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drought tolerance traits for the rainy and post-rainy 
seasons at Dharwad and post-rainy seasons at Tiru-
pati, and employed for single marker analysis, com-
posite interval mapping and multiple QTL mapping. 
Of the 305 significant marker-trait associations for the 
11 traits, only 21 were of major effect for pod yield 
per plant (PYPP), specific dry weight at 70 days after 
sowing (SDW_70) and specific leaf area at 70 DAS 
(SLA_70). Three major main effect QTLs were iden-
tified for PYPP with the highest phenotypic variance 
explained (PVE) of 10.5%. Nine QTLs with the high-
est PVE of 18.4% were identified for SDW_70, of 
which four QTLs were also governing SLA_70 with 

Abstract Genomic regions governing water defi-
cit stress tolerance were identified in peanut using a 
recombinant inbred line (RIL) population derived 
from an elite variety TMV 2 and its narrow leaf 
mutant TMV 2-NLM, which was evaluated over 
six-seasons at Dharwad (non-stress) and Tirupati 
(water-stress) in India. Stress condition could dif-
ferentiate the RILs much better than the non-stress 
condition for the physiological traits. A linkage map 
with 700 markers was used to identify the quantita-
tive trait loci (QTLs). Three sets of best linear unbi-
ased predictions (BLUPs) were estimated for the 
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the highest PVE of 15.7%. A few of them were also 
involved in epistatic interactions, and formed multiple 
QTL mapping models. Five major QTLs for SDW_70 
were stable over both the locations. Candidate genes 
with SNPs and AhMITE1 insertion were identified for 
the major QTL regions. A rare nonsynonymous SNP 
at Ah02_1558700 within the gene ArahyW1P0U6 
governing PYPP was detected. Functional analysis of 
these candidate genes may be useful for future genetic 
modifications in addition to validating and using the 
linked markers for improving drought tolerance in 
peanut.

Keywords Peanut · Drought tolerance · Multi-
environment phenotyping · BLUP · QTLs and 
candidate genes

Introduction

Peanut (Arachis hypogaea L.) is an important grain 
legume serving as a source of protein and oil. It is 
grown globally on an area of 31.6 million hectares 
with a production of 53.6 million tons (FAOSTAT 
2020) (https:// www. fao. org/ faost at/ en/# data/ QCL/ 
visua lize) and productivity of 1699  kg/hectare. It is 
widely grown under rainfed conditions in more than 
100 countries, which are characterized by inconsist-
ent rainfall followed by severe drought especially in 
Asia and Africa. Water deficiency is known to reduce 
peanut yield by 70% (Manjonda et  al. 2018; Prasad 
et al. 2010). Flowering and pod setting stages are con-
sidered most critical for water stress in peanut (Xiong 
et  al. 2016). Prolonged drought can cause reduction 
in root growth and density, curling of leaves, reduced 
inter-nodal length which in turn affect the absorp-
tion activity and efficient water usage resulting in 
delayed flowering and anthesis, reduced flower and 
pod number (Zhang et  al. 2012; Yang et  al. 2019). 
Biochemically, photosynthesis and ATP biosynthesis 
are affected, which leads to a significant reduction in 
productivity (Liu et al. 2013).

Significant progress has been made in understand-
ing the intrinsic mechanisms of drought tolerance in 
peanut through integrated approaches encompass-
ing physiology and productivity (Nigam et al. 2005; 
Ratnakumar et al. 2009). Root traits are identified as 
drought adaptive traits; however, their use as selec-
tion criteria for drought resistance is limited as they 

require elaborate phenotyping protocols (Janila et al. 
2016). Transpiration efficiency (TE), specific leaf area 
(SLA), SPAD chlorophyll meter reading (SCMR) and 
relative water content (RWC) have been recognized 
as important surrogate traits of water stress tolerance 
contributing to yield variation under drought stress 
in peanut (Krishnamurthy et  al. 2007). Studies also 
reported SCMR and total dry matter content (TDMC) 
as better pertinent traits than SLA for the selection 
of genotypes due to their significant correlation with 
pod yield under drought stress (Kalariya et al. 2017).

Low heritability and high genotype × environment 
interaction among afore-mentioned surrogating traits 
limit conventional breeding techniques to improve 
drought tolerance in peanut (Wright et  al. 1996; 
Basu and Nautiyal 2004). Despite the fact that wild 
Arachis species such as Arachis duranensis, Arachis 
stenosperma, and Arachis magna have shown con-
trasting early responses to dehydration (Vinson et al. 
2018; Dutra et al. 2018), the challenge for gene intro-
gression from wild to cultivated peanut due to time-
consuming, intricate breeding techniques, ploidy 
level difference, and linkage drag limits gene transfer 
(Simpson 2001).

In the past few years, considerable efforts have 
been made to map drought tolerance traits using 
genome-wide markers in peanut (Manjonda et  al. 
2018). Identification of QTLs for transpiration effi-
ciency, SCMR, shoot dry weight, leaf area, pod yield 
per plant (PYPP) were reported (Varshney et al. 2009; 
Ravi et  al. 2011; Gautami et  al. 2012) though with 
low-density maps. Genetic mapping of drought toler-
ance using a dense map was recently reported by Pan-
dey et al. (2021). These studies used the RILs derived 
from the drought resistant (ICGV 86031, ICGS 44, 
ICGS 76 and CSMG 84-1) and drought susceptible 
(TAG 24) genotypes.

Identifying the genomic regions governing drought 
tolerance traits in peanut is still important con-
sidering the low or moderate phenotypic variance 
explained (PVE) and/or stability of the QTL detected 
so far. A recombinant inbred line (RIL) population 
derived from an elite variety TMV 2 and its narrow 
leaf mutant TMV 2-NLM showed considerable vari-
ability for drought tolerance while demonstrating its 
high utility in identifying the genomic regions for the 
contrasting traits (Hake et  al. 2017). Therefore, this 
RIL population was evaluated under six environments 
with varying levels of moisture stress. An improved 

https://www.fao.org/faostat/en/#data/QCL/visualize
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linkage map (Jadhav et  al. 2021) constructed using 
single nucleotide polymorphic (SNP), simple 
sequence repeats (SSR) and Arachis hypogaea Trans-
posable Elements (AhTE) markers was used to map 
the main effect and epistatic effect QTLs for drought 
tolerance in peanut.

Materials and methods

RIL population of TMV 2 × TMV 2-NLM

A mapping population consisting of 432 recombinant 
inbred lines (RILs) (Pattanashetti 2005) of  F19-23 gen-
erations, derived from TMV 2 and its mutant TMV 
2-NLM (Prasad et  al. 1984) was used for mapping 
drought tolerance traits. TMV 2 (https:// tnau. ac. in/ 
ors- tindi vanam/ varie ties- relea sed), a Spanish bunch 
variety of peanut, was released in 1940, which got 
popularized due to its wider adaptability. This elite 
variety is drought susceptible probably due to low 
transpiration rate and low diffusive resistance com-
pared to more tolerant cultivars (Ratnakumar and 
Vadez 2011). But its mutant TMV 2-NLM is charac-
terized by narrow leaves and high SCMR (Hake et al. 
2017).

Multi-environment evaluation of RIL population for 
drought tolerance

The mapping population was evaluated along with 
the parents TMV 2 and TMV 2-NLM in two loca-
tions (Dharwad and Tirupati). RILs were evalu-
ated under non-stress condition during four sea-
sons, namely, rainy 2019 (2019R), post-rainy 2019 
(2019PR), rainy 2020 (2020R) and post-rainy 2020 
(2020PR) at the University of Agricultural Sci-
ences, Dharwad, India (15.4889°  N, 74.9813°  E). 
The mapping population was evaluated during the 
post-rainy 2018 (2018PR) and post-rainy 2020 
(2020PR) under drought stress at the Regional 
Agricultural Research Station, Acharya N. G. Ranga 
Agriculture University, Tirupati, India (13.6250° N, 
79.3728°  E). Plants were sown at a spacing of 
30 × 10 cm in the field in two replications, and rec-
ommended agronomical practices were followed for 
raising a healthy crop. At Tirupati, drought stress 
was induced in both the seasons by withholding the 
irrigation at flowering stage at 40 days after sowing 

(40 DAS) and the water stress was allowed to con-
tinue till the plants showed wilting. On 80th day 
after sowing, the plants were watered and observed 
for the recovery. Observations were recorded for the 
physiological traits like SCMR, SLA, specific dry 
weight (SDW), TDMC, RWC and canopy tempera-
ture (CT) in different growth stages like days to fifty 
percent flowering (DFF), 70 DAS and 100 DAS. 
Productivity was measured using PYPP.

Data analysis

Analysis of variance (ANOVA) was performed for 
each trait across the seasons and locations to test the 
significant difference among the RILs. In addition, 
four sets of combined ANOVA (Set I: rainy seasons 
at Dharwad, Set II: post-rainy seasons at Dharwad, 
Set III: post-rainy seasons at Tirupati and Set IV: 
across all seasons and locations) was performed to 
check for the genotype × environment interactions 
for the traits. Genetic parameters like genotypic 
coefficient of variation (GCV), phenotypic coeffi-
cient of variation (PCV), genetic advance over mean 
(GAM) (Johnson et al. 1955) and broad sense herit-
ability  (h2

BS) were calculated using the first three 
sets of combined ANOVA. All the statistical analy-
ses were carried out using R (R Core Team 2021).

Best linear unbiased predictions (BLUPs) were 
calculated for the drought tolerance traits separately 
for the two rainy seasons at Dharwad (Set I), two 
post-rainy seasons of Dharwad (Set II) and the two 
post-rainy seasons of Tirupati (Set III) using the 
lme4 package (Bates et al. 2011) of R, which helps 
fit linear and generalized linear mixed effects mod-
els. Pearson’s correlation coefficient analysis and 
multiple regression analysis (where PYPP was used 
as the dependent variable and other traits were used 
as the independent variables) were performed using 
these sets of BLUPs.

Linkage map

The genetic map previously constructed by Hake 
et  al. (2017) using AhTE markers, and later 
improved by incorporating SNP and SSR markers 
by Jadhav et al. (2021) was used in this study. This 

https://tnau.ac.in/ors-tindivanam/varieties-released
https://tnau.ac.in/ors-tindivanam/varieties-released
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map of 2438.2  cM carried 700 loci including 553 
SNPs, 8 SSRs and 139 AhTEs markers.

Single marker analysis

Marker-trait association was tested using single 
marker analysis (SMA) which was carried out using 
“mr” method of r/qtl package (Broman and Sen 2009) 
of R. SMA for the 700 markers was performed for the 
traits separately over the three sets of BLUPs with 
1000 permutations to calculate the logarithm of odd 
(LOD) and PVE.

Main-effect and epistatic QTL analysis

Main effect QTL analysis was carried out for the three 
sets of BLUPs using scanone() function of r/qtl pack-
age. For composite interval mapping, “ehk” method 
was employed with “Kosambi” mapping function. 
Threshold LOD scores were calculated for each trait 
at 5% significance using 1000 permutations. The 
significant QTLs with LOD more than the threshold 
and PVE more than 10% were identified as the major 
main effect QTLs, and those with PVE less than 10% 
were considered as minor main effect QTL (Collard 
et al. 2005). Naming of QTLs was done sequentially 
starting with ‘q’ followed by the name of the trait, 
the growth stage at which it was observed, followed 
by the season (R: rainy and PR: post-rainy) and loca-
tion (D: Dharwad and T: Tirupati), and followed by 
the chromosome number on which it was mapped. 
For example, a QTL for specific leaf area observed 
at DFF in rainy season at Dharwad on chromosome 
Ah16 was denoted as qSLADFFRD-Ah16.

Epistatic QTLs were identified by two-way genome 
search using scantwo() function in r/qtl package. Five 
threshold LODs (over 1000 permutations) namely 
full (likelihood ratio that compares the full model 
with identified QTL on both chromosomes to the null 
model), fv1 (likelihood ratio that compares the full 
model with identified QTLs on both chromosomes 
to the single QTL model), int (likelihood ratio that 
compares the full model with identified QTLs on both 
chromosomes to the additive model QTLs on both the 
chromosomes), add (is the analogous for the additive 
model) and av1 (likelihood ratio that compares the 
additive model with identified QTLs on both chro-
mosomes with the single QTL model with one QTL 

on each chromosome) were calculated for each trait. 
Any two QTLs with  LODfull ≥ full and  LODfv1 ≥ fv1 
or  LODint ≥ int were considered as epistatic.

Results

Phenotypic variability in the mapping population

Skewness, kurtosis and Shapiro–Wilk test statistics 
showed normal distribution for all the traits across 
the seasons and locations except for SLA_70 dur-
ing 2018PR and SDW_70 during 2020PR at Tiru-
pati (Supplemental Table S1). ANOVA for each trait 
(within seasons and locations) showed significant 
differences among the RILs. Combined ANOVA 
showed significant F values for the lines and the 
line × season interactions for all the traits in Set I, Set 
II and Set III (Supplemental Table  S2). Line × sea-
son × location interactions were also significant for 
the traits in Set IV (Supplemental Table S3). At Dhar-
wad, TMV 2-NLM was significantly superior over 
TMV 2 for SCMR_DFF, while it was marginally 
superior for SCMR_70, SCMR_100, SDW_DFF and 
SDW_70 as compared to TMV 2 across locations and 
seasons (Supplementary Table S4). However, TMV 2 
had higher SLA and PYPP when compared to TMV 
2-NLM across the seasons and locations. Transgres-
sive segregants were identified for all the physio-
logical and productivity traits in the RIL population 
across the seasons and locations.

Genetic variability was estimated from the first 
three sets separately (Supplemental Table S5). PYPP 
showed the highest PCV (23.3–32.1%) and GCV 
(22.4–29.3%) in all the three sets. TDMC showed 
high PCV and GCV in Set II. In general, SLA, 
SCMR and SDW showed moderate to low variabil-
ity in all the sets. PYPP (67.9–92.7%) followed by 
SCMR (86.2%) and SLA_70 (71.1%) showed high 
broad sense heritability in one or more sets. PYPP 
(44.5–55.7%) followed by TDMC (16.9%) showed 
high genetic advance over mean (GAM).

Multiple regression analysis for the Set I BLUPs 
showed that none of the physiological traits influ-
enced PYPP (Supplemental Table  S6). However, it 
showed that PYPP was significantly influenced by 
TDMC and RWC_70 in Set II and Set III, respec-
tively (Supplemental Tables S7 and S8). Correlation 
coefficients calculated using BLUPs showed that 
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SCMR, SLA and SDW were positively correlated 
between the stages in Set I (Supplemental Tables 
S9). SLA showed negative correlations with SCMR 
and SDW in all the three sets. PYPP was significantly 
positively correlated with SLA_DFF, while it was 
significantly negatively correlated with SDW_DFF in 
Set I and Set II (Supplemental Table S10). PYPP was 
significantly negatively correlated with TDMC in Set 
II. In Set III (Supplemental Table S11), RWC_70 and 
CT_70 were significantly negatively correlated with 
each other, and PYPP showed a significantly positive 
correlation with RWC_70, and a significantly nega-
tive correlation with CT_70.

Marker trait associations identified using single 
marker analysis (SMA)

Marker trait associations (MTAs) were studied for all 
700 markers using the BLUP values. A total of 305 
(111 in Set I, 72 in Set II and 122 in Set III) signifi-
cant marker-trait associations were identified using 
SMA (Supplemental Table S12). Out of them, a total 
of 21 (7 in Set I and 14 in Set III) associations were 
found to be major (PVE more than 10%). Only three 
traits (SDW_70, PYPP and SLA_70) were involved 
in the major associations. It was SDW_70 which con-
tributed 10 major MTAs among the 14 MTAs of Set 
III with the highest PVE of 18.2%. The remaining 
four MTAs involved SLA_70 with the highest PVE 
of 15.5%. In total, 10 markers were engaged in the 14 
MTAs, of which six were associated with SDW_70 
and four were associated with both SDW_70 and 
SLA_70. The marker AhTE0120 showed the high-
est PVE for both SDW_70 (18.2%) and SLA_70 
(15.5%). Of the seven major MTAs for PYPP in Set 
I, six associations involved SNP markers that were 
located within a 1.37  Mb region on chromosome 
Ah02. All seven MTAs were stable over Set II with 
minor effects. Similarly, five AhTE markers associ-
ated with SDW_70 in Set III were also stable over Set 
II with minor effects.

Main effect QTLs for drought tolerance related traits

QTL analysis using the three sets of BLUPs could 
identify 23, 19 and 46 significant main effect QTLs 
from Set I, II and III, respectively for all the traits 
except for TDMC (Supplemental Table  S13). Of 
them, three and nine were major QTLs (Fig. 1) which 

were identified from Set I and Set III, respectively 
for the three traits (PYPP, SLA_70 and SDW_70) 
(Table 1). Of the three QTLs identified for PYPP in 
Set I, qPYPPRD-Ah2 flanked by Ah02_198678 and 
Ah02_1558700 on Ah02 showed the highest PVE of 
10.5% with a LOD of 9.7. The favourable allele for 
this QTL was contributed by TMV 2-NLM parent, 
and all the three QTLs were stable over Set II with 
minor effects (7.2–8.5%).

Out of the 9 QTLs from Set III, four were com-
monly mapped for SLA_70 and SDW_70, while 
the remaining five were mapped exclusively for 
SDW_70. The QTL qSLA70PRT-Ah11 on Ah11 
flanked by AhTE0233 and AhTE0120 recorded the 
highest PVE of 15.7% (Lod of 14.9) and 18.4% (LOD 
of 17.8) for SLA_70 and SDW_70, respectively. 
The favourable allele at this QTL was contributed 
by TMV 2 (Fig.  2). Of the four common QTLs for 
SLA_70 and SDW_70, three QTLs also governed CT 
with minor effects (5.6–9.5%) in Set III. They were 
also stable over Set II for SDW with minor effects 
(3.8–5.1%). Similarly, two of the five exclusive QTLs 
for SDW_70 were also stable over Set II with minor 
effects (3.8–4.3%). The QTL region 0–15.3  cM on 
Ah04 governing SLA and SDW was co-localized 
with the QTL region (15.4–19.7 cM) for PYPP. Like-
wise, the QTL region 115.3–118.7 cM on Ah05 con-
tributing for SDW was co-localized with the region 
106.2–115.3 cM for PYPP.

Epistatic QTL analysis

Thirty-four QTL interactions were identified for 
the eight traits (except for SLA_DFF, SLA_70 and 
RWC_70) (Supplemental Table S14) (Fig. 3). Among 
them, 27 interactions mapping four traits were major. 
Five of the major QTLs identified through compos-
ite interval mapping were involved in the epistatic 
interactions. Highest PVE of 23.3% was observed 
for the interaction mapped for SDW_70 involving 
one major QTL qSDW70PRT-Ah16 and the region at 
73.5  cM on Ah 12. This location on Ah12 also had 
an intra-chromosomal interaction with another major 
QTL qSDW70PRT-Ah12 with a high PVE of 21.1% 
for SDW_70. The third major QTL for SDW_70 
qSDW70PRT-Ah3 showed significant interaction with 
two genomic regions at 115.9  cM and 42.2  cM on 
Ah15 and Ah18, respectively. The position on Ah18 
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(42.2  cM) carried a minor effect QTL for SDW_70 
qSDW70PRT-Ah18.

The fourth major QTL qPYPPRD-Ah2 showed sig-
nificant interactions with three other epiQTLs located 
on Ah06, Ah10 and Ah12 with a PVE of 16.3%, 
15.6% and 15.5%, respectively for PYPP. The fifth 
major QTL qPYPPRD-Ah4 showed significant inter-
actions with regions on Ah06, Ah08, Ah12 and Ah14 
with the PVE of 15.5%, 15.3%, 15.2% and 15.2%, 
respectively for PYPP.

The remaining major interactions were mapped for 
the traits SCMR_DFF, SDW_70, PYPP and CT_70. 
Among those, an intra-chromosomal interaction 
(between 52.9  cM and 111.1  cM) was observed for 
SDW_70 on Ah09 with a PVE of 14.7%. For CT_70, 
two minor main effect QTLs (qCT70PRT-Ah5 and 
qCT70PRT-Ah14) on Ah05 and Ah 14, respectively 
showed major epistatic interaction with the PVE of 
11.6%.

Multiple QTL mapping

Multiple QTL mapping (MQM) was attempted for 
those three traits (PYPP, SLA_70 and SDW_70) 
which showed a major main effect QTLs (Sup-
plemental Table  S15). Multiple QTL models were 
developed using the ‘stepwiseqtl()’ function of r/qtl 
package. The best models were selected based on the 
penalized LOD score calculated using 1000 permuta-
tion tests to avoid the false positives. The LOD and 
PVE values for each QTL in the model were esti-
mated using ‘fitqtl()’ function. MQM analysis for 
SLA_70 using the BLUPs of Set III showed a model 
which consisted of nine significant QTLs, of which 
two were also interacting. This model showed a LOD 
of 139.5 with a PVE of 79.7%. However, none of 
these QTLs were identified as main effect major QTL 
by composite interval mapping (CIM). However, 
two minor main effect QTLs (Q3 and Q8) on Ah12 
(qSLA70PRT_Ah12) and Ah18 (qSLA70PRT_Ah18) 
were detected in this model with the PVE of 6.4% and 
4.9%, respectively.

In the same set (Set III), the MQM for SDW_70 
could identify a model (PVE of 29.9%) consist-
ing of four main effect QTLs which also included a 

major main effect QTL qSDW70PRT-Ah16 on Ah16 
(Q2). Another main effect minor QTL qSDW70PRT-
Ah18 and one marker associated with SDW_70 
Ah12_117582109 (73.5  cM) on Ah12 were also 
included in this model. Q4 corresponding to the 
genomic region on Ah19 (81.4  cM) was identified 
as a major epistatic QTL. MQM for Set I identified 
a model with four main effect QTLs for PYPP with a 
LOD of 6.1 and a PVE of 6.7%. Q1 corresponded to 
the major main effect QTL qPYPPRD-Ah2 identified 
by CIM.

Identification of putative candidate genes

For candidate gene discovery, the QTLs and the 
markers (identified by SMA) with major effects 
towards PYPP, SLA_70 and SDW_70 were con-
sidered (Tables 2 and 3). For the QTLs, the regions 
between the two flanking markers were scanned to 
identify the genes and their functions using Peanut-
Base (https:// peanu tbase. org) (Dash et al. 2016). For 
the markers identified by SMA, the genomic positions 
were checked for gene content. Of the 12 major main 
effect QTLs, only 10 were flanked by the markers 
which showed co-linearity between the physical map 
and genetic map.

The QTL qSDW70PRT-Ah10 governing SDW_70 
consisted of two genes (Araip.1CJ82 and Araip.
ESI8G). The QTL for SDW_70, qSDW70PRT-Ah03 
carried four genes; Araip.13K1T coding for ATP 
synthesis protein, Araip.XG2Y6 coding for peptide 
transfer, Araip.4QA2R coding for secretary carrier 
membrane protein and Araip.440M0 coding for PAP-
specific phosphatase HAL2-like protein. The other 
two QTLs qSDW70PRT-Ah05 and qSDW70PRT-
Ah12 governing SDW_70 had seven and five genes, 
respectively. The two QTLs qPYPPRD-Ah02 and 
qPYPPRD-Ah05 governing PYPP had 125 and 17 
genes, respectively. Two QTLs on Ah11 and Ah16 
governing both SLA_70 and SDW_70 had 25 and 
415 genes, respectively.

Of the 17 major effect markers involved in 21 
MTAs, a total of 14 showed co-linearity, of which 
10 (8 SNP and 2 AhTE) were in the genic regions 
of seven genes. Of them, four genes were associated 
with PYPP, and three were associated with SLA_70 
and SDW_70. Of the four genes associated with 
PYPP, three were located on Ah02 chromosome.

Fig. 1  QTL plot illustrating main effect major QTLs identified 
for drought tolerance and productivity traits in RIL population 
of TMV 2 and TMV 2-NLM of peanut

◂

https://peanutbase.org
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An effort was made to identify the superior RILs 
for drought stress recovery. In total, 14 RILs along 
with TMV 2-NLM were identified as early recover-
ing at RARS, Tirupati when the plants were watered 
after subjecting to water deficit stress for 40 days. Fif-
teen late recovering RILs were also identified (Sup-
plemental Table  S16). These lines significantly dif-
fered for SCMR_70, SLA_70, SDW_70, RWC_70 
and PYPP, indicating their potential application in 
improving drought tolerance.

Discussion

This study reports mapping of QTLs and markers 
for drought tolerance in peanut by evaluating a RIL 
population derived from TMV 2 and its mutant TMV 
2-NLM in six seasons over two locations, compris-
ing of both normal and drought stress conditions. 
Previously, this mapping population has been used 
for mapping the taxonomic traits (Hake et al. 2017), 
quality traits (Jadhav et al. 2021) and iron deficiency 

Fig. 2  Means of SLA_70 and SDW_70 for the genotypic classes at AhTE0120
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tolerant traits (Tayade et  al. 2022), and this success 
could mainly be attributed for the small genomic 
region differing between the two parents (TMV 2 and 
its own mutant), and also due to the availability of a 
fairly dense genetic map. TMV 2 and TMV 2-NLM 
also differed for a few drought tolerance and produc-
tivity traits.

Normal distribution of most of the drought stress-
related traits like SCMR, SLA, SDW RWC and CT 
showed quantitative gene control. Large differences 
between PCV and GCV were observed for SLA_
DFF, SLA_70, SDW_DFF, SDW_70 in Set I, SLA_
DFF, SDW_DFF and TDMC in Set II and CT_70 
in Set III, indicating the influence of environment. 
The pattern of correlations between the productivity 

Fig. 3  Main effect major QTLs with their epistatic interactions for drought tolerance and productivity traits in TMV 2 × TMV 
2-NLM RIL population
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Table 2  Putative genes identified for major QTLs detected for productivity and physiological traits in TMV 2 × TMV 2-NLM RIL 
population in peanut

PYPP Pod yield per plant; SLA_70 Specific leaf area at 70 days after sowing (DAS) and SDW_70 Specific dry weight at 70 DAS

Trait QTL Chromosome Flanking markers Flanking distance Total 
number of 
genes

PYPP (Set I) qPYPPRD-Ah2 Ah02 Ah02_198678-
Ah02_1558700

51.7–51.9 125

qPYPPRD-Ah5 Ah05 Ah05_115061124-
AhTE0470

106.2–115.3 17

SDW_70 (Set III) qSDW70PRT-Ah03 Ah03 Ah03_53967134-
Ah03_127278448

6.5–14.1 4

qSDW70PRT-Ah05 Ah05 AhTE0470-AhTE0275 115.2–118.7 7
qSDW70PRT-Ah10 Ah10 AhTE0599-AhTE2086 17.8–26.2 2
qSDW70PRT-Ah12 Ah12 AhTE1110-

Ah02_100365825
0.0–5.6 5

SDW_70, SLA_70 (Set 
III)

qSLA70PRT-Ah11/qSD-
W70PRT-Ah11

Ah11 AhTE0233-AhTE0120 26.4–33.3 25

qSLA70PRT-Ah16/qSD-
W70PRT-Ah16

Ah16 AhTE0242-AhTE0060 0.0–7.1 415

Table 3  Putative genes and positions identified for major markers detected by SMA for productivity and physiological traits in TMV 
2 × TMV 2-NLM RIL population in peanut

Chr Chromosome; PYPP Pod yield per plant; SLA_70 Specific leaf area at 70 days after sowing (DAS) and SDW_70 Specific dry 
weight at 70 DAS

Trait Marker Chr Position Gene ID Function

PYPP Ah02_198678 Ah02 Intron Arahy.H3LZVP Mediator of RNA polymerase II transcription subunit 
12-like isoform X2

Ah02_1558700 Ah02 Exon Arahy.W1P0U6 Putative disease resistance RPP13-like protein 1-like 
isoform X7

Ah02_1558039 Ah02 Intron Arahy.W1P0U6 Putative disease resistance RPP13-like protein 1-like 
isoform X7

Ah02_1558046 Ah02 Intron Arahy.W1P0U6 Putative disease resistance RPP13-like protein 1-like 
isoform X7

Ah02_1558010 Ah02 intron Arahy.W1P0U6 Putative disease resistance RPP13-like protein 1-like 
isoform X7

Ah02_1016757 Ah02 5’ UTR Arahy.23PCL8 Protein kinase superfamily protein; IPR011009 (Pro-
tein kinase-like domain)

Ah05_115061124 Ah05 Exon Arahy.85VNG6 Oxidoreductase family protein
SDW_70 Ah03_127278448 Ah03 Non-genic

AhTE0275 Ah05 Non-genic
Ah12_117582109 Ah12 Exon Araip.SJ8UT LRR and NB-ARC domain disease resistance protein
AhTE1110 Ah12 Non-genic
Ah13_67288586 Ah13 Non-genic

SDW_70, SLA_70 AhTE0120 Ah11 Intron Araip.03APC Phospholipase D P2
AhTE0242 Ah16 Intron Araip.8SB48 Receptor-like kinase 1
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traits and the physiological traits differed between the 
water-stressed and non-stressed conditions. RWC was 
found to have a significant influence on PYPP under 
stressed conditions in a correlation study and multi-
ple regression analysis. Similar pattern of association 
between pod yield and RWC was also observed under 
stress condition in peanut by Aninbon et  al. (2021). 
We also observed a strong association between PYPP 
and RWC in a multi-parent advanced generation 
intercross (MAGIC) population of peanut under water 
stressed condition (unpublished data).

In order to have better prediction accuracies 
(Meher et al. 2022; Piepho et al. 2008), BLUPs were 
used to identify the MTAs by SMA and QTL analy-
sis in this study. Set I BLUPs were calculated for the 
eight traits using the means of two rainy seasons at 
Dharwad, while Set II BLUPs were worked out for 
the five traits using the means of two post-rainy sea-
sons at Dharwad. Set III BLUPs were estimated for 
the six traits using the means of two post-rainy sea-
sons at Tirupati. Varying levels of possible water 
deficit stress across the seasons and the environment 
was considered as the basis to calculate three separate 
sets of BLUPs as reported earlier by Hamidou et al. 
(2012). Though 305 significant MTAs were detected 
for the 11 traits across the three sets, only 21 were 
major (PVE ≥ 10%) for the three traits; with the high-
est PVE of 10.5% for PYPP, 18.2% for SDW_70 and 
15.5% for SLA_70. Overall, it was observed that the 
stress condition could differentiate the RILs much 
better than the non-stress condition for the physiolog-
ical traits like SLA_70 and its inverse trait SDW_70. 
Eight markers (AhTE0281, AhTE0087, AhTE0275, 
AhTE0120, AhTE1110, AhTE0242, AhTE0060 and 
Ah003_127278448) associated with SDW_70 in this 
study were also associated with protein content (Jad-
hav et al. 2021) and tolerance to iron deficiency chlo-
rosis (Tayade et  al. 2022) in peanut in the previous 
studies.

A few markers with minor MTAs showed associa-
tion with multiple traits (up to four). However, four 
markers with major MTAs showed association with 
SDW_70 and SLA_70. Eleven markers involved in 
major MTAs were also found to be the flanking mark-
ers for the QTL regions with major effects. Four genes 
were found for PYPP and three genes were found for 
SLA_70 (and its inverse trait, SDW_70). Of the four 
genes for PYPP, three were located in a genomic 
region of 1.37  Mb, which also corresponded with a 

QTL region (qPYPPRD-Ah02) for PYPP. Of those 
three genes, Arahy.W1P0U6 coding for putative dis-
ease resistance RPP13-like protein 1-like isoform X7, 
carried four SNPs (Ah02_1558010, Ah02_1558039, 
Ah02_1558046 and Ah02_1558700), all of which 
had major effect for PYPP. Ah02_1558010, 
Ah02_1558039, Ah02_1558046 were in the intronic 
region of Arahy.W1P0U6, while Ah02_1558700 was 
in the exonic region with a non-synonymous SNP 
effect (base change from cytosine to thymine lead-
ing to amino acid change from leucine to phenylala-
nine). Arahy.W1P0U6 and Araip.SJ8UT genes though 
code for disease resistance proteins, previous reports 
showed their induction under drought stress in peanut 
(Khan et al. 2020; Deng et al. 2018) and maize (Yang 
et al. 2021). The SNP at Ah02_1558700 was found to 
be rare since it was detected only between TMV 2 and 
TMV 2-NLM but not among any of the 179 acces-
sions of peanut (Bhat et al. 2022). Other two genes, 
Arahy.H3LZVP and Arahy.23PCL8 in the same QTL 
region code for mediator of RNA polymerase protein 
and protein kinase super-family protein, respectively. 
Two SNPs (Ah02_198678 and Ah02_1558046) 
which were associated with PYPP with major and 
stable effects were also found to be associated with 
SCMR, shoot dry weight and TDMC under both 
stress and non-stress conditions in a MAGIC popula-
tion (our unpublished data).

Of the three (qPYPPRD-Ah02, qPYPPRD-Ah04 
and qPYPPRD-Ah05) major main effect QTLs for 
PYPP, the first two were involved in the epistatic 
interactions, and the last two were previously reported 
to govern tolerance to iron deficiency chlorosis (Tay-
ade et  al. 2022), and number of pods per plant and 
oil content (Jadhav et al. 2021). Since the favourable 
allele at all the three loci were contributed by TMV 
2-NLM which is generally low yielding than TMV 
2, the importance of other genomic regions contrib-
uting for PYPP could be expected. Two major effect 
QTLs on Ah12 (0.0–5.7 cM) and Ah16 (0.0–7.1 cM) 
governed SLA_70 and SDW_70 through their main 
effects and epistatic interactions with a genomic 
region on Ah12 (73.5  cM). The region on Ah04 
(0.0–19.7 cM) carrying two co-localized QTLs qPYP-
PRD-Ah04 and qSLA70PRT-Ah04/qSDW70PRT-
Ah04 was also previously reported to govern drought 
tolerance traits like transpiration, total dry matter 
and SCMR (Varshney et al. 2009; Ravi et al. 2011). 
Another genomic region (106.2–118.7 cM) on Ah05 
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carrying two colocalized major QTLs for PYPP and 
SDW_70 was also previously reported to govern tran-
spiration efficiency, total dry matter and shoot dry 
weight by Gautami et al. (2012).

Genomic regions on Ah01 (28.5–58.1  cM) and 
Ah11 (26.4–33.3  cM) governing SLA_70 and 
SDW_70 in this study were also reported to con-
tain epiQTL and main effect, respectively for SLA 
by Gautami et  al. (2012). Similarly, another major 
QTL region (0.0–7.1  cM) on Ah16 governing both 
SLA_70 and SDW_70 was also reported to carry 
QTLs for SCMR under well-watered (Faye et  al. 
2015; Ravi et al. 2011) and drought stress condition 
(Varshney et al. 2009). All five major QTLs that gov-
ern SDW_70 were linked to one or more drought tol-
erance traits such as SCMR, CT, SLA, and shoot dry 
weight (Ravi et  al. 2011; Faye et  al. 2015; Gautami 
et al. 2012).

Again, the stress condition provided better oppor-
tunity to identify genomic regions for drought stress-
related physiological traits as compared to non-stress 
condition in this study. Greater contribution of these 
traits towards drought tolerance under mid stress and 
severe stress condition over non-stress condition was 
also previously reported by Songsri et al. (2009).

Four major QTLs (on Ah03, Ah05, Ah10 and 
Ah12) governing SDW_70 were predicted to carry 
two to seven genes. For example, the major QTL 
on Ah10 qSDW70PRT-Ah10 carried two genes, of 
which Araip.1CJ82 codes for FKBP-like peptidyl-
prolyl cis–trans isomerase family protein, and Araip.
ESI8G codes for unknown protein. Overexpression of 
FKBP-like peptidyl-prolyl cis–trans isomerase fam-
ily protein in Arabidopsis could enhance tolerance 
to ABA, drought, heat and salt stress (Alavilli et  al. 
2018). Of the four genes residing in the QTL region 
qSDW70PRT-Ah03, the gene Araip.440M0 coding for 
PAP-specific phosphatase HAL2-like protein has pre-
viously been reported to act as a signaling molecule 
under oxidative stress like drought and high light con-
ditions, and thereby regulating nuclear gene regula-
tion in Arabidopsis (Estavillo et al. 2011).

Overall, this study identified the drought respon-
sive QTLs and plant-type QTLs, markers and a few 
candidate genes from a dense genetic map and exten-
sive phenotypic data from stress and non-stress con-
ditions for the physiological and productivity traits 
related to drought in peanut. Some of the markers 
and QTLs were also stable across environments, and 

consistent with other reports. Validation of some of 
the markers in a MAGIC population certainly extends 
their utility in molecular breeding. The candidate 
genes identified in this study can be subjected to 
functional analysis for future genetic modifications. 
These genomic regions and the candidate genes could 
significantly contribute for improving drought toler-
ance in peanut.
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