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A B S T R A C T   

The lower catchment area of a Mak Hiao river system is vulnerable to flash floods and water stress. So it is 
important to construct irrigation structures in this area to minimize floods during the rainy season and store 
water for the winter season. The Asian Development Bank (ADB) has been supporting the Government of Laos in 
constructing such small reservoirs like Donkhuay schemes 1 & 2, Mak Hiao, Nalong 3 and Sang Houabor projects 
in lower catchment areas. Our study evaluated the impacts of small irrigation schemes in terms of land-use/land- 
cover (LULC), crop intensity, and productivity changes, using high resolution satellite imagery, socioeconomic, 
and ground data. We analyzed the temporal cropping pattern in the Vientiane prefecture of Laos using Planet and 
Sentinel-2 data. On the other hand, crop intensity and cropland changes were mapped using Sentinel-2 data and 
spectral matching techniques (SMTs). The crop classification accuracy based on field-plot data was 88.6%. Our 
results show that irrigation projects in the lower catchment areas brought about significant on-site changes in 
terms of cropland expansion and increased crop intensity. Remarkable changes in LULC were observed especially 
in the command areas owing to an increase of about 300% in crop area with access to irrigation and increase of 
water bodies by 31%. Our study found that interventions at the level of the command area do improved on-site 
soil, water and environmental services. They study emphasized underline the role of land-use regulations in 
reducing pressure on natural land-use systems and thereby serving the major goal of up-scaling sustainable 
natural resource management. The study documented the vital role of small/medium irrigation projects in 
restoring ecosystem services such as cropping patterns and LULC conversion.   

1. Introduction 

The Lao People’s Democratic Republic (PDR) is a landlocked country 
with 80% of its land falling within the mountainous topography of the 
uplands of the Mekong River Basin and 20% falling in the flood plains of 
many small rivers. The country has a monsoon climate with a combi-
nation of wet season and a dry season. The hydropower and irrigation 
systems located in the mountainous regions sustain agriculture in the 
plains. About 75% of the total population of Laos is dependent upon 
agriculture, which contributes nearly 50% of the country’s Gross Do-
mestic Product (GDP). [1,2]. The major staple crops are rice and maize 
[3]; the economically important crops include coffee, sugarcane, cas-
sava, sweet potato and industrial tree crops such as rubber, eucalyptus 
and acacia. 

The irrigation systems we covered for the present study are located in 
the plains of Vientiane prefecture. Traditionally, farmers in these plains 
used indigenous methods to irrigate crops. These systems, however, 
were not able to cater to the increasing demand for water from sectors 
like agriculture and domestic use (drinking water). This has forced them 
to switch over to modern irrigation systems (such as dams and reser-
voirs) which can enhance the water availability and thereby the demand 
during dry season [4,5]. 

Managing natural resources is important for sustainable agricultural 
development [6,7]. Small and minor irrigation projects are essential for 
enhancing the WUE as well as increasing the water productivity [8–10]. 
One of the major purposes of medium and minor irrigation projects is to 
control floods and preserve the water for off-season [11,12]. Given such 
a context, monitoring minor irrigation projects is important for 

* Corresponding author: 
E-mail address: m.gumma@cgiar.org (M.K. Gumma).  

Contents lists available at ScienceDirect 

Smart Agricultural Technology 

journal homepage: www.journals.elsevier.com/smart-agricultural-technology 

https://doi.org/10.1016/j.atech.2022.100149 
Received 22 August 2022; Received in revised form 6 October 2022; Accepted 2 December 2022   

mailto:m.gumma@cgiar.org
www.sciencedirect.com/science/journal/27723755
https://www.journals.elsevier.com/smart-agricultural-technology
https://doi.org/10.1016/j.atech.2022.100149
https://doi.org/10.1016/j.atech.2022.100149
https://doi.org/10.1016/j.atech.2022.100149
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2022.100149&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Smart Agricultural Technology 4 (2023) 100149

2

evaluating land and water productivity [13–16]. 
Floods during the wet season and drought during the dry season are a 

regular phenomenon in the Vientiane prefecture. The Greater Mekong 
Sub-region Flood and Drought Risk Management and Mitigation Project, 
funded by the Asian Development Bank and executed by the Department 
of Irrigation under the Ministry of Agriculture and Forestry, is aimed at 
improving preparedness for flood and drought risk mitigation [17]. 
Improved groundwater (GW) due to deep percolation during the dry 
season and higher GW levels in the wet season help farmers by enabling 
the use of groundwater for irrigation in the dry season [18]. Increasing 
population and food demand make it imperative to promote minor 
irrigation projects at appropriate locations. At the same time, there is a 
need for real-time monitoring of land-use changes using advanced 
technologies like remote sensing in association with machine learning 
algorithms. 

Remote sensing is a low-cost but effective tool for identifying the 
spatial distribution of land-use/land-cover (LULC) changes and assess-
ing their impact at various scales. Several studies have monitored land- 
use changes in the context of improving water resources and have 
proven the usefulness of geospatial technologies [19–22]. Several 
studies have also documented LULC changes using remote sensing 
technology and machine learning algorithms supported by ground data 
and secondary information [23,24]. However, methods of monitoring 
LULC changes vary from the small to large scale [25,26]. Monitoring of 
croplands and changes in land use at various scales [27,28,47], from the 
watershed level to the global scale [29,30], relies on the application and 
type of satellite imagery sourced from platforms like MODIS, Landsat 
and Sentinel [31,32]. Mapping of soil moisture and floods during the 
rainy season uses Sentinel-1 data [33–35]. Several studies have assessed 
flood damage, crop stress and even LULC changes in mountain regions 
[36,37], etc. 

Monitoring of LULC changes is important for multi-disciplinary 
teams such as economists, breeders, hydrologists and planning de-
partments working on improvement of agriculture and water produc-
tivity [38–40], and also for research. Cloud-based image-processing 
platforms such as Google Earth Engine (GEE), which also hosts cata-
logues of imagery from different satellite platforms such as Sentinel-1, 
can provide quick and nearly accurate information of ground condi-
tions using preloaded algorithms such as machine learning algorithms 
including Random Forest (RF), Support Vector Machines (SVM), and 
many regression techniques. 

Our study highlighted the application of remote sensing technology 
for monitoring and evaluation of irrigation projects in relation to LULC 

Fig. 1. A map of the study area in Vientiane prefecture of Laos showing canal irrigation schemes, digital elevation map (DEM) and the command area.  

Table 1 
Ground sample points collected for classification  

S.No Class No. of Points 

1 Rice 84 
2 Other Crop 18 
3 Barren land/Fallow 13 
4 Built up 12 
5 Forest 23 
6 Other LULC 4 
7 Plantation 5 
8 Water Bodies 9 
Total 168  
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changes over time. This paper generated quantitative estimates of 
cropped area with a season-wise break-up that could help in the prior-
itization of activities and investments in a project area. 

The major objectives of this paper includes  

• Mapping LULC using high-resolution multispectral Planet© data at 
3m spatial resolution 

• Quantifying land-use changes in terms of crop type and crop in-
tensity using high spatio-temporal resolution Sentinel-2 satellite 
imagery and assessed the impact due to new irrigation projects.  

• Economic impact due to construction of minor irrigation projects 

2. Data 

2.1. Study area 

The area selected for the present study includes the gross command 
areas (GCAs) of four irrigation canals of the Mak Hiao River: the 

Donkhuay schemes 1 & 2, Mak Hiao, Nalong 3 and Sang Houabor pro-
jects located in Vientiane Prefecture in south-central Laos (Fig. 1) with 
the Mekong River forming the southern boundary. The climatic condi-
tions in this region are quite varied compared to the other parts of Laos. 
Temperatures in winter are slightly higher and milder in the range of 16- 
28◦C; in summer, they vary from 24◦C to 34◦C. Rains are abundant from 
July to October, making up an annual average of nearly 1,700 mm. The 
major soils in this region are alluvial with some parts having laterite 
soils. The dominant crop in this region is paddy, apart from corn, cas-
sava, vegetables and fruits. 

2.2. Satellite Data 

As stated earlier, we used Planet multispectral and 3-m spatial res-
olution static data for land use/land cover characterization; for crop 
classification and assessment of crop intensity during the period 2016- 
2020, we have used Sentinel-2 10-m data. With the help of GEE, using 
a cloud-free algorithm for Sentinel-2 which uses Quality Assurance (QA) 

Fig. 2. Classification of (a) land-use/land-cover classes and (b) crop type and crop intensity.  
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band that considers the probability of presence of cloud and shadow in 
satellite imagery, pixels with cloud in the Sentinel-2 imagery were 
removed; this was followed by making estimates of the maximum 
Normalized Difference Vegetation Index (NDVI) for every 15 days and 
stacking them as a single composite. The NDVI index was calculated on 
the basis of the normalized difference between Band 8 (near-infrared) 
and Band 4 (red) (Thenkabail et al.), which is ideal for differentiating 
vegetation from other land-use classes and also for detecting variations 
within the vegetation levels. 

2.3. Ground Data 

On the basis of preliminary crop classification based on previous 
knowledge, ground data targeting major LULC changes were collected 
throughout the study area during August 2020. Samples were collected 
over large homogenous areas (minimum of 90 m x 90 m plots) for each 
LULC class for ease of classification. Areas with a bit of ambiguity were 
cross-checked during data collection. We recorded location coordinates, 
LULC category, crop type and cropping pattern, method of irrigation and 
the farmer’s interview (wherever possible). 

Fig. 3. Spatial distribution of LULC classes for the years 2016 and 2020 on the basis of Planet 3 m data.  

Table 2 
LULC classes for the years 2016 and 2020.  

Land-use/land-cover Area (ha) Percent Change 
2016 2020 

1. Cropland 1,351 1,843 36% 
2. Cropland/shrub land 573 337 -41% 
3. Forest/plantation 1,589 1,016 -36% 
4. Built-up area 9 22 144% 
5. Water bodies 53 73 38% 
6. Crop fallow/barren land 107 148 38% 
7. Other LULC 61 305 400%  

3,743 3,743   

M.K. Gumma et al.                                                                                                                                                                                                                             



Smart Agricultural Technology 4 (2023) 100149

5

Later, during classification, the collected data were divided into two 
independent datasets for training (64) and validation (104) (Table 1). 

We have used our own mobile application “iCrops” to collect ground 
data (http://maps.icrisat.org/rs/Downloads/Data/iCrops_v3.zip), 
iCrops, an android-based application developed by RS-GIS Team, ICRI-
SAT for ground data collection. The mobile application is quite simple in 
its operation. This application mainly captures Geographic location; 
Location class like Cropland, Forest, and Grassland; and Land cover in-
formation like Water source, Crop intensity, Primary crop, Secondary 
crop, and Livestock. 

3. Methods 

3.1. Mapping land-use/land-cover and rice areas 

The process started with the preparation of two data composites, i.e., 
one with Planet data and the other with Sentinel-2 data. The LULC 
classes were mapped using Planet data whereas cropping pattern and 
crop intensity were mapped using Sentinel-2 data with the help of 
spectral matching techniques and field survey data for the year 2021 
(Fig. 2). Accuracy assessment was performed with independent valida-
tion data. Spatial products were generated with higher resolution sat-
ellite imagery and changes were calculated using spatial analysis. 

We used Planet data for the initial land use and land cover classifi-
cation for the cropping years 2016 and 2020, the main idea being to 
delineate fragmented LULC areas (Fig. 2a). The satellite imagery was 
classified using ISOCLASS cluster K-means unsupervised classification 
with 30 classes. These classes were labelled using visual interpretation 
with the aid of Google Earth high-resolution imagery (GEHRI). If a gap 
arose in any class, that class was reclassified and the process repeated. 

For classification of the cropping pattern and cropping intensity, we 
used Sentinel-2 time-series data because of their high quality of spatial 
and temporal resolution (Fig. 2b). The NDVI maximum monthly 

composite was classified using unsupervised ISOCLASS cluster K-means 
classification with a convergence value of 0.99 and 40 iterations, 
yielding 40 classes followed by successive generalization. We used un-
supervised classification rather than supervised classification to capture 
the variability in phenology across the study area. Identification and 
labeling of the various classes were based on NDVI time-series plots, 
ideal spectra, ground-truth data and very high-resolution images (Goo-
gle Earth). Ideal spectra were generated using time-series imagery with 
precise field plot data of the same type of land use at spatially distributed 
locations. The standard procedure included grouping of class spectra 
based on class similarities by comparing them with ideal spectra 
generated from training data along with GEHRI for class identification 
and labeling. Most of the classes were identified except some mixed 
classes [41, 42]; such classes were reclassified by masking them out and 
repeating the process. Further processes included resolving mixed 
classes with the help of the slope [43]. The classes generated from un-
supervised classification were aggregated into a minimum number of 
classes and labeled on the basis of spectral similarity. Cropping intensity 
was classified by identifying the number of NDVI spectral peaks 
throughout the study season. 

About Spectral matching techniques: 
The unsupervised class temporal profiles (NDVI curves) are matched 

with ideal temporal profiles (quantitatively based on temporal profile 
similarity values) in order to (a) group and identify classes for a specific 
crop class Ideal temporal profile (b) some of the class temporal profile 
signatures that are similar profile (based on correlation values), (c) ideal 
temporal profile signature matched with class temporal profiles, and (d) 
the ideal temporal profile matches with class temporal profiles. 

3.2. Accuracy assessment 

Accuracy assessment of the maps was performed on the basis of 
validation data provided by 104 ground survey samples [44]. For this we 

Fig. 4. Comparison of LULC classification derived from Planet and Sentinel-2 data  
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generated a confusion matrix in which the columns represented 
field-plot data points and the rows represented the results of classified 
rice maps [45]. The confusion matrix contains corresponding class 
changes in a multidimensional table. This statistical approach to accu-
racy assessment shows multivariate statistical analyses such as Kappa 
[46] to relate results from different classifications and regions; it pro-
vides a degree of agreement between the user and reference ground data 
with a score of homogeneity, or consensus. 

4. Results and Discussion 

4.1. Spatial distribution of land use/land cover using Planet 3 m data 

Using Planet data at 3 m resolution, we prepared LULC maps for the 
years 2016 and 2020 (Fig. 3) delineating the classes cropland, cropland 
with shrubland, forest, built-up area, water bodies, crop fallow mixed 
with barren land, and other land uses. The major classes such as 

cropland, forests, built-up area and water bodies were classified with 
greater accuracy than mixed classes due to homogenous contiguity 
because of the dominance of shrubs in cropland, which is a tradeoff 
while classifying very high-resolution imagery. 

We observed significant changes in LULC in the study area from 2016 
to 2020 (Table 2): cropland increased from 1,351 ha to 1,843 ha, built- 
up area from 9 ha to 22 ha, and water bodies from 53 ha to 73 ha. 

The major advantage of using Planet data compared to Sentinel-2 
data was the extraction of small homogenous patches of LULC. In 
below Fig. 4, we can observe the classification of water bodies and 
croplands. 

There is the difficulty of extracting mixed classes in Sentinel-2 data, 
especially in relation to built-up area and water bodies because of their 
larger fraction in a single pixel, which may yield a higher area estima-
tion of those two classes in Sentinel-2 derived products. 

Very high-resolution Planet imagery not only increased the accuracy 
of our LULC maps but also the precision of LULC estimates over a small 
area. However, we did not attempt crop-type mapping with Planet im-
agery due to the nonavailability of ground information during the date 
of acquisition and the lack of temporal acquisition. 

4.2. Spatial distribution of crop type and cropping intensity using Sentinel- 
2 10 m data 

From the spatial distribution of crop type and cropping intensity 
which was mapped using Sentinel-2 10m data for the years 2016 and 
2020 with help of spectral matching techniques, we found that areas 

Fig. 5. Spatial distribution of cropping intensity in the study area.  

Table 3 
Change in cropping intensity, 2016-2020.  

LULC change Area (ha) % Change 

1. Rainfed-SC to irrigated-DC 585 16% 
2. Other LULC to irrigated-DC 296 8% 
3. Other LULC to rainfed-SC 276 8% 
4. No change 2,593 69% 

SC: Single Crop; DC: Double Crop 
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that were single-cropped in 2016 (Fig. 5) had changed to double- 
cropping in 2020. 

This was due to the availability of water from four irrigation 
schemes. Given enhanced access to irrigation, there was a definite in-
crease in cropping intensity in their command areas (Table 3). 

The spatial distribution of LULC changes is shown in Fig. 6. The 
extent of change from rainfed single cropping to irrigated double crop-
ping was nearly 585 ha while the change from ‘other LULC’ class to 
irrigated double cropping was almost 296 ha. Conversion from ‘other 
LULC’ class to single cropping was about 276 ha. Cumulatively, 2,593 ha 
of land was impacted by the establishment of those four irrigation 
schemes. 

The spatial distribution of crop type indicates the change in cropping 
pattern in the command areas during 2016-20. The major crop in the 
region is rice in addition to other mixed crops such as vegetables, 
plantations, etc. (Fig. 7). 

There was a significant change in the rice-growing area, i.e., from 
single-cropping (rice) in 2016 to double-cropping (rice followed by 
pulses such as mung bean and soybean). Remarkable changes in LULC 
were observed especially in the command areas owing to an increase of 
about 300% in area with access to irrigation (rice-rice) with a corre-
sponding reduction in the area under rainfed crops (Table 4). The 
geographic coverage of water bodies increased by 31% during the study 
period. The above two changes are due to construction of new projects 
and providing irrigation facilities. The area under other types of land use 
decreased while a slight increase was noticed in the forest/vegetation 
area. The other land use decreased because of conversion of other LULC 
to croplands. 

The major objective of this paper was to demonstrate the usefulness 
of very high-resolution imagery in assessing the impact of small irriga-
tion schemes in terms of increasing cropping intensity while improving 
the livelihoods and incomes of smallholders. However, we used 

Sentinel-2 time-series data for mapping crop type and cropping in-
tensity. The crop identification and labeling process was carried out 
using NDVI 15-day composites as well as monthly Maximum Value 
Composite’s (MVCs). The major advantage of using monthly maximum 
composites is to get cloud-free or near-cloud-free images for classifica-
tion. Additionally, the ideal spectral signatures generated from the 
training data using composite imagery enable easy identification of 
cropping systems across seasons (e.g., wet and dry seasons) and eco-
systems (irrigated, rainfed, upland, etc.). These spectral matching 
techniques aided by high-resolution images were particularly successful 
in differentiating cropping patterns such as rice-rice, rice-fallow and 
continuous crops, etc. 

Freely available high-resolution satellite imagery from Sentinel-2 has 
been widely used for monitoring changes in agriculture. Satellite- 
derived crop area data have been used for village-level crop assess-
ment and in estimating crop statistics even in inaccessible areas for 
micro-level crop management and advisory. As Sentinel-2 satellite data 
are optical data, which are vulnerable to cloud cover, availability of data 
is hampered on cloudy days especially during the rainy season. In such 
cases, use of microwave (SAR) imagery from Sentinel-1 helps to a large 
extent. Sentinel-2 10-m data can be used to identify homogenous 
patches with a minimum of 90 m x 90 m plots in order to perform 
analysis of smallholdings at field scale. On the other hand, Planet data, 
available at 3 m resolution, are commercial and optical data. The 
problem of mixed classes experienced with Sentinel-2 crop classification 
can be overcome by using Planet data. 

4.3. Accuracy assessment 

Accuracy assessment of our crop-type classification showed an 
overall accuracy of 88.5% (Table 5) out of 104 validation points 
considered for the study. Crop-type classes such as irrigated (rice-rice) 

Fig. 6. Spatial distribution of LULC changes in terms of crop intensity.  
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and rainfed (SC-rice) achieved good producer’s accuracy. There was 
relatively less accuracy with mixed rainfed crops. The other LULC 
classes achieved a good level of accuracy except shrubs due to a mix of 
crops. 

Table 6 shows the accuracy assessment of major LULC classes carried 
out using Planet data. The classification map achieved good accuracy 
but accuracy of mixed and other classes tended to be low. Major LULC 
classes like cropland, built-up area, water bodies, crop fallow showed 
good accuracy >90%, but cropland mixed with shrubs showed less user 

accuracy of about 67%. The less accuracy recorded because of misclas-
sification of areas where shrubs are dominated in cropland areas in small 
holding farms and classification with sentinel-2 data Table 5. Accuracy 
assessment of crop-type classification, 2020 based on Sentinel-2 data. 

4.4. Validating study with household surveys 

A survey of 545 rural households conducted in 17 villages in 2021 
elicited information on wet seasons from 2018 to 2020 and found that 
the number of rice producers increased from 123 to 249 during that 
period (Fig. 8). This may be due to the fact that irrigation systems can 
bring water to farmlands from a long distance through canals. Thus, 
irrigation projects helped more farmers engage in rice production in the 
wet season. 

Source: Authors’ calculation based on a 2021 household survey. 
For the dry season, the number of rice producers in these irrigation 

schemes increased from 8 in 2018 to 278 in 2020. Thus, dry-season rice 
production went from being almost non-existent to a larger number of 
farmers taking it up than even the wet season. These findings are 
consistent with earlier findings from spatial information analysis. 

Outside of the irrigation command areas too the number of rice 
farmers increased in both wet and dry seasons, although the increases 
were relatively smaller compared with the changes in the project area. 
Also, construction of an embankment along the Mekong River might 
have encouraged farmers to take up rice production because of the 

Fig. 7. Spatial distribution of crop type in the command area.  

Table 4 
Change in Land use / land cover (LULC) and major crop types.  

Land use/land cover Area (ha) Land-use change (%) 
2016 2020 

1. Irrigated-DC-rice-pulses/rice 268 1071 300% 
2. Rainfed-SC-mixed crops 1239 1080 -13% 
3. Rainfed-SC-rice 437 32 -93% 
4. Plantation/trees 188 136 -28% 
5. Shrubs/trees 322 298 -7% 
6. Other LULC 305 25 -92% 
7. Barren land/open lands/fallow 66 58 -12% 
8. Forest/trees 797 884 11% 
9. Water bodies/wetlands 85 111 31% 
10.Builtup 36 48 33% 
Total area 3,743 3,743   
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reduced risk of floods. 
Apart from the project impacts, external factors such as good 

weather and the increasing farm-gate prices of rice might have 
encouraged farmers to produce rice both inside and outside the irriga-
tion schemes. It is difficult to isolate the influence of such external 
factors. However, if these external factors affect rice production evenly, 
the large increase in rice production in the irrigation schemes, especially 
during the dry season, can be characterized as project impacts. 

4.5. Economic impact due to construction of minor irrigation projects 

The major benefit from construction of minor irrigation projects is 
enhancement of rice production. Spatial information obtained from 
satellite imagery indicates an expansion of rice production in the dry 
season. Spatial analysis showed that the area under double cropping of 
rice has increased from 268 ha in 2016 to 1,071 ha in 2020. Based on the 
ground-level survey, the double-cropping area could have yielded 5.9 
tons of rice per ha during 2016. This was estimated to have increased to 
7.3 tons per ha in 2020. Therefore, total rice production due to double 
cropping of land is calculated to have increased from 1,581 tons to 7,818 
tons per year. The increased rice yields in these irrigation schemes could 
be due to increased use of chemical fertilizer and other inputs under 
assured conditions. Under rainfed conditions, farmers normally face 
risks of drought or water shortages. Under such circumstances, farmers 
may hesitate to apply agricultural inputs and carry out recommended 
management practices. Construction of five minor-irrigation projects is 
likely to have encouraged rice growers by reducing water stress condi-
tions in the command area. This facilitated stabilization of rice culti-
vation in the command area as well as protected the rice crop from 
moisture stress. The enhanced irrigation facilities not only expanded the 
area but also promoted rice cultivation in the project area. This has 
motivated the farmers to adopt necessary technologies for enhancing 
rice productivity. Cumulatively, small and marginal farmers in the 
project area have significantly benefited with enhanced productivity as 
well as higher household incomes. 

5. Conclusion 

We studied the impact of construction of minor irrigation projects in 
Vientiane prefecture of Laos by monitoring the situation before (2016) 
and after (2020) the intervention. In order to view these changes at high 
resolution, the study used both Planet (3 m) and Sentinel-2 (10 m) 
satellite imagery, and also used ground data to aid classification and 
validation. Major LULC classes were mapped using Planet data whereas 
crop type and cropping intensity were mapped using Sentinel-2 data 
using NDVI time-series and SMT approaches. 

The study found major changes and shifts in cropping intensity, i.e., 
from single to double cropping (about 300 ha converted to double 
cropping) from other LULC classes. Along with croplands, there was an 
increase in water bodies as well as settlements. The change from single 
cropping (rice) to double cropping (rice/pulses) was a major evidential 
change in the project area. 

The socio-economic survey also confirmed that there is significant 
cropped area allocation towards paddy cultivation during both wet and 
dry seasons in the project area. The absolute no. of farmers changed their 
cropping pattern are higher in dry season when compared to wet season. 
The survey also validated that the paddy productivity has been 
remarkably increased to 7.3 from 5.9 tons per ha under double cropping 
systems. This clearly visualizes that the construction of minor and small 
irrigation projects not only enhanced the water-use-efficiency (WUE) 
but also stabilized the paddy cultivation in the project area. There is 
reduced moisture stress as well as risk of paddy cultivation during dry 
season. These positive changes encouraged small & medium farmers to 
adopt better technologies and investments in paddy cultivation. 
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