in Northern Ghana, where it provides additional benefits of nutritional support
for smallholder communities in addition to its cash benefit, hence the motivation to assess
the impact of projected climate change on its yield. The CROPGRO simulation model was
able to adequately capture the phenology and yield pattern for the two soybean varieties
investigated in this study. Recently, Bebeley et al. [35] reported that the CROPGRO model
adequately reproduced grain yields of three soybean varieties of varying maturity duration
in northern Nigeria. Naab et al. [36] successfully calibrated and evaluated the CROPGRO
model to simulate peanut yields in Northern Ghana. The two soybean varieties investigated
in this study are widely cultivated in Northern Ghana, and hence, are appropriate for
assessments of climate change impacts on soybean yield for this region. The choice of
CROPGRO in this study was informed by its good performance (least error in predicting
seed yield) in a recent study by Kothari et al. [37] that used 10 crop models to test their
readiness for climate change impact assessment.

4.2. Baseline Grain Yields

On the whole, soybean yields under the contemporary climate vary in response to
differences in management practices (cultivar, time of planting, etc.), as illustrated in
the variation in yields among farmers. The simulated average yield of 2.3 t ha−1 across
farms and years is comparable to the average grain yield of 2.2 t ha−1 obtained from the
agronomic survey. These yields are, however, above a typical farmer’s average yield for the
study region, but within the values reported by Ulzen et al. [38]. There is a growing middle
class in the subregion, with the consequent growing demand for animal products, which
rely heavily on soy cake for feeding. Thus, there has been rapid growth in the production
of soybean in the subregion even outside the two traditional soybean producing countries
(Nigeria and South Africa) that contribute to about 70% of the grain in Africa: Ghana is
no exception. Given the growing importance of the grain for many other products in the
subregion, it is imperative to assess its sensitivity to projected climate change so as to plan
strategies to adapt to changing climate.
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4.3. Climate Change Impact on Grain Yield

To the best of our knowledge, this study is one of the few conducted within the West
African subregion that has assessed the sensitivity of soybean productivity to projected cli-
mate. Until now, only Tingem and Rivington [39] have reported on climate change impacts
on soybean within the subregion. In this study, the impact of two (2) climate parameters on
soybean yields under projected climate were studied, as well as the variability of the impact
among farms and years. These include changes in the amount and distribution of rainfall,
increased temperature as well as increased CO2 concentration. As observed even under
the current climate, unfavorable rainfall amounts and distributions negatively impact on
yields of soybean, as is the case for other crops. Unfavorable rainfall distribution leads
to drought stress, which consequently translates into yield loss. The extent of yield loss,
however, depends on the growth stage of the crop and the duration of the stress. In the
current study, given that planting dates varied, the extent of the impact of change in rainfall
distribution also varied among farms based on differences in the date of planting. Another
important driver is elevated temperature, which negatively impacted plant growth, largely
by reducing phenology, and hence, the amount of resources taken up by plants thereby
resulting in yield decline. Additionally, elevated temperature results in a higher vapor
pressure deficit (VPD), leading to increased transpiration. Thus, the normal physiology of
plants is altered with plant resources that would contribute to the yield being partly used to
maintain plant metabolic activities such as increased transpiration. A recent screen house
study by Ogunkanmi et al. [40] on the effect of extreme temperature and moisture stress on
the productivity of soybean indicated significant yield losses under high temperature. The
yield losses were further accentuated under moisture stress conditions.

On the other hand, elevated CO2 has a counter impact on soybean yield, as observed in
the current study. Implications of the effect of elevated CO2 on soybean yield under current
production systems cannot be overemphasized, as it influences the direction of change in
soybean yield under projected climate conditions. Unlike cereals in which elevated CO2
may not necessarily result in projected yield increases, particularly in the West African
subregion where the soils are limited in vital nutrients such as N [41,42], soybean as a
legume does not have that limitation due to its N fixing capability. Increased yields are
explained by the reduction in transpiration (due to the partial closure of stomata), leading
to increased resistance to drought [43], and hence, increased water use efficiency. Thus,
elevated CO2 and temperature had opposing impact on soybean yields in this study, with
the effect of the elevated CO2 over-riding the negative effect of temperature (Figure 8).
Tingem and Rivington [39] reported grain yield increases of between 6% and 162% (across
the varied climate scenarios), which they attributed to elevated CO2 and increased amounts
of rainfall (which offset the negative impacts of increased temperature).

What remains unclear is whether the nutritional values will be compromised under
climate change. A number of studies have reported on the reduced nutrient contents
of crops, including soybean, under projected climate change conditions, and attributed
this to the effect of elevated CO2. Studies carried out by Smith et al. [44] in the United
States, Australia, and Japan showed decline (3% to 17%) in nutrient content of major
crops under free air CO2-enhanced experiments. The effects varied among the crops,
with large-grained cereals (maize and sorghum) showing no significant change in nutrient
composition. They attributed this to the photosynthesis mechanism in C4 plants which does
not respond to CO2 enrichment, and hence, did not affect nutrient uptake. For soybean,
declines in zinc and iron were observed, whereas the protein content of the grain exhibited
little to no change [35]. This study did not assess the nutritional composition of soybean
under climate change, largely due to the unavailability of reliable data on the varieties
of soybean considered. It is important to note that the current study did not capture the
potential effect of pests and diseases on the productivity of soybean under climate change
scenarios. The soybean varieties used in the study are reported to be resistant to pests and
diseases under the current production system, although they may succumb under future
climate. Skendži et al. [45], in their review of climate change impacts on agricultural insect
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pests, indicated that the impacts on pest and disease outbreaks are complex and will vary
depending on the environment. They projected that locations in the tropics are less likely to
be adversely impacted compared with those in temperate environments which may become
more favorable for pests, particularly due to projected rises in temperature. The spread
and severity of pests and plant diseases is largely influenced by weather parameters [46].
Thus, climate change will influence the dynamics in the spread and distribution of pests
and plant diseases, and the emergence of new ones [47]. Future studies should consider
integrating the effect of pests and plant diseases in analyzing impacts due to climate change
on crop productivity so as to inform breeding for more resistant varieties. Additionally, the
use of inorganic fertilizer is not a common practice in the current production system in the
subregion; hence, it was not considered in this study.

4.4. Spatial vs. Temporal Variability in Climate Change Impact

In this study, there was higher variation among farms compared with inter-annual
variation. The main factors identified to be responsible for the observed variability among
farms were the type of soybean cultivar, planting date, and soil type. As a remedy, the issues
of cultivar type and planting date could be addressed through enhanced extension services
to farmers on the most appropriate or optimal planting windows, as well as appropriate
cultivars for attaining good yields. The influence of appropriate management practices
cannot be overemphasized, particularly in smallholder systems where it may be even more
important than climate change impacts [48]. Similar results were previously reported by
Freduah et al. [49] and MacCarthy et al. [50] for maize productivity under current and
future agricultural production systems. Mall et al. [20], in their study on mitigating climate
change impacts on soybean productivity in India, suggested the appropriate determination
of optimal planting windows as a mitigating strategy to manage the negative impacts of
climate change on soybean productivity. Concerted efforts to provide extension officers
with the appropriate research findings and resourcing them to reach out to farmers will
be important in mitigating climate change effects on soybean productivity. Additionally,
investments into climate services infrastructure that can support in-season forecasts to
inform the planning of farm activities such as sowing can help to narrow sowing windows
to the most productive periods, and hence, reduce variability in grain yield.

Sources of variation in climate change impact on soybean yield under current produc-
tion systems as reported in the literature are many and attributed to the choice of climate
model and location of study, with its associated weather and soil characteristics, among
others. In this study, another dimension has been brought to light which has thus far
received little to no attention. Thus, the variability in yields among farms is large, and is
more important than the variability in inter-annual yield; hence, it deserves more attention.
The dominant factors identified in this study as contributing factors to the large variations
in climate change impacts among farms are, in decreasing order; soil type, planting dates,
and variety. Soils in Northern Ghana are generally loose-textured and characteristically low
in water-holding capacity, with a pronounced spatial variability in soil properties [22,51].
Interestingly, the top three harshest climate scenarios exhibited the largest relative standard
deviation. Additionally, the extent of variation in climate change impact was significantly
reduced under elevated CO2 conditions, a phenomenon that could be explained by the
effect of elevated CO2 in increasing water use efficiency, thereby reducing potential water
stress under elevated CO2 concentrations.

5. Conclusions

This study provides insights into spatial and temporal variability in soybean yield in
two districts situated in the Northern Region of Ghana under both current and projected
climate conditions. Understanding sources of variation in soybean yield provides a pathway
for the optimal management of soybean production under both current and future climate
change. Climate change will negatively impact the productivity of soybean in Northern
Ghana. However, elevated atmospheric carbon dioxide has the potential to off-set the
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reduction in yield caused by climate change, resulting in increased productivity. The effect
of climate change on yield productivity varied widely among farms and among years. The
variability among farms (due to diversity in management practices and soil type) was more
important than that among years (due to differences in weather parameters). This calls for
more attention to be directed at the extension of good management practices to farmers so
as to reduce the variability of impact among farms. The extent of this variability could be
influenced by elevated atmospheric CO2 levels.
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