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Abstract
Soil sampling, collection, and analysis are a costly and labor-intensive activity that cannot cover the entire farmlands;

hence, it was conceived to use high-speed open-source platforms like Google Earth Engine in this research to estimate soil

characteristics remotely using high-resolution open-source satellite data. The objective of this research was to estimate soil

pH from Sentinel-1, Sentinel-2, and Landsat-8 satellite-derived indices; data from Sentinel-1, Sentinel-2, and Landsat-8

satellite missions were used to generate indices and as proxies in a statistical model to estimate soil pH. Step-wise multiple

regression (SWMR), artificial neural networks (ANN), and random forest (RF) regression were used to develop predictive

models for soil pH, SWMR, ANN, and RF regression models. The SWMR greedy method of variable selection was used to

select the appropriate independent variables that were highly correlated with soil pH. Variables that were retained in the

SWMR are B2, B11, Brightness index, Salinity index 2, Salinity index 5 of Sentinel-2 data; VH/VV index of Sentinel 1 and

TIR1 (thermal infrared band1) Landsat-8 with p-value\ 0.05. Among the four statistical models developed, the class-wise

RF model performed better than other models with a cumulative correlation coefficient of 0.87 and RMSE of 0.35. The

better performance of class-wise RF models can be attributed to different spectral characteristics of different soil pH

groups. More than 70% of the soils in Angul and Balangir districts are acidic soils, and therefore, the training of the dataset

was affected by that leading to misclassification of neutral and alkaline soils hindering the performance of single class

models. Our results showed that the spectral bands and indices can be used as proxies to soil pH with individual classes of

acidic, neutral, and alkaline soils. This study has shown the potential in using big data analytics to predict soil pH leading to

the accurate mapping of soils and help in decision support.
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Introduction

Soil pH is defined as the negative logarithm of the

hydrogen ion concentration. Soil pH is an important indi-

cator of soil health that affects crop yields, crop suitability,

plant nutrient availability, and soil micro-organism activ-

ity. Soil pH is an excellent indicator of a soil’s suitability

for plant growth. For most crops, soil pH a range of 6–7.5

is the best. When implementing different precision agri-

culture practices, site-specific management of soil pH is

one of the most promising strategies in fields with sub-

stantial variability in soil pH. Soil pH influences the

effectiveness and use efficiency of fertilizers (von Tucher

et al., 2018; Wang et al., 2018), herbicides (Buerge et al.,

2019; Liu et al., 2018) and insecticides, and solubility of

heavy metals depend on pH (Kah et al., 2007; Spadotto &

Hornsby, 2003). Therefore, it is quite necessary to measure

soil pH to make effective decisions regarding sowing,

fertilization, and other crop management practices.

Currently, a variety of techniques are being used to

investigate the soil pH status, including traditional soil

sampling methods and other novel methods with soil sen-

sors. In-situ measurements can directly obtain steady and

accurate soil pH but cannot represent a large area spatially.

Furthermore, these ground measurements consume time
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and labor, and it is expensive to maintain both the quality

and dense network of the observations (Chang & Islam,

2000; Elshorbagy & Parasuraman, 2008). Among these

novel methods, digital soil mapping using remote sensing

data has emerged as a promising and reliable new tech-

nique (Eisele et al., 2015; McBratney et al., 2003).

Remote sensing (RS) is well established as a cost-ef-

fective, rapid, and reproducible means of providing quan-

titative and spatially distributed data on soil properties. The

increasing power of RS technologies (e.g., global posi-

tioning systems, airborne and satellite platforms, unman-

ned aerial vehicles, and ground-based sensors), geographic

information systems (GIS), and spatial data models (e.g.,

DEM-Digital Elevation Model) is offering new ways for-

ward in soil science (Eli-Chukwu, 2019; Grishin &

Timirgaleeva, 2020; Rodrigo-Comino et al., 2020).

Digital soil mapping is being employed to assess the

spatial distribution of soil properties in agricultural areas

and other land resources (Forkuor et al., 2017; Minasny

et al., 2013; Taghizadeh-Mehrjardi et al., 2016). Recently,

in several studies, soil properties such as soil pH (Pahla-

van-Rad & Akbarimoghaddam, 2018), soil organic matter

(Byrne & Yang, 2016), electrical conductivity (Ranjbar &

Jalali, 2016), and phosphorus (Wilson et al., 2016) have

been predicted and mapped.

SoilGrids 2.0 (De Sousa et al., 2020; Hengl et al., 2017)

provides global estimates of some basic soil properties

such as organic carbon, bulk density, cation exchange

capacity (CEC), pH, soil texture fractions, and coarse

fragments at seven standard depths (0 cm, 5 cm, 15 cm,

30 cm, 60 cm, 100 cm, and 200 cm) with 250 m resolu-

tion. Estimates are made from the previously collected soil

data which is used for training the models and with 158

covariates (primarily derived from MODIS land products,

SRTM DEM derivatives, climatic images and global

landform and lithology maps), which were used to fit an

ensemble of machine learning methods—random forest

and gradient boosting and/or multinomial logistic regres-

sion. However, these estimates are coarser in resolution

and cannot explain the within field variability. The avail-

ability of better resolution satellite images (10–30 m res-

olution) helps us to improve the accuracy of soil

information estimated from the remotely sensed data.

The Department of Agriculture, Government of Odisha

and the International Crops Research Institute for the Semi-

Arid Tropics (ICRISAT) are implementing a develop-

mental project initiative called ‘‘Bhoochetana’’(Wani et al.,

2016). Under this project soil analysis, nutrient manage-

ment recommendations and treatment are being shared

with farmers. This will help increase productivity through

improved practices. To fulfill this objective, ICRISAT has

collected and analyzed soil samples from all the villages of

Angul and Balangir districts of Odisha state. In this

research, we have used this ground truth data to test whe-

ther the satellite-derived indices can act as proxies to

predict soil pH through models.

Materials and Methods

The Study Region

The District of Angul situated at the heart of Odisha. The

district lies within the geographical limits of 20� 420 08.1500
N latitude and 83� 280 49.4300 E longitude at an average

altitude of 142 m (Fig. 1). The total geographical area of

the district is 6790 km2; total cultivated area of 3460 km2

and a forest area of 1540 km2. Out of the total cultivated

area, only 16% of are is under irrigation and the rest is

rainfed. Soils that are predominant in the district are red

and black soils. The area receives an annual rainfall of

1290 mm, and the crops that are majorly grown are rice

and mung bean occupying 80% of total cultivated area.

Balangir district is one of the less developed districts of

the Odisha state with severe agrarian crisis (https://rcdcin

dia.org/places/regional-offices/bolangir/) (Fig. 1). The dis-

trict is located within the geographic limits of 208 09’ N,
218 0500 N latitudes and 828 4100 E to 838 42’ E longitudes.

The percent of cultivated area is more than 50% with rice,

mung bean, and cotton as major crops. Out of the total

cultivated area of 346,000 ha, only 53,920 ha is irrigated

which accounts to 15% of total cultivated area. Soils of

Balangir are predominantly mixed red and yellow soils

followed by red and black soils.

Soil Data Collection and Analysis

In May–June 2018, the ICRISAT team collected and ana-

lyzed 2244 soil samples from the districts of Angul (766)

and Balangir (1478), Odisha under the Bhoochetana project

(Wani et al., 2016). Soil pH was analyzed in the soil lab-

oratory using standard operating methods. Data needed to

be processed before performing any analysis. The data with

incorrect lat/long locations were omitted, and after that, the

entire data were corrected for outliers using the nearest

neighbor method. The data with distance[ 0.01 (mean &
median) from the nearest cluster were omitted. Finally, the

number of soil datasets that remained are 2073 (634 for

Angul and 1438 for Balangir districts). This soil data is

partitioned into training, validation, and test datasets for

model building. The details of the dataset are given in

Table 1.
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Satellite Data

Open-source satellite data Sentinel-1(Potin et al., 2012;

Torres et al., 2012), Sentinel-2 (Drusch et al., 2012; Gascon

et al., 2014), and Landsat-8 (Loveland & Irons, 2016; Roy

et al., 2014) data have been used to estimate soil pH. The

Sentinel-1 mission provides data from a dual-polarization

C-band Synthetic Aperture Radar (SAR) instrument at

5.405 GHz (C band) which consists of ground range

detected (GRD) scenes. These images are processed using

the Sentinel-1 Toolbox to generate a calibrated, ortho-

rectified products. Sentinel-1 image of 15th June, 2018

along with its two bands VV & VH have been used in

developing soil pH model (https://code.earthengine.google.

com/2649fcc9747730a8e234d126b012af96). The Sentinel-

2 mission carries the multispectral instrument which mea-

sures the reflected solar spectral radiances in 13 spectral

bands ranging from the visible to the shortwave infrared

(SWIR) bands with 5-day revisit time and a spatial reso-

lution of 10–60 m over land and coastal areas (Drusch

et al., 2012). Out of the 13 spectral bands, only 10 spectral

bands in different spectral regions namely Blue (B2),

Green (B3), Red (B4), Red Edge (B5, B6 & B7), NIR (B8

& B8A), SWIR(B11 &B12) were relevant to this study.

The Sentinel-2 L2 data are obtained by rectifying the L1

images using sen2cor model, and these datasets are pro-

vided through GEE repository. However, we have very

limited cloud-free images and also the soil should be free

from the crop. To select a cloud-free image with the pos-

sible nearest date of soil sample collection, the Sentinel-2

image of 17th June, 2018 covered by 4 tiles of Sentinel-2

image were used in this study (https://code.earthengine.

google.com/8ab3197dac35ef60e7a49fc969594329). Simi-

larly, the land surface temperature retrieved from the

brightness temperature of thermal bands 10 & 11 of

Landsat-8 (Roy et al., 2014) using the algorithm given by

(Parastatidis et al., 2017) which uses different emissivity

sources (https://code.earthengine.google.com/5964230990

8906db1bb599fce7e1cb50).

Soil and vegetation indices (Table 2) were generated

using satellite data with the aid of Google Earth Engine

(GEE) (Gorelick, 2013; Gorelick et al., 2017) which is a

Table 1 Partitioning of soil data

for calibration, validation and

testing of soil pH prediction

models

Dataset Percentage No.of datasets

Training 60% of Balangir data 834

Validation 20% of Balangir data 285

Test 20% of Balangir data ? 100% Angul data 279 ? 634

Fig.1 a Geographical map of Odisha state with Angul district (green) and Balangir district (pink). b Land cover classified Sentinel 2 image of

Angul c Land cover classified Sentinel 2 image of Angul
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freely available cloud-based platform for processing

geospatial datasets. Using GEE JavaScript API, various

indices were estimated from Sentinel-1, Sentinel-2, and

Landsat-8 data and were extracted for each point of soil

sampling. Backscatter of Sentinel-1 mission, Reflectance

of 10 spectral bands combined with soil indices developed

from the Sentinel-2 spectral bands, and LST retrieved from

thermal bands of Landsat-8 were used as proxies to soil pH.

The list of the soil indices/ vegetation indices used with the

reference and formula are presented in Table 2.

Developing Statistical Models for Predicting Soil
pH

To use the satellite-derived soil indices as proxies to pH, a

proper fitting model is required. Collinearity exists between

spectral bands and soil indices so to eliminate collinearity

variance inflation factor (VIF) is employed and the vari-

ables with VIF value less than 4 are selected and in the

third step in SWMR through forward and backward

selection the variables have been selected to develop the

soil pH estimation models. Generally, the linear and non-

linear regression methods are used to develop a model with

predictors that have probability (p\ 0.05). Deep Learning

and Machine Learning techniques such as ANN and Ran-

dom forest, respectively, are also used to develop a model

to predict pH from the soil indices developed from remo-

tely sensed data. For the model, building the predictor

being pH while the satellite-derived band reflectance and

indices are taken as predictands.

The models developed in this study are:

Step-Wise Multiple Regression Model (SWMR)

SWMR is a combination of the forward and backward

selection techniques. SWMR is a modification of the for-

ward selection so that after each step in which a variable

was added, all candidate variables in the model are checked

to see if their significance has been reduced below the

specified tolerance level. If a non-significant variable is

found, it is removed from the model. Step-wise regression

requires two significance levels: one for adding variables

and one for removing variables (Breaux, 1967). In this

study for both forward and backward regression, we have

used a significant probability level of 0.05. The variables or

the indices have been selected in three step process: in the

first step Pearson’s correlation of 0.2 was used to select

variables; in the second step, the VIF with\ 5 were used

to retain the.

ANN Regression (ANN)

Neural networks belong to deep learning methods. ANN is

a complicated form of nonlinear regression designed to be

able to model complex structures in the data. ANN studies

the relationship of the independent variable with each of

Table 2 Indices developed from Sentinel-1, Sentinel-2 and Landsat-8 satellite data

Index Acronym Formula Reference

Advanced vegetation index AVI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B4þ 1ð Þ � 256� B3ð Þ � B4� B3ð Þ3
p

(Banerjee et al., 2014)

Normalized differential vegetation index NDVI B8�B4
B8þB4

(Tucker et al., 1979)

Normalized differential salinity index NDSI B4�B8
B4þB8

(Khan et al., 2001)

Normalized moisture stress index 1 NMSI1 B8�B11
B8þB11

(Gao, 1996)

Red edged inflection point REIP
700þ ð40 �

B4þB7
2ð Þ�B5

B6�B5

(Vogelmann et al., 1993)

Advanced vegetation index AVI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B8 � 1� B4ð Þ � B8� B4ð Þ3
p

(Rikimaru et al., 2002)

Bare soil index BSI B11þB4ð Þ� B8þB2ð Þ
B11þB4ð Þþ B8þB2ð Þ

(Li & Chen, 2014)

Brightness index BI B6�B4ð Þ� B5�B2ð Þ
B6�B4ð Þþ B5�B2ð Þ � 100þ 100 (Todd & Hoffer, 1998)

Salinity index 1 SI1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � B42
p

(Douaoui et al., 2006)

Salinity index 2 SI2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B3 � B42
p

Salinity index 3 SI3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B32 þ B42 þ B822
p

Salinity index 4 SI4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B32 þ B422
p

Salinity index 5 SI5 B2
B4

Salinity index 6 SI6 B2�B4
B2þB4

Soil Salinity and sodicity index SSSI B11� B12 (Bannari et al., 2016)
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the dependent variables and develops hidden layers of

various regression models and ultimately which are sum-

med up to finally predict the predictor. These hidden layers

perform various types of mathematical computation on the

input data and recognize the patterns that are part of. This

process is quite complex but we have built-in algorithms

for these models which eases the analysis (Kartalopoulos &

Kartakapoulos, 1997). ANN model was developed using

Jmp 14.0 statistical software (J. Li & Mocko, 2020), which

develops hidden layers of the model using three transfor-

mation functions (TanH, Linear, and Gaussian) and a

learning rate of 0.1. ANN model developed in the study

had nine hidden nodes with three linear, three tangential,

and three Gaussian transformations.

Random Forest (RF)

A Random Forest (RF) is an ensemble technique capable of

performing both regression and classification tasks with the

use of multiple decision trees and a technique called

Bootstrap Aggregation, commonly known as bagging. The

basic idea behind this is to combine multiple decision trees

in determining the final output rather than relying on

individual decision trees (Breitenbach et al., 2003). The

random forest developed in the study has 100 trees with

boot strap rate of 1 and with minimum split of 5 trees per

sample and maximum split of 500 trees per sample.

Class-wise RF

Different soil types with different soil pH values will

interact differently with the electromagnetic spectrum.

Therefore, individual RF models for every soil pH class

were developed using Balangir data and tested for Angul

soil data. Random forest models for each soil pH class RF-

Acidic, RF-Alkaline, and RF-Neutral were developed and

integrated into a single-model Class-wise RF to be able to

compare it with SWMR, ANN, and RF models. The class-

wise RF classified every single point into the probable class

by using K-means clustering method within the algorithm.

First, we compare the integrated Class-wise RF model

with SWMR, ANN, and RF, and later we tried to separately

study each model (RF-Acidic, RF-Alkaline, and RF-Neu-

tral) in detail.

Pearson’s r of the correlation, coefficient of determina-

tion (R2) (Ozer, 1985) and root square mean error (RMSE)

(Fichter, 1984) were used as measures of model perfor-

mance and to compare between models. The effect sum-

mary of each variable in the models was described in terms

of contribution percentage. All statistical analyses were

carried out using JMP � software version 14.0 (SAS

Institute Inc., USA). Coefficient of determination (R2)

(Ozer, 1985) and root square mean error (RMSE) (Fichter,

1984) were used as measures of model performance and to

compare between models. The effect summary of each

variable in the models was described in terms of contri-

bution percentage. All statistical analyses were carried out

using JMP � software version 14.0 (SAS Institute Inc.,

USA) (Sall et al., 2017). Accuracy percentage was calcu-

lated by estimating the error between the measured soil pH

and the estimated soil pH. Cohen’s Kappa (Cohen, 1960)

was calculated to see how accurately soil pH estimation

models were able to estimate soil pH.

Results

General Statistics of Soil pH in Balangir District

The soil was collected from 8 blocks and 93 villages of

Angul district; 14 blocks and 170 villages of Balangir

district, from each village at least five soil samples, were

collected. From the frequency distribution graph of soil pH

of Angul, it is evident that more than 75% of soils are

acidic and less than 2% soils are alkaline (Fig. 2).

Almost 60% of soils of Balangir are acidic, 30% soils

are neutral, and only 10% soils are alkaline (Fig. 2). The

summary statistics of the soil pH data collected from Angul

and Balangir districts is given in Table 3 from which it is

evident that the soil pH ranged between 4.06 and 8.16 for

Balangir district and 4.0 and 7.8 for Angul districts. The

coefficient of variation is 17% and 16% for Angul and

Balangir districts, respectively. From skewness, the

Balangir soil pH data is left skewed whereas Angul soil pH

data is right skewed. From the kurtosis, it is seen that both

Angul and Balangir soil pH data are platykurtic (Table 3).

A simple Pearson’s correlation was calculated between soil

pH and spectral bands and indices; the reflectance of B11,

B12 and B5 has shown a higher correlation of - 0.46,

- 0.45 and - 0.44, respectively, with the soil pH in

comparison with other spectral bands. Similarly, Salinity

index-6 (SI6) has shown a higher correlation of 0.39 with

the soil pH (Fig. 3a). Very familiar vegetation indices

NDVI and NMSI were 0.2 and 0.3, respectively. The

Sentinel-2 spectral signatures of acidic, alkaline and neu-

tral soils are shown in Fig. 3b which clearly indicates that

the soils with different pH can be identified with B4, B5

and B11 and B12 spectral bands.

Soil pH Prediction Models

Among the ANN and RF models, the class-wise RF model

was found to perform better than the other three models

with 0.97, 0.88 and 0.77 coefficient of correlation (r) for

calibration, validation and test datasets respectively (Table

4). The class-wise RF models performed far better than
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SWMR, ANN and RF models. R2 for class-wise RF models

is 0.94, 0.87 and 0.54 for calibration, validation and test

datasets, respectively (Fig. 4). Even RMSE is quite lower

than other models with 0.23, 0.48 and 0.63 for calibration,

validation and test datasets, respectively (Table 4). The

other three models SWMR, ANN and RF performed almost

similarly; however, the RF model performed slightly better

than SWMR and ANN with 0.89, 0.57 and 0.46 Pearson’s

correlation coefficient for calibration, validation and test

datasets, respectively (Table 4). R2 and RMSE are the

measures that indicate the higher model performance of

class-wise RF models, Cohen’s kappa and accuracy per-

centage were also estimated to test the ability of models to

classify.

Sentinel-2, Sentinel-1 and Landsat-8 data and their

derived spectral indices were used to develop soil pH,

prediction models. Three different regression models

(SWMR. ANN, RF and Class-wise RF models) were

developed to identify the best method to predict soil pH

from satellite data. Step-wise multiple linear regression

(SWMR) model was built to relate soil pH with remote

sensing variables and it yielded an R2 of 0.26, 0.20 and

0.17 for calibration, validation and test datasets, respec-

tively (Figs. 4, 5 and 6). The multi-collinear variables are

removed before developing SWMR, ANN and RF models

using the VIF method, and variables with p\ 0.05 are also

removed in the SWMR method which retains only the

significant variables in the model. The SWMR model

found variables B2, B11, Brightness index, SI2, SI5, T11

and VH/VV to significantly affect the soil pH.

Among the statistical models, the class-wise RF model

was found to perform better than the other three models

with 0.97, 0.88 and 0.77 coefficient of correlation (r) for

calibration, validation and test datasets, respectively (Table

4). The class-wise RF models performed far better than

SWMR, ANN and RF models. R2 for class-wise RF

models is 0.94, 0.87 and 0.54 for calibration, validation and

test datasets, respectively (Figs. 4, 5 and 6). Even RMSE is

quite lower than other models with 0.23, 0.48 and 0.63 for

calibration, validation and test datasets, respectively (Table

4). The other three models SWMR, ANN and RF per-

formed almost similarly; however, the RF model per-

formed slightly better than SWMR and ANN with 0.89,

0.57 and 0.46 Pearson’s correlation coefficient for cali-

bration, validation and test datasets, respectively (Table 4).

R2 and RMSE are the measures that indicate the higher

model performance of class-wise RF models, Cohen’s

kappa and accuracy percentage were also estimated to test

the ability of models to classify. The derived soil pH for all

sites is classified into three categories viz., alkaline, acidic

and neutral. Accuracy percentage (Ac) and Cohen’s Kappa

(K) (Cohen, 1960) indicate the efficiency of the model to

identify different soil, pH classes. The higher the accuracy

percentage higher is the performance of the model. Simi-

larly, Cohen’s Kappa[ 0.5 is required for a good and

reliable classification (Vieira et al., 2010). Based on the

classification SWMR, ANN, RF and class-wise RF models

showed an overall accuracy of 67%, 68%, 74% and 98%,

respectively (Table 4). Similarly, Cohen’s Kappa for all the
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Fig. 2 Frequency distribution of

soil pH at Angul and Balangir
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Table 3 Descriptive statistics of the soil pH data collected from

Angul and Balangir districts in the year 2018

S.No Descriptive statistics Balangir Angul

1 Number of observations 1422 647

2 Blocks 14 8

3 Villages 170 93

4 Mean 6.25 5.65

5 Minimum 4.03 4.00

6 Maximum 8.16 7.80

8 Standard deviation 0.98 0.96

9 Coefficient of Variation (%) 16 17

10 Skewness (Fisher) -0.02 0.31

11 Kurtosis (Fisher) -1.00 -0.92
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datasets for SWMR, ANN, RF and class-wise RF models

showed a cumulative Kappa of 0.24, 0.26, 0.43 and 0.96,

respectively (Table 4). Class-wise RF models showed

exceptionally high accuracy and a perfect score of Cohen’s

Kappa with 97%, 99% and 99% accuracy and 0.97, 0.97

and 0.99 Kappa coefficient for calibration, validation and

test datasets, respectively (Table 4). All the single-class

models (SWMR, ANN and RF) showed more than 60%

accuracy in estimating soil pH correctly for different

classes; however, the RF model had an accuracy of 77%,

63% and 74% for calibration, validation and test datasets,

respectively (Table 4). Kappa coefficient was less than 0.5

for all the single class models (SWMR, ANN and RF) with

RF slightly better than other models with 0.58, 0.26 and

0.24 for calibration, validation and test datasets

respectively.

The deviation % calculated between the measured soil

pH and the model estimated soil pH by SWMR, ANN, RF

and class-wise RF models for Angul and Balangir districts

is presented in Figs. 7 and 8. The deviation percentage was

calculated for each location and it is spatially interpolated

in QGIS 3.8 software using inverse distance weighted

(IDW) method of interpolation. Spatially interpolated

deviation % for Balangir district ranged between

- 29.8–57.7%, - 29.4–55.7%, - 22.6–38.7% and

- 14.9–28.5% for SWMR, ANN, RF and class-wise RF

models, respectively (Figs. 7 and 8). Spatially interpolated

deviation % for Angul district ranged between

- 31.3–40.3%, - 37.5–56.9%, - 24.0–42.5% and

- 16.5–29.9% for SWMR, ANN,RF and class-wise RF

models, respectively (Figs. 7 and 8). As Balangir district

soil pH data are used as calibration, the percentage error is

less than ± 5% except for few places which have more

than 10–15% error, whereas for Angul district data which

is used as test most of the locations had more than 15%

error particularly for SWMR and ANN and comparatively
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less for RF model. The IDW interpolation of class-wise RF

models showed that for Balangir the deviation percentage

for most of the locations is\ ± 5%; for Angul district,

the deviation percentage is in the limits of ± 10% but for

the northern part of the district for some locations the

deviation is more than ± 20%.

Though the upper and lower range of error depicts the

extent of error in the predicted soil pH, it is also misleading

if only one data point has a very high error. Therefore, the

error of predicted soil pH is partitioned into 11 error classes

with a class interval of 5. The proportion of data partitioned

into different deviation percentage classes is shown in

Fig. 9. For SWMR models, only 22.7% of predicted soil

pH dataset has an error ± 5%, 35.2% of data set error is

the range of ± 15–20%, and 18.8% of dataset error is the

range of ± [ 20% (Fig. 9). For ANN models, only 25.3%

of predicted soil pH dataset has an error ± 5%, 32.9% of

dataset error is the range of ± 15–20%, 20.3% of dataset

error is the range of ± [ 20%. For RF models, only

32.9% of predicted soil pH dataset has an error ± 5%,

29.2% of dataset error is the range of ± 15–20%, and

13.7% of dataset error is the range of ± [ 20% (Fig. 9).

For class-wise RF models, 67.2% of predicted soil pH

dataset has an error ± 5%, 10.2% of data set error is the

Table 4 Pearson’s correlation

coefficient (r), RMSE, Accuracy

(Ac) and Cohen’s Kappa

coefficient (K) for SWMR,

ANN, RF and class-wise RF

models

Models Datasets r RMSE Accuracy Cohen’s Kappa

SWMR Cumulative 0.50 0.88 0.67 0.24

Calibration 0.51 0.86 0.63 0.28

Validation 0.45 0.85 0.59 0.17

Test 0.42 0.91 0.74 0.18

ANN Cumulative 0.48 0.89 0.68 0.26

Calibration 0.58 0.81 0.64 0.29

Validation 0.51 0.82 0.61 0.21

Test 0.30 0.98 0.74 0.20

RF Cumulative 0.70 0.74 0.74 0.43

Calibration 0.89 0.53 0.77 0.58

Validation 0.57 0.78 0.63 0.26

Test 0.46 0.88 0.74 0.24

Class-wise RF Cumulative 0.87 0.35 0.98 0.98

Calibration 0.97 0.23 0.97 0.97

Validation 0.88 0.33 0.97 0.97

Test 0.77 0.50 0.99 0.99
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models for calibration dataset
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range of ± 15–20%, and 2.4% of dataset error is the range

of ± [ 20% (Fig. 9).

Class-wise RF Models

Already in the earlier paragraphs, the class-wise RF models

are compared with single class models (SWMR, ANN, and

RF), here we study each class model, i.e., RF-Acidic, RF-

Alkaline and RF-Neutral models in detail. From Figs. 4, 5

and 6 and Table 4, it is observed that class-wise RF models

for each soil pH class performed far better with high R2

(0.94, 0.77 & 0.59 for calibration, validation and test

datasets, respectively) and low RMSE (0.23, 0.33 & 0.50)

for calibration, validation and test datasets, respectively)

than RF model. An in-depth study of each model will

provide more insights into the relation of soil pH with the

satellite spectral data (Table 4). The coefficient of deter-

mination (R2) for RF-acidic, RF-neutral and RF-alkaline

soil class for calibration data is 0.86, 0.79 and 0.66,

respectively (Table 4). RMSE for RF-acidic, RF-neutral
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and RF-alkaline soil pH prediction models are 0.27, 0.18

and 0.11 for the calibration dataset (Table 4). R2 for vali-

dation is 0.60, 0.44 and 0.33 and RMSE of 0.38, 0.27 and

0.14 for RF-Acidic, RF-Neutral and RF-Alkaline models,

respectively. The test data R2 for RF-acidic and RF-Neutral

is 0.41 and 0.25, but for RF-Alkaline the datasets have very

few data points due to which the R2 and RMSE for RF-

alkaline models cannot be calculated. RMSE for test data is

0.54 and 0.29 for RF-acidic and RF-neutral soil pH models

(Table 4). The higher R2 values of RF-acidic, RF-neutral

and RF-alkaline and lower RMSE indicate that class-wise

RF models perform far better than single class models.

To study the spectral characteristics of different soil pH

classes, the major spectral bands and Indices that influ-

enced the models and their contributions are plotted in a

graph (Fig. 7). The spectral bands and indices that help to

identify acidic and neutral soil pH classes are similar: B5,

B11/B12, SI6, T10 and T11. But for alkaline soils, the

spectral bands that influence the soil pH are AVI, B8, B8A,

VH/VV and SSSI (Fig. 7). Scatterplot of RF-acidic, RF-

neutral and RF-alkaline model predicted soil pH against

measured soil pH of Angul and Balangir districts (Fig. 4).

For the calibration dataset, the R2 value is 0.93 and RMSE

is 0.23, with a clear distinction between acidic, neutral and

alkaline classes. The estimated soil pH is very close to the

measured soil pH. But for validation and test datasets, we

observe an overlap between the classes indicating the

misclassification of the model. However, the classes are

more distinct when compared with all the datasets of single

class models.

Fig. 7 Interpolated map of deviation percentage calculated between measured and estimated soil pH for SWMR, ANN, RF and class-wise RF

models for Balangir district
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Fig. 8 Interpolated map of deviation percentage calculated between measured and estimated soil pH for SWMR, ANN, RF and class-wise RF

models for Angul district
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Discussion

Soil pH Prediction Models

The soil data of Angul and Balangir districts collected

under the Bhoochetana project indicated that the majority

soils are acidic. As documented by Mishra in his review

regarding the Soils of Orissa, the predominant soils of

Angul and Balangir of Orissa are Alfisols (Mishra, 2007).

Even in this study, most of the soils of the study area were

classified as acidic (Fig. 2).

The generally used vegetation indices NDVI, NMSI1

and NMSI2 on an average for the districts are 0.3, - 0.35,

0.02 indicating scanty or no vegetation with very little

moisture in the soils of the study area during the image

acquisition time. The model efficiency depends on the use

of the optimum number of variables with less multi-

collinearity; as a huge number of multi-collinear, depen-

dent variables increase the standard error of the predictions.

Therefore, using the VIF method the multi-collinear vari-

ables were removed and used for model development

consequently. SWMR method was found useful in variable

selection. The factors that were selected by the SWMR

model soil pH prediction are B2, B11, Brightness index,

SI2, SI5, T11 and VH/VV indicated that the Blue, Red,

Red Edge and SWIR regions of the electromagnetic spec-

trum were affected by changes in the soil pH. Similar

results have been reported in an article by (Lee et al., 2003)

which emphasizes the importance of the visible region, red

edge and short wave infra-red spectral reflectance in esti-

mating soil pH of Alfisols. The exact reason for the

response of these bands cannot be ascertained as soil pH is

influenced by many factors such as parent material, cli-

mate, topography, soil water content, organic matter con-

tent, land management and many others (Neina, 2019;

Pahlavan-Rad & Akbarimoghaddam, 2018; Zhang et al.,

2018). Similar findings have been reported by (Bai et al.,

2016) in which Landsat-8 OLI (Operational Land Imager)

satellite data are used to estimate soil pH. This study also

found that the model for prediction was based on blue

(0.45–0.51 lm) and SWIR (1.57–1.65 lm) bands with

30 m spatial resolution which has also been reported by

(Bannari et al., 2016).

From the results (Table 4), it is quite evident that the RF

model performance was better than other models, i.e.,

SWMR and ANN. Although, RF showed an R2 value of 0.8

for calibration dataset, indicating a higher performance

model for predicting soil pH, for validation and test dataset

the R2 drastically reduced implying that the model cannot

be applied for prediction with a new dataset.

The better performance of class-wise RF models over

single-class models can be attributed to different spectral

characteristics of different soil pH groups. Every soil

character has a unique spectral signature, and any changes

in the soil’s physical and chemical properties also alter its

spectral signature. Therefore, one model for all the classes

will not be sufficient to provide reliable soil pH estimated

using satellite data proxies. The outperformance of random

forest regression over methods of regression for estimating

soil characteristics using spatial and satellite data has ear-

lier been reported by (Ließ et al., 2012; Yang et al., 2016).

Generally, the random forests regression have given more

reliable soil pH estimates than linear and neural network

regression; as random forests have unique characteristics

such as (1) it incorporates the interaction between predic-

tors, (2) it is based on ensemble learning theory, which

allows it to learn both simple and complex problems; (3)

random forest does not require much fine-tuning of its

hyper-parameters as compared to deep learning techniques

(ANN). However, ANN requires more number of depen-

dent variables and huge dataset for developing several

hidden layers which in turn provide final estimates (Ahmad

et al., 2017; Gopal & Bhargavi, 2019; Mekonnen et al.,

2019). As we have only provided less than 15 dependent

variables to the model, the ANN model performance was

hindered.

In the case of the RF model, the coefficient of deter-

mination and RMSE for calibration dataset was found to

indicate a good model but a look at R2 and RMSE for

validation and test datasets showed that it is similar to

SWMR and ANN models. When examined, the misclas-

sification of single class models to identify the correct soil

pH class using the prediction models; it is found that the

models failed to identify the alkaline soils correctly in

many instances leading to poor accuracy of 3.1%, 5.3% and

9.5% for SWMR, ANN and RF models, respectively. The

highest accuracy of classification is calculated for acidic

soils with an accuracy percentage of 88%, 89% and 91.5%,

respectively, for SWMR, ANN and RF models (Table 5).

The overall classification accuracy was affected by higher

misclassifications in the alkaline group of soils. The lower

percentage of accuracy can be attributed to the less number

of soil samples of alkaline soils that affect the training set

and ultimately the model performance. The soil pH pre-

dicted by RF-Acidic, RF-Neutral and RF-Alkaline models

have been consolidated and compared with other single

class models to verify the performance of class-wise RF

models. It is obvious and understandable that the accuracy

of classification will be more than 90% as we are already

providing the class details to the models. But R2 and RMSE

are the measures that indicate the higher model perfor-

mance of class-wise RF models with the highest R2 and

lowest RMSE.
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Class-wise RF Models

The better performance of the class-wise RF models can be

attributed to the multiple decision trees. Comparatively less

performance of RF-neutral and RF-alkaline models is

basically due to the less number of data points compared to

RF-acidic, as (Millard & Richardson, 2015) mentioned

model performance depends on the quality and quantity of

the training dataset. Error percentage of more than 15% for

all the models is observed toward the northern part of the

district which can be due to the presence of haze or a thin

layer of cirrus clouds in the satellite image. Any model and

in particular the RF models can be tuned with good training

data. More number of training samples helps the model to

understand the behavior of the data to classify the data into

various classes. The out performance of random forest

instead is that it combines the predictions of many decision

trees into a single model. The logic is that a single even

made up of many mediocre models will still be better than

one good model. A random forest can reduce the high

variance from a flexible model like a decision tree by

combining many trees into one ensemble model.

Millard and Richardson (Millard & Richardson, 2015)

tried to examine the relationship between the size of

training data and model performance; they found that in

addition to being as large as possible, the training data sets

used in RF classification should also be randomly

distributed.

The alkaline soils mostly influence the reflectance in

visible and NIR regions whereas acidic and neutral soils

influence the SWIR and TIR regions of the electromagnetic

spectrum. For RF and RF acidic models, B11, SI6, T11 and

B5 contributed up to 40–50% (Fig. 10). As the majority of

the soils in the study area are acidic, the variable contri-

butions for the RF model and RF-acidic model are almost

similar. For the RF-alkaline model, the major contribution

was observed from T11 and VV bands. Similarly for RF-

neutral model, the Sentinel-2 spectral bands B2, B4, B5,

B8 and B11 contributed more than 40% for the model

generation (Fig. 10). However, for acidic soils, the model

failed to provide the right estimates for locations with soil

pH less than 5. Use of soil and vegetation indices to esti-

mate soil pH with better accuracy than interpolation

method has been reported by several researchers (Bai et al.,

2016; Chang & Islam, 2000; Malley et al., 1999; Merry &

Janik, 2001; Roelofsen et al., 2015; Zhang et al., 2018) as

interpolation is just a statistical method of estimating the

soil pH without any other soil information. Remote sensing

data to estimate soil pH also gives an idea of spectral

characteristics of the location which also alters with time,

climate, vegetation, soil condition, etc. So, the use of

remote sensing data can give a better picture of the soil

properties of the given location better than interpolation.

These models have been applied to Balangir and Angul

districts of Orissa to estimate the soil pH areas whose soil

pH is not known which is presented in Fig. 11.

Fig. 10 Percent contribution of

five important spectral bands

and indices for RF-Acidic, RF-

Neutral and RF-Alkaline

models

Table 5 Coefficient of

determination (R2) and RMSE

for RF-Acidic, RF-Neutral and

RF-Alkaline models

Datasets R2 RMSE

Acidic Neutral Alkaline Acidic Neutral Alkaline

Calibration 0.86 0.79 0.66 0.27 0.18 0.11

Validation 0.60 0.44 0.33 0.38 0.27 0.14

Test 0.41 0.25 – 0.54 0.29 –
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Conclusions

In this research, it was observed that the satellite data with

high spatial, spectral and temporal resolutions can estimate

soil pH with fairly good accuracy. Among the three sta-

tistical models developed, the random forest model per-

formed better than other models. The RF model

misclassified the alkaline group of soils due to which the

overall accuracy was affected. As every soil type or every

soil pH class has its spectral signature, therefore models

were developed for each pH class. The R2 and RMSE of

class-wise random forest models were far better than an all-

inclusive RF model.

The salient features of this study are.

1. Use of open-source satellite data, multiple sensors;

their spectral and soil, and vegetation indices devel-

oped from them.

2. Processing of the satellite data in an open-source, high-

performance Google Earth Engine (GEE) platform.

3. Use of simple linear regression as well as deep

learning (ANN) and machine learning (RF) statistical

techniques to develop soil pH, estimation models.

4. Availability of extensive, well-distributed, and reliable

village level measured soil pH data of Angul and

Balangir districts of Odisha state.

All these features enabled us to develop class-wise RF

soil pH estimation models which can give soil pH

estimation.
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Buerge, I. J., Bächli, A., Kasteel, R., Portmann, R., López-Cabeza, R.,
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