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Abstract: Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and 

fodder production. The greater tolerance to drought stress attracts us to examine its cellular and 

molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we 

studied the drought response of 48 inbreds representing four different maturity groups at the flow-

ering stage. A set of 74 drought-responsive genes were separated into five major phylogenic groups 

belonging to eight functional groups, namely ABA signaling, hormone signaling, ion and osmotic 

homeostasis, TF-mediated regulation, molecular adaptation, signal transduction, physiological ad-

aptation, detoxification, which were comprehensively studied. Among the conserved motifs of the 

drought-responsive genes, the protein kinases and MYB domain proteins were the most conserved 

ones. Comparative in-silico analysis of the drought genes across millet crops showed foxtail millet 

had most orthologs with pearl millet. Of 698 haplotypes identified across millet crops, MyC2 and 

Myb4 had maximum haplotypes. The protein–protein interaction network identified ABI2, P5CS, 

CDPK, DREB, MYB, and CYP707A3 as major hub genes. The expression assay showed the presence 

of common as well as unique drought-responsive genes across maturity groups. Drought tolerant 

genotypes in respective maturity groups were identified from the expression pattern of genes. 

Among several gene families, ABA signaling, TFs, and signaling proteins were the prospective con-

tributors to drought tolerance across maturity groups. The functionally validated genes could be 

used as promising candidates in backcross breeding, genomic selection, and gene-editing schemes 

in pearl millet and other millet crops to increase the yield in drought-prone arid and semi-arid ecol-

ogies. 
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1. Introduction 

Pearl millet [Pennisetum glaucum (L.) R.Br.] is an important small-grained cereal crop 

that belongs to the family Poaceae and subfamily Panicoideae. Pearl millet is a highly 

cross-pollinated diploid (2n = 14) species with a genome size of ~1.79 Gb [1]. It is widely 

grown in arid and semi-arid regions of Africa and Asia, which are characterized as zones 

of low rainfall and high temperature. In India, pearl millet is the third-most cultivated 

food crop grown in seven million hectares of land with a productivity of 8.6 million tons 

in the year 2018–19 [2]. The presence of a high level of iron and zinc in the grain is im-

portant to combat micronutrient malnutrition. Drought is a major environmental stress 
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factor across production ecologies that severely limits plant growth and development and 

often results in lowering crop yield. Although pearl millet is a hardy crop, drought during 

critical stages is the major production constraint in the semi-arid and arid regions. Thus, 

examining its cellular and molecular mechanisms of stress tolerance via functional ge-

nomics approaches is very important to develop better cultivars in pearl millet and sustain 

food and nutritional security. 

To overcome the drought condition, plants have evolved a set of complex interacting 

layers of morphological, physiological, and biochemical responses. Morphological traits 

including root architecture, stay green property, leaf rolling, and yield factors are im-

portant for imparting drought tolerance and are mainly meant for efficient water absorp-

tion from the soil and conservation in the system. Root diameters and root-length density 

are some of the known root traits which contribute to productivity under drought condi-

tions [3]. Pearl millet root system is characterized by fast primary root development at the 

early growth stage and quickly colonizing deeper soil horizon, which enables procuring 

water from the deeper root zone) [4]. Stay green is a characteristic of some plants to extend 

the duration of photosynthesis by delaying their leaves' senescence for a longer period. 

Stay green properties were observed in pearl millet when exposed to the drought stress, 

where the tolerant lines exhibited more water extraction after anthesis rather than before 

anthesis [5]. Leaf-rolling and wilting are some means to reduce water loss by reducing the 

surface area of the leaf thereby decreasing the rate of transpiration [6]. In rice, over-ex-

pression of Abaxially Curled Leaf 1 (ACL 1) and ACL 2 regulate the leaf rolling under water-

stress conditions) [7]. 

Physiological parameters of drought tolerance include stomatal closure, decreased 

photosynthesis, water-use efficiency (WUE), transpiration efficiency, and accumulation of 

osmoprotectants such as proline, glycine betaine, and [8]. Under drought stress, the major 

strategy by which plants overcome water loss is through stomatal closure. In Arabidopsis, 

the GTL1 controls several stomatal traits, by regulating the rate of transpiration, stomatal 

density, and WUE [9]. Photosynthesis is another physiological event severely affected by 

water stress. Genes encoding galactinol synthase (AtGolS1 and AtGolS2) showing toler-

ance to drought via accumulation of endogenous galactinol and raffinose were identified 

in Arabidopsis [10]. Under drought stress, the pearl millet genotypes accumulate organic 

solutes such as glucose, sucrose, amino acids, and proline which act as osmo protectants, 

ultimately contributing to drought tolerance [11]. Drought-exposed sorghum plants 

showed a low transpiration rate and slow water absorption from the soil which in turn 

increased the transpiration efficiency of the crop [12]. 

Biochemical traits in drought tolerance include reduced accumulation of reactive ox-

ygen species (ROS) through the production of antioxidants, which act enzymatically and 

non-enzymatically scavenging the ROS [13]. Enzymatic component of ROS scavenging 

includes ascorbate peroxidase (APX), SOD, CAT, and NADH, and non-enzymatic antiox-

idants include proline, carotenoids, flavonoids, ascorbic acid, reduced glutathione (GSH) 

[14]. Drought stress enhances the glutathione reductase activity in the roots and leaves, 

which facilitates the defense against ROS [15]. Over-expression of PcAPX (ascorbate pe-

roxidase) from Populus tomentosa enhanced tolerance to drought in tobacco plants by act-

ing as ROS scavenger [16]. Several hormones are involved in stress-mediated signaling 

pathways, in which ABA acts as a key regulator, responsible for regulating the expression 

of stress-associated genes. SnRK2 family gene SnRK2.6/OST1 acts as a positive regulator, 

inducing ABA-mediated stomatal closure [17]. In cotton, under drought conditions, the 

over-expression of ABA-induced genes AREB1/2 and GhCBF3 resulted in higher chloro-

phyll, proline, and relative water contents [18]. 

At the molecular level, the response of plants to the drought condition is a multi-

genic trait induced by both regulatory and functional genes.[19] Several genes and pro-

teins having functional roles in conferring stress tolerance were identified in many crops. 

[20,21] ,. These stress-associated genes are responsible for synthesizing various regulatory 

proteins, detoxifying enzymes, proline, and other compatible [22]. In pearl millet, PgGPx 
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encodes a protein, which acts as a ROS scavenger during drought stress [23]. Heat shock proteins 

(HSP) acting as molecular chaperones, were played role in protein unfolding and dena-

turation control [24]. The heat shock proteins involved in heat-responsive pathways di-

rectly correlated to high-temperature tolerance [25]. Late embryogenesis abundant (LEA) 

proteins, aquaporins (AQP), and membrane-stabilizing proteins have also been demon-

strated, with crucial roles in increasing water-binding capacity under drought stress. Ad-

ditionally, several TFs involved in modulating gene expression under drought conditions, 

including members of MYB, MYC, DREB/CBF, ABF/AREB, NAC, bZIP, and WRKY fami-

lies, were studied in maize [20], [20,21] and bean [26]. 

Pearl millet is cultivated in a variety of production ecologies which differs in soil, 

weather, and resource factors. Drought at critical stages, namely the seedling, vegetative, 

flowering, and grain-filling stages, costs grain and fodder yield, especially in arid and 

hyper-arid ecologies. Though drought stress causes a serious impact at every critical stage, 

a reduction in fertile florets at the flowering stage leads into low productivity. Genes re-

sponsible for the adaptation to the drought stress especially during the critical flowering 

stage can provide a much-needed boost to the grain and fodder yield. Hence, an experi-

ment was conceived to understand the genes involved in regulating drought tolerance in 

pearl millet inbreds belonging to four well-known maturity groups at the flowering stage; 

to structurally and functionally characterize drought-responsive genes representing eight 

functional groups; to understand the orthologs and haplotype patterns of the genes across 

pearl millet, sorghum, fox millet, proso millet, and finger millet; to identify the drought-

tolerant genotypes based on the differential expression pattern; and to find out the utility 

of these genes in an applied breeding program to develop tolerant varieties. 

2. Materials and Methods 

2.1. Identification of Drought Gene Homologs and Chromosomal Location 

A set of 171 genes were identified from the drought database (DroughtDB) [27] be-

longing to different functional and regulatory characteristics related to drought. The nu-

cleotide sequences of the selected genes were retrieved from NCBI 

(https://www.ncbi.nlm.nih.gov/; (accessed on December 2020)), TAIR (https://www.ara-

bidopsis.org/index.jsp; (accessed on December 2020)), maizeDB (https://www.maize-

gdb.org/), RGAP (http://rice.plantbiology.msu.edu/index.shtml; (accessed on  Decem-

ber 2020) )databases and were searched against Cenchrus americanus (pearl millet) (ref: 

ASM217483v2) genome to find out the homologs. The nucleotide sequences were blasted 

using different parameters to find the homology (percentage identity more than 85%, e-

value less than 1×10-5, and a minimum length of match 150). The identified drought genes 

were mapped to the pearl millet chromosomes based on the location. AUGUSTUS 

(https://bioinf.uni-greifswald.de/augustus/; (accessed on June 2022)) was used to obtain 

the drought gene structures—exons, introns, and CDS based on the alignments of their 

coding sequences [28]. 

2.2. Plant Material and Induction of Drought Stress 

A set of 48 genetically diverse pearl millet inbreds representing four maturity groups 

as well as corresponding to four distinct production ecologies (very-early, early, medium, 

and late maturity groups) was used as experimental materials for this study (Table S1). 

These genotypes were selected based on the initial screening of a large set of pearl millet 

inbreds under drought. The 48 pearl millet genotypes received from ICRISAT, India be-

longed to four maturity groups based on the 50% flowering time, namely nine from very 

early (less than 45 days), nine from early (45 to 50 days), 13 from medium (50 to 55 days) 

and 17 from late (more than 55 days). Around 4 to 5 seeds of each genotype were sown in 

six pots where three pots each, also considered three replicates, were designated as control 

and drought. The pots were filled with red-loamy soil and were watered regularly till the 

50% flowering stage. At the time of 50% flowering, drought stress was induced in the 
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drought-designated pots by withholding water for 15 consecutive days according to the 

flowering stage of the genotypes, while control plants were watered regularly. 

2.3. RNA Isolation 

For the expression study, the leaf samples of drought-treated plants were collected 

separately 15 days after withdrawal of water along with well-watered control and were 

frozen in liquid nitrogen and stored at -80°C. Total RNA from the leaves was isolated 

using Qiagen RNeasy columns (Qiagen, Hilden, Germany). Isolated RNA was then 

treated with DNase I (Takara) to avoid genomic DNA contamination. The concentration 

and purity of the isolated RNA were detected by Thermo Scientific NanoDrop 1000 spec-

trophotometer (Thermo Scientific, Wilmington, Delaware, USA). One μg of DNA-free 

RNA was used for the synthesis of cDNA using Revert Aid first-strand cDNA synthesis 

kit (Thermo Fisher Scientific, USA). 

2.4. Quantitative Real-Time PCR (qRT-PCR) 

Primers were designed for the selected genes (Table S2)using online server IDT Pri-

merQuest (http://www.idtdna.com/scitools/applications/primerquest/default.aspx; (ac-

cessed on January, 2021)) qRT-PCR assay designing tool. The optimum amplicon size of 

the assay design was 100, with a GC content of around 50% for the primers, and the probes 

were designed with an optimum oligo length of 24 bp. The program was performed with 

25 μL RT-PCR reaction, including 12.5 μL of the SYBR green RT-PCR master mix (Affy-

metrix, Santa Clara, CA, USA), 2μL of each forward and reverse primers, 1 μL of cDNA, 

1 μL of reverse transcriptase, 0.5 μL of ROX dye and 8 μL of nuclease-free water. Reverse 

transcription was performed at 50 °C for 30 min and was terminated at 95 °C for 10 min. 

The PCR reactions included the following thermal cycling conditions: 40 cycles of 94 °C 

for 3 s, 58 to 60 °C for 1 min, and 72 C for 30 s. 

2.5. Identification of Orthologous Sequences and Haplotypes across Millets 

Drought genes identified in pearl millet were subjected to find orthologous se-

quences in other important millet crops having genome sequences such as sorghum (Sor-

ghum bicolor), foxtail millet (Setaria italica), proso millet (Panicum miliaceum) and finger 

millet (Eleusine coracana). Using the local nucleotide BLAST, the sequences were identified 

with a minimum sequence identity of 85% on average on 50 to 100 N length of the se-

quence. The e-value was also set to a minimum according to the identified queries. The 

Orthologous sequences were mapped to the chromosomal location in all millets and rep-

resented as a Circos plot using ClicO [29]. The drought gene sequences identified in other 

millets were fetched out from the genome of the respective crop and used to identify hap-

lotypes of the gene across the millets using [30]. The genes were aligned using ClustalW 

multiple alignments and visualized for the recognition of the number of haplotypes per 

gene.  

2.6. Computational Protein Analysis 

The protein sequences of drought genes were subjected to EMBOSS tool of EBI [31] 

to find the molecular weight, isoelectric point, charge, and extinction coefficient. Trans-

membrane helices finding and subcellular location identification were done using 

TMHMM [32] server (http://www.cbs.dtu.dk/services/TMHMM/; (accessed on February, 

2021)) and CELLO2GO [33] (http://cello.life.nctu.edu.tw/cello2go/; (accessed on February, 

2021)). The putative protein sequences were analyzed in MEME, the multiple maximiza-

tions for motif elicitation analysis tool (http://meme-suite.org/doc/download.html; (ac-

cessed on February, 2021)) [34] and SMART (Simple Modular Architecture Research Tool), 

which allows the identification and annotation of genetically mobile domains 

(http://smart.embl-heidelberg.de/; (accessed on February, 2021)) [35]. The MEME suite 
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was used to search 10 motifs with a base width of a minimum of 6 and a maximum of 60 

Kb and an e-value of less than 0.01. 

2.7. Conserved Sequence Motif across Millets 

The collective sequence of orthologous genes from the millets was subjected to find-

ing conserved motifs specific to each gene using the MEME tool [36] with a min 6 N to 

max 50 N width of each motif. Overall, 14 genes were found to be occurring in all millets. 

The motifs of these genes identified by MEME software were then directed to TOMTOM 

[37]to compare them with a known set of motifs in Arabidopsis as a reference. Motif loca-

tions and LOGO representation of the motifs were extracted and visualized. 

2.8. Phylogenetic Analysis 

Phylogenetic analysis was done using the protein sequences to understand the evo-

lutionary relationship between the drought genes. To generate the phylogenetic tree, first, 

the multiple sequence alignment (MSA) was done using CLUSTALW (https://www.ge-

nome.jp/tools-bin/clustalw; (accessed on March, 2021)) [38] with a gap-open penalty of 10 

and gap-extension penalty of 0.05, then the alignment file was imported to simple phy-

logeny (https://www.ebi.ac.uk/Tools/phylogeny/simple_phylogeny/; (accessed on March, 

2021)) to form the phylogenetic tree using neighbor-joining (NJ) method. The tree was 

rendered using iTOL (http://itol.embl.de; (accessed on March, 2021)) using a circular 

rooted arrangement [39]. 

2.9. Gene Ontology (GO) 

The genes were submitted to DAVID (https://david.ncifcrf.gov/; (accessed on March, 

2021)) using Arabidopsis thaliana as a reference organism for hierarchical classification into 

3 categories: biological process, cellular components, and molecular function  [40]. Ac-

cording to that, the genes were classified into different molecular and physiological adap-

tation groups. 

2.10. Protein-Protein Interaction (PPI) Network 

The STRING version 11.0 (https://string-db.org/; (accessed on March, 2021)) was used 

to create the PPI network of the drought genes and visualize the interaction among the 

genes [41]. The network was constructed using the confidence score of 0.4 and clusters 

were created using the k-means value for the categories of different adaptation classes. 

3. Results 

3.1. Identification of Drought Gene Orthologs 

A total of 171 drought gene sequences from different plant species such as Arabidopsis 

thaliana, Oryza sativa, Zea mays, Sorghum bicolor, Solanum lycopersicum were collected from 

NCBI, TAIR, maizeDB, and RGAP databases. Nucleotide BLAST was performed against 

pearl millet sequences, resulting in the identification of 92 putative drought genes belong-

ing to the overall group of genes. A large number of gene homologs were found in the 

molecular (40 genes) and physical adaptation classes (36 genes). A comparatively small 

number of homologs (5 to 10 genes) were found in ABA signaling, hormone signaling, 

and detoxification. Due to the small sequence length, some of the sequences were dis-

carded and could not be processed further. Finally, a total of 74 genes were selected for 

structural and functional experiments. 

The 74 drought gene homologs identified in the present study were mapped to all 

seven chromosomes of pearl millet (Figure 1A). About 60% of genes belonging to different 

TF families (bZIP, WRKY, DREB, and MYB), ion and osmotic homeostasis (PIP, GTG1 and 

2, KAT, PYL9/RCAR1), and other molecular and physiological classes were mapped on 

chromosomes 1 and 7. Crucial gene families such as AnnAt, AtBG, FSPD, RGS, DSM, and 

CIPK were observed in other chromosomes. In the present study, we observed 
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comparatively a smaller number of drought genes were mapped to chromosome 6, 

whereas chromosome 7 was the hot spot of drought genes. The gene structures analysis 

revealed that three genes are intron-less while the remaining displayed many introns. The 

number of exons ranged between 1 (AP2 and EDR1) to 12 (bZIP). 

 

Figure 1. (A) Chromosomal distribution of 74 genes associated with drought in pearl millet. (B) 

Circos plot representing chromosomal positions of orthologous drought genes in different millet 

Crops. 

The drought genes recognized in the present study were subjected to a BLAST search 

against other important millet crop genomes, namely sorghum, foxtail millet, proso millet, 

and finger millet to identify the orthologous genes. The reliability of the orthologous de-

pends on the e-value parameter and hits with a minimum e-value have been considered 

for further study. The distribution of these genes in pearl millet and other millets are vis-

ualized in Figure 1B. 

Among all, foxtail millet had the maximum number of matches against the drought 

genes (85 hits for 42 genes) followed by proso millet (50 hits for 21 genes), finger millet (66 

hits for 27 genes), and sorghum (41 hits for 19 genes). The percentage identity varied from 

75 to 100 in different crops for identical fragments of the nucleotide sequence. Foxtail mil-

let had 34 genes with 100% identity out of 85 genes with a match length >200. On the other 

hand, finger millet had 15 genes out of 76 with 95% identity. Sorghum and proso millet 

had 12 and 13 genes, respectively, with more than 90% identity among the orthologous.  

Some of the genes constitute more than one ortholog in a crop in different chromo-

somal positions. Among all millets, 19 out of the totally identified 85 orthologous were 

reported repeatedly in different genome locations of foxtail millet. The gene with a maxi-

mum orthologous was TPS1, which was identified in chromosomes 7,8, and 9. Proso millet 

had the maximum count with 16 repeated orthologous for Myb2, followed by finger millet 

(13 orthologous for Myb4 and AtBG1), and sorghum (9 orthologous for Myb4 gene). 

Drought genes were observed in clusters in different chromosomes of different mil-

lets. Among the identified 74 drought genes, 30 were clustered as one group in foxtail 

millet chromosome 9, followed by 21 in finger millet chromosome 1. Sorghum and proso 

millet both had 10 to 15 genes clustered in their respective chromosomes 1 and 5. 
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3.2. Haplotypes of Drought Genes 

The identified sequences of 74 drought genes in pearl millet were used as a template 

and fetched out from other millets using nucleotide BLAST. The orthologous drought 

gene sequences were aligned for the identification of haplotypes across all millets (Figure 

2). A total of 698 haplotypes were identified across all genes in different crops. All the 

haplotypes of pearl millet were also identified in sorghum and proso millet, while foxtail 

millet and finger millet did not have a few of them. The orthologous sequences of three 

pearl millet genes (chlorophyll a-b binding protein, bZIP23, and Ann1) identified across 

the millet crops recorded >90 haplotypes. Nuclear transcription factor Y subunit beta1 (81 

haplotypes) was found in all crops except in foxtail millet. It was observed that the MyC2 

and Myb4 genes had the minimum number of haplotypes (1 to 3 across crops). 

 

Figure 2. Haplotype-led comparison to visualize the occurrence of many to few haplotypes of 

drought genes in different millets. (A) Ann1 showed dense haplotype pattern (B) Moderate and 

scattered haplotypes in AVP1 (C) CML31 has the lowest number of haplotypes. 

3.3. Protein sequence analysis 

Analyzing the protein sequences provides insights into the characteristic features of 

the drought-related proteins. The number of amino acids in the proteins ranged from 140 

(NFYB) to 1510 in (ABCC). The isoelectric point value of the protein was also estimated in 

the range of 3.9 (CML) to 12.6 (DSM2). The molecular weight of the protein set varies from 

15180 to 169079 Dalton. The prediction of the charges of the protein indicated that 40 of 

them were positively charged, and the remaining were negative. Fifteen transmembrane 

helices were identified in 20 proteins, while the rest of them had no helices. The location 

of the proteins in subcellular compartments indicated that 23 of them belong to the nu-

cleus, 21 in the cytoplasm, and 17 in the plasma membrane (Table S3). Motif identification 

tool MEME revealed 10 conserved motifs in the protein set, which was distributed in 38 

proteins, as shown in (Figure 3). The width of the motifs ranged from 34 to 60 and most 

of them were present in 3 to 9 different sites of different proteins. Motif numbers 1 to 5 

and 8 were conserved, mostly to the kinase families such as SRK2, CDPK, CPK, and CIPK 
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with a min e-value of 1.4e-101, whereas motif 9 was found mostly in the Gol family, and 

motif 6 and 7 in the PIP family of proteins. Motif 10 was observed in bZIP, ABF2, and 

CPuORF2 TF genes. The rest of the motifs were distributed in other protein families. An-

alyzing the protein domains gave rise to 27 major domains belonging to an important 

family of proteins including bHLH, calcium-dependent protein kinase, MYB domain pro-

tein, and WRKY DNA-binding protein (Table S4). 

 

Figure 3. Presence of the conserved motifs in drought-related proteins. The consensus motif se-

quences are shown at the bottom. 

Gene structures were analyzed to survey the conserved motifs of drought genes iden-

tified in pearl millet and their orthologs in the other four millets. In total, 14 genes found 

in all four crops were subjected to MEME to find the conserved motifs. Among 10 motifs 

identified, 5 of them (motifs 1–5) were located in C-terminal and 3 (motifs 7, 8 and 10) 

were located in the middle of the ABO1 gene in millets. The N terminal motifs mainly 

consist of CC or GA nucleotide for the ABO1 gene. Motifs 1, 3, and 4 were located in the 

C terminal, motif 2 was consistently present in the middle position, and motifs 8 and 9 

were located in the N terminal out of 10 motifs of the Ann1 gene. AtBG1 gene had con-

served motifs of 1 to 3 in C-terminal for all the millets. AVP1, CML31, CDKP7, SLAC1, 

and TPS1 genes had a set of respective conserved motifs in their C-terminal. No particular 

pattern was observed in the rest of the gene sets since the motifs were mostly scattered 

over the gene in different millets. The LOGO and locational motif representation were 

visualized in Figure 4. 
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Figure 4. (A) Distribution and sequence of common conserved motifs of drought gene in pearl mil-

let, sorghum, foxtail millet, proso millet, and finger millet. Clusters of motifs observed in similar 

order in different millets. Different colored boxes indicate different motifs. (B) Relatively less-con-

served clusters of motifs observed in CML, Nf-Y, and bZIP genes among millet crops. 

3.4. Phylogenetic Analysis 

The phylogenetic tree was constructed using the 74 identified drought genes of pearl 

millet. The analysis revealed that the genes were separated into five different groups with 

sub-groups (Figure 5). The genes belonging to ABA signaling (GTG1 and 2 and PLY) were 

found in the same group whereas BGLU18/AtBG1 was found in a different group. TFs 

bZIP23, FAR, HSTA, and ADAP were clustered in Group 4, and MYB, NF-Y, WRKY, 

NCED, DREB, and SNAC were in Group 3. Ion and osmolyte factors such as ATHB, GPA1, 

DSM, OST1, and OST2 were in the same cluster (Group 3) except CPK, RBOHF, and PIP 

family of genes. Hormone and signal transduction genes NCED, CYP, AAO, CIPK, and 

CML were scattered in different groups. Genes related to detoxification (GolS1, GolS2, and 

P5CSA) were found in the same subgroup of Group 5. Other important genes in the class 

of molecular and physiological adaptation such as NF-YB, RGS1, PIP, and CDPK were 

grouped into another sub-group of Group 5. 
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Figure 5. The phylogenetic tree of 74 drought genes in pearl millet grouped into five different clads. 

3.5. GO Analysis 

By analyzing the 74 genes in DAVID for GO annotation, 28, 16, and 3 GO terms were 

identified in different biological processes, molecular functions, and cellular components, 

respectively. The annotations involved in biological processes were water deprivation, 

ABA-activated signaling pathway, salt stress, jasmonic acid, heat, ABA catabolic process, 

protein de-phosphorylation, cold, salicylic acid, desiccation, stomatal movement, sugar 

mediated signaling pathway, galactose metabolic process, positive regulation of tran-

scription, de-phosphorylation, sterol metabolic process, regulation of stomatal movement, 

carbohydrate biosynthetic process, high light intensity, and oxidative stress. Almost 30% 

of genes are involved in molecular functions, including transferase activity, transferring 

glycosyl groups, transcription regulatory region DNA binding, sequence-specific DNA 

binding, DNA binding, TF activity, sequence-specific DNA binding, and protein binding. 

Cellular components had GO annotations such as protein serine/threonine phosphatase 

complex and cytoplasmic components (Table S5). 

3.6. Differential Expression of Drought Genes 

A set of 48 pearl millet inbreds were exposed to drought stress and the differential 

expression of 74 drought-responsive genes across four maturity groups were studied at 

the flowering stage. These genes were categorized into eight functional groups and the 

expression pattern in the control and drought-induced genotypes is furnished below. 

3.7. ABA Signalling 

All four genes (AtBG1, GTG1, GTG2, PYL9/RCAR1) responsible for ABA signaling 

showed a high level of up-regulation in ICMR 100948 belonging to the very-early maturity 

group (Figure 6A). Similarly, positive regulation was exhibited by all the four genes in 

ICMB 03999 with the magnitude of expression being higher in PYL9/RCAR1 when 
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compared to the other three genes. PYL9/RCAR1 in ICMB 100391 was highly down-regu-

lated by a 2.3-fold change over control, whereas other genes showed positive expression. 

For ICMB 00111, all genes were positively expressed, except GTG2, which possesses a 2-

fold decrease in expression than control under drought stress. While all four genes 

showed variable expression in genotype ICMB 15222, with GTG2 being highly up-regu-

lated, PYL9/RCAR1 and GTG1 with positive expression, and AtBG1 showing a two-fold 

decrease in expression rather than control. 

 
Figure 6. The heat map of 74 drought genes expressed in the (A) very-early and (B) early maturity 

group. The genotypes under drought (with suffix D) are compared with their respective control 

(with suffix C). 

Early flowering genotypes ICMR 100229 and ICMB 1608 had an equal level of over-

expression in all four genes, with PYL9/RCAR1 showing more up-regulation in ICMB 1608 

(Figure 6B). In ICMP 100443, up-regulation was observed in all the genes except AtBG1, 

which was negatively regulated under stress conditions. Down-regulation of four genes 

was noticed in ICMB 92888, and GTG2 showed maximum down-regulation in most of the 

genotypes (ICMB 100270, ICMB 11999, ICMR 101221, ICMB 100673, and ICMB 92888). 

GTG1 and GTG2 were highly down-regulated in ICMB 11999, while the other two genes 

showed moderate positive regulation. The medium-maturing genotype, ICMR 100999 

had up-regulation for all the genes with ATBG1 being over-expressed nine times more 

than the control, whereas in ICMB 100637, it was least positively expressed when com-

pared to the other three genes (Figure 7A). GTG2 expressed a higher level of down-regu-

lation in ICMB 100642 and ICMR 101011 with a four- to five-times decrease in expression 

than control. Similarly, PYL9/RCAR1 was highly down-regulated in ICMR 101011 and 

ICMR 100028 under drought conditions. 
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Figure 7. The heat map of 74 drought genes expressed in the (A) medium and (B) late maturity 

group. The genotypes under drought (with suffix D) are compared with their respective control 

(with suffix C). 

AtBG1 and PYL9/RCAR1 showed high up-regulation in most of the late-maturing 

genotypes when compared with the other two genes (Figure 7B). Up-regulation of all four 

genes was observed only in ICMR 100152 and ICMR 100544. In ICMR 100045, GTG1 and 

PYL9/RCAR1 were up-regulated, whereas down-regulation was observed in AtBG1 and 

GTG2, in which AtBG1 showed a negative expression that is around five-fold less than 

control. A high level of up-regulation was exhibited by AtBG1 and GTG2 in ICMB 100252, 

where GTG1 showed a five-times decreased expression rather than control. Similarly, in 

ICMB 100619 both GTG1 and GTG2 showed a three-times decrease in the expression, 

whereas AtBG1 and PYL9/RCAR1 were positively expressed. 

3.8. Hormone Signalling 

Under drought conditions, in the early maturity group, a high level of differential 

expression of genes, controlling hormone signaling was observed compared to the mid 

and late maturity genotypes. The extent of up-regulation of all four genes (AAO3, 

CYP707A1, CYP707A3, NCED) was maximum in ICMB 00111, with a high level of positive 

expression exhibited by CYP707A3 with a five-fold increase in expression rather than con-

trol. Except for AAO3 and NCED, the expression of CYP707A1 and CYP707A3 was very 

high in ICMB 15222 (very-early maturity group) (Figure 4). When compared to other 

genes, NCED expression was three-fold lesser in ICMB 03999, but an opposite expression 

of this gene was found in ICMR 100948 with 40-times more up-regulation than control. In 

the same genotype, AAO3 and CYP707A1 showed a two- to three-times decrease in ex-

pression. ICMB 1608 and ICMB 100649 belonging to the early-maturing group exhibited 

an equal level of up-regulation of all genes (Figure 5). Most of the genes got down-regu-

lated in ICMB 100270, ICMB 100673, and ICMB 92888. CYP707A3 was over-expressed in 

ICMP 100443, whereas the other genes such as CYP707A1 and NCED showed five-times 

lesser expression under stress rather than under control. 

The medium-maturing group had a moderate level of expression of the studied 

genes, with AAO3, CYP707A1, and CYP707A3 showing positive expression and NCED 

with negative regulation in ICMR 100999 (Figure 7A). Expression of AAO3 was more 

down-regulated in many genotypes when compared to other genes, with a 2.5-fold de-

creased expression rather than control in ICMB 100637, and ICMR 101011. In ICMB 

100638, which belonged to the late-maturity group, all genes were expressed at a higher 
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level except for NCED, which showed negative regulation that was approximately five 

times lower than control (Figure 7B). The magnitude of expression of the CYP707A3 gene 

was 36 times higher than control in ICMR 100045, whereas other genes were three to five 

times lower in their expression under drought stress. 

3.9. Ion and Osmotic Homeostasis 

Sixteen genes were differentially expressed targeting ion and osmotic homeostasis, 

with a maximum level of up-regulation of genes observed in ICMB 03999, which belongs 

to the very-early maturity group (Figure 6A). ICMB 00111 also showed a comparatively 

higher level of expression in all genes except in OST2, PIP2;5, and SLAC1. OST1/SRK2E 

was highly up-regulated in the genotypes of the early-maturing group, with a maximum 

up-regulation observed in ICMB 15222. 

ICMR 100229 was another genotype in the early-maturity group to show up-regula-

tion for most of the genes with a maximum expression by PIP2;5 (Figure 6B). Most of the 

genes down-regulated in ICMB 11999, of which SLAC1 showed a three-fold decline over 

control. ICMB 100649 also showed a high magnitude of down-regulation for PEPCK and 

DSM2. 

Among all 16 genes, more down-regulation was shown by BnPIP1 in ICMR 101011, 

followed by ICMR 100028 in the medium-maturity group (Figure 7A). A maximum level 

of up-regulation was shown by PIP1;4 in ICMB 100637 with a 12 times higher expression 

than in control. Genotypes in the late-maturity group had the maximum up-regulation of 

OST2 with a 22 times higher expression than control in ICMB 100619 (Figure 7B). The 

same genotype showed down-regulation in seven genes, and the least expression was ex-

plained by ABCG40 which was 6-times less than the control. A high level of positive ex-

pression of PIP1;4 (32-times) more than control was observed in the late-maturing geno-

type, ICMR100544, when compared to other genes. 

3.10. TFs-Mediated Regulation 

Twelve genes were identified to be involved in TFs-mediated drought control and 

the expression of all genes was very high in ICMB 00111, where HSFA1b showed eight 

times increased expression rather than control. In the very early maturing genotype ICMB 

03999, ADAP had the highest expression value of 88-fold under drought (Figure 6A). 

ICMR 100948 also had a significant level of positive expression of genes, except for AREB1 

and ADAP. In the early-maturity group, among the 12 genes, 10 were negatively ex-

pressed in ICMB 100270, while only ADAP and AtNF-YB1 showed positive expression 

(Figure 6B). AREB1 showed a maximum expression 87-fold under drought in early-ma-

turing genotype ICMR 100229, while HSFA1b and ADAP were the two genes with down-

regulation. 

MYB60 was the one expressed higher-level when compared to the rest of the genes 

in medium-maturing genotype ICMB 100637, with 82-fold under drought conditions (Fig-

ure 7A). Positive regulation of all the genes was observed in ICMR 100999, whereas down-

regulation of those genes was recorded in ICMR 101011 and ICMR 100028, with the high-

est negative expression showed by HSFA1b and AtNF-YB1. MYB60 and FAR1 were the 

important TFs, highly up-regulated in the late-maturity group genotypes, ICMB 100635 

and ICMR 100045. AtNF-YB1 was the only gene with five times more down-regulation 

over control in ICMR 100544 (Figure 7B). 

3.11. Molecular Adaptation 

The expression of all 16 genes involved in molecular response favoring drought tol-

erance was positively regulated in ICMR 100948 and ICMB 15222, with a high level of 

expression shown by SHINE1 (SHN1/WIN1) followed by OsWRKY45. In the early ma-

turity group, maximum positive expression was explained by OsWRKY45, with 87-fold in 

ICMR 100229 followed by FSPD1 in ICMP 100443 having 84-fold (Figure 6A). 
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Except for CIPK15, all other 15 genes showed positive regulation under stress condi-

tions in medium-maturing genotype ICMB 100637 (Figure 7A). On the other hand, in the 

same group, ICMR 101011 showed complete down-regulation for all genes except for 

OsiSAP8, OsDREB1A, and AP37. ICMR 100544, belonging to the late-maturity group, 

showed a clear-cut up-regulation in all 16 genes, with a maximum expression by AP37 

and FSPD1 more than 80-fold change when compared to control (Figure 7B). An increase 

in the level of expression of the PFA-DSP1 gene was noticed in the late-maturity group 

genotypes and it was more than 89-fold in ICMB 100252. 

3.12. Signal Transduction 

All 11 genes associated with the signal transduction process had positively regulated 

in ICMR 100948. CML9 was an important gene, showing 45-times increased expression in 

ICMB 03999 over control. ICMB 15222 also had positive regulation of most of the genes, 

except for ABI1 and GbRLK. 

Even though most of the genes had high negative regulation, ABI2 and CIPK12 were 

highly up-regulated in the early-maturity group genotypes (Figure 6B). ICMR 100999 be-

longing to the medium-maturity group had the highest expression for RGS1 followed by 

CPK23 with 86-fold and 81-fold, respectively, over control. RGS1 showed positive regula-

tion in ICMB 100637, a genotype that belongs to the medium maturity group (Figure 7A). 

A high degree of up-regulation was showed by SRK2C and CPK23 in ICMB 100252 and 

ICMB 100619 (late-maturity group), while other genes showed moderate expression (Fig-

ure 7B). Although the expression was not too high, ICMR 100152 showed positive expres-

sion for all 11 genes involved in stress response. 

3.13. Physiological Adaptation 

All five genes (AtrbohD, EDT1/HDG11, GPA1, HAB1, and KAT2) selected for studying 

physiological adaptation showed up-regulation in ICMB 03999 belonging to the very early 

maturity group, of which AtrbohD showed the highest level of up-regulation, with 16 

times more under drought than under control (Figure 6A). ICMB 15222 too had a high 

level of differential expression of genes, except for EDT1/HDG11, which was down-regu-

lated three-fold when compared to control. AtrbohD and HAB1 showed negative regula-

tion in the very early maturing genotypes, ICMB 100663 and ICMR 100948, with a 10- to 

11-times decrease over control. 

KAT2 was highly expressed (44 times) over control in ICMP 100443 (early maturity 

group) (Figure 6B). In ICMP 100443 and ICMR 100229, all genes were up-regulated under 

drought conditions. In ICMB 100673, except for the GPA1 gene, all other four genes 

showed negative expression when compared with the control. The expression level of 

EDT1/HDG11 reached 14 times more than the control in the late-maturity genotype ICMB 

100638, along with the up-regulation of HAB1 (Figure 7B). Except for HAB1, the other four 

genes showed negative expression in ICMB 100619. 

3.14. Detoxification 

All six genes (ERD1, GolS1, GolS2, MYB4, P5CS1, and TPS1) were positively regulated 

in ICMR 100948 (very-early maturity group), with a significant level of expression of TPS1 

(87-fold), followed by ERD1 (80-fold) (Figure 6A). ERD1 expression was high (80-fold) in 

very-early maturing genotypes ICMR-100948 and ICMB-03999. Maximum down-regula-

tion of genes was observed in ICMB 00111 and ICMB 100663 except for MYB4 and TPS1 

under stress conditions. 

When compared to other genotypes, significant up-regulation in all drought-respon-

sive genes was observed in ICMR 100152. The level of expression of ERD1 and GolS2 genes 

was more than 40 times in stress when compared to the control condition in the late-ma-

turing genotypes, ICMB 100252 and ICMR 100544. P5CS1 also showed comparatively a 

high level of up-regulation in the late-maturity groups (Figure 7B). Most of the drought 
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genes were up-regulated in ICMB 100252, except the GolS2, which was seven times lesser 

than the control. 

3.15. PPI Network 

The analysis of PPI revealed a cross-linked network among the 74 identified drought-

responsive genes in pearl millet. The functional groups were labeled using different colors 

(Figure 8). The degree of connectivity of nodes varied from 1 to 44, with an average clus-

tering coefficient of 0.541. Two mostly connected genes with a value of 44 degrees were 

ABI2 and P5CS1. Other hub genes ABI1, OST, NCED, CDPK, DREBA, HAB, MYC, PIP, and 

GTG had connectivity between 20 to 40 and belong to different functional classes such as 

TFs, signal transduction, and ion and osmotic homeostasis. Among all TFs, MYC and MYB 

were mostly inter-connected with other genes belonging to various molecular and physi-

ological functions. 

 
Figure 8. Protein–protein interaction network for 74 drought gene-based proteins. Color of the 

nodes indicates the functional class of the proteins. 

4. Discussion 

Drought is one of the major constraints which affects grain and fodder productivity 

worldwide. Pearl millet is widely grown in arid and semi-arid regions which makes it 

prone to stress induced by drought. When compared to other cereals, pearl millet shows 

significant tolerance to drought, due to certain molecular and genetic mechanisms oper-

ating within the crop. Therefore, understanding the mechanism of drought tolerance and 

the development of drought-tolerant varieties are the key strategies to improving the yield 

under drought-prone ecologies. 

4.1. Gene Orthologs 

In the present study, we collected 171 drought-responsive genes from different crops, 

of which 74 genes were selected for structural and functional studies. Some homologs 

were not considered due to the short sequence length and dissimilarity in regions when 
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compared with the original gene nucleotide sequence. The variation observed in the se-

quence composition and the length of the nucleotide between the drought genes of pearl 

millet and the original gene sequence indicated the differential divergence during the pro-

cess of evolution [42]. The distribution of drought-responsive genes in all seven chromo-

somes of pearl millet varies in respect to the presence of the gene or the clustering of the 

genes in the chromosomal region. Among other chromosomes, Chromosome 7 was the 

hot spot, with a cluster of the important gene families. Drought QTLs distributed in dif-

ferent chromosomes of pearl millet were identified in the multi-location experiments 

[43,44]. 

Orthology analysis generalizes the assumption that genetic material is propagated 

by vertical descent from pre-existing genes by speciation [45] Orthologous sequences of 

the 74 important drought genes of pearl millet were identified through an in-silico ap-

proach. The millet crops with existing reference genomes such as sorghum, foxtail, proso, 

and finger millet were taken for the identification of orthologous genes. 

The orthologous sequences of the 74 important drought genes of pearl millet were 

observed to be distributed in various chromosomal positions in different crops. By com-

paring the genomic properties of different millets, a varying level of evolutionary dis-

tances was found among them [46]. The maximum number of orthologous sequences 

were identified in foxtail millet with the maximum identity, whereas the least number of 

gene orthologous were identified in sorghum among all millets. More number of 

orthologs indicated the close evolutionary relationship between the set of studied genes. 

Evolutionary divergence among gene families is greater because of the environmental fac-

tors, selection, and genomic rearrangements. Identification of orthologs among millets can 

provide functional insights into the genes and phylogenetic inference. The experiment 

also identified the common genes and SNPs which could be used across millet crops to 

develop strategies to combat drought as most of the millets grew in similar marginal ecol-

ogies. 

4.2. Drought Gene Haplotype Identification in Millet Crops 

The haplotype is a collection of specific alleles in a cluster of tightly linked genes that 

are likely to be inherited together; hence, they are likely to be conserved as a sequence 

[47]. The genes bZIP, Ann1, chlorophyll a-b binding protein, and AtBG1 identified across 

the millet species showed highly conserved regions with a high number of haplotypes. 

These are the significant gene strongly conserved at the nucleotide sequence level 

throughout the related genomes. The significant number of haplotypes observed in 23 

pearl millet genes with other millet crops probably indicated the conservation of these 

sequences during the evolution process. Myb 4 and Myc showed the highest level of var-

iability or polymorphism by recording few numbers of haplotypes which indicated the 

several events of mutation and recombination in the gene sequences during the process 

of evolution. The continuous series of haplotypes detected for the drought genes across 

the millets could be used for designing the common markers for its utilization across the 

crop species. 

4.3. Conserved Motifs and Domains 

Motifs play an important role in understanding transcriptional regulation. The simi-

larity and diversity of protein motifs belonging to different gene families provide insights 

into the structure and function of the protein. To understand the functional characteristics 

of the gene by specific and conserved peptide sequences, 10 motifs were identified in the 

74 drought-responsive genes. Motifs one to five and eight were mostly observed in the 

calcium-dependent kinase family (CDPK) of protein. Plant CDPK plays an important role 

in abiotic stress tolerance [48,49]. They are affected by the calcium level of the plant which 

works as a secondary messenger. The concentration of calcium can be rapidly disturbed 

by an increase in hormones, light, and abiotic stress  [49,50]. The CDPK family of genes 
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is predominant in intracellular Ca2+ influx and phosphorylation [50,51]. The protein kinase 

family of domain consists of the ATP binding domain and is adjacent to the auto-inhibi-

tory domain. The binding of calcium to the auto-inhibitory domain changes the protein 

conformation [52]. The Interaction of the auto-inhibitory domain with the calcium-bind-

ing domain regulated the CDPKs, CaMKs, and SnRKs [53–55]. Calcium-dependent kinases 

were found in various plants; for example, 34 CDPK genes were found in Arabidopsis, 31 

in rice, 40 in maize, and 20 in wheat [56,57]. 

The second most evident motifs six and seven were mostly observed in the PIP family 

of proteins. The plasma membrane intrinsic proteins correspond to aquaporins that are 

expressed in plasma and vacuolar membrane and intracellular water transport [58]. Aq-

uaporins have a secondary structure commonly observed with six transmembrane alpha-

helicases connected with five loops, of which two are hydrophobic [59]. The PIP family is 

the largest subfamily of plant aquaporin, and it is divided into PIP1 and PIP2 groups. The 

amino-terminal extension is shorter and the carboxy-terminal is longer in PIP2 than PIP1 

isoform [60,61]. The activity of PIP2 can be enhanced by PIP1 proteins [62]. Motif nine was 

observed in the Gol family of genes GolS1 and GolS2. Galactinol Synthase is one of the key 

enzymes in metabolic pathways leading to the biosynthesis of RFOs. GolS perform galac-

tosylates reaction to convert myo-inositol to form O-α-d-galactopyranosyl- [1 → 1]-l-myo-

inositol, which is commonly known as galactinol. The sequential transfer of α-galactose 

from galactinol onto sucrose yields raffinose and stachyose [63]. Research shows that raf-

finose content increases upon heat stress. The expression of GolS1 and GolS2 in Arabidop-

sis is regulated by a heat shock transcription factor (HSF) [64]. A set of candidate genes asso-

ciated with heat-responsive pathways activating heat shock factors have been identified 

in common beans [25]. Motif 10 was observed in bZIP, AREB, and CPuORF2 proteins. bZIP 

is a basic leucine zipper transcription factor that plays various roles in plant growth and 

stress responses [65]. Approximately 100 bZIP families identified in Arabidopsis thaliana 

were classified into sub-families depending on their structure and function [66]. 

ABF/AREB, from a subfamily, was reported in participating in ABA signaling in response 

to abiotic stresses [67,68]… 

Being staple and climate-resilient crops, comparing sorghum, foxtail millet, proso 

millet, and finger millet drought gene sequences with pearl millet provides the knowledge 

on the gene relatedness and evolutionary history shared among them. From the drought 

genes comparison, it appears that only foxtail millet is very close to the pearl millet. 

Though the millets might have diverged in varying degrees from each other, similarities 

in their drought gene structure were conserved to a significant extent, which was proved 

by the motif similarities. The conserved positioning of similar motifs in the N or C termi-

nal of a gene among different millets states that gene families were synchronous. 

The domain is an evolutionarily conserved unit in protein, a combination of motifs 

gives rise to a particular functional domain in the protein. Twenty-seven conserved do-

mains were observed in the protein sequence set related to drought. The abundant ones 

were ABA-related protein domains. ATPase associated with various cellular activities 

(AAA) protein is an important regulator in diverse cellular activities. One of the protein 

homologs SKD1, which encodes AAA in Zea mays, was identified to be involved in salt or 

drought stress tolerance [69]. Annexins, an ANX domain-containing protein, is reported 

to play an important role in plant stress responses. In Arabidopsis, AnnAt1 was up-regu-

lated in stress-induced leaves and over-expression of AnnAt1 imparted drought tolerance 

in the plant [70]. Plant Ca2+ATPases is an important domain, expressed during heat, 

drought, and abiotic stresses, and the interaction of genes with other developmental fac-

tors was studied in Triticum aestivum. Ca2+ATPases genes consist of two distinct Auto-

inhibited Calcium ATpase (ACAs) and Endoplasmic reticulum Calcium ATpase (ECAs) 

groups that pump calcium outside the cytoplasm during homeostasis [71]. Caseinolytic 

Protease B (CLPB) proteins, a high molecular weight chaperon, are a part of the HSP 100 

family. The protein has a two-tiered hexamer ring connected with coiled–coiled linkers. 

CLPB was also classified as a member of the AAA (ATPases Associated with diverse cellular 
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Activities), ATPase superfamily. CLBP in Arabidopsis thaliana plays an important role in 

plant survival, while ortholog in tomato was known to be important for heat acclimation 

[72]. 

Apetala2/Ethylene responsive factor (AP2/ERF) family of TFs exhibit as a key regulator 

in plant response to stress by activating ABA and Ethylene (ET) and independent stress-

responsive genes [73]. In Arabidopsis, different MYB TFs were characterized for their 

drought responses [74]. The MYB TF is characterized by the presence of the MYB domain, 

classified based on repeated sequences containing 52 amino acid residues, and forms an 

alpha-helix, which is involved in DNA binding [75]. DREB (dehydration-responsive element 

binding) functions by binding with the DRE/CRT cis-elements in the promoter region [76]. 

The function of DREB was reported to be regulated highly in drought conditions through 

the expression of stress-induced genes, mostly in an ABA-independent manner [77], [26]. 

Among all the TFs involved in the life process of plants, WRKY is a very important one, 

playing a role in physiological processes such as growth, metabolism, and response to 

various stresses. Over-expression of WRKY increased the drought tolerance in Medicago 

truncatula [78], 

The bHLH proteins are the conserved family of TF that are involved in plants to cope 

with drought stress through stomatal development, root hair formation, and hormone 

metabolism [79]. The G-protein-coupled receptor proteins (GPCR) are observed as the largest 

and most diverse family of membrane proteins that enhance drought tolerance in trans-

genic plants by promoting root growth and induction of ROS-scavenging enzymes [80]. 

GPCR proteins are mainly structurally similar but differ in their receptor sites, and one 

common feature is the presence of 7-TM helices [81]. In Arabidopsis thaliana, two members 

of the GPCR family were found, such as GTG_1 and GTG_2, to be novel types of GPC-

GTPases, which function as abscisic acid (ABA) receptors [82] and regulate drought toler-

ance. 

KAT protein is involved in the potassium channel, which is inevitable for plant de-

velopment and growth. Seventy-one K+ transporter proteins were identified in Arabidopsis 

thaliana and two inward rectifying channels AKT1 and KAT1 were identified as related to 

their behavior under stress [83,84]. 

4.4. Phylogenetic Relationship among Drought-Related Genes 

Phylogenetic analysis revealed the evolutionary history of genes and species. The 

genes belonging to MYB, WRKY, DREB, NAC, FAR, HSFA1b, bZIP, and ADAP were 

mostly bifurcated into two groups. Usually, similar functions were performed by the 

genes which have close evolutionary relations [42]. (A close relationship among the TFs 

and ion, osmolytes genes indicated their synergistic operation in plants under drought 

conditions. Same gene families have multiple functions which regulate different mecha-

nisms to improve drought tolerance in pearl millet as well as in other species. Genes re-

lated to hormone signaling such as NCED, AAO, and CYP70 were related to signal trans-

duction genes of SRK2, CML, AB2, and CDPK. The clustering of one group of the gene 

(such as TFs) with different functional genes indicated the interaction of the genes in mo-

lecular or biological processes. Mixed clustering of genes based on their sequence homol-

ogy and paralogy correlates with the function of the gene[85]. During the evolutionary 

period, among the multigene families, the structure of the genes was commonly diversi-

fied, which facilitates the adoption of new functions according to the changing environ-

ment [86]. Closely related ortholog genes bZIP and PIP were observed in the same sub-

group, suggesting that ancestral genes existed before the divergence. 

4.5. Expression Analysis of Genes under Drought Condition 

In our study, by exposing 48 pearl millet inbreds to drought stress, the differential 

expression of 74 genes distributed in eight functional groups was studied. Among the 

genotypes studied, ICMR 100152, ICMR 100544, ICMB 03999, and ICMB 100229 showed 
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the maximum number of up-regulation in 69, 63, 61, and 61 genes, respectively. ICMR 

101011, ICMB 100673, and ICMB 100270 showed the highest number of down-regulation 

in 51, 48, and 45 genes, respectively. Genes PYL9/RCAR1, CPK23, and OST1/SRK2E had 

maximum positive expression in 41, 40, and 38 genotypes, respectively, while genes 

MRP4, AAO3, AVP1, and OSMSR2 genes were highly negatively expressed in more than 

21 genotypes (Table 1). 

Depending on the participation in various pathways genes are mainly divided into 

two categories ABA-dependent and ABA-independent [8]. Regulatory proteins, such as 

TFs, protein kinases, and ABA biosynthesis, are in one group and functional proteins such 

as water and ion channel, detoxification, enzymes, and proteins involved in osmolyte bi-

osynthesis are in the second group [87]. 

Plants deal with drought by activating complex signaling networks that produce 

physiological responses. Signal transduction in ABA-dependent pathways increases with 

ABA concentration, which is sensed by receptors like GTG1, GTG2, and PYR/PYL. Once 

ABA binds to the ABI protein, the phosphate activity gets blocked by auto-phosphoryla-

tion and activation of OST1, a serine-threonine kinase in open stomata. OST1 and CDPK 

activate the ABA-responsive element-binding proteins (ABFs/AREBPs) and SLAC, respec-

tively, under stress conditions [88]. GO annotation indicated that almost 57% of genes 

were involved in drought-related responses, of which ABA catabolic process, protein ser-

ine/threonine phosphatase complex, inositol 3-alpha-galactosyltransferase activity, and 

GTPase-binding activity were highly enriched. In our study, GTG2 was up-regulated five-

fold in ICMP 100443. GTG1/GTG2 is the ABA-binding receptor protein that plays a crucial 

role in the signaling mechanism [89]. BGLU in rice is localized in chloroplast and affects 

the cellular ABA pools in response to drought stress [90]. AtBG1 was up-regulated in 

ICMB 100252 and slightly down-regulated in the ICMR 100045. We found CYP707A gene 

was highly up-regulated in ICMB 00111, ICMB-15222, ICMB-100443, and ICMR-100045, 

which emphasized the CYP707A involvement in ABA signaling, dehydration, and rehy-

dration condition [91]. 

NCED was up-regulated in the ABA biosynthesis pathway, which acts as a rate-lim-

iting factor for ABA [92,93]. Drought stress treatment in maize, tomato, bean, Arabidopsis, 

cowpea, and avocado showed high expression of NCED [94]. ICMR 100948 belonging to 

the very-early maturity group showed a higher expression level for the NCED in pearl 

millet. 

Early-maturing genotype ICMR 100229 had a higher expression of WRKY45. On ex-

posure to drought and ABA treatment, up-regulation of TaWRKY1 was observed in to-

bacco, resulting in drought tolerance via stomatal closure and altered osmotic adjustment 

to accumulate higher biomass [95]. TFs FAR1, SNAC1, MYB60, AREB1, and ADAP were 

highly up-regulated in ICMR 100045, ICMR 100544, ICMB 100638, ICMR 100229, and 

ICMB 03999, respectively. AtMYB60 was characterized for its role in stomatal movements, 

as well as in lateral root growth in Arabidopsis. AtMYB60 expression in roots was in-

duced by auxin, and the over-expression resulted in increased water uptake during 

drought stress [96]. In rice, over-expression of SNAC3, a stress-related TF, increased the 

heat tolerance by decreasing the H2O2 and MDA content in leaves, lowering ion leakage, 

and inducing many ROS-associated genes which enhanced the cell membrane stability 

and redox homeostasis. It also enhanced the drought tolerance by reducing the water loss 

and is involved in osmotic adjustment [97]. A constant positive regulation was observed 

for SNAC TF in many genotypes under drought stress, of which ICMR 100544 had a higher 

expression. Under drought stress, a high-level accumulation of SNAC1 was observed in 

guard cells in rice. Its over-expression resulted in reduced transpiration loss due to sto-

matal closure [98]. 
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Table 1. Important drought genes and their characteristics under various functional groups. 

Group Gene  Genotype Maturity  
Treatment 

Function 
Control Drought 

ABA signaling 

GTG2 
ICMP 

100443 
E 3.46 88.67 GPCR-type G protein; ABA-induced stomatal closure 

AtBG1 
ICMB 

100252 
L −6 88.05 

beta-glucosidase; high level of ABA accumulation; stomatal 

movement 

PYL9/RCAR1 
ICMB 

100619 
L −4.31 84.63 

ABA receptor; drought tolerance through reduced transpirational 

water loss and by inducing summer dormancy-like responses 

Hormone 

signaling 

CYP707A3 
ICMB 

00111 
VE −3.2 88.74 

Involvement in ABA level regulation; stomatal responses, 

transpiration control 

NCED 
ICMR 

100948 
VE 2.34 84.49 

ABA biosynthesis enzyme; overexpression results in increased 

accumulation of ABA; reduced transpiration rate 

Ion and 

osmotic 

homeostasis 

ATHB6 
ICMB 

03999 
VE 2.74 84.08 

Involvement in seedling development during drought and osmotic 

stress. 

OST1/SRK2E 
ICMB 

15222 
VE −6.77 81.34 

Kinase-like (open stomata 1), ABA-mediated stomatal aperture 

control, inhibition of ROS production 

OST2 
ICMB 

100619 
L 4.56 88.05 

Plasma membrane proton ATPase; involved in ABA-dependent 

pathway controlling stomatal closure 

ABO1/ELO1 
ICMB 

100252 
L −10.01 86.77 

Multifunctional complex with roles in transcription elongation; 

Mediates ABA-induced stomatal closure 

PIP1;4 
ICMR 

100544 
L 2.77 85.88 

Plasma membrane intrinsic proteins; over-expression under drought 

causing reduced transpiration rate in leaves of P. vulgaris plant 

TF-mediated 

ADAP 
ICMB 

03999 
VE −6.08 88.3 

Positive regulator of ABA; Regulation of seedling growth during 

water stress 

HSFA1b 
ICMB 

00111 
VE 11.91 88.09 

Heat shock proteins; protection of cellular proteins under drought 

stress 

AREB1 
ICMR 

100229 
E −2.89 87.36 

Modulates endogenous ABA level and ROS level in transgenic 

Arabidopsis  

MYB60 
ICMB 

100638 
L −10.6 89.57 

Drought tolerance via an increase in lateral root growth facilitating 

more water uptake, controlling stomatal movement 

FAR1 
ICMR 

100045 
L −3.43 89.56 Over-expression under drought; ROS scavenging 

SNAC1 
ICMR 

100544 
L −3.01 89.02 

Accumulation in guard cells; Over-expression reduced 

transpirational losses due to increased stomatal closure 

AlSAP 
ICMB 

100638 
L −5.93 85.75 

Leaf rolling, improved tillering, grain yield under drought resulting 

in accumulation of green biomass during vegetative growth  

Molecular 

adaptation 

OsWRKY45 
ICMR 

100229 
E 2.26 87.8 

Induced by ABA; positively regulated under drought; involvement 

in signaling pathway; stomatal closure 

FSPD1 
ICMP 

100443 
E −2.98 84.98 

Spermidine synthetase gene; overexpression of spermine in roots 

and leaves resulting in drought tolerance 

OsPIP2-2 
ICMB 

100619 
L 2.6 85.2 Aquaporin; osmoprotectant involved in drought tolerance 

Physiological 

adaptation 

KAT2 
ICMP 

100443 
E 2.52 88.54 

KAT2 over-expressing transgenic lines showed ABA-induced 

stomatal closure; inhibition of stomatal opening 

HAB1 
ICMB 

100638 
L −16.08 84.05 

Accumulation of ABA under stress; stomatal closure to prevent 

water loss 

EDT1/HDG11 
ICMB 

100638 
L −5.94 87.8 

Enhanced tolerance to drought in transgenic cotton and poplar; 

improved root system, accumulation of proline, soluble sugars, 

antioxidant enzymes in cotton, and stomatal traits. 

Signal 

transduction 

RGS1 
ICMR 

100999 
M 9.74 86.87 

Increase in root growth, regulation of stomatal traits such as closure 

of stomata, low stomatal density, and small stomatal aperture cause 

tolerance to drought.  

SRK2C 
ICMB 

100252 
L −6.74 84.53 

Osmotic stress-activated protein kinase; controlling stomatal 

aperture 

Detoxification 

TPS1 
ICMR 

100948 
VE −5.14 87.58 

Over-expression under drought; causing accumulation of trehalose, 

decreased stomatal density, and reduced transpiration rate in maize 

ERD1 
ICMB 

100252 
L −3.04 82.26 

Chloroplast-targeted Clp protease; functions with NAC and ZFHD1 

to improve drought tolerance. 

GolS2 
ICMR 

100544 
L 2.07 78.98 

Drought tolerance via accumulation of galactinol and raffinose in 

crops, causing a reduced rate of transpiration from leaves. 
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P5CS1 
ICMB 

100619 
L −3.15 75.64 

ABA-mediated expression; role in the drought-induced 

accumulation of proline 

FAR1 is an important TF up-regulated in ICMR 100045, which led to the deactivation 

of cell death and decreased the accumulation of ROS under drought stress [99]. ADAP 

was up-regulated in ICMB 03999 and has a similar function to ARIA, which is a positive 

regulator of ABA response. ADAP interacts with other TFs such as bZIP and ABF2, regu-

lating the seedling growth [100]. HSPs have different regulatory patterns at the transcrip-

tional level. HSPs act as protectors of cellular proteins from damage under drought con-

ditions [101]. A study conducted in common bean has identified a set of 22 heat-respon-

sive candidate genes involved in the activation of heat-shock proteins (MED23, MED25, 

HSFB1, HSP40, and HSP20) related to thermostability in plants and heat-responsive sig-

naling pathways via abscisic acid and auxin [25]. HSFA1b was highly up-regulated in the 

very-early maturing genotype ICMB 00111. 

ICMP 100443 showed up-regulation of FSPD1 in pearl millet, which manages the 

levels of spermine in leaves and roots. Higher expression of FSPD1 was found to enhance 

the drought tolerance in sweet potatoes [102]. A1SAP expression level in ICMB 100638 

was high, which regulates the leaf-rolling under drought conditions and results in a 

higher accumulation of green biomass during vegetative growth, along with maintenance 

of productive tillering and grain filling [103]. ICMR 100999 showed higher regulation of 

RGS1, which changes the expression of many genes involved in ABA biosynthesis, lead-

ing to changing the stress responsiveness [104]. 

AtTPS1, a key gene in trehalose biosynthesis, was up-regulated in the very early ma-

turing genotype ICMR 100948. TPS1 in transgenic maize showed better responses to 

drought stress through an increased accumulation of trehalose, decreased stomatal den-

sity, and a reduced rate of transpiration [105]. ICMR 100229 had high up-regulation for 

ABA-responsive element-binding protein (AREB)/ABFs (ABRE binding factor) which was 

found to modulate the gene expression during ABA signaling under osmotic stress con-

ditions [106]. The over-expression of AREB1 from Arabidopsis showed drought tolerance 

in soybean [107]. Over-expression of wheat TF TaAREB3 has enhanced ABA sensitivity 

and drought tolerance in Arabidopsis [108]. The TF FAR involved in carotenoid biosyn-

thesis in shoots conferred drought tolerance by up-regulating in chickpea [109]. 

A complete microarray expression study in Arabidopsis revealed that Early responsive 

to dehydration stress 1 (ERD 1), which encodes Clp protease and functions with ZFHD1, 

and NAC improves the drought tolerance [110]. Evidence from our study explained that 

ERD1 was positively regulated in ICMB 100252. 

The functional proteins such as OST2, ABO1/ELO1, PIP1, ATHB6, SRK2, PEPCK, and 

DSM2 in the ion and osmolytes category were highly up-regulated in ICMB 10061, ICMB 

100252, ICMR 100544, ICMB 03999, ICMB 15222, ICMB 100649, and ICMB 100650, respec-

tively. ICMR 100544 has shown higher expression for PIP, and the activity was mostly 

responsive to kinases and transferases involving signal transduction, cellular processes, 

and localization of molecules. In Macrotyloma uniflorum, the expression of PIPs in shoot 

and root led to drought tolerance [111]. 

A high level of positive regulation of GolS2 was observed in ICMR 100544. The ex-

pression of genes involved in osmoprotectant biosynthesis changes in drought stress con-

ditions, particularly in the roots. Raffinose and galactinol are involved in tolerance to 

drought and high salinity stress. A study in Arabidopsis indicated that GolS1 was up-

regulated in shoot and GolS2 was up-regulated in root under drought [10]. A significant 

up-regulation of ATBH in ICMB 03999 has a role in the regulation of the cell division in 

developing organs under stress [112]. SnRK2 up-regulated in ICMB 100252 was also acti-

vated by osmotic stress in Arabidopsis in concert with up-regulation of DREB1A under 

drought stress [113]. The difference in the pattern of nucleotide variation among the 

DREB2 genes in wild and cultivated common beans has contributed to the variation in the 

level of tolerance to drought [26]. Ketoacyl-CoA thiolase (KAT), an important enzyme in 
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fatty acid degradation was highly regulated in ICMB 100443. The over-expression of KAT2 

in transgenic lines showed ABA-induced stomatal closure and inhibition of stomatal 

opening under drought conditions [114]. 

4.6. Interaction of Drought-Related Genes in PPI Network 

In plants, proteins work in a network to control the trait expression [115]. PPI is an 

important component to understand the gene regulation and mediation of most cellular 

processes [116]. The interactions among different genes are the salient source for estimat-

ing the diversity in the gene expression pattern [117]. Genes involved in many biological 

processes, such as cell cycle growth, development, and response to environmental 

stresses, are inter-connected based on their regulation. Major TFs, control the gene expres-

sion based on condition-specific responses [117]. The PPI network was constructed using 

74 drought-responsive genes belonging to different functional and regulatory classes. The 

network (Figure 8) demonstrated that a large proportion of genes identified in molecular 

adaptation and TFs were connected with other categories of genes, while genes residing 

in ABA signaling, hormone signaling, ion and osmolytes, and signal transduction catego-

ries were clustered together. ABI2 and P5CS1 were the two hub genes identified with the 

degree of 44 connectivity, interacting with all the major molecular adaptation factors, and 

ABA signaling proteins. According to the network, many proteins were identified as semi-

hubs, with a connectivity of 20 to 30. 

The clustering coefficient gave rise to the group of genes cross-talking with each other 

in response to related functions. ABA is a key regulator of seed maturation, germination, 

and adaptive responses to stress conditions in the environment. ABI1 and 2 are ABA-in-

sensitive genes that encode type 2c protein phosphate with redundant yet significant func-

tions. In Arabidopsis, ABI encodes a serine/threonine phosphate protein, which contrib-

utes to ABA signaling and regulates the ABA responsiveness [118]. The connectivity of 

different TFs such as DREB, AGB1, and MYC with ABI1 and ABI2 can infer the regulation 

of this gene under stress-induced conditions. Proline gets accumulated and functions as 

an osmo-regulator under drought stress as explained in sugarcane, where a significant 

amount of proline production was observed under drought [119]. 

Our network analysis highlighted the positive interaction of osmotic stress, drought, 

and cold stress on P5CS1 and the regulatory role of MYB2, ERF-1, and EIN3 TFs in wheat 

by an accumulation of proline [120]. It also identified ABRE and DREB, as two important 

nodes with 36 connections in the network, and both are cis-regulatory elements that func-

tion in ABA-dependent and ABA-independent manner with high expression in response 

to freezing, drought, and salt stresses in Arabidopsis thaliana [121,122]. TFs belong to 

ERF/AP1 family that bind to DRE/CRT elements and are termed as DREB [123]. In com-

mon bean, among the two DREB2 gene families, DREB2A has more significant molecular 

variations than DREB2B with respect to geographical origin [26]. Mostly ERD, NAC, MYC, 

and NCED TFs, and other genes such as OST, GolS, HAI, and PIP were interacting with 

DREB. MYC and MYB are the two TFs to bind cis-elements in the promoter sequence. 

Over-expression of MYC/MYB in transgenic plants resulted in improving the osmotic 

stress tolerance of the plants [124] Many MYB TFs were the hub-gene with degree 26 and 

were involved in a range of molecular and physiological processes including develop-

mental control, cell fate determination, stress responses, hormones, signal transduction, 

and pathogen defense. The interaction of the MYB with WRKY, PYLR, PSAG, OST, and 

NCED indicated the inter-relatedness among the TF. Around 65% of MYB genes expressed 

in rice (Oryza sativa) seedlings expressed differentially under drought stress [125]. Exper-

iments also found that 51% and 41% of MYB genes were up and down-regulated, respec-

tively in Arabidopsis under drought conditions [126]. 

OST1/SRK2E is an ABA-activated protein kinase that functions by controlling the sig-

nal transduction pathway of stomatal closure [127,128]. OST was associated with RCAR, 

OZS, RBOHF, SNRK, PYL, PCS, PIPA, PYR, and RBOHD protein families in the network. 

Arabidopsis and rice contain 10 members of the SNF1-related PKase family. The activation 
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of OST1 also depends on osmotic and drought stress [128]. Asr (ABA-stress response) is a 

family of genes involved in the ABA-dependent stress regulatory pathway. It was shown 

that the extent of nucleotide diversity in Asr1 and Asr2 genes in wild and cultivable com-

mon beans has depicted the adaptive selection of crops to cope with drought stress at 

varying levels [129]. 

In our study, CDPK was identified as one of the major hub-genes with 36 interactions, 

connecting with 27 protein families. During high-salt and extreme temperature condi-

tions, calcium concentration in the cytosol was rapidly changed [130]. CDPK (Ser/Thr pro-

tein kinases) plays an important role in relaying the calcium signatures into downstream 

effects. Over-expression of CDPK1 conferred tolerance to salinity and drought stress as 

reflected by the high percentage of seed germination, higher relative-water content, ex-

pression of stress-responsive genes, higher leaf chlorophyll content, increased photosyn-

thetic efficiency, and other photosynthetic parameters in Nicotiana tabacum [130]. 

Several studies reported that the NCED3 gene is a central enzyme in ABA biosynthe-

sis. We analyzed NCED, which was found in connection with 40 other proteins in the PPI 

network. These proteins belonged to different protein kinases, detoxification factors, hor-

mone signaling, and TFs. Over-expression of NCED3 in Arabidopsis reduced the transpi-

ration rate through increased ABA levels, which led to improved drought tolerance [131]. 

The involvement of NCED in drought response was found in avocado [132], common 

bean,[92] tomato (Solanum lycopersicum) [133], and turmeric (Curcuma longa)   [134]. The 

network showed a maximum number of intergroup interactions between molecular ad-

aptation genes. The grouping of genes suggested that they could be involved in similar 

functions under drought stress in pearl millet. 

The molecular physiology of drought tolerance in pearl millet can be perceived in 

two ways: genes that can provide overall plasticity to the plant system and genes that can 

work in specific traits and stages to impart tolerance. More experiments are needed to 

understand which one or combinations of perceptions would work under different pro-

duction ecologies without comprising the grain and fodder yield. Another notable point 

is that heat stress is often accompanied by drought stress during critical stages such as 

seedling emergence, flowering, and post-flowering. It is also evident from several studies 

that some of the stress-tolerant pathways are common to both drought and heat stresses 

while other pathways are independent of each other. Identification of common traits or 

genes across stresses would help in developing robust genotypes. For example, leaf hair-

iness reduces leaf surface temperature as well as transpiration rate. Moreover, hairiness 

increases light reflectance, which minimizes the water loss under high temperatures. It 

also reduces radiation stress by increasing boundary layer resistance to water vapor 

movement away from the leaf surface. Other traits such as a better root system to mine 

water from shallow and deep soil, high-chlorophyll content to delay the senescence, and 

physiological traits such as potential evapotranspiration [135] to save water, among other 

effects, can be considered for developing better ideotypes for drought-prone ecologies. 

It is also observed that plant growth and performance at later growth stages are pos-

itively associated with better seedling growth and its tolerance to drought stress. In most 

cases, seedling level tolerance could be translated to adult plant tolerance. The selection 

of seedlings having good tolerance to water stress is important while looking for tolerance 

at later stages since most of the functional mechanisms are in-built and will be constitu-

tively expressed throughout the growth stages of the crop. Considering these assump-

tions, we have structurally and functionally characterized drought-responsive genes in 

pearl millet and other millet crops. The validated genes that we have identified can be 

used in a gene-editing experiment to augment the value of specific trait values under 

drought. Gene-specific SNPs can be identified from the genes, which will serve as im-

portant genomic resources in marker-assisted back-crossing and recurrent selection ap-

proaches [136] to develop new drought-tolerant lines. Through donors from wild species 

or landraces, drought tolerance can be introduced into cultivated elite lines [137,138]. Do-

nor parents having the drought-tolerant SNPs can be used as founder lines in genomic 
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prediction schemes [139] to develop drought-tolerant lines. Through the genomic selec-

tion, high-value SNPs will be accumulated in the lines and the superior genotypes with 

better breeding value will be used for the development of drought-tolerant varieties. 

On the other hand, abiotic stresses, especially drought tolerance, is a complex quan-

titative trait where it is governed by several genes operating in different pathways. It is 

imperative to know that additional experiments are needed to mine stage-specific and 

trait-specific genes and SNPs to develop robust ideotypes that can produce higher grain 

yield across plant growth stages and ecologies under drought and combination abiotic 

stresses. 
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