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Executive Summary 

The Government of India plans to optimize Crop Cutting Experiments (CCEs) and Gram 

Panchayat crop yield estimations using different technologies including satellite derived 

metrics and crop modelling techniques. The present study for Rabi season (2020-21) aims to 

Rice and wheat crop yield estimations in 25 districts of eight states viz. Andhra Pradesh, 

Gujarat, Karnataka, Madhya Pradesh, Odisha, Telangana, Uttar Pradesh and Uttarakhand. 

The study will use comprehensive and existing environmental, weather and management data 

along with satellite derived crop spatial data. This information will be modelled using 

statistical optimization techniques and DSSAT crop modelling to assess the yield estimations. 

The project will be executed by ICRISAT in partnership with Mahalanobis National Crop 

Forecasting Center (Ministry of Agriculture, India)  

Objectives: 

1. Rice and Wheat Crop extent mapping for the respective study districts 

2. Conduct and assess crops cutting experiments using spatial statistical optimising 

technique for Rice and Wheat crop of Rabi season in the study districts.  

3. Crop yield estimation based on DSSAT crop simulations. 

Target Areas: 

     The pilot study allocated following twenty five districts in seven states for gram panchayat 

level crop yield estimation for Rice and Wheat crop (Table 1). 

Table 1: Allocated districts and their respective crops for pilot study 

State District Crop 

Andhra Pradesh 
Nellore Rice 

West Godavari Rice 

Gujarat 

Ahmedabad Wheat 

Aravali Wheat 

Sabar kantha Wheat 

Karnataka 

Bellary Rice 

Davangere Rice 

Raichur Rice 

Madhya Pradesh 

Chhatarpur Wheat 

Raisen Wheat 

Sagar Wheat 

Shivpuri Wheat 

Vidisha Wheat 

Odisha 

Baleshwar Rice 

Baragarh Rice 

Kalahandi Rice 

Telangana 

Nalgonda Rice 

Nizamabad Rice 

Suryapet Rice 

Uttar Pradesh 

Bahraich Wheat 

Bara banki Wheat 

Bareilly Wheat 

Deoria Wheat 

Fatehpur Wheat 

Uttarakhand Udham singh Nagar Wheat 

 



 

 
 

 

ICRISAT: Project implementation, monitoring, coordination and reporting 

 

Rice and Wheat Crop mapping - Methodology 

The process began with preparing NDVI maximum images for every 15 days of every month 

from Rabi season and stacked together and the crop mask was prepared using sentinel-1 VH-

min by giving threshold value of greater than -25 for easy extraction of croplands as well as 

transplant rice fields in Google Earth Engine (GEE) Platform. 

The NDVI images was prepared using normalised difference of Near Infrared (NIR) and Red 

(R) bands of Sentinel 2. 

 

Fig 1: Flow Chart of Methodology of crop mapping 

The crop mask was applied on sentinel-2 NDVI stack and classified using Random forest 

algorithm using training ground data. 

Spectral Matching Techniques: 

The stacked image downloaded from GEE consists of every 15 days for entire Rabi 

season(Murali Krishna Gumma, Thenkabail, Teluguntla, & Whitbread, 2018; Murali Krishna Gumma 

et al., 2019). Unsupervised classification was used to generate initial classes. The unsupervised 

ISOCLASS cluster algorithm (ISODATA in ERDAS Imagine 2018) run on the stack generated 

an initial 40 classes, with a maximum of 40 iterations and convergence threshold of 0.99. 

Though ground survey data was available at the time of image classification, unsupervised 

classification was used in order to capture the complete effect of all wavelengths over a large 

area. Use of unsupervised techniques is recommended for large areas that cover a wide and 



 

 
 

unknown range of vegetation types, and where landscape heterogeneity complicates 

identification of homogeneous training sites. Identification of training sites is particularly 

problematic for small, heterogeneous irrigated areas. 

Land use/land cover classes were identified based on temporal signatures along with ground 

survey data. We observed crop growth stages including length of growing periods (LGPs) and 

cropping pattern from temporal signatures, such as (a) onset of cropping season (e.g., monsoon 

and winter); (b) duration of cropping season such as monsoon and winter; (c) magnitude of 

crops during different seasons and years (e.g., water stress and normal years); and (d) end of 

cropping season. 

The process of labelling and class identification was done based on spectral matching 

techniques (SMTs) (Murali Krishna Gumma, Thenkabail, Deevi, et al., 2018; Murali Krishna Gumma 

et al., 2016; Murail Krishna Gumma, Uppala, Mohammed, Whitbread, & Mohammed, 2015). Initially, 

40 classes from the unsupervised classification were grouped based on spectral similarity or 

closeness of class signatures. Each group of classes was matched with ideal spectral signatures 

and ground survey data, and assigned class names. Classes with similar time series and land 

cover were merged into a single class, and classes showing significant mixing, e.g., 

homogeneous irrigated areas and forest, were masked and reclassified using the same 

ISOCLASS algorithm. This resulted in following classes for each district. We employed a user-

intensive method that incorporates both ground survey data and high resolution imagery in 

order to avoid lumping classes that might be spectrally similar but have distinct land 

cover(Murali Krishna Gumma et al., 2020).  

Following are the crop type classification images for all study districts (Fig 2): 
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Fig 2: Crop Classification maps for study districts 

 

CCE’s Data Optimisation: 

 

The optimisation of CCE’s were carried out using following methodology (Fig.3). The process 

begin with collection of sentinel 2 NDVI Maximum data (available), climate data and soil map. 

 

The NDVI data with crop mask and respective climate and soil data were combined into 

homogenous stratum and collected random points using stratified sampling. By multiple 

regression techniques, the number of samples were reduced into half of random samples. 

 

 
Fig.3 : Optimisation of Crop Cutting Experiments using remote sensing techniques 

 



 

 
 

Using above optimization, we instructed our field staff to collect the possible samples. 

 

CCE’s Data Collection: 

 

Based on spatial map of Crop extent, optimization and Leaf Area Index (LAI) of rice and wheat 

in their respective areas, the selection of CCE’s were shortlisted. LAI indirectly shows the 

health of the crop, which helps in locating the good crop fields as well as adverse fields for 

collection of CCE’s. 

 

The CCE’s was carried out by selecting 5m X 5m plot of field, manually harvested and 

weighted as shown in following images. 

 

The total number of 160 samples were collected for each district (Annexure 1). 

 

 

 

Locations of CCE’s collected (Fig 4) 
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Fig 4: CCE’s distribution across study districts 

 



 

 
 

5. Leaf Area Index  

 

This study used MODIS derived LAI and also sentinel -2 derived LAI index. 

• Based on the fact that the spectral response of leaves is unique compared to that of 

other parts of the plant. 

• Vegetation indices – NDVI, EVI, SAVI, etc. – have shown high positive correlation 

to LAI. 

• With a limited field data consisting of LAI values at few locations, regression 

equations can be arrived at, relating LAI to spectral vegetation indices. 

• METRIC (Measuring Evapotranspiration at high Resolution with Internalized 

Calibration) model has developed a relation between LAI and Sentinel 2-derived Soil 

Adjusted Vegetation Index (SAVI). According to METRIC model, 

𝐿𝐴𝐼 =
−ln(

0.69 − 𝑆𝐴𝑉𝐼
0.59

) 

0.91
 

For Landsat-8 images used in this study, SAVI is computed from the formula: 

𝑆𝐴𝑉𝐼 =
(1 + 𝐿) (𝐵8 − 𝐵4)

𝐿 + 𝐵8 + 𝐵4
 

Where L is a soil factor, taken to be 0.1, B8 in the spectral reflectance in band 8 (Near 

Infrared) and B4 is the spectral reflectance in band 4 (Red). 

 

Due to Coarse resolution of MODIS, the study uses LAI derived from Sentinel 2. 

Compared both values and used the optimised values. 

 

LAI values were extracted for every CCE location and validated against the DSSAT crop model 

LAI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

                                         

Integration of remote sensing LAI products with crop simulation models 

for better crop yield estimation 

1. Introduction 

Timely and accurate prediction of crop yield is important for agricultural land management and 

policy making. Several studies have demonstrated the utilization of satellite data in crop yield 

estimation. However, majority of studies used methods of empirical nature and they work only 

for specific locations, crops, cultivars and for a particular crop growth stage.  Cropping system 

models and remote sensing tools are two different methodologies often used to answer some 

of the agronomic questions at various levels such as field and regional scales. Several 

researchers used these technologies independently however information derived from remote 

sensing is used to update cropping systems model simulations in recent times as both these 

technologies are complementary.  

 

Keeping in view the complimentary nature of these technologies several researchers started 

integration of remote sensing data with crop growth simulation models found to be a promising 

option for crop growth monitoring and yield estimation.  However, each technology has its 

own advantages limitations. For example use of remote sensing as a temporal crop analysis 

tool is limited due to availability of cloud free time-series remote sensing data and difficulties 

in accurate LAI estimation from remotely sensed data.  

 

Similarly cropping systems models are often limited by data availability such as information 

on cultivar, management, soil, and meteorological inputs for spatial simulations. Uncertainties 

associated with spatial simulations can be reduced by periodically readjusting the simulation 

using spatial information from remote sensing images. 

 

Several remote sensing data assimilation methods at various complexity levels were tried 

mostly either by directly using remote sensing data in the simulation models, updating the state 

variables or re parameterization of the model using remote sensing data in recent years. 

 

In this study, we used the technique of re- parameterization of crop simulation models based 

on the several iterations using remote sensing input such as leaf area index(LAI) as it is 

supposed to be the highest degree of integration. The essence of the data assimilation approach 

is to improve the initial parameterization of the crop growth model and augment simulation 

with the use of remotely sensed observations. 

 

2. Methodology 

 

The methodology (Fig 5) includes crop model data mainly soil, weather and crop 

management data and its integration with remote sensing data. 

 

 



 

 
 

2.1.Data collection 

 

Crop Cutting Experiments (CCE) is an assessment method employed by governments to 

estimate the crop yield in the region given cultivation cycle. The traditional method of CCE is 

based on the yield component method where sample locations are selected based on a random 

sampling of the total area under study.  In the current analysis, we identified few mandals in 

study districts in 25 districts of eight states viz. Andhra Pradesh, Gujarat, Karnataka, Madhya 

Pradesh, Odisha, Telangana, Uttar Pradesh and Uttarakhand, to test the methodology. Data 

assimilation from remote sensing products such as leaf are index (LAI) in to cropping system 

models to predict crop yield in CCE sites. We have collected GPS location, date of sowing, 

irrigated vs. rainfed and other management details from CCE location if available. 

 

2.2.Soil data 

Biophysical crop simulation models normally require profile-wise soil data. For each CCE 

location, soil inputs to the model were obtained from a set of soil profile data available from 

ICRISAT data repository and NBSSLUP data bases. We also used certain parameters in soil 

as free variable. Soil physical and chemical properties such as texture, hydraulic parameters, 

bulk density, organic matter and available N were extracted for each location based on the 

available soil profile data. Additional soil parameters such as soil albedo, drainage constant, 

and runoff curve number were estimated based on soil texture and converted using the generic 

soil database available in the DSSAT-models. 

 

2.3.Weather data 

 

The weather data such as daily maximum temperature, minimum temperature, rainfall and solar 

radiation data was collected from Automatic Weather Stations (AWS) stations of respective 

state authorities. If AWS data not available, NASA power data was used for analysis. 

  

2.4.The Cropping System Model 

 

The Cropping System Model (CSM)–Crop Environment Resource Synthesis (CERES)–Rice 

and wheat crop growth model as provided in the Decision Support System for Agro technology 

Transfer (DSSAT) were used for yield simulations. Crop models require various input data 

such as crop characteristics, soil condition, management practice and daily weather information 

were prepared in advance. Using these input data, daily crop biophysical information (e.g. LAI) 

was generated by the crop growth model. The simulated LAI were compared with the 

corresponding Sentinel 2 and MODIS LAI products, and residuals between the simulated and 

Sentinel 2 LAI were minimized by adjusting the free input parameters, finally with the 

optimized set of input parameters, the model was executed to update the crop yield prediction. 

 

The optimization process starts from an initial parameterization and adjusts the free parameters 

in order that the model given LAI with simulation is in agreement with the Sentinel 2 

Observations. The simulated LAI values depend on the values of the free variables (e.g. 

planting date, nitrogen dose, soil profile parameters) that are estimated by minimizing the cost 

function as shown below. 



 

 
 

 

                               --- Equation -1 

 

Where LAIS (ti), LAIM (ti) are the simulated and measured LAI at time ti, respectively. 

 

 
Fig 5. General methodology of the data assimilation approach integrating remote sensing data 

with crop growth models for crop yield estimation 

 

2.5. Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation 

 

Remote sensing data assimilation methods with various levels of complexity have been tried, 

either by directly using remote sensing satellite data in simulation models (Doraiswamy, Moulin, 

Cook, & Stern, 2003; Olioso et al., 2005), by updating state variables or by re-parameterization of 

the model using remote sensing satellite data (Fang, Liang, & Hoogenboom, 2011; Jin et al., 2017)., 

we used the technique of re-parameterization of crop simulation models through several 

iterations using remotely sensed LAI estimates; this technique is supposed to best integrate 

crop growth conditions. The data assimilation approach helps with initializing parameters of 

the crop growth model and improve simulations with the help of remotely sensed satellite 

observations. The optimization process starts with initial model parameterization by adjusting 

the free parameters so that the model-simulated LAI is in agreement with the Sentinel-2 LAI 

observations (Eq. 1). The simulated LAI values depend on the values of the free variables (e.g., 

planting date, nitrogen dose, soil profile parameters) that are generated by minimizing the value 

of the following cost function. The remote sensing LAI data were collected for six times during 

the crop growth period. 



 

 
 

 

                               --- Equation -1 

 

Where LAIS (ti), LAIM (ti) are the simulated and measured LAI at time ti, respectively. 

Using a cost function measuring the distance between the simulated state variables and 

observed ones, the method employed automatically adjusts the set of model input parameters 

until the difference between the Sentinel 2 LAI and the crop model-simulated LAI is 

minimized. Finally, using this optimization algorithm, crop yields were predicted at each CCE 

location by obtaining a new set of parameters or initial values and allowing a simulation that 

resembles better observations. The technique we used was a frequently applied re-calibration 

methodology that enabled us to estimate the yields of rice and wheat successfully and compare 

them with observed yields with significant accuracy at each CCE location. The data 

assimilation approach proved to be reliable and shows great potential in providing yield 

prediction data at the village level. In this study, since LAI is the only link between the crop 

growth model and remotely sensed data, the accuracy of the model and final predictions with 

optimized datasets depends on the quality of remotely sensed LAI data 

2.6. Calibration of DSSAT and Validation of yield data at GP level 

 

DSSAT crop models require genetic coefficients, which are cultivar specific for describing 

processes related to growth and development and grain production. These coefficients allow 

the model to simulate performance of diverse genotypes under different soil, weather and 

management conditions. The model was calibrated using field measured values of weather 

parameters, crop management and soil properties during the cropping season. In our previous 

studies as a part of Agricultural Model Intercomparision and Improvement Project (AgMIP) 

phase I & II, we have calibrated CERES-rice and wheat model for various cultivars of different 

duration  

 

As, the model was run at CCE plot level, the observed yield of every CCE collected was 

validated against the crop model yield generated by re-parameterization of the model free 

variables using remote sensing LAI  data. The rice and wheat yields  depends mainly on crop 

management practices followed mainly nitrogen amount and time of application,  irrigation 

application rates, cultivar duration etc.,   The village mean yield was calculated with collected 

CCE yield and corresponding simulated yields.  

 

As some times models may underestimate LAI as seen in several published literature and hence 

we re-parameterized the CERES rice model variables using LAI developed from remote 

sensing data at regular intervals during crop growth period. However, the accuracy issues for 

remote sensing LAI may be possible due to due to cloud conditions and varying spectral 

indices. Further improvements of the Sentinel-derived LAI and vegetation index products are 

necessary, especially during the beginning of the growing season and continued data during 

the crop growth period. There is also an immediate need to further invest in studying 

relationship between remote sensing derived LAI product and field LAI observations across 

locations to understand the accuracy of remote sensing LAI predictions 



 

 
 

 

Future Improvements: 

 Improvements in LAI predictions 

 Use of remote sensing derived dry matter production and other indices in 

addition to LAI to re-parameterization of model free variables for improving 

accuracy of predictions  

 Exploring the possibility of establishing a good network of AWS stations for 

accurate location specific daily weather data  for better prediction of crop yields 

  



 

 
 

3.0. Study sites –Results 

3.1 Nellore 

 

 

R2 0.68117836   
RMSE 286.367928   
IoA 0.71213137   
T-test 0.25059436    insignificant 
 

3.2 West Godavari 

 

R2 0.77213827   
RMSE 242.25725   
IoA 0.6931874   
T-test 0.11313948      insignificant 
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3.3 Shivpuri 

 

R2 0.63803941   
RMSE 192.255651   
IoA 0.68285436   
T-test 0.29679147 insignificant 
 

3.4 Chattarpur 

 

R2 0.76241427   
RMSE 353.902662   
IoA 0.76840674   
T-test 0.01182702     Significant 
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3.5 Raisen 

 

R2 0.721560238   
RMSE 474.5357838   
IoA 0.785992093   
T-test 3.84581E-05     Significant 
 

3.6 Sagar 

 

R2 0.76195482   
RMSE 465.118228   
IoA 0.80473189   
T-test 0.08585808   insignificant 
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3.7 Vidisha 

 

R2 0.81832035   
RMSE 369.624642   
IoA 0.78767549   
T-test 0.28005764  insignificant 
 

3.8 Bareilly 

 

R2 0.75639265   
RMSE 355.836826   
IoA 0.72969145   
T-test 0.17154472 insignificant 
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3.9 Barabanki 

 

R2 0.75659806   
RMSE 501.327643   
IoA 0.76022787   
T-test 0.96705721 insignificant 
 

3.10 Bahraich 

 

R2 0.785206   
RMSE 404.777971   
IoA 0.78937681   
T-test 0.90317337 insignificant 
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3.11 Fatehpur 

 

R2 0.77041913   
RMSE 324.74852   
IoA 0.74530749   
T-test 0.05480408    insignificant 
 

3.12 Deoria 

 

R2 0.65019329   
RMSE 314.610411   
IoA 0.76302657   
T-test 0.02680672     Significant 
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3.13 Udham Singh Nagar 

 

R2 0.72235465   
RMSE 293.691582   
IoA 0.78404631   
T-test 0.3111512       insignificant 
 

3.14 Ahmedabad 

 

R2 0.71467418   
RMSE 151.772712   
IoA 0.72481833   
T-test 0.24260612      insignificant 
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3.15 Nalgonda 

 

R2 0.78250336   

RMSE 489.315232   

IoA 0.74254863   

T-test 0.87548151        insignificant 

 

3.16 Suryapet 

 

R2 0.72356923   

RMSE 472.110645   

IoA 0.69883744   

T-test 0.99920203       insignificant 
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3.17 Aravalli 

 

R2 0.77942159   

RMSE 252.395806   

IoA 0.8081811   

T-test 0.01855601       Significant 

 

3.18 Nizamabad 

 

R2 0.77940507   

RMSE 498.92488   

IoA 0.72459841   

T-test 0.13847399 insignificant 
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3.19 Kalahandi 

 

R2 0.733842799   

RMSE 645.2578191   

IoA 0.724627237   

T-test 0.003073212 Significant 

 

3.20 Baragarh 

 

R2 0.68775755   

RMSE 1510.450046   

IoA 0.739596979   

T-test 0.081970818 insignificant 
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3.21 Baleshwar 

 

R2 0.77718502   

RMSE 969.540245   

IoA 0.75043209   

T-test 0.07655976 insignificant 

 

4.0. Gram Panchayat level Yield Estimations 

Attached as Annexures   

 

5.0. Challenges and improvements 

This study indicates the importance of LAI in the data assimilation process and that the 

incorporation of LAI can improve crop yield prediction. However, the following points need 

to be considered to further improve the yield prediction.  

 

1. There is a need to study the relationship between remote sensing derived LAI product 

and final yields of various crops especially in rain-fed regions. 

2. Further improvements of the Sentinel 2 -derived LAI and vegetation index products are 

necessary, especially during the beginning of the growing season and continuous data 

during the crop growth period. 

3. The availability of location-specific weather data is the key for proper simulations with 

crop simulation models. In some states there exists a good network of AWS stations, 

however the majority of other locations this is major lacunae. 
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