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Due to evolutionary divergence, sorghum race populations exhibit significant

genetic and morphological variation. A k-mer-based sorghum race sequence

comparison identified the conserved k-mers of all 272 accessions from sorghum

and the race-specific genetic signatures identified the gene variability in 10,321

genes (PAVs). To understand sorghum race structure, diversity and

domestication, a deep learning-based variant calling approach was employed

in a set of genotypic data derived from a diverse panel of 272 sorghum

accessions. The data resulted in 1.7 million high-quality genome-wide SNPs

and identified selective signature (both positive and negative) regions through a

genome-wide scan with different (iHS and XP-EHH) statistical methods. We

discovered 2,370 genes associated with selection signatures including 179

selective sweep regions distributed over 10 chromosomes. Co-localization of

these regions undergoing selective pressure with previously reported QTLs and

genes revealed that the signatures of selection could be related to the

domestication of important agronomic traits such as biomass and plant height.

The developed k-mer signatures will be useful in the future to identify the

sorghum race and for trait and SNP markers for assisting in plant

breeding programs.

KEYWORDS

sorghum race, deep learning, deep variant calling, k-mer analysis, selection pressure,
gene enrichment, positive and negative selection
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Introduction

The process of domestication and natural selection leads to an

increased frequency of favorable alleles and subsequently results in

complete fixation at target genomic loci (Smýkal et al., 2018).

Although the selection process targets advantageous alleles, it also

inadvertently results in an increase in the frequency of alleles at

neutral loci that are in linkage disequilibrium, a phenomenon

referred to as selective sweep (Stephan et al., 1992). A selective

sweep has the potential of enhancing the fitness of an individual

at the expense of the overall genetic diversity of a population at

the respective loci. As a result, modern cultivars are derived

from a small fraction of genetically related varieties (Mccouch

et al., 2013) in spite of the existence of the vast genetic diversity

of global plant germplasm. A better understanding of and

stepwise exploitation of existing natural variation in each crop

is one key aspect of meeting the increasing food demand in the

coming decades.

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal

crop grown and consumed by a large proportion of the global

population. The earliest record of sorghum seeds was recorded at

Nabta Playa (Egyptian-Sudanese border) and indicated early

domestication (Wendorf et al., 1992). The subsequent migration

and adaptation of sorghum across Africa and Asia led to the

evolution of morphological and geographically diverse groups,

classified into major races (Harlan and Wet, 1972; Harlan and

Stemler, 2012). More recent phenotype and genotype-based

classifications also support the sorghum race classification within

the global diversity panel (Brown et al., 2011). However, inter-racial

diversity has not been fully understood in sorghum in a way that

allows exploitation of racial structure for heterotic gains.

Development of such knowledge would improve overall genomic

predictions in sorghum as has been done in other cereal crops

(Norman et al., 2018) for the best use of the genome in crop

improvement programs.

The extent of genetic diversity is measured by the number of

nucleotide variants across individuals and species (Deu et al., 2006;

Kebbede, 2020). Such variants range from single nucleotides to

large-scale structural differences. However, most studies in the past

have only used single nucleotide variation (Afolayan et al., 2019;

Enyew et al., 2022) ignoring other structural variations such as

insertion-deletions (indels) and presence-absence variations (PAV)

(Saxena et al., 2014). PAVs are present in some individuals but

absent in others, making them perfect for detecting major

differences among multiple genomes. Pangenomes, therefore, can

help obtain a more complete set of genomic variants for a species

(Hurgobin and Edwards, 2017) since they represent irreversible

changes for a given species. The availability of sorghum

pangenomes (Ruperao et al., 2021; Tao et al., 2021) makes it

possible to carry out a more extensive genetic variation analysis

across the different races.

Despite emerging advances in sequencing technologies,

distinguishing accurate genetic variants from sequencing errors

remains challenging. Because a majority of the genome assembly

tools are based on the de Bruijn graphs (Zerbino and Birney, 2008;

Simpson et al., 2009; Bankevich et al., 2012; Peng et al., 2012), in
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which the sub-sequence of k-mers (substrings of length k) are used

to construct the graph and output the paths as contigs (without

branching). The resulting contigs can therefore be biased and

fragmented as a result of sequencing errors, especially in highly

repetitive genomes, leading to low confidence in variant calling.

Alternative alignment-free methods of variant detection have been

developed using both k-mer frequencies and information theory

(Song et al., 2014; Pajuste et al., 2017; Zielezinski et al., 2017;

Audano et al., 2018). These alignment-free methods have been

applied in several studies including for phylogeny estimation

(Haubold, 2014), identification of mutations between strains

(Nordström et al., 2013) and association mapping (Sheppard

et al., 2013).

More recently, deep learning methods have been introduced as

a machine learning technique applicable to a range of fields

including genomics. Deep learning models can be trained without

prior knowledge of genomics and next-generation sequencing

(NGS) data to accurately call genetic variants (Telenti et al.,

2018). Learning a deep convolutional neural network-based

statistical relationship between aligned reads, a genotype calling

approach has been implemented in DeepVariant programs (Poplin

et al., 2018). The DeepVariant approach is reported to outperform

the existing variant calling tools (Poplin et al., 2018).

The objective of our study was to use deep learning

(DeepVariant method) to better understand genetic variation,

domestication events and selection signatures across known

sorghum races. We used existing whole-genome sequence data to

quantify genome-wide positive and negative selected regions to

enhance our understanding of genome function and the frequency

of genetic variations. In addition, we determined the putative

signals of selection in sorghum that have resulted from true

selective events or population bottlenecks.
Results

DeepVariant calling and annotation

The whole genome sequence (WGS) data (Table 1 and

Supplementary Table 1) were mapped (Supplementary Table 2,

Supplementary Figure 1) to the sorghum pangenome (Ruperao

et al., 2021), and a total of 1.7 million high-quality SNPs, and

470,375 InDels (154,900 insertions, 278,951 deletions and 36,524

mixed variants) were called using the DeepVariant method.

Homozygous SNPs were predominant (88.3%) over heterozygous
TABLE 1 A summary of publicly available data used in the current
analysis.

Reference # Genotypes Average coverage

Valluru et al. (2019) 196 13x

Jensen et al. (2020) 70 7x

Yan et al. (2018) 6 28x

Total 272 16x
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SNPs (11.6%) (Supplementary Table 3). The overall density of SNPs

was 2.5 SNP/kb, whereas the indel density was 0.6/kb. The

maximum (209,429) and minimum (147,952) SNPs were reported

on chromosome 2 (0.3/kbp) and chromosome 9 (0.4/kbp),

respectively (Supplementary Table 4) (Figure 1), while the

maximum (70,722) and minimum (34,530) number of indels

were reported on chromosome 1 (0.8%) and chromosome 8

(0.5%) respectively. Most of the insertions (98%) and deletions

(93%) were less than 10bp in length (Supplementary Figure 2A).

SNP annotation reported 11% SNPs of which 51,891 were

synonymous and 53,159 non-synonymous, resulting in a non-

synonymous-to-synonymous substitution ka/ks ratio of 1.02

(Supplementary Tables 5, 6), consistent with the previous study

by Mace et al. (2013). Sorghum accessions NSL54318 (50,238 non-

synonymous; 3,933 start gain; 88 start lost and 611 stop gain SNPs)

and PI660645 (46520 non-synonymous; 3700 start gained and 103

stop lost) harbored the maximum and minimum effect SNPs

(Supplementary Table 5). There were more transitions (C/T and

A/G) than transversions (A/T, A/C, T/G and C/G) with a

transition/transversion ratio ranging from 1.912 (NSL50716,

IS30508) to 1.983 (PI329719). The overall tr/tv ratio was 1.960

(Supplementary Table 7).

SNPs with large effects were the least common (1,362; 0.04%)

compared to SNPs with low (63,298; 1.9%), moderate (53,159;

1.6%) and modifying SNPs (96%). A total of 89.3% (1,595,340) of

the SNPs were conserved across five sorghum race accessions

while the remaining 10.6% (190,321) were variably detected in at

least one sorghum race. Among the SNPs in the sorghum race

accessions, 0.03% (590) were race-specific, the majority (60.6%;

358) of which were reported in durra and the least in the bicolor

race (6.1%; 36) (Supplementary Table 8) (Supplementary

Figure 2B). Most of the race-specific SNPs (57.9%) were highly
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confident with support from more than 10 accessions. Only 21%

of the race-specific SNPs were supported by less than 5 accessions

(Supplementary Figure 2C).

Sorghum races caudatum, durra, guinea and kafir had the

highest proportion of SNPs with the low MAF category (0.0,0.1)

compared to bicolor. Kafir had the highest proportion of SNPs with

MAF category (0.1, 0.2) while the bicolor race reported the highest

proportion of SNPs with MAF greater than 0.2, which is

expected for a race with a long history of cultivation

(Supplementary Figure 2D).
Genetic and nucleotide diversity

The SNP-based Neighbor-Joining (NJ) dendrogram of the 272

genotypes grouped them largely according to race genetic

relatedness (Supplementary Figure 3). Four major clusters were

observed with a number of subgroups. The phylogenetic tree

contained a distinct cluster of 63 guinea race accessions (nodes

in blue color) mixed with a few other race individuals, such as

durra (PI221662, PI248317, PI267653 and PI148084) (nodes in

brown color), kafir (PI660555 and NSL365694) (nodes in pink

color), bicolor race (IS12697) (nodes in red color). The other

sorghum race clusters were split with non-corresponding sorghum

race accessions. For example, durra has 91 accessions split into

two clusters with caudatum and kafir accessions. The bicolor

accessions were placed mostly in durra and guinea clusters.

Among the bicolor accessions, the China origin accessions were

grouped distinctly in the durra cluster compared to other

bicolor accessions.

The evaluation of nucleotide diversity across all 272 accessions

showed that sorghum had low diversity (0.0000483715) compared

to wheat (pA=0.0017, pB= 0.0025 and pD= 0.0002) (Zhou et al.,

2020), maize (p = 0.014) (Tenaillon et al., 2001) and rice p = 0.0024

(Huang et al., 2010) (Supplementary Figures 4, 5). The diversity

varies depending on the population size and the level of diversity of

the accessions used in such a population. However, such low

diversity was also reported in an earlier study (Sapkota et al.,

2020). We observed significant differences (P < 0.05) in

nucleotide diversity between three sorghum races (caudatum,

durra and guinea) that were represented with more than 50

genotypes. The durra had the highest nucleotide diversity while

caudatum showed the lowest (pC= 0.0000419, pG= 0.0000631 and

pD= 0.0000637). The distribution of nucleotide diversity on the

sorghum race genome was in the order of pD > pG > pC.
We used the Fst index to estimate the temporal genetic

divergence between the race accessions and observed that the

level of genetic differentiation among the sorghum race

populations ranged from moderate (Fst = 0.044 for caudatum vs

durra) to relatively high (Fst = 0.18 for bicolor vs guinea)

(Supplementary Tables 9, 10; Supplementary Figure 6) indicating

that inter-population differences were relatively low. The average

Fst between the bicolor and other races was ~0.16, which was higher

than in non-bicolor race comparisons suggesting that gene flow

from bicolor to other races was much earlier than the gene flow

between the rest (non-bicolor) of the races. The durra and guinea
FIGURE 1

A Circos plot showing the density of genes, SNPs and InDels in the
sorghum pangenome.
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populations revealed the second-highest Fst of 0.1228 and were

classified as the sorghum race intermediates (Supplementary

Table 9). A total of 19,696 SNPs having significant high Fst were

reported between bicolor-kafir race combinations, of which 910

SNPs were genic SNPs (Supplementary Table 10).

The difference between (diverse) sorghum race populations was

measured with Tajima’s D (Table 2). A total of 13,070 SNPs were

reported to have qp (observed value) less than qk (expected value)

(maximum 4,612 and minimum 1,869 SNPs from durra and bicolor

respectively), indicating that the variants may have undergone a

recent selective sweep. Another 311,045 SNPs reported greater qp
compared to qk (maximum 202,684 and minimum 76,836 SNPs

from guinea and bicolor, respectively) suggesting balancing

selection. Compared to non-bicolor race mutations, a lower

number of mutations were linked to genes within a selection

sweep than with balancing selection genes in the bicolor race

(Supplementary Tables 11, 12).
K-mer based divergence

The k-mer genetic distance between the sorghum accessions was

computed from the size-reduced sketches and distance function

developed in the mash tool (Supplementary Table 13). The durra

race was the most distinct from the reference pan-genome (Ruperao

et al., 2021) based on the mean distance of accessions, followed by

guinea (Figure 2A). The bicolor race was the most closely related

race to the reference (Figure 2). Accessions from each sorghum race,

SCIV4, PI285039, PI276823, PI665088 and PI665108 from bicolor,

caudatum, durra, guinea and kafir, respectively were more

genetically distinct from the reference (Supplementary Table 13)

and representative of the specific race and therefore used for k-mer

analysis. These distinct sorghum accessions were in agreement with

the NJ distance between the accessions (Supplementary Figure 3).

With the optimized 47 k-mer size (Figure 2B), the overall k-mer

sequence comparison between the five race accessions (2.3 billion k-

mers) showed that 35.3% (434 million unique k-mers) of common

k-mers present in all five races accessions, this indicates the

conserved k-mer of all sorghum race accessions. The 13.3% (314

million k-mers) were commonly seen in any four sorghum race

accessions, indicating that these k-mers were absent in at least any

one of the sorghum races. This variability decreased to 8.8% (108

million k-mers) and 6.3% (78 million k-mers) on measuring the

common k-mers between three and two sorghum race accessions
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respectively. For example, SCIV4 (bicolor) and PI665108 (kafir)

shared 402 million distinct k-mers, which was 45% and 23.5% of

total distinct k-mers reported respectively (Figures 2C-D). From this

k-mer comparison between the sorghum race accessions, 23.8% of

k-mers were unique to sorghum races. These race-specific k-mers

were possibly unique to genomic sequence (as a single genome

sequence for each race was used for the analysis).

Overall, 10,321 gene PAVs were identified based on the k-mer

sequence reads mapping to sorghum pan-genome assembly

(Supplementary Table 14) (Figure 2E). The mapping of the race-

specific k-mer sequence reads identified 132, 8009, 211, 445, and

344 unique genes in caudatum, bicolor, guinea, durra, and kafir

sorghum accessions, respectively. One hundred and twenty-nine

(129) genes were commonly present in all sorghum race accessions

(Supplementary Table 15), indicating the k-mers are unique with

the specific variations or k-mers partially mapping the gene length-

frequency with horizontal mapping range of 0.4 to 1 (frequency)

(Figure 2F). Furthermore, 1,051,453 SNP were identified supporting

the k-mers sequence (Figure 2G) reads of which, 85,048 SNPs were

genic, and 167 SNPs were validated with the SNParray sequences

(Figure 2H) (Supplementary Table 16) used for sorghum

pangenome analysis (Ruperao et al., 2021).
Selection signatures

Several sweep regions were detected with iHS (Figures 3A, B

and Supplementary Figure 3), of which, 64 were significant (FDR <

0.05) (Supplementary Table 17). The majority of sweeps were

reported on chromosome 7 (19 regions) followed by chromosome

4 (17 regions) and chromosome 10 (2 regions) (Supplementary

Table 17). The highest number of selective sweep regions were

observed in durra (54 regions), followed by caudatum (51), guinea

(45), kafir (38) and bicolor (30) (Supplementary Tables 18, 19). A

total of 14 selective sweep regions were common in all five sorghum

races while 21 regions were uniquely absent in any one sorghum

race (Supplementary Table 18). For example, 9 selective sweep

regions were reported in four sorghum races but uniquely absent in

the bicolor race alone (Supplementary Table 18).

We used the cross-population extended haplotype homozygosity

(XP-EHH) score and detected sweep regions from each combination

of sorghum race population (Supplementary Figure 7) (Table 3).

We identified 8,888 significant (FDR < 0.05) selection sweep

regions, of which 3,504 regions were common between more than
TABLE 2 Summary SNP statistics in Sorghum race populations.

Race SNP p (10-5) Tajima’s D (qp>qk) Non-synonymous SNPs Synonymous SNPs Non-synonymous/
Synonymous

Bicolor 374,545 3.37 0.44 11,100 9,957 1.114

Caudatum 961,644 2.72 0.27 31,391 31,168 1.007

Guinea 976,558 4.30 0.37 31,827 31,681 1.004

Durra 1,261,078 3.89 0.18 38,362 37,651 1.018

Kafir 886,880 4.72 0.26 27,779 27,458 1.011
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two sorghum race combinations (Supplementary Tables 20-S29).

Out of all selective sweeps identified from the sorghum race

combinations, chromosome 5 had the maximum of 1,399 regions

while chromosome 9 had the least (616). The kafir population

exhibited the highest (2,473) selective sweep regions in comparison

with the guinea race (Supplementary Table 28). Only a few

(525) sweep regions were reported in bicolor population

(Supplementary Table 23).
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Overlapping selection regions between
Tajima’s D and XP-EHH

We defined the overlapping selection regions as those located

beyond the thresholds and in the same chromosome sequence

location. Tajima’s D statistics were obtained from each sorghum

race population dataset and identified the genes which did not fit

the neutral theory model at equilibrium between mutation and
B

C D

E F

G H

A

FIGURE 2

K-mer and read mapping overview. (A) An alignment-free method, the Jaccard index uses the hash procedure to measure the distance between
sorghum race accessions. (B) Sampled histogram and fit for 47 k-mer lengths. Red is the fit of the complete statistical model of the histogram, blue
is the heterozygous k-mers and green is the only homozygous k-mers (C) The k-mers share between kafir (PI665108) and bicolor (SCIV4) sorghum
race accessions as dataset1 and dataset2 respectively. (D) Distinct k-mer share between kafir and sorghum race, the cloud indicates the shared k-
mers and heigh density k-mers on x and y-axis are unique k-mers respectively. (E) Mapped k-mer sequence reads in the number of genes in each
sorghum race accessions (F) Proportion of sorghum race common genes covered with horizontal and vertical coverage with k-mer sequence reads.
(G) The unique k-mers holding the deepvariant SNPs with respective k-mer count and off these, (H) the proportion of deepvariant SNPs validated.
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genetic drift. A total of 324,115 genome-wide bins were observed

with non-equilibrium statistics of neutrality test, of which 311,045

(with SNPs in range of 76,836-bicolor to 202,684-guinea) were

undergoing purifying selection (negative selection) and 13,070 were

(with SNPs in range of 1,869-bicolor to 4,612 durra) selection

maintained (balanced positive selection) (Figure 4A). Among the

variants undergoing purifying selection, 43,191 bins had a

significant low Fst index supporting the signature of a recent

population expansion (Figure 4B), of which 14% were from genic

regions (Supplementary Table 30). The purifying selection regions

had low diversity (Figure 4D) with reduced allele frequency in the

descendant population compared to the ancestral population.
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The significant selection regions (FDR <0.05) detected by XP-

EHH were specific to the pair-wise sorghum race combinations.

Among the identified 8,888 significant XP-EHH candidate-sweep

regions from overall sorghum race combinations, of which 179

regions were genic (Supplementary Table 31) and “selection-

maintained variations” indicating the recent population

contraction. The overall sweep regions were in the comparable

range identified in other crops such as wheat, (3,105 – 16,141 sweep

regions in the genome of domesticated einkorn and emmer lines;

Zhou et al., 2020) and soybean (3,811 genes positioned within the

selective sweep regions)(Saleem et al., 2021). Among the

chromosomes, chromosome 5 and groups of 4,7,9,10
B

C D E

A

FIGURE 3

(A) The iHS score distribution across the genome with (B) associated p-values. (C) Selective sweep regions in sorghum accessions sorted by race.
(D) A subset of iHS on chromosome 6 showing the regions having values above and below the threshold value and (E) The distributions of the
standardized iHS scores and comparison with standard Gaussian distribution.
TABLE 3 Description of the candidate selective sweep regions detected using XP-EHH between the sorghum race populations.

Sorghum race
combination

Significant XP-EHH regions Supporting iHS XP-EHH candidate genes$ XP-EHH mapping genes&

Bicolor × Caudatum 671 3 212 109

Bicolor × Durra 640 3 183 127

Bicolor × Guinea 612 5 201 127

Bicolor × Kafir 522 0 117 61

Durra × Caudatum 1,832 1 587 414

Durra × Guinea 2,350 4 677 367

Durra × Kafir 1,761 3 424 356

Guinea × Caudatum 2,084 6 607 328

Guinea × Kafir 2,070 1 711 426

Kafir × Caudatum 1,263 2 425 365
$ The number of genes refers to the genes mapping 5kb upstream/downstream to selective sweep region. & The selective sweep region present within the gene regions.
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chromosomes contained the highest (33) and lowest (14) numbers

of genes, respectively. A relatively low Tajima’s D was observed in

selective sweep regions when compared with a significantly higher

XP-EHH valued region (Figure 4D).
Enrichment of candidate genes
under selection

A total of 2,370 genes genome-wide were observed to deviate

significantly using equilibrium/neutrality tests, of which 179 were

selection-maintained (balanced selection) while 2,191 were
Frontiers in Plant Science 07
undergoing purifying selection (Supplementary Tables 30, 31).

Durra and bicolor had the maximum (110) and minimum (39)

number of genes undergoing positive selection respectively. Bicolor

(409) and guinea (1,133) had the maximum and a minimum

number of selection-maintained genes.

A similar trend of the fewest number of genes were reported in

the bicolor race (421), with guinea having the maximum (1,166)

genes under purifying selection. Among the five races, guinea and

kafir shares the maximum number of common selection-

maintained (26) and purifying (70) genes, suggesting potential

rich gene flow between these two races (Figure 5). Additionally,

guinea, kafir and durra reported maximum genes as sweep regions
B C

D E

A

FIGURE 4

(A) Tajima’s D values distribution with signifying positive and negative thresholds. (B) Structural annotations of genomic regions in positive and
negative thresholds. (C) The proportion of higher Tajima’s D values and lower Fst valued bins as negative selection regions and corresponding genic
regions. (D) The positive selection region on Chr09 with XP-EHH score and Tajima’s D valued plot and (E) A genic negative selection region on
Chr01 (specific to guinea race) with significantly higher Tajima’s D and lower Fst value regions.
B

CA

FIGURE 5

Venn diagram of (A) positive selection and (B) negative selection genes from five sorghum races combinations. (C) Significantly enriched GO
biological terms for positive and negative selected genes (bubble color indicates the p-value range and size indicates the gene ratio).
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(guinea-kafir: 26, durra-guinea: 23 and durra-kafir: 21) (Figure 5A),

with low nucleotide diversity (p) in caudatum and bicolor

(Figure 3B) also indicating the traits regulated by these regions

may have undergone similar histories of selection.

The 2,370 genes undergoing selection pressure (both positive

and negative) showed significantly enriched gene ontology (GO)

term and among these genes (Figure 5C, Supplementary Figure 8),

the top GO term was lipid biosynthetic process (GO:0008610) and

organonitrogen compound metabolic process (GO:1901564) for

genes with positive and negatively selection, respectively

(Supplementary Table 32). Among the positively selected gene

set, most of them were enriched with lipid biosynthetic process

(GO:0008610), metabolic process (GO:0006629), carboxylic acid

metabolic process (GO:0019752), oxoacid metabolic process

(GO:0043436), organic acid metabolic process (GO:0006082),

most of these metabolic pathways were related to plant stress

resistance. Whereas the negatively selected gene was majorly

enriched with nitrogen compound metabolic process

(GO:0006807), organonitrogen compound metabolic process
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(GO:1901564) and protein metabolic process (GO:0019538)

(Supplementary Table 32). The nitrogen utilization and metabolic

pathway were found significantly enriched and confirmed the genes

under selection throughout either domestication or during

subsequent breeding with earlier selection study (Massel et al.,

2016). The genes enriched with ‘DNA replication, ‘lipid

metabolism’ and ‘hormone signal’ suggest that sorghum has

evolved defense strategies, and enrichment of phosphorylation,

kinase activity, transferase, phosphate and phosphorus metabolic

process triggers many metabolic processes and plant

growth activity.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

were identified according to the selection’s signature candidate gene

with a p-value <0.05 (Figure 6). A KEGG pathway enrichment

analysis was performed for the selection signature gene to identify

the number of significantly changed samples along the pathway that

were relevant to the background number. A total of 2,370 genes

were mapped onto 315 pathways, and the most enriched sequences

were metabolic pathways and biosynthesis pathways. The top 14
B

A

FIGURE 6

(A) KEGG pathway enrichment for genes under selection pressure (B) Pathway of sphingolipid metabolism. The two red boxes represent the
positively selected genes involved in pathways.
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pathways with the greatest number of annotated sequences are

shown in Supplementary Table 33. Most of the significant pathways

were in metabolism, biosynthesis, excision repair and secondary

metabolites. The most significantly changed KEGG pathways were

in sphingolipid metabolism (Figure 6B), betalain, steroid

biosynthesis, phosphonate and phosphinate pathways for positive

selection genes. Sphingolipids are essential components of plasma

membrane providing structural integrity to plant membrane,

regulating the cellular process, and also enhancing the tolerance

of sorghum to biotic and abiotic stresses. Steroid hormone

biosynthesis and the phosphonate and phosphinate metabolism

pathways are also involved in the adaptation of sorghum to low

salinity. Whereas base and nucleotide excision repair, biosynthesis

of secondary metabolites, glycolysis, GPI and nitrogen metabolism

were significantly enriched in negative selection genes

(Supplementary Table 33). These annotations provide valuable

information for studying the specific biological and metabolic

processes and functions of genes under selection pressure in

sorghum accessions.
Overlap of signatures of selection
with QTLs

Quantitative trait loci associated with seven traits that

overlapped with detected signatures of selection were compared

with earlier reported sorghum QTLs (Hostetler et al., 2021).

Analysis of the overlaps between signatures of selection and

reported QTL indicated that 10 and 206 linked genes were

identified as positively and negatively selected genes respectively

(Supplementary Tables 34, 35). Some QTL for traits of plant height,

root biomass, dead above-ground biomass, live above-ground

biomass and total biomass overlapped significantly with putative

gene regions of signatures of selection.
Discussion

We have demonstrated the utility of vast the sorghum genomic

data that exists in public databases for characterization of a

representative set of sorghum (Valluru et al. 2019). Our results

validate the application of deep learning for the characterization of

sorghum races and goes further to establish nucleotide diversity and

genetic divergence across and within different sorghum races. We

also used existing QTL data to identify candidate genes that are

under both negative and positive selection.

The sorghum reference set used in the current study was earlier

selected by Billot et al. (2013) after genotyping 3,367 global

collections using 41 representative nuclear SSR markers and is

considered to be representative of the sorghum collections that

exist in various global gene banks. Our results confirm that the

clustering of sorghum germplasm was largely according to regions

(Paterson et al., 2009; Bekele et al., 2013; Ramu et al., 2013)

indicating continuous gene flow between various racial groups

depending on where the sorghum races are grown. The only

distinct exception was in the guinea race, which was expected
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since the guinea race is specifically grown in West Africa and

therefore any gene flow would be confined within the West

African locations.

Our study also identified many intermediate accessions (more

than 15 accessions) as a result of the continuous gene flow

suggesting that a different criterion other than morphology will

need to be used in future studies for the correct classification of

sorghum races and their intermediates.

Capturing race-specific sequences will be critical in future

studies for the follow-up identification of variants and/or, genes

associated with each sorghum race. For example, longer k-mers

(>15 bp) have been utilized as biomarkers (Drouin et al., 2016;

Wang et al., 2018) as they can hold biological information and

depict specific signatures in nucleotide sequences (Wang et al.,

2016). Our ability to differentiate abundant k-mers between the

different sorghum races in the current study provides an

opportunity for future studies to utilize k-mers as race- or

accession-specific identifiers in sorghum. Currently we were able

to identify the sorghum race-specific k-mers, that are present in

respective race, and able to locate the position and associate the

genomic features. Based on the sequence read mapping, the gene

PAV was earlier identified in the sorghum pangenome (Ruperao

et al., 2021), and adapting the similar approach the genes having the

race specific k-mers regions were also reported. With the known

unique k-mer position, it is possible to extend the study of the

genomic features having race-specific unique sequence (such as any

genetic variations including the SSR, SNP, CNV and SV).
DeepVariant calling and its utility in
sorghum breeding

For the first time in sorghum, we used the DeepVariant (Poplin

et al., 2018) tool, a deep learning approach for SNP calling, and

reported over two million genome-wide variants from existing

sequencing data. One of the concerns of SNP calling from NGS

data is the accuracy of SNPs. A recent comparison of SNPs called

from the traditional SNP calling tools such as GATK (Depristo

et al., 2011) with DeepVariant method reported superior

performance of the latter (Lin et al., 2022), further validating our

choice to implement this method in sorghum. Our results were

largely consistent with previous studies in sorghum that involved

SNP calling from NGS data, including the patterns of SNP

distribution observed across the genome (Paterson et al., 2009;

Bekele et al., 2013) and the non-synonymous to synonymous SNP

substitution ratio. In this study, the deepvariant has called the

variants with 0.19/Kbp which is comparatively less dense than the

earlier reported results (0.33/Kbp) with GATK (Ruperao et al.,

2021). Our results were also within the range reported for other

genome-wide studies such as in soybean (Lam et al., 2010), rice 1.2

(McNally et al., 2009), and Arabidopsis 0.8 (Clark et al., 2007).

Future studies will need to compare DeepVariant with other

existing methods and validate our results in different germplasm

sets, such as the sorghum diversity panel (Casa et al., 2008). Such

future studies will also need to pay special attention to sequence

coverage and how it would affect the accuracy of variants called.
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Our study used a minimum overall coverage of 5x, which was more

than adequate even for a less efficient SNP calling pipeline (Wu

et al., 2019). Sequence coverage is one of the major factors affecting

the accuracy of SNPs called from NGS datasets, especially in

heterozygous species (Gong and Han, 2022). A coverage of 0.01x

has been reported as the most cost-effective coverage in sorghum,

with 94.1% SNP accuracy (Jensen et al., 2020). There will be a need

for additional studies establishing the effect of various levels of

coverage in the NGS datasets for DeepVariant calling, and how it

would affect the SNP accuracy in sorghum.
Nucleotide diversity and divergence
in sorghum

The genetic relatedness from the NJ tree (Supplementary

Figure 3) and Pco (Supplementary Figure 9) analysis between the

sorghum race accession demonstrates most of the guinea accessions

forms the cluster, except for few accessions relates to caudatum

race. Whereas durra race represented in two clusters, one cluster

close to guinea and second in between kafir and caudatum

(Supplementary Figure 3). Such intermediate race accessions and

split of sorghum race clustering was also seen earlier for 389

sorghum diverse panel (Sapkota et al., 2020). On further

investigation of structure analysis supports the two subpopulation

clusters (K=2) in the sorghum population (Supplementary

Figure 10) supporting the distance-based NJ analysis, indicating

that the race accessions are genetically related. Our study was

purely based on existing data and did not allow for much flexibility

in the number of genotypes per race. The overall nucleotide

diversity observed for sorghum of p = 0.000048 is significantly

smaller than previously reported by Faye et al. (2019) but

comparable to a more recent study (Sapkota et al., 2020) that

reported p = 0.000032. This figure is much lower than for other

cereals such as wheat (pA=0.0017, pB = 0.0025 and pD = 0.0002)

(Zhou et al., 2020), maize (p = 0.014) (Tenaillon et al., 2001) and

rice (p = 0.0024; Huang et al., 2010) and could be a consequence of

the limited number of genotypes used in the study. The race-

specific nucleotide diversity indicated that the caudatum (57

genotypes; pC = 0.0000419) had the lowest diversity followed by

guinea (68 genotypes; 0.0000631) and durra (82 genotypes; pD =

0.0000637) races. On comparing the linkage disequilibrium (LD)

decay, rapid LD decay was observed in durra followed by guinea

and caudatum (Supplementary Figure 10), supporting the above

diversity values of the sorghum race. The least diversity race

population (caudatum) shows the higher extents of LD than the

races with higher diversity (Durra). Supporting to these results,

caudatum race consistently demonstrate the least genetically

diverse showed higher LD values (Sapkota et al., 2020). However,

studies also reported, the guinea race as the most genetically diverse

sorghum type (Morris et al., 2013; Faye et al., 2019). Comparing

our results and those of Morris et al. (2013) and Faye et al. (2019),

suggests a positive correlation between the number of genotypes

per race with the nucleotide diversity. More studies need to be done

to confirm the effective population size per sorghum race that will

be optimum for a reliable and consistent nucleotide diversity result.
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Selection signatures

We used two approaches to detect selection sweeps across the

sorghum genome, both of which are haplotype-based. The iHS

method, which is based on a single population, was meant to detect

recent positive selection (Voight et al., 2006), while the XP-EHH is

based on the comparison of two populations and is considered

powerful in detecting beneficial alleles shortly before, or at fixation

(Alexandra et al., 2015). Such multiple statistical approaches were

earlier used for selection sweeps in other crops like cotton

(Gossypium herbaceum) (Nazir et al., 2020) and soybean (Glycine

max) (Zhong et al., 2022). A recent study comparing different

methods used for detecting selection sweeps reported that both iHS

and XP-EHH were able to identify genomic regions undergoing

selective sweep under a wide range of population structure scenarios

(Vatsiou et al., 2016). Previous studies in sorghum have also

reported evidence of selective sweeps in sorghum (Casa et al.,

2006; Faye et al., 2019) although the methods used for detection

were different. Our results on selective sweep regions were further

strengthened by Tajima’s D results, which enabled us to identify

candidate genes in the significant selective sweep regions.

The 2,370 candidate genes identified in our study (for under

selection pressure), of which, 7.5% are positively selected, are

similar to the proportion of genes identified for domestication

and improvement using the gene-based population study by Mace

et al. (2013). The genomic regions that are either positively or

negatively selected in the respective sorghum races could give a hint

on geographic preferences. More studies will need to delve deeper

into specific regional selection sweeps that could eventually be used

to predict ideal genotypes/phenotypes. The remaining candidate

genes that were reported as undergoing negative selection with

evidence from both Tajima’s D and Fst index values. Such genomic

analysis of crop landraces would enhance our understanding of the

basis of local adaptions (Li et al., 2017; Swarts et al., 2017).

Some of the trait-associated genes undergoing selection

pressure that have been reported include the dry pithy stem gene

mutation that led to the origin of sweet sorghum (Zhang et al.,

2018), local adaptation to parasite pressure and signatures of

balancing selection surrounding low germination stimulant (Bellis

et al., 2020) and the strong selection pressure on the sorghum

maturity gene (Ma3) (Wang et al., 2015). Comparative population

genomics assist in dissecting the domestication and genome-wide

effects of selection as studied in cotton, with reports that 311

selection sweep regions are associated with domestication and

improvement (Nazir et al., 2020) and with selection sweeps

identified comparing wild and domesticated soybean accessions

(Zhong et al., 2022).

Populations subjected to strong selection pressure may

experience genetic bottlenecks and result in a loss of genetic

diversity. The level of diversity preserved in a population depends

on the background of the emerging adaptive alleles (Wilson et al.,

2017). Identification of such a large number of selection sweeps

suggests the existence of domestication bottlenecks. The identified

selection sweeps overlapped with highly differentiated regions

suggesting the occurrence of differentiation due to human-

mediated selection. These regions help in understanding the
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genetic basis of domestication and improvement in traits. On

further comparison of the selection regions with significant loci of

GWAS analysis (narrowing down the region), it may be possible to

determine the genes underlying domestication and selection in the

sorghum crop.

The results from this study lead to a better understanding of the

changes at the genomic level caused by domestication, selection and

improvement of sorghum accessions.
Methods

Plant material

We used 272 sorghum accessions, which included accessions

that had been used in a previous sorghum pangenome study

(Ruperao et al., 2021) and six sorghum bicolor accessions

reported in Yan et al. (2018) (Supplementary Table 1). Among

these genotypes, 82, 21, 57, 68, 14 were durra, kafir, caudatum,

guinea and bicolor respectively, while the remaining were

mixed accessions.
Variant discovery

The fastq sequence reads generated from the 272 sorghum

accessions were trimmed with Trimmomatic 0.39 (Bolger et al.,

2014). Alignments to the sorghum pangenome (dataverse.icrisat.org,

https://doi.org/10.21421/D2/RIO2QM) as a reference (Ruperao et al.,

2021) were performed using Bowtie2 version 2.4.2 (Langmead and

Salzberg, 2012). All alignments were converted to binary files with

Samtools 1.13 (Li et al., 2009) followed by filtering out the read

duplication with Picard tools (http://broadinstitute.github.io/

p i c a r d ) . T h e o p e n - s o u r c e D e e p V a r i a n t

(https://github.com/google/&6;deepvariant) (Poplin et al., 2018)

tool was used to create individual genome call sets, followed by

merging call sets with Bcftools 1.9 (Bcftools by samtools) then

analyzing the merged call set. The merged variants were filtered

with ‘maf 0.01 min-meanDP 2 minQ 20’. Filtering was done using

Vcftools 0.1.16 (Danecek et al., 2011). Retained high-quality sites

were used for downstream analysis. Functional annotation of SNPs

was done using SnpEff v.4.3 (Cingolani et al., 2012).
Counting k-mers

The k-mer-based genetic distance between 272 sorghum

accessions was measured with Mash (Ondov et al., 2016). Out

of the 272 accessions used, the mean distance values within each

race were used to compare k-mers between the sorghum races. To

compare sequences across sorghum races, we determined k-mer

frequency in sequencing reads from all samples. To identify the

common and unique genomic sequences between the sorghum

races, we split the sequencing reads into k length of the sequence.

The optimal k-mer size for identifying the distinct k-mers was

estimated using KmerGenie (Chikhi and Medvedev, 2014) within
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the k range of 21 to 121. The optimized k=47 was used for

measuring the k-mer frequency as shown in the Figure 7. We used

the hash-based tool Jellyfish (Marçais and Kingsford, 2011) to

count k-mers with the optimized k-mer length of 31 (kmer 31,

expect number of k-mers 100G, count both strand canonical

representation, number of threads 25, number of files open

simultaneously 2, output file name) and filtered out k-mers that

appeared only once in samples as they were likely from

sequencing errors. The k-mer hashes were visually inspected

through KAT density plots (Mapleson et al., 2017) for all five

sorghum race accessions by producing the k-mer frequency, GC

plots and contamination checks. Unique k-mers mapped to

sorghum pangenome were validated with mapped SNParray

region from a previous study (Ruperao et al., 2021). Based on

the Bowtie2 v2.4.2 (Langmead and Salzberg, 2012) mapped k-

mers, the gene coverage was assessed with samtools mpileup (Li

et al., 2009). The sequence region supporting with minimum of

three k-mers was considered as sequence region present in the

genome. The gene PAVs were extracted from the sorghum pan-

genome genes PAVs catalog (Ruperao et al., 2021) with in-house

developed script.
Nucleotide diversity and relatedness

The filtered SNPs were further subgrouped based on race-

specific variant alleles. Nucleotide diversity (pi) was calculated

using Vcftools 0.1.16 (Danecek et al., 2011). The pi (p)
distributions were compared to assess changes in genetic diversity

over time. The pi (p) density plots were generated with in-house

developed scripts.

In addition, a 1,000 bootstrap resampling was used to estimate

the genetic relationship among the accessions with R “ape” (Paradis

et al., 2004) package to construct a NJ tree and visualized it in iTOL

tree viewer (Letunic and Bork, 2019). The Pco analysis was done

with R “ labdsv” package (https://CRAN.R-project.org/

package=labdsv). The admixture v1.3.0 (Alexander et al., 2009)

was used to estimate the population structure enabling the cross-

validation (CV) with –cv flag. The cross-validation procedure was

performed to 10-fold and the lowest CV was considered as optimal

K value and the results were visualized with R package (github.com/

royfrancis/pophelperShiny) POPHELPER v2.1.1 (Francis, 2017).

PopLDdecay (Zhang et al., 2019) was used with MAF 0.01 and

MaxDist 2000 to generate the linkage disequilibrium stats and

Plot_MultiPop.pl used for plotting the LDdecay.
Population differentiation and signatures
of selection

Tajima’s D (Tajima, 1989) and per-site Fst (based on Weir and

Cockerham’s Fst estimator) (Weir and Cockerham, 1984) were

calculated using Vcftools 0.1.16 software (Danecek et al., 2011).

Integrated haplotype score (iHS) (Voight et al., 2006) analysis was

performed using the “rehh” package (Gautier et al., 2017) in R v

3.6.3, while the extended haplotype-based homozygosity score test)
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(XP-EHH) (Sabeti et al., 2007) was derived using Beagle (Browning

et al., 2021). Significant selective sweeps were detected using the

Bonferroni FDR threshold (P < 0.05).

Overlap of putative genomic regions under selection with

previously known QTLs was detected after downloading the

mapped QTL regions from Hostetler et al. (2021) and comparing

them with the identified selection regions.
Access to raw data

We obtained publicly accessible raw Illumina sequence data

from three previous studies as shown in Table 1 and Supplementary

Table 1. The sorghum accessions having minimum 5x coverage of

whole-genome sequence data were used for the analysis, resulting in

a total of 272 sorghum accessions.
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Conclusion

This study compared the genomes of the sorghum races with

short k-mer length sequence to identify the conserved and signature

patterns of sorghum race sequences. We implemented a deep

learning method to detect the variants and compared structural

and functional annotations. On applying the k-mer-based genome

comparison among the sorghum races, we were able to identify the

unique k-mer sequences that is specific to the sorghum races and

also possibly use as race-specific or accession specific (if k-mers

compared between accessions) genetic markers. Our study observed

a relatively lower genetic diversity in the caudatum and bicolor

races than in kafir, guinea and durra races. Our results revealed

several putative footprints of selection that harbor interesting

candidate genes associated with agronomically important traits

using different statistical approaches. The findings will enhance
FIGURE 7

The workflows of the sorghum race accessions comparison with k-mer analysis.
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our understanding of the dynamics of the sorghum race genomes

and help to design strategies to breed better genotypes.
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