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Climate change across the globe has an impact on the occurrence, prevalence,

and severity of plant diseases. About 30% of yield losses in major crops are due

to plant diseases; emerging diseases are likely to worsen the sustainable

production in the coming years. Plant diseases have led to increased hunger

and mass migration of human populations in the past, thus a serious threat to

global food security. Equipping the modern varieties/hybrids with enhanced

genetic resistance is the most economic, sustainable and environmentally

friendly solution. Plant geneticists have done tremendous work in identifying

stable resistance in primary genepools and many times other than primary

genepools to breed resistant varieties in different major crops. Over the last two

decades, the availability of crop and pathogen genomes due to advances in

next generation sequencing technologies improved our understanding of trait

genetics using different approaches. Genome-wide association studies have

been effectively used to identify candidate genes and map loci associated with

different diseases in crop plants. In this review, we highlight successful

examples for the discovery of resistance genes to many important diseases.
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In addition, major developments in association studies, statistical models

and bioinformatic tools that improve the power, resolution and the

efficiency of identifying marker-trait associations. Overall this review

provides comprehensive insights into the two decades of advances in

GWAS studies and discusses the challenges and opportunities this

research area provides for breeding resistant varieties.
KEYWORDS

plant diseases, genome wide association studies, haplotypes, pangenomes, multi-
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Introduction

The incidence and severity of biotic and abiotic stresses have

been increasing due to global climate change. Plant diseases have

been serious threat to global food security as well as devastating

in the history of mankind which led to famines and mass

migration of humans. For instance, ancient Israelites migrated

to Egypt due to incidence of wheat rust. Similarly, the ergot of

rye, destroyed the armies of Peter the Great at Astrakhan in

1722, while the late blight of potatoes led to Irish famine (Goss

et al., 2014). Potato blight laid waste the economy of Ireland in

the 1840s, and led to migrations that changed the history of the

New World. In 1943 brown spot disease (caused by

Helminthosporium oryzae) resulted in the Bengal famine that

took lives of millions of people (Islam, 2007). Frequent droughts,

higher temperatures and other abiotic stresses cause biochemical

and physiological changes in plants that increase their

vulnerability to diseases and also led to emergence of new

races or pathotypes. Coffee rust destroyed the coffee-trees of

Ceylon in the 1880s and caused the economy of the England to

be switched to tea-growing. Global yield losses in major crops

due to plant disease is around 30% (Rizzo et al., 2021) and

average yield losses in five globally important crops by plant

pathogen estimates at a global level; rice (30.0%), wheat (21.5%),

maize (22.5%), soybean (21.4%) and potato (17.2%) suggest that

the highest losses are associated with resource-poor regions with

growing populations (Savary et al., 2019). In other words, the

resource-poor farmers have been most adversely affected by the

yield loss which increased their debts making them more

vulnerable to food, health and educational security.

Although conventional disease management strategies like

chemical control have reduced the yield losses caused by plant

pathogen, but the pesticide formulations lead to extreme

deterioration of the soil and environment. Further, traditional

breeding for disease resistance is time consuming and labor

intensive (Deng et al., 2020). Over the last two decades, advances

in genomics and next-generation sequencing technologies

enabled the development of enormous genomic resources like
02
genomes of crops (Michael and Jackson, 2013; Kress et al., 2022)

as well as pathogens (Moller and Stukenbrock, 2017). Several

efforts at the international level have been made to gain insight

into the disease resistance mechanism in case of several

pathogens in different major crop plants. Quantitative trait

locus (QTL) mapping has been widely used for identifying the

genomic regions/genes associated to disease resistance traits.

Further, crop varieties with enhanced resistance to key diseases

have been developed (Dodia et al., 2019; Gangurde et al., 2019;

Mannur et al., 2019; Pandey et al., 2020; Roorkiwal et al., 2020;

Gangurde et al., 2021). Nevertheless, QTLs detected using the

linkage mapping approach are sometimes not deployable as

large genomic regions associated with linkage drag or

undesirable genes. Association mapping that overcomes the

limitations of QTL mapping has been used in several crop

plants (see Alseekh et al., 2021) and animal species (Sharma

et al., 2015; Uffelmann et al., 2021) for fine mapping in

identifying markers associated with the traits of interest.

Although GWAS was started in animals, humans, and the

perennial tree species, wherein it isn’t easy to have biparental

kind of genetic populations, nevertheless, it gained momentum

in most crop species. The last decade has also witnessed huge

progress in testing new GWAS models to achieve better and

more precise results, including the implementation significance

level to check the false discovery rate (Weckwerth et al., 2020).

In this article, we comprehensively review the progress of

candidate gene discovery for disease resistance in major crop

plants. In addition, we also provide insights into the use of multi-

parental mapping populations for establishing genome-wide

association studies and the extreme phenotype genome-wide

association study (XP-GWAS), which does not require

genotyping of a large number of individuals, and which

further reduces the cost, labor and time involved. The

statistical basis of genome screening is the most important

part of GWAS, as statistical tools are used to predict the

correct association of outcomes by calculating a large amount

of data. Power and resolution are the two important factors that

can alter the genome-wide association. Power represents the
frontiersin.org
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ability to detect an association, and resolution regards the

proximity of the association between a marker and

quantitative trait locus (Mohammadi et al., 2020). In multiple-

marker association, we have presented an alternative to the

statistics of single-marker association. The combination of

methods is the most desired approach, as multiple

combinations of methods will discover more signals across the

genome. Tools and software are the most important pillars for

genome-wide association analysis, and some important tools

and software will be discussed in this review. Additionally, we

will focus on advances in GWAS analysis and the future outlook

for association mapping.
Marker-trait associations (MTAs) and
candidate gene discovery disease
resistance in crops

Association mapping is widely used to check marker

associations with a specific trait based on the difference in

allele frequency across the genomes (Uffelmann et al., 2021).

More precisely, it is a powerful tool for the genome-wide

detection of genomic regions/candidate genes for complex

traits over the time-consuming and imprecise QTL mapping

approach. Detected genomic regions will provide information on

unrelated individuals to elucidate the molecular basis of biotic

and abiotic stress tolerance. Candidate genes identified by non-

random association of alleles in GWAS can be used to accelerate

breeding programs to develop new varieties. Researchers have

done considerable work to make biotic and abiotic stress-

tolerant varieties. GWAS requiring high-density genome-wide

markers and SNPs based on next-generation sequencing have

been widely used for dissecting complex agronomic traits and

disease resistance loci in economically important crop plants

(Ogura and Busch, 2015; Burghardt et al., 2017). In this review,

we mainly focus on and demonstrate studies that have used

GWAS approaches in various crops to understand disease

resistance responses.
Maize

Maize (Zea mays) is one of the widely cultivated major crops

across the globe. Despite wide investigations and availability of

genome sequences, very few studies deployed candidate gene-

based GWAS to identify candidate genes for disease resistance in

maize. In the seminal study, 18 novel genes associated with head

smut resistance were identified (Wang et al., 2012). ZmFBL41

gene encoding F-box protein that confirms resistance to sheath

blight and banded leaves was reported using GWAS (Li et al.,

2019a). Dwarf disease resistance in maize was investigated by

integrating GWAS and linkage mapping, and candidate genes
Frontiers in Plant Science 03
identified by GWAS include DRE-binding protein

(GRMZM2G006745) and LRR receptor-like serine/threonine-

protein kinase (GRMZM2G141288) (Zhao et al., 2022a). A total

of 10 MTAs for gray leaf spot resistance explaining ~15.7%

phenotypic variance were identified (Kibe et al., 2020). In total,

164 significant associations with 25 candidate genes identified for

Fusarium verticillioides resistance (Stagnati et al., 2019). A total of

17 significantly associated haplotypes in genomic regions of

important candidate genes Ht2, Ht3 and Htn1 were identified

for Northern corn leaf blight resistance (Rashid et al., 2020).

Fumonisin is a mycotoxin produced in maize kernals, 17 MTAs

and important candidate genes associated with fumonisin

resistance were identified (Samayoa et al., 2019) (Table 1).
Rice

Rice (Oryza sativa) is staple food for more than half of the

global population, and second most important cereal after

Maize. In the case of rice, fungal diseases like blast, sheath

blight and sheath-rot, bacterial diseases like bacterial blight (BB)

and the viral disease like rice tungro disease, are major diseases.

GWAS approach has been deployed to identify and validate

genomic regions for tolerance to BB (Jiang et al., 2021; Shu et al.,

2021), bacterial leaf streak tolerance (Sattayachiti et al., 2020;

Jiang et al., 2021), blast (Volante et al., 2020; Frontini et al.,

2021). Among 56 important QTLs/genomic regions associated

with different blast isolates, a single genomic region was

designated as the Pik allele that confirms resistance to all three

isolates (Li et al., 2019b). Fourteen marker trait associations

(MTAs) for blast resistance were identified using both field and

growth chamber screenings by evaluating 311 O. sativa

accessions (Volante et al., 2020), however, three novel regions

(BRF10, BRF11–2 and BRGC11–3) were identified that had no

relationship with previously identified genes or QTLs. In rice,

high nitrogen input levels are conducive to disease development,

a phenomenon called nitrogen-induced susceptibility. Two

important QTLs include NIS2 and RRobN1 were identified

that may play an important role in the blast disease response

to nitrogen fertilizer (Frontini et al., 2021). There are only a few

reports about the identification of sheath blight (ShB) resistance

QTLs using GWAS (Jia et al., 2012; Zhang et al., 2019a; Oreiro

et al., 2020; Wang et al., 2021) (Table 1). A genomic region

(qLN11 and qMLL11) controlling sheath blight resistance was

investigated recently (Oreiro et al., 2020). Additionally, GWAS

with 259 diverse rice varieties identified 653 significantly

associated with ShB resistance and validated two important

disease resistance proteins, RPM1 (OsRSR1) and protein

kinase domain-containing protein (OsRLCK5) (Wang et al.,

2021). Transgenic rice containing the overexpressed NH1 gene

acquired high levels of resistance to Xanthomonas oryzae (Chern

et al., 2005). This shows the importance of identifying and
frontiersin.org
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TABLE 1 Summary of MTAs or candidate genes identified for disease resistance in major crops.

Crop Disease Panel size Candidate gene/QTL/MTAs PVE
(%)

Reference

Maize Head smut 144 18 MTAs 3-9 Wang et al. (2012)

Northern corn leaf blight 999 22 (12 + 10) MTAs 2-3 Ding et al. (2015)

Leaf and sheath blight 318 28 (ZmFBL41) Li et al. (2019a)

Rough dwarf 292 22 MTAs Zhao et al. (2022a)

Gray leaf spot (GLS) 410 10 MTAs 15.7 Kibe et al., 2020

Fusarium verticillioides 265 164 MTAs, 25 candidate genes Stagnati et al., 2019

Northern corn leaf blight 419 17 haplotypes, Ht2, Ht3 and Htn1
genes

Rashid et al., 2020

Fumonisin resistance 256 17 MTAs Samayoa et al., 2019

Rice Bacterial leaf blight 285 qPXO79_6-1 to -4 11-29 Dilla-Ermita et al. (2017)

qPXO339/349_9-1 and

qPXO339/349_11-1,

qPXO79/112/341_12-1

259 58 candidate genes, Shu et al. (2021)

LOC_Os07g02560 and
LOC_Os07g02570

895 77 loci 4-30 Jiang et al. (2021)

421 13 QTLs

Bacterial leaf streak 895 7 loci Lu et al. (2020)

236 12 QTLs – Sattayachiti et al. (2020)

Blast 151 21 MTAs – Wang et al. (2015)

234 56 QTLs, Pikx Li et al. (2019b)

311 14 MTAs 74 Volante et al. (2020)

331 3 QTLs, NIS1, RRobN1 NIS2 and
NIS3

– Frontini et al. (2021)

355 127 MTAs 30 Lu et al. (2019)

Sheath blight 217 10 MTAs – Jia et al. (2012)

563 134, 562, and 75 MTAs – Zhang et al. (2019a)

299 qSB-3 and qSB-6 – Chen et al. (2019)

240 qLN1128 qMLL1114 18 Oreiro et al. (2020)

259 1396 loci, 653 genes – Wang et al. (2021)

Wheat Yellow rust 419 7 QTLs 6-19.9 Ledesma-Ramıŕez et al. (2019)

Stripe rust 94 31 MTAs 11.9 Muhammad et al. (2020)

240 12 MTAs 3.6 - 10.3 Jia et al. (2020)

Leaf rust, tan spot and yellow rust 333, 313 36 (12 + 14+10) MTAs – Juliana et al. (2018)

Fusarium head blight 273 10 MTAs – Arruda et al. (2016)

170 9 MTAs 7.2-13.2 Wang et al. (2017)

171 88 MTAs 6.6-14.8 Hu et al. (2020)

240 5 MTAs 5.4-10.3 Zhu et al. (2020)

Barley Spot blotch 261 23+15 QTLs 26-76 Visioni et al. (2020)

Barley yellow dwarf virus 335 36 MTAs Choudhury et al. (2019)

Sorghum Downy mildew 368 16 genetic variants 26.7 Rashid et al. (2018)

Target leaf spot 456 flg22 and Chitin Samira et al. (2020)

Anthracnose 335 3 MTAs – Cuevas et al. (2018)

359 16 MTAs – Prom et al. (2019)

242, 163 and
159

24 (8 + 0 + 16) MTAs Ahn et al., 2019; Ahn et al., 2021 and Ahn
et al., 2022

Grain mold 635 KAFIRIN and LEA3 Nida et al. (2019)

(Continued)
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interrogating high-yielding varieties to better resist the disease.

Rice panicle blast resistance gene, Pb2, encoding NLR Protein

was reported recently (Yu et al., 2022)
Wheat

In the case of wheat (Triticum aestivum), genetic loci for

disease resistance to yellow rust (Ledesma-Ramıŕez et al., 2019),

stripe rust (Juliana et al., 2018; Jia et al., 2020; Muhammad et al.,

2020) and Fusarium head blight have been reported using

GWAS approach (Arruda et al., 2016; Wang et al., 2017; Hu
Frontiers in Plant Science 05
et al., 2020; Zhu et al., 2020). Further, genetic loci associated with

resistance to multiple diseases such as leaf rust, stripe rust, and

tan spot were also identified (Juliana et al., 2018). Using pre-

breeding lines Ledesma-Ramıŕez et al. (2019), reported 14 SNP

loci associated with seven genomic regions for yellow rust

resistance. Similarly, among 12 stable loci reported to be

associated with yellow rust resistance, six loci were novel and

six were same as reported earlier using QTL studies (Jia et al.,

2020) (Table 1). Using 171 wheat cultivars, two syntenic loci,

QFhb-4AL and QFhb-5DL, associated with Fusarium head blight

resistance were reported (Hu et al., 2020). Using genotyping-by-

sequencing SNPs, 10 MTAs Fusarium head blight resistance and
TABLE 1 Continued

Crop Disease Panel size Candidate gene/QTL/MTAs PVE
(%)

Reference

Soyabean Tobacco ringspot virus 19652 2 chromosome Chang et al. (2016)

Stem rot disease 478 44 MTAs Rolling et al. (2020)

Sclerotinia stem rot 185 16 QTN Sun et al. (2020)

Soybean mosaic virus 219 24 MTAs 25.5–
33.6

Che et al. (2020)

Peanut Early leaf spot, late leaf spot and tomato
spotted wilt

120 87 (18 + 28 + 41) MTAs 10.1-24.1 Zhang et al. (2019b)

Root-knot nematodes 161 46 MTAs 7.8- 17 Kumral (2019)

Aspergillus flavus 99 60 MTAs 16.8-
31.7

Yu et al. (2020)

Brassica
napus

Leptosphaeria maculans 179 694 MTAs (Rlm12) Raman et al. (2016)

421 59 MTAs 2.9-23.4 Raman et al. (2020)

585 79 MTAs – Fikere et al. (2020)

243 25 resistance gene analogs – Fu et al. (2020)

Clubroot 427 9 MTAs 4.2-6.5 Li et al. (2016a)

Sclerotinia stem rot 448 26 MTAs to DSRC4, DSRC6 and
DSRC8 loci

6.14 Wu et al. (2016)

Chickpea Ascochyta blight 69 100 kb region (AB4.1) on
chromosome 4

- Li et al. (2017a)

251 26 MTAs 11.4-25.9 Raman et al. (2022)

165 30 MTAs Farahani et al., 2022

Pythium ultimum 184 11 MTAs, 7 candidate genes Agarwal et al., 2022

Cotton Verticillium wilt and Fusarium wilt 376 28 (15 + 13) MTAs 11-45 Abdelraheem et al. (2020)

Verticillium wilt 299 17 MTAs – Li et al. (2017b)

Potato Phytophthora infestans 150 16 QTLs 13.7-50.9 Juyo et al. (2019)

Tomato Bacterial wilt 191 8 MTAs 8.3-18.2 Nguyen et al. (2021)

Common
bean

Fusarium wilt 205 11 significant SNPs 9-64 Paulino et al. (2021)

Cassava Cassava mosaic 6128 One major QTL – Wolfe et al. (2016)

Cassava mosaic 5130 clones 3 MTAs – Rabbi et al. (2020)

Peach Gummosis 195 5 MTAs – Li et al. (2021b)
PVE, Percent phenotypic variation explained; MTA, marker-trait associations.
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few SNPs associated with Fhb1 on chromosome 3B were

reported (Arruda et al., 2016). High-resolution SNP-based

GWAS enabled identification of 19 stable genomic regions

harboring 292 significant SNPs associated with adult-plant

resistance and rapid identification of putative resistance genes

and can be used to improve the efficiency of marker-assisted

selection in wheat disease resistance breeding (Wu et al., 2021).

Recently, stable and environment-specific QTLs for powdery

mildew (PM) adult-plant resistance were identified on

chromosomes 1A, 1B, 1D, 2B, 3B, 4A, 5A, 6A, and 6B for

Septoria tritici blotch and 2A, 2D, 3A, 4B, 5A, 6B, 7A, and 7B

(Alemu et al., 2021). Four novel QTLs strongly associated with

different markers for barley yellow dwarfism in wheat were

identified on different chromosomes (Choudhury et al., 2019).
Barley

In case of barley (Hordium vulgare), rusts and PM diseases

that have a major effect on yield. Based on phenotyping of 431

European barley accessions for two seasons and genotyping

using DArT-seq, 78 MTAs for PM and rusts adult plant

resistance were reported (Czembor et al., 2022). In case of spot

blotch resistance, 11 out of 20 genetic loci at the seedling and

adult stages were associated with functional candidate genes.

Most of the identified genomic regions seem to be enriched with

some known important proteins associated with disease

resistance, such as NBS-LRR, transcription factors and

pathogenesis-related proteins (Visioni et al., 2020). Using

multi-location phenotyping of 1,317 spring barley breeding

lines from a commercial breeding program and genotyping

using 9K SNP array, a QTL on chr. 4H associated with PM

and ramularia resistance were reported (Tsai et al., 2020).
Sorghum

In case of sorghum (Sorghum bicolor) using association

analysis genetic loci linked to various disease resistances

including anthracnose, head smut, downy mildew, and target

leaf spot, were reported (Cuevas et al., 2018; Samira et al., 2020;

Ahn et al., 2021; Ahn et al., 2022 and Chaturvedi et al., 2022).

Two SNPs on chromosome 9 that are linked to the Sb09g029260

gene, a member of the chalcone and stilbene synthase family

were reported (Adeyanju et al., 2015). Genomic regions

containing important genes like YELLOW SEED1 (Y1), a non-

functioning pseudogene (Y2), and YELLOW SEED3 (Y3) were

found to be associated with grain mold resistance (Nida et al.,

2019). The defense mechanism against leaf spot disease in

sorghum was clarified by GWAS analysis, which also identified

two SNP loci linked to flg22 and the chitin response (Samira

et al., 2020). In majority of the cases, it has been found that

leucine-rich repeat (LRR) region resistance genes are responsible
Frontiers in Plant Science 06
for signal transduction in plants towards activating defense

genes and form major class of R genes. LRR proteins have

enormous functions including signal transduction, protein-

protein interactions, and cell adhesion. Some of these

mechanisms are overlapping between responses due to insect

and pathogen induced. For example, several LRR proteins were

highlighted including other compounds involved in defense

responses (Punnuri et al., 2022). This functional adaptability

of LRR proteins derives from a conserved three-dimensional

structure, a curved coil composed of repeating units of ~24

amino acid residues, that contains both conserved and

variable regions.
Soybean

Yield in soybean (Glycine max) is adversely affected by a

wide range of pathogens like fungi, bacteria, viruses, and

nematodes. MTAs identified for various diseases are

comprehensively reviewed recently by Ferreira and Marcelino-

Guimarães (2022). GWAS identified a single locus on

chromosome 2 strongly associated with tobacco ringspot virus

sensitivity (Chang et al., 2016). A mapping study for stem rot

disease resistance using genome-wide association study analysis

was conducted and identified 44 QTLs for quantitative disease

resistance (Rolling et al., 2020). A specific locus amplified

fragment sequencing (SLAF-seq) approach was used to

genotype for GWAS and identified seven genomic regions

with major effects and nine novel regions with minor effects

on Sclerotinia stem rot resistance (Sun et al., 2020). Many

associated SNPs were identified that are tightly linked with

previously reported SMV resistance loci, Rsv1, Rsv4, and Rsv5

(Che et al., 2020).
Peanut

Peanut (Arachis hypogaea) is an important oilseed crop with a

large and complex genome, is one of the most nutritious food. A

comprehensive GWAS study based on 300 genotypes peanut from

48 countries identified 1 MTA for Aspergillus flavus resistance, 6

MTAs for early leaf spot, 31 MTAs for groundnut rosette disease

and 1 MTA identified for late leaf spot of peanut (Pandey et al.,

2014). Early leaf spot (ELS) and late leaf spot (LLS) tomato spotted

wilt virus (TSWV) are serious peanut diseases. In case of peanut,

of 74 non-redundant genes identified as resistance genes, 12

candidate genes were in significant genomic regions including

two candidate genes for both ELS and LLS, and other 10 candidate

genes for ELS (Zhang et al., 2020). Similarly, a total of 22 non-

redundant candidate genes were identified significantly associated

with diseases, which include 18 candidate genes for TSWV, 3

candidate genes for both ELS and LLS, and 1 candidate gene for

LLS, respectively (Zhang et al., 2019b). Most candidate genes in
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the associated regions are known to be involved in immunity and

defense response. The QTLs and candidate genes obtained from

this study will be useful to breed peanut for resistances to the

diseases. Root-knot nematodes are also major problem in case of

peanuts, 46 genetic loci with phenotypic variation explained

(PVE) between 7.8% and 17% located on 12 different

chromosomes underlying root-knot nematode resistance were

determined by GWAS (Kumral, 2019). In GWAS of groundnut,

a total of 60 significantly associated SNPs were identified with

16.87% to 31.70% phenotypic variation for resistance to

Aspergillus flavus (Yu et al., 2020).
Brassica sps

In Canola (Brassica napus) using GWAS analysis, Rlm12

locus was reported to be associated with adult plant resistance to

blackleg disease caused by Leptosphaeria maculans (Raman

et al., 2016). Using Canadian and Chinese canola accessions,

32 and 13 SNPs loci distributed on chromosomes A03, A05,

A08, A09, C01, C04, C05, and C07 that were tightly associated

with blackleg resistance were reported (Fu et al., 2020). Recently,

133 SNPs associated with 123 loci for disease traits of sclerotinia

stem rot were reported using GAPIT R package and GEMMA-

MLM (Roy et al., 2021). Nine genomic regions were identified

that showed a significant association with clubroot resistance by

using GWAS of 472 accessions with Brassica 60K Infinium®

SNP array (Li et al., 2016a). Similarly, three QTLs, DSRC4,

DSRC6, and DSRC8, associated with Sclerotinia stem rot

resistance were also reported (Wu et al., 2016).
Chickpea

Chickpea (Cicer arietinum L.) is second most important

grain legume cultivated in more than 150 countries across the

globe. Fusarium wilt, Ascochyta blight (AB), and Botrytis grey

mould are major diseases that lead to yield losses in chickpea

growing regions. Association mapping approach was extensively

deployed in case of abiotic stress (Thudi et al., 2014; Varshney

et al., 2019). Very few studies reported the genetic loci and

candidate genes associated with resistance to AB resistance. For

instance, 26 genomic regions on chromosomes Ca1, Ca4, and

Ca6 associated with AB resistance can be used in chickpea

breeding programs to enhance AB resistance using marker-

assisted/genomic selection strategies (Raman et al., 2022). In

addition, a 100 kb region (AB4.1) on chromosome 4 with 12

predicted genes (like NBS-LRR receptor-like kinase, wall-

associated kinase, zinc finger protein, and serine/threonine

protein kinases) significantly associated with AB resistance was

reported (Li et al., 2017a). Recently, association mapping
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discovered 11 significant MTAs and seven candidate genes for

pre-emergence damping-off resistance in chickpea (Agarwal

et al., 2022).
Other key crops

In cotton (Gossypium hirsutum), genomic regions, NBS-LRR

and enriched with resistance gene analog (RGA) clusters (RGA1

and RGA3) associated with two different strains causing wilt

disease (Abdelraheem et al., 2020). While, 17 significant SNPs

and 22 candidate genes associated with verticillium wilt

resistance were predicted by haplotype block structure analysis

(Li et al., 2017a). Similarly, for BB 11 genomic regions associated

with 79 SNPs found on different chromosomes were reported

(Elassbli et al., 2021). In case of potato (Solanum tuberosum), 16

QTLs associated with resistance to late blight were reported, with

PVE between 13.7% and 50.9%. Of 15 candidate genes found in

the study, ten for stem resistance and five for leaf resistance were

reported (Juyo et al., 2019). In the case of tomato (Lycopersicum

esculentum), eight genomic regions associated with bacterial wilt

resistance and their corresponding QTLs (Bwr-4 and Bwr-12)

explaining 8.36–18.28% PVE were identified (Nguyen et al.,

2021). In case of common bean, the molecular basis of

fusarium wilt resistance was elucidated; significant SNPs and

candidate genes related to carboxy-terminal LRR and

nucleotide-binding sites were reported (Paulino et al., 2021).

In cassava, fourteen genomic regions were identified, among

which a single region on chromosome no. 8 account for 30 to

66% of genetic resistance to mosaic disease resistance (Wolfe

et al., 2016). A total of 29 MTAs on chromosome 10 and

SIN_1019016 one of the candidate genes identified closely

associated with phytophthora blight resistance in sesame

(Asekova et al., 2021). Two genomic regions on chromosomes

2 and 9 of Setaria italica were significantly associated with blast

disease resistance in foxtail millet (Li et al., 2021a). In vegetable

and fruit crops the GWAS was very extensively used for

candidate gene discovery and development of diagnostic

markers. Diverse set of 566 apple accessions identified

significant marker trait associations for fire blight of apple

caused by Erwinia amylovora. A total of 23 and 38 MTAs

significantly (p<.001) associated with shoot and blossom blight

resistance, respectively (Thapa et al., 2021). GWAS based on 195

accessions and 145,456 genome-wide SNPs identified five SNPs

and six candidate genes significantly associated with gummosis

disease resistance in peach (Li et al., 2021b). In Brassica napus

genome-wide association analysis based on association panel of

448 accessions genotyped with the Brassica 60K Infinium® SNP

array identified 26 SNPs corresponding to three loci, DSRC4,

DSRC6, and DSRC8 were associated with Sclerotinia stem rot

resistance (Wu et al., 2016).
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Statistical basis of genome
screening

In mathematical terms, GWAS analysis consists a series of

statistical testing, screening the genome with one marker at a

time, one region at a time, or the whole genome at once. The

hypotheses under evaluation consist of the null hypothesis (H0)

and the alternative hypothesis (H1). UnderH0, the marker under

evaluation is not associated with the trait, whereas the alternative

hypothesis rejects H0. The consensus metric of association is the

p value, defined as the probability of observing the association

informed by the data given that the null hypothesis is true. Thus,

lower values support the rejection of H0. The preferred scale for

p value is -log10(p value), so that stronger associations are

displayed as higher values. The genome-wide plot where the

markers are ordered according to their physical position on the

x-axis with associations presented on the y-axis in terms of -log10
(p value) is referred to as the Manhattan plot.

When a single marker is tested, the target p value to assert an

association is equal to or lower than a = 0.05, which allows

spurious associations 5% of the time. However, genome-wide

screening entails testing thousands to millions of markers, and

consequently, there is an expectation of 5% false discoveries. To

mitigate false positives, the significance threshold is adjusted to

account for the multiple testing problem (m). A standard

procedure is the Bonferroni correction, which consists of

dividing a by the number of markers, creating a more stringent

threshold to define an association. The Bonferroni threshold may

be too stringent with sequence-level data involving millions of

markers. A threshold relaxation is attained through an acceptable

false discovery rate (FDR), referred to as Benjamini–Hochberg,

which consists of dividing a by (1-FDR) × m. Other alternatives

include replacing the total number of markers by the effective

number of segments (m*), which accounts for marker collinearity

associated with linkage disequilibrium.
Approach 1: Single-marker
associations

Linearmodels represent themain framework to testmarker-QTL

associations on complex traits. At its simplest form, the linear model

that defines the alternative hypothesis, ergo fitting a marker, is

y = m + xb + e

where y is the vector of phenotypes, m is the intercept, x is the

vector containing the marker information, b is the marker effect,

and e is the vector of residuals. The marker information is normally

coded as {0,1,2} corresponding to {AA,Aa, aa} to capture the

additive effect of an allele substitution. The null hypothesis model

does not contain a marker term and is defined as
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y = m + e

In both cases, the residuals are assumed to be normally and

identically distributed as e ∼ Nð0, Is2
e ). The likelihood and

null and alternative models are defined by

L(Xjb,V) = exp (y − Xb)0V−1(y − Xb)ffiffiffiffiffiffiffiffiffiffiffi
2p Vj jp

where b is a vector of fixed effect coefficients, including the

intercept and the marker, and V is the variance-covariance

matrix, which for this simple model V = Is 2
e . Adequate

statistical testing is the likelihood ratio test (LRT) between null

and alternative models. It contrasts the likelihood of the data

with and without the marker in the model, hence measuring the

improvement in data fit when the marker under evaluation is

included in the model. The test is defined by

LRT = −2 ln
LH0

LH1

� �

The p value is obtained from LRT from chi-squared density

with the number of degrees of freedom (v) dictated by the

difference in degrees of freedom from models H0 and H1; thus,

LRT ~x2(v). For the simple case presented above that

corresponds to one degree of freedom because there is one

additional parameter in the alternative model, that is, the

marker effect (b). When the single marker association jointly

tests for additive and dominant effects, the LRT is tested with

two degrees of freedom, which may reduce the statistical power.
Power and resolution

Two important factors influencing the outcome of the

genome-wide association are the power and resolution of the

analysis. Power corresponds to the ability to detect an

association and resolution regarding the proximity of the

association between the marker and quantitative trait locus

(Mohammadi et al., 2020).

The influence of power on signal detection is known as the

Beavis effect (Beavis, 1998; Xu, 2003). Power can be increased

with (1) an increasing number of phenotypic observations; (2)

the imputation of missing marker information (Xavier et al.,

2016a), as it increases the number of marker observations; (3) a

good experimental design that increases the genetic signal; and

(4) the design of a recombinant population with higher minor

allele frequency and SNP variance (Mohammadi et al., 2020).

The resolution is maximized with (1) at the marker density

that captures all linkage blocks; (2) with a population that has

enough diversity to display nucleotide segregation across the

genome; and (3) sufficient recombination between segregant

markers to enable the detection of the marker to the

causative locus.
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GWAS using structured populations

In genetics, structure is the term reserved to define the

existence of stratifications in a population, where a

subpopulation may differ with respect to its origin,

evolutionary history, and allele frequency. Association studies

in structured populations are likely to provide spurious results if

the structure is not accounted for in the statistical model.

Without a structure term, the model is incapable of

differentiating a signal from a marker in LD to a QTL and a

marker that displays higher frequency in subpopulations with

higher (or lower) phenotypic means. The latter is the case when

the marker tracks population structure instead of the

true associations.

Key parametrizations of population structure include (1)

model-based terms as derived from STRUCTURE software

(Porras-Hurtado et al., 2013); (2) reduced dimensionality

techniques such as principal components (Patterson et al.,

2006); and (3) polygenic terms that describe the relationship

among individuals (Kang et al., 2008; Xavier et al., 2016b). From

those, model-based covariates and principal components are

treated as fixed effects, whereas the polygenic term is random.

Model-based terms are derived beforehand through clustering.

Principal components are obtained from the single-value

decomposition of the genotypic matrix as

M = UDS

where M is the genotypic matrix where rows are individuals

and columns are markers, U is the matrix of orthogonal

eigenvectors (U′U = I) that correspond to the principal

components, D is a diagonal matrix with the eigenvalues,

which inform how much variation of M is explained by each

principal component, and S is the rotation matrix. The

alternative model for genome-wide association containing

either principal components or model-based covariates is

commonly defined as

y = Xb +ma + e

where y is the vector of phenotypes, X is the design matrix of

fixed effects containing a vector of ones and the structure term

(e.g., vectors of U), corresponding to the principal components

or model-based covariates, b is a vector offixed effect coefficients

including the intercept and the regression coefficients of the

structure term, m is the vector with marker genotype

information, a is the allele substitution effect, and e is the

vector of residuals.

Structure modeled by the polygenic term starts with

constructing the relationship matrix G. There are various

methods to build the G matrix, which may entail the use of

marker information, pedigree information, or a combination of

both (Aguilar et al., 2011), capturing additivity, dominance and

epistasis (Xu, 2013). A common choice is the linear relationship
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derived from genomic information, popularly known for its

applications in prediction as the GBLUP model (Habier et al.,

2007; VanRaden, 2008), which is computed as

G =
MM0

oP
j=1pj(1 − pj)

where the cross product of the genotypic information matrix

(MM′) is normalized by the sum of allele variances under

Hardy-Weinberg equilibrium, defined for the jth marker as

Var(mj) = pj(1-pj). The genomic relationship matrix enters the

genome-wide model as the covariance of the random term that

describes the polygenic effect (u), which is assumed to be

normally distributed as u ∼ Nð0,Gs 2
u ). In prediction

nomenclature, polygenic effects are referred to as genomic

estimated breeding values (GEBV) and are the preferred

metric for the selection of superior genotypes in breeding

programs adept at genomic selection technology. The linear

model for the alternative hypothesis is then defined by

y = m +ma + Zu + e

where Z is the incidence matrix of individuals, and the joint

variance of phenotype and random terms is defined as

Var

y

u

e

2
664

3
775 =

V ZGZ0s 2
u 0

ZGZ0s 2
u Gs 2

u 0

0 0 Is 2
e

2
664

3
775

where V is the variance-covariance matrix, defined as V =

ZGZ0s2
u + Is2

e . For models containing random terms other than

the residuals, also known as mixed effect models, the restricted

likelihood (Searle et al., 2009) function is a preferred metric over

the regular likelihood for the LRT because it accounts for the

degrees of freedom of the fixed effects. The restricted log

likelihood is defined by

logL(Xjb,V) = c −
1
2
ln Vj j − 1

2
ln X0V−1X
�� �� − 1

2
(y − Xb)0V−1(y

− Xb)

The restricted likelihood can also be attained as a

pseudorandom model (Xu et al., 2009), where all terms are

considered random and fixed effect terms are assumed to have

variance equal to infinity ðs2
b = ∞). This leads to a simpler

formulation or the restricted likelihood as

logL(Xjb,V) = c −
1
2
ln Pj j − 1

2
y0Py

where the matrix P is a replacement of V-1 that includes the

fixed effects, as P = (XX0s 2
b + V)−1, which equates to P = V-1 –

V-1X(X′ V-1X)-1X′ V-1. The variance components needed to

estimate V, namely, s 2
u and s 2

e , are estimated as the values that

maximize the restricted likelihood, hence referred to as the

restricted maximum likelihood estimates, or “REML”. The
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main algorithms for solving the variance components problem

are the first derivative via Expectation-Maximization (Harville,

1977) and the second derivative approach through average

information (Johnson and Thompson, 1995). However, when

the variance components are re-estimated for every alternative

model, specialized algorithms such as the efficient mixed model

association EMMA (Kang et al., 2008) have gained popularity.

For computational efficiency, it is a common practice to use the

variance components estimated for the null model in the

alternative model (Aulchenko et al., 2007; Kang et al., 2010;

Zhou and Stephens, 2012).

In more recent years, p values have also been driven from a

linear transformation of the polygenic term (Legarra et al., 2018;

Aguilar et al., 2019). This is because marker effects can be

estimated from the null model as

â  j û   ¼  MG-1û

and the p values can be directly obtained from a statistic â j
 = ŝ a, equivalent to EMMAX, with p values obtained as

(p − value)j = 2 1 −F
â j
ŝ a

����
����

� �

Some combination of structure parametrizations has also

been proposed. Zhang et al. (2010) proposed using principal

components along with a compressed polygenic term, where G

does not express the relationship among individuals but the

relationship among clusters of individuals, aiming to depict the

subpopulations. However, principal components should not be

combined with the non-compressed polygenic term because

both parametrizations carry redundant information because

the principal components can also be estimated through the

eigenvalue decomposition of the genomic relationship matrix as

G = UD2U′.
Approach 2: Multiple-marker
association

In this section, we present an alternative to the statistics of

single marker association. These approaches are derived from

methods originally proposed as prediction methods that can also

serve to identify markers and genomic regions with strong

associations with the trait of interest. These include the whole-

genome regression methods in the Bayesian framework

(Meuwissen et al., 2001) and machine learning methods

(Nicholls et al., 2020).

Whole genome regression: Associations from whole genome

regression are based on methods such as BayesCp (Habier et al.,

2011) to infer the associations (Colombani et al., 2013) using the

posterior probability of the variable selection term or the Bayes

factor (Fernando and Garrick, 2013). Whole-genome regression
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fit models with all markers at once and have a different setup for

hypothesis testing. This does not require multiple testing

corrections such as Bonferroni. The BayesCpmodel is defined as

y  ¼  m + Mad + e

where y is the vector of phenotypes, m is the intercept, M is

the genotypic matrix where rows are individuals and columns

are markers, a is the vector of allele substitution effect, d is a

vector of variable selection, and e is the vector of residuals. This

model has the following probabilistic assumptions:

mjs 2
e ∼ N m̂ , n−1s 2

e

� �

ajs 2
a ∼ Nð0,s 2

a Þ

dja0, b0 ∼ b(a0, b0)

ejs 2
e ∼ Nð0,s 2

e Þ

s 2
a jna, Sa, p ∼ p−1c−2(va, Sa)

s 2
e jne, S ∼ c−2(ve, Se)

The parameters are estimated as the posterior mean from the

Gibbs sampler (Habier et al., 2011; Xavier et al., 2016b). The

association significance can be driven by d as the probability of

each marker being in the model. In addition to the association,

GEBVs from this model are obtained as û   ¼  Mâ d̂ and the

heritability as

ĥ 2 =
ŝ 2

aoP
j¼1p(1 − p)

ŝ 2
aoP

j¼1pj(1 − pj) + ŝ 2
e

Machine learning with variable selection: Like the approach

above, this is based on fitting all markers at once in a linear

model, and the main techniques utilized from association are the

least absolute shrinkage and selection operator (LASSO;

Tibshirani, 1996) and elastic net (Zhou and Hastie, 2005). The

linear model for these models consists of

y = m +Ma + e

with the same terms as the Bayesian whole genome

regression, without d. Conversely, the variable selection of

LASSO and elastic net comes from the nature of the estimator

of a. For the elastic net, the vector of effects is estimated to

minimize the function

argminðaÞ = e0e + ya
ffiffiffiffiffiffi
a0ap

+ y (1 − a)(a0a)

where LASSO assumes y = 1 and elastic nest assumes 0< y<
1. The regression coefficients are solved via coordinate descent

(Friedman et al., 2010). The univariate solution for the jth marker

is given as
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if (m0
j ~y > 0 and m

0
j ~y  −  ya < 0Þ !  â j  =  0

if (m0
j ~y > 0) !  â j =

m0
j  ~y − ya

m0
jmj+y (1−a)

if (m0
j ~y  <  0 and m0 ~y  −  ya  >  0Þ !  â j  =  0

if (m0
j ~y  <  0) !  â j =

m0  ~y − ya
m0

jmj+y (1−a)

8>>>>>>><
>>>>>>>:

where ~y is the vector of phenotypes conditional to all except

the jth markers; thus, ~y = y − m −M−ja−j. The value of L is found

through k-fold cross-validation, aiming to minimize the mean

square prediction error, and GEBVs can be computed as û =

Mâ . Unfortunately, LASSO and elastic net do not necessarily

provide a probability of associations such as a p value or Bayes

factor. Associations can be inferred directly from the estimated

coefficients (Waldmann et al., 2013), and an empirical

significance threshold can be estimated from permutations

(Doerge and Churchill, 1996).

Machine learning with variable importance: Semi-parametric

machine learning methods do not infer any direct relationship

between markers and traits. However, a general metric of

association referred to as “variable importance” can be utilized

as an indirect metric that provides a degree of association

without revealing the nature of the association (e.g., additive,

dominant, epistatic). Measurements of variable importance can

be generated for support vector regressions, random forests,

gradient boosting machines, and neural networks. However,

there is no gold standard method to measure variable

importance across machine learning methods. The use of

variable importance as a genome-wide association statistic

often relies on an empirical significance threshold that can be

estimated from permutations (Doerge and Churchill, 1996).

Approaches to generate p values via permutation have also

been proposed for some methods, such as random forest

(Altmann et al., 2010).

Among the semi-parametric machine learning methods, the

random forest algorithm (Breiman, 2001) is the most popular

method for genome-wide association studies (Goldstein, 2011;

Brieuc et al., 2018). Random forest consists of an average

prediction from a series of classification and regression trees

generated with random subsets of the parameter space from

bootstrapped observations. Whereas decision trees are poor

predictors, the collective of multiple small trees generated at

random provides robust predictions. Random forest can be

described by the model (Xavier, 2021)

y =
1
NT

o
NT

i¼1
T(Mp∈P)

where NT is the total number of trees and T(Mp∈P) is a

function that represents a tree built with a random subset of

markers (p ∈ P) from the genotypic matrixM whereas the number

of trees NT is at times considered a tuning parameter, higher

counts provide more stable measurements of variable importance.

The common metric for variable importance in random forests is
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the mean decrease impurity, or simply “impurity”, which

corresponds to the reduction in variance for regression problems

and the Gini index for classification problems.
Approach 3: Combination of
methods

Distinct GWAS approaches often provide different

association results; hence, the deployment of various methods

may lead to the discovery of more signals across the genome.

Stronger signals are likely to be captured by multiple methods,

whereas minor QTLs may be found by a specific methodology

that best reflects the role of any given marker under the general

architecture of the trait. Yang et al. (2018) performed genome-

wide association using three types of single-marker association

methods with different statistical assumptions to find the QTLs

for kernel row number in corn. Going one step further,

association analysis was performed deploying three distinct

techniques, namely, single-marker analysis, Bayesian whole-

genome regression and random forest, in the search for QTLs

that control the variance components of soybeans (Xavier and

Rainey , 2020) . The use of mult ip le methods and

parametrizations can be beneficial to studies seeking a

multitude of signals to find consensus associations as well as

alternative putative associations for follow-up investigations.
Statistical tools for GWAS analysis

Presence of population structure and genetic relatedness lead

to detection of false positives in association studies. To overcome

these limitations, general linear model (GLM) and mixed linear

model (MLM) were used. MLM has been the most flexible and

strong statistical tool for managing population structure and

family relatedness (kinship; Yu et al., 2006). During recent past,

several statistical tools/models evolved for addressing

constraints for improving the accuracy, speed and power of

detecting associations (Li et al., 2014). To improve the efficiency

of solving MLM equations, many approaches have been

introduced. For instance, efficient mixed-model association

(EMMA) was the first of these to be designed, which enhanced

computing speed by eliminating redundant matrix operations

(Kang et al., 2008). Other methods like EMMA expedited (Kang

et al., 2010) and population parameters previously determined

(P3D) (Zhang et al., 2010), enhanced computational speed using

approximation or using computational shortcuts in mixed

model. Factored spectrally transformed linear mixed models

(FaST-LMM) as well as genome-wide efficient mixed model

analysis (GEMMA) (Lippert et al., 2011; Zhou and Stephens,

2012), both improved methods increase efficiency by rewriting

the MLM’s likelihood function in a more evaluable format

(Figure 1). Using clustering algorithms, an improved method
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termed the compressed MLM (CMLM) has been developed to

cluster individuals into groups which improve the statistical

power (Zhang et al., 2010). Further improvement in CMLMwith

higher statistical power was achieved through this enriched

compressed MLM (ECMLM) method (Li et al., 2014). Multi-

locus GWAS approaches outperform single-locus GWAS

methods by using many markers in the model as variables at

the same time. The multi-locus mixed model (MLMM) was the

first multi-locus GWAS approaches. Bayesian information and

LD iteratively nested keyway (BLINK) (Huang et al., 2018) and

fixed and random model circulating probability unification

(FarmCPU) (Liu et al., 2016), both are the multi-locus

approaches that are based on MLMM methods. FarmCPU is

consider the best multi locus GWAS approach and it controls

both false positives and false negatives (Kaler et al., 2020). There

are some challenges in the GWAS for polyploidy species

(Garreta et al., 2021). To overcome these challenges only few

software packages like GWASpoly and SHEsis (Rosyara et al.,

2016; Shen et al., 2016) that accept only polyploidy genomic data

were developed. In addition, to tackle these challenges, a multi

GWAS tool is being developed that runs GWAS analysis for both

diploid and tetraploid species simultaneously utilizing four

software packages (Garreta et al., 2021). Development of

improved model to reduce the challenges like population

structure and relatedness is continuing to be an important

research topic.
Advances in GWAS analysis

During recent past, different variants in associations studies

have emerged that use halpotypes, extreme phenotypes,

pangenomes, multiparent populations, k-mers, meta data and

transcriptomes that improved the efficiency and power of
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identification of significant MTAs in crop species or animal

systems (Figure 2). However only a few of these association

approaches were used for identification of genetic loci and

candidate genes associated with diseases. We presented an

account of these approaches, deploying one or more of these

approaches will further enhance the fine mapping of complex

diseases in plants and help in resistance breeding.
Haplotype based GWAS

With availability of draft genomes and high to low coverage

sequencing of several germplasm lines in different crops

species, identification and use of superior haplotypes has

been gaining importance in breeding climate smart crop

varieties (Sinha et al., 2021; Varshney et al., 2021).

Haplotypes are non-random association of alleles that inherit

together and dissociation of haplotypes is low and mutation

rate is very low in case of haplotypes. Hence haplotypes will be

superior over SNPs for association studies (Qian et al., 2017).

Association studies based on GWAS approach can overcome

limitations associated with SNPs and boost the resolution of

genomic mapping. Haplotype based GWAS has been

successfully used in mapping agronomically important traits

and abiotic stresses (Sehgal et al., 2020; Helal et al., 2021; Zhao

et al., 2022b). Nevertheless, haplotype based GWAS was also

deployed to identify candidate genes in some crop species. For

instance, in case of wheat, a comparative GWAS analysis was

conducted for leaf rust resistance based on SNPs and

haplotypes and reported a greater number of associations

using haplotypes (69 MTAs) compared to SNPs (25 MTAs)

based GWAS. Further analysis using haplotypes identified

more genomic regions and additional functional genes (Lr10

and Lr1) compare to SNPs based analysis (Liu et al., 2020).
FIGURE 1

Statistical tools and model developed during last two decades. The new models developed improved the statistical power, computational speed
and accuracy of detecting candidate genes or genetic loci associated with trait of interest.
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Therefore, haplotype based GWAS has potential that can be

exploited for identification of genetic loci associated with key

diseases in crop plants.
Extreme phenotype GWAS
(XP-GWAS)

Association mapping uses historical recombinations to

identify genetic loci or candidate genes associated with a

complex trait, and provides maximum resolution than would be

possible with similar sized mapping populations using association

analysis (Alqudah et al., 2020). However, a major disadvantage in

the case of QTL mapping and association studies is the need for

extensive genotyping and phenotyping data, which can be costly

for large populations. As a novel solution to this challenge, is

extreme phenotypes based GWAS that does not require

genotyping a large number of individuals (XP‐GWAS; Yang

et al., 2015). Extreme phenotypes are a group of extremely

resistant and susceptible lines for disease response that have

been selected using a simple approach for determining disease

symptoms. It mainly depends on the pool size, selection intensity,

precision of phenotyping, genome-wide marker distribution, and

read depth of the sequence, and these factors may affect the power

of XP‐GWAS. In addition, it relies on variations in allele
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frequencies of markers in linkage disequilibrium with the QTL

of interest in the pool. For each trait of interest, a new XP-GWAS

experiment must be conducted, and it may identify fewer marker-

trait associations than the conventional GWAS method because

pooling introduces stochastic and uncertainties. XP-GWAS is very

much beneficial in species for which there are no significant

genotyping resources available, such as wild crops, orphan crops,

and uncharacterized species (Yang et al., 2015). Extreme

phenotypes can be used to determine QTLs and screen

candidate genes quickly. Cui et al. (2021) conducted an

experiment on XP‐GWAS and 145 trait-associated variants for

kernel row number traits were identified in maize at a false

discovery rate of 0.05. These identified associations are

somewhat less than the number obtained (260) by the

conventional GWAS approach, but this lacunae is counter

balanced by a considerable reduction in the cost of genotyping

(Yang et al., 2015). Extreme phenotypes bulk were used and

identified genomic loci rp1 associated with resistance to goss’s wilt

of maize (Hu et al., 2018). Novel pi21 haplotypes were identified,

confirming resistance to rice blast disease, by using a combined

approach of bulked segregant analysis and genome sequencing

mapping (Liang et al., 2020). Combining the approach of extreme

phenotypes with GWAS provides higher resolution with cost-

effective candidate gene identification; additionally, it improves

genomic information for particular traits.
FIGURE 2

Summary of advances in association analysis. Different types of GWAS approaches are arranged in the chronological order, starting with GWAS
based on halpotypes, extreme phenotypes, pangenomes, multi-parent populations, k-mers, meta data and transcriptomes. Key feature or major
advantage of the approach is also mentioned.
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Pan-GWAS

In addition, Pan-GWAS is an important and useful approach

to identify the number and nature of the mutations encountered

in the different species of the organisms. Using this approach, we

can identify the ancestors or the source of the particular gene

responsible for different resistance/tolerance action. Diverse

collections of genes from the different sources/species conferring

increased potential for accuracy allelic variants of these genes

distinguish carriage from invasive strains. Gene locations

identified from Pan-GWAS can tell us the information about

even/random spreading of DNA sequences among the

chromosomes (Gori et al., 2020; Gupta, 2021). Pan-GWAS is

mostly used in the microbial study, as the genome of different

strains of microorganism can be sequenced easily. Same approach

can be used in the crop species, by using previously sequenced

data present in the databases. Pan-GWAS approach can also be

used in the disease resistance by identifying the nature and origin

of the different disease strains of the microorganisms. Pan-GWAS

analyzed 42 genes of Pantoea ananatis, among those 28 newly

discovered genes that were not previously associated with

pathogenicity in onion (Allium cepa) (Agarwal et al., 2021).

More than 10 million SNPs, 99000 small indels and 16000

presence/absence variations as well as 17000 copy number

variations were identified, containing leucine rich repeats, PPR

repeats and disease resistance R genes possessing diverse biological

functions in sorghum by re-sequencing two sweet and one grain

inbred lines (Zheng et al., 2011). Scoary and Roary are the tools

which are widely used for Pan-GWAS analysis. Scoary is a web-

tool for scoring the associations between phenotypes and the

components of pan-genome. The algorithm of the Scoary uses

population stratification with the minimum potential assumptions

of evolutionary processes and sorted genes by strength of trait

association (Brynildsrud et al., 2016). Roary is a tool which is used

to develop the large-scale pan genomes by identifying the core and

accessory genes within the representative genome. It makes

construction of the pan genome of thousands of prokaryote

samples possible with the great accuracy (Page et al., 2015).
GWAS based on multiparent
populations

Multiparent populations will have high power and

resolution for fine mapping of disease resistance. MAGIC and

NAM populations possess high genetic diversity, minimal

population structure, large number of QTLs, and serve as

sources of information for breeding and pre-breeding

programs (Scott et al., 2020). Using MAGIC population

developed from eight founder lines, genotypic and phenotypic
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interactions were found to be significant for Septoria tritici

blotch (STB) and PM disease scores in wheat. The GWAS-

assisted genomic prediction (GP) ranged within 0.53-0.75 for

STB and 0.36-0.83 for PM. In case of rice, using disease

resistance data of 144 MAGIC Plus lines and a total of 14,242

SNPs, 57 significant genomic regions with a −log10 (P value) ≥

3.0 were reported. Of which, two major loci (qBLB11.1 and

qBLB5.1), were identified for bacterial leaf blight (BLB)

resistance and Pi5(t), Pi28(t), and Pi30(t) genes were identified

for blast resistance (Descalsota et al., 2018). Downy mildew,

caused by the oomycete Peronospora effuse has been fine mapped

in case of spinach (Spinacia oleracea) and the most promising

candidate genes Spo12784 and Spo12903 near the RPF1 locus

were reported (Bhattarai et al., 2021).
Pan-MAGIC GWAS

The high-quality genomes enabled the identification of

numerous complex variations that cannot be detected by

simply mapping the short reads to a single genome and the

graph-based genome offers a new platform to map short read

data to determine the genetic variations at the pan-genome level

(Rakocevic et al., 2019). Two MAGIC populations (i) a subset of

124 lines of the MAGIC population previously obtained by

crossing eight tomato plants selected to include a wide range

of genetic diversity and (ii) the GWAS diversity panel consisting

of 136 accessions of small fruit tomato were used in the GWAS

study to identify 25 QTLs interspersed across the genome

responsible for tocopherol biosynthetic pathway that

modulates salicylic acid accumulation against the basal

resistance to Pseudomonas syringae in Arabidopsis. (Burgos

et al., 2021). Similarly four multi-parent populations: I

MAGIC (8 indica parents); MAGIC plus (8 indica parents

with two additional rounds of 8-way F1 inter-crossing);

japonica MAGIC (8 japonica parents); and Global MAGIC (16

parents - 8 indica and 8 japonica) were created to directly and

indirectly employ the highly recombined lines in breeding

programs, for studying the interactions of genome

introgressions and chromosomal recombination and to fine

map the QTLs for several characteristics (Bandillo et al., 2013)

(Table 2). In Pan-MAGIC approach a reference genome

developed by combining the accessory and core genome of

founder parents can be used for variant calling and subsequent

genome wide association studies. A multi-parent population

combines several founders, therefore use of a single reference

genome results in reference bias and there are possibilities of

loosing the variants from accessory genome. Therefore, a Pan-

genome developed from the founder parents of respective multi-

parent population (NAM, MAGIC) can be used as a reference
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and variant calling, this approach can capture the alleles from

each founder parent segregating in multi-parent populations.
Pan-NAM GWAS

NAM has huge possibility for studying quantitative traits and

associated genomic regions used to speedy discovery of candidate

genes and markers within the genome (Gangurde et al., 2019).

Multiple NAM populations can be used for dissecting genetic

control of different complex quantitative traits and associated

genomic regions in different genome and individuals. Pan-NAM

GWAS can be used to identify genetic contribution of the sub-

genomes in the development of particular trait. Using HEB-25

NAM population, Pan-NAM GWAS allowed to interrogate 25

different wild barley genomes, giving a rich allelic diversity and the

BC1S3 genetic structure. The choice of multiple NAM lines

justified the strong QTL effects and the identification of

multiple QTL hotspots (Sharma et al., 2018). To reveal the

usefulness and power of this tool, two NAM populations, were

used and two high-density SNP-based genetic maps were

constructed with 3341 loci and 2668 loci. The QTL analysis

identified 12 and 8 major effect QTLs but in case of GWAS

analysis was identified 19 and 28 highly significant SNP trait

associations (STAs) in NAM_Tifrunner. Eleven and seventeen

STAs were identified in NAM_Florida-07 for pod weight and seed

weight, respectively (Gangurde et al., 2020). Considerable overlaps
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between the QTL identified and grain size GWAS signals in rice

and maize, and the orthologues genes for grain size from rice and

maize, showed the common genetic architecture underlying these

characters among these cereal crops (Tao et al., 2019).
GWAS using sequencing
reads/k-mer

Association analysis has some limitation such as knowledge

about reference genome for SNP calling (identified association in

a region which is not in the reference genome is difficult),

structural variants (Indel, copy number variations etc.) are

ignored in GWAS studies and the rare variant associated with

phenotype might be ignored. To overcome these limitations

GWAS can be use sequences of nucleotide residues called it as k-

mer, as a genotyping data (Rahma et al., 2018) to find the causal

variant. It is an alignment free method for association studies. In

maize k-mers were used in GWAS analysis for cob and kernel

color traits and also identify associated k-mers efficiently (He

et al., 2021). In another study k-mers based reference free GWAS

analysis was conducted in soybean and identified four genomic

loci for seed pigmentation (Kim et al., 2020). Collectively, it is

suggested that, k-mers based GWAS may be an alternative

approach for identifying genomic regions or genes for

economically important traits like disease resistant.
TABLE 2 Summary of multi-parent populations used for identifying MTAs for disease resistance in different crops.

Founder parents Traits Reference

Maize One eight-way cross was made and was randomly mated
up to six generations to develop 672 highly homozygous RILs

Corn borers Jimenez-
Galindo et al.
(2019)

Rice Eight indica parents selected from the Asian indica
pool and are intercrossed to produce 1328 S7 lines

Blast and bacterial
blight

Bandillo et al.
(2013)

Eight founder lines were intercrossed to derive eight-way crosses and then selfed to obtain F8 generations to get 2100
AILs (advanced intercross lines). At S4 200 AILs and S6-S8 340 AILs randomly chosen for screening

Bacterial leaf streak
and bacterial blight

Bossa-Castro
et al. (2018)

144 MAGIC Plus lines Blast and bacterial
leaf blight

Descalsota et al.
(2018)

391 MAGIC indica rice accessions Blast and stripe rust Satturu et al.
(2020)

Wheat Eight winter wheat cultivars were intercrossed to generate 394 F6:8 RILs Powdery mildew Stadlmeier et al.
(2018)

Eight elite winter wheat founder lines were intercrossed up to three generations and then selfed multiple times to
generate 1000 RILs

Leaf blotch and
glum blotch

Lin et al. (2020)

Cotton 12 founder lines were intercrossed up to F7 through SSD and produced 1500 Disease and pest
resistance genes

Li et al. (2016b)

Tomato Eight tomato founder lines were crossed to develop 400 G10 stable lines through SSD methods Several resistance
genes

Campanelli
et al. (2019)

Cowpea Eight selected founder parents were intercrossed to (eight-way crosses derived from 6 pedigree funnels) produce 305
MAGIC F8 RILs

Biotic and abiotic
stresses

Huynh et al.
(2018)
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Meta GWAS

Meta GWAS analysis is a method of utilizing the results of

previous studies to improve the power and resolution of association

increasing sample size and by examining more variants (Zeggini

and Ioannidis, 2009). Statistical approaches like METAL can be

used for analyzing the results from independent studies (Willer

et al., 2010). Meta GWAS analysis has been used for dissecting

complex traits in human (Xue et al., 2022) as well as in crop species

(Zhao et al., 2019; Fikere et al., 2020; Shook et al., 2021). In term of

canola, Meta-analysis was performed for identifying resistance

genes to blackleg disease and identified 79 genomic regions

associated with 674 SNPs that conferring potential resistance to

disease, among these 53 regions were novel (Fikere et al., 2020). In

case of soybean, Meta-GWAS analysis based on 76 independent

studies enhanced statistical power for robust detection of loci

associated with a broad range of trait.
Transcriptome based GWAS

Transcriptome based GWAS association approach

investigates associations between genetically regulated gene

expression and complex diseases or traits using the genes/

transcripts. TWAS has gained popularity during last five years

due to its ability to reduce multiple testing burden and has been

extensively used in fine mapping different traits in humans. With

the advent of single-cell sequencing, chromosome conformation

capture, gene editing technologies, and multiplexing reporter
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assays, we are expecting a more comprehensive understanding of

genomic regulation and genetically regulated genes underlying

complex diseases and traits in the future. Recently, in cotton a

combinatorial approach of GWAS, QTL-seq and transcriptome-

wide association studies was used to discover candidate genes

and developed KASP marker for verticillium wilt resistance in

cotton (Zhao et al., 2021). 69 candidate genes related to plant

hormones such as MAP kinase, a PR5-like receptor kinase, and

heat shock proteins associated with Fusarium ear rot caused by

Fusarium verticillioides were identified using GWAS and

validated by comparing the transcriptomes (Yao et al., 2020).

Transcriptome wide association analysis for southern rust of

maize identified eQTLs on Chr2:231,271,050 one gene

Zm00001d007424, and on Chr4:78,851,667 was identified as a

cis-eQTL of three genes: Zm00001d050283, Zm00001d050284,

and Zm00001d050293 (Sun et al., 2022). A transcription factor

REPLUMLESS was identified contributes to both disease

resistance against hemi-biotrophic bacterial pathogen

Pseudomonas syringae and plant growth in Arabidopsis (Xu

et al., 2022).
Future outlook

Identification of genetic loci or candidate genes is key to trait

improvement in breeding programs (Figure 3). Rare variant,

synthetic associations, small effects size, improving the choice of

GWAS model, genetic heterogeneity and unexpected LD remain

challenges to increase knowledge of complex traits (Cortes et al.,

2021). Synthetic associations are one of the major problems that
FIGURE 3

Illustration of genome-wide associations studies to identify genes associated with disease resistance. The partially structured (NAM and MAGIC)
and unstructured populations (germplasm lines, association panels) can be used for high throughput phenotyping and genotyping to perform
high resolution association mapping with advance tools for genome wide association analysis (GWAS). The peaks identified in GWAS analysis
can be used for identification of LD blocks. Each LD block includes one or few candidate genes associated with the trait can be used for
validation or development of diagnostic markers for genomics associated breeding. The validated genes can be further used for identification of
haplotypes for disease resistance or disease susceptibility.
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mislead GWAS results, non-associated SNPs also shows

significant associations with trait of interest, allelic heterogeneity

may be the major cause for this problem. Even if there is no allelic

heterogeneity, rare alleles can also cause synthetic associations. In

addition, amount of input data is one of the important factors that

influence the statistical reliability of GWAS (Yan et al., 2018).

Therefore, selection of appropriate GWAS programs according to

input data is challenging and need to be standardized for

improving reliability. Continuous efforts are being made by

scientific community to improve the efficiency of the statistical

models in detecting the loci or genes associated with key traits.

Many new statistical models have been created to evaluate rare

variants, by combining neighboring rare variants and examining

their combined effect (Lee et al., 2014).

Meta-GWAS has emerged as a major strategy of dissecting

traits to improve the strength of single-marker GWAS and

enables to find the most effective stable loci spanning space

and time while eliminating false positives (Evangelou and

Ioannidis, 2013). In addition, constructing haplotypes between

nearby SNPs on a chromosome is another way to improve the

power of GWAS (Sehgal et al., 2020). High accuracy of GWAS

largely depends on selection of an appropriate statistical model

to reduce false positive results. In general, there is no universal

model which gives best GWAS result to dissect complex traits,

but each model has its own advantages compared to other

models and best suitable model for GWAS. It is good to use

MLM approaches to scan individual SNPs in the genome as well

as other multi-locus methods to scan the genome. In terms of

additional identified genomic regions using multi-locus

methods, these regions must examine if the genome-wide

marker coverage was appropriate so that adequate estimation

of polygenic effect of population structure and kinship. GWAS

can explain about 30-40% phenotypic variation of a trait, the

cause of rest 60% phenotypic variation can be achieve by

metabolome wide association analysis (MWAS), protein wide

association analysis (PWAS) and transcriptome wide association

analysis (TWAS) (Weckwerth et al., 2020). Genome wide

association studies based on the multi-parent populations

should use a pan-genome as a reference developed from the
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core and accessory genomes of founder parents to avoid the

reference bias. In PAN-NAM or PAN-MAGIC genome-wide

association studies the diversity from all the parents can be

captured, while, in GWAS based on single reference genome we

can’t capture maximum allelic diversity.
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