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Abstract 

Sorghum, millets (pearl and finger millet) and grain legumes (chickpea, common bean, cowpea, 
lentils, pigeon pea and soybean), collectively referred to as GLDC under the CGIAR research program 
on Grain Legumes and Dryland Cereals, are commonly grown, eaten and traded by small holder 
farmers in Africa and South Asia. These crops contribute to food and nutritional security, 
environmental sustainability, and economic growth in the region. However, their possible 
contribution to carbon sequestration through biomass production and accumulation of soil organic 
carbon (SOC) is not known. To find out more about their contribution, and how to increase SOC, this 
study reviewed the evidence of carbon sequestration in farming systems that integrate GLDC in 
Africa and South Asia. A total of 437 publications reporting SOC and its proxies across 32 countries in 
Africa (N=250 studies) and South Asia (N=187) were identified as sources of evidence for carbon 
sequestration. Among these, 179 publications provided appropriate control groups for evaluating 
changes in aboveground carbon when GLDC were integrated under intercrop (n=38), crop rotation 
(n=8) or agroforestry (n=13), or when improved varieties of GLDC were compared with local varieties 
(n=14). A further 81 publications compared SOC content at the start and the end of the experiment 
while 43 publications compared SOC between farms growing GLDC and those which did not. 
Aboveground carbon of GLDC was found to be 1.51±0.05 Mg/ha in Africa and 2.29±0.10 Mg/ha in 
South Asia. Absolute SOC concentration in the topsoil (0-30 cm) was 0.96±0.06% in Africa and 
0.58±0.04 in South Asia. It was observed that GLDC produced more aboveground carbon and 
significantly increased SOC when grown as intercrops and in crop rotations. The increase, however, 
depended on the species and whether the crop was a legume or a cereal. The largest amount of 
aboveground carbon (>2 Mg/ha) was found in cereals (and pigeon pea) while the largest increase in 
SOC was found in farming systems that included legumes. Aboveground carbon of improved 
varieties of GLDC was lower compared to local varieties. Soils which had low initial (<1%) SOC but 
high clay content (>32%) showed the greatest potential for carbon sequestration when GLDC were 
grown. Among the GLDC crops, pigeon pea which is a perennial grain legume showed the highest 
biomass production and carbon sequestration in the soil when integrated into farming systems in 
Africa and South Asia. Findings from this study underscore the importance of aboveground residues 
in regulating the addition of carbon to the soil, and the role of legumes in the enhancement of SOC.  
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1. Introduction 

1.1 Grain legumes and dryland cereals in smallholder agriculture 

Subsistence agriculture is the main source of livelihood for millions of households in Africa and South 
Asia, where small farms (<2 ha) account for about 30% of the food produced (Herrero et al. 2017). 
Agriculture is also the sector expected to help people escape from poverty (Gassner et al. 2019) and 
spur economic growth in these regions (AGRA 2017). However, the impact of climate change has put 
smallholders at risk and reinforced poverty and vulnerability. Climate change alters rainfall patterns, 
resulting in potential changes in soil moisture balance (Knox et al. 2012). Carbon in soils affected this 
way mineralizes more quickly which is beneficial for yields but will degrade the soil in the long run, 
leading to smaller yields and dramatic impact on food production. High temperatures may affect soil 
carbon by limiting water availability, and reduce the rate of photosynthesis. Intensification of the 
regions’ agriculture is among the efforts employed to increase agricultural production and incomes 
for smallholder farmers (Godfray and Garnett 2014; AGRA 2017). It is vital that this intensification 
focuses on crops and cropping systems that enhance soil organic carbon (SOC).  

Cereals and legumes form an important component of crop production in Africa and South Asia 
(AGRA 2013), where they dominate the debate on sustainable intensification (Godfray and Garnett 
2014; Franke et al. 2018a; Snapp et al. 2021). Their role in food security and economic growth is of 
critical importance, although farm yields in smallholder systems fall below their potential (Godfray 
and Garnett 2014). Low yields are generally attributed to low soil fertility and a host of factors that 
are aggravated by climate change. The CGIAR Research Program on Grain Legumes (chickpea, 
cowpea, pigeon pea, groundnut, lentil, soybean) and Dryland Cereals (sorghum, pearl and  finger 
millet) has identified these crops as capable of transforming smallholder agriculture to become 
resilient, productive and sustainable (CGIAR 2017). When grown under common agro-ecological 
conditions, sorghum, millets and the grain legumes listed above (hereafter GLDC) create synergies 
that can help reduce poverty, improve food and nutritional security and enhance ecosystem services 
(CGIAR 2017).  

The benefits of individual GLDC have been well-documented in literature. All GLDC crops are highly 
nutritious and diversify the diets of many families. They also provide fodder and feedstock in mixed 
crop-livestock farming systems. Existing systematic reviews document the importance of specific 
GLDC crops for sustainable intensification, suggesting improved soil health (Snapp et al. 2021), 
reduced weeds and increased productivity (Smith et al. 2016; Franke et al. 2018a), reduction of 
greenhouse gas (GHG) emission (Jensen et al. 2012) and enhancement of soil organic carbon 
(Powlson et al. 2011). The yields, profits and household welfare provided by GLDC crops have also 
been documented (Katovich et al. 2020). However, the potential for GLDC to increase carbon 
sequestration in African and South Asian farming systems has not been synthesized 
comprehensively. Further, it is not known under which climate, soil type or soil textures do the GLDC 
enhance carbon sequestration in farming systems in Africa and South Asia. 

1.2 Soil carbon sequestration 

One of the ways in which GLDC can transform and increase agricultural production is through 
enhanced carbon sequestration. Soil carbon sequestration is a process by which carbon dioxide 
(CO2) is removed from the atmosphere and stored in the soil as SOC. There are several pathways 
through which carbon sequestered via photosynthesis contributes to the build-up of SOC in 
croplands (Figure 1). Atmospheric carbon that gets fixed into plant biomass through photosynthesis 
is transferred to the soil when the remains of roots and shoots decompose and form humus. It can 
also get transferred into the soil when living roots release organic substances into the rhizosphere in 
a process called rhizodeposition. Some of the carbon is released back to the atmosphere through 



root respiration and microbial decomposition of organic matter; and the balance between these 
processes determines the long-term SOC content. The amount of SOC in soils is therefore related to 
carbon input through residue retention or incorporation, below ground root biomass and 
rhizodeposition; with higher inputs producing higher SOC levels up to saturation level. This implies 
that farming approaches which increase biomass production may also increase carbon input in the 
soil, and eventually lead to larger SOC stocks. 

 

Figure 1. This figure denotes pathways through which carbon sequestered via photosynthesis 
contributes to build-up of soil organic carbon. Values of carbon are based on estimates of above- and 
belowground biomass determined for common bean in Africa in this study, assuming 47% carbon 
fraction in dry matter (IPCC 2019) and 65% carbon in root exudates (Bolinder et al. 2007). 

The addition of SOC in the soil via plant residues may also be due to the fact that after harvesting 
agricultural crops, the residues are returned to the soil as mulch. Residue return is recommended as 
an effective means of improving overall soil health through accumulation of organic matter (Liu et al. 
2014), and may increase crop yield, improve water use efficiency and prevent emission of GHG from 
burning residues (Lu 2020). On the other hand, residue removal reduces the amount of carbon 
entering the soil and can contribute to loss of carbon due to soil erosion. However, residues 
removed from cropland and fed to animals or used as animal bedding are indirectly returned to the 
field as manure or compost. Roots contribute much of the carbon added to the soil where little 
aboveground biomass is retained or returned to the cropland. The input of carbon from plant 
residues and rhizodeposition is greatly influenced by net primary productivity. This fact suggests that 
enhanced growth resulting from variety improvement, application of fertilizers, irrigation or addition 
of organic manure can increase carbon sequestration. 



1.3 Objectives of this study 

The aim of this study was to assess evidence of carbon sequestration in farming systems that include 
GLDC in Africa and South Asia. Specifically, the study (1) quantified the amount of aboveground 
carbon and SOC concentration in farming systems with GLDC, (2) determined changes in 
aboveground carbon or SOC when farmers adopted GLDC or moved from GLDC to other crops, and 
(3) determined changes in aboveground carbon when farmers changed from local to improved 
varieties of GLDC. The study also explored (4) variations of aboveground carbon and SOC under 
different crops types, regions, soil and climate conditions, and management practices. Major gaps in 
the evidence base are discussed. 

2 Methods 

2.1 Search strategy 

A comprehensive search was conducted on three bibliographic databases to obtain published 
literature on studies that investigated the presence of GLDC in farming systems in Africa and South 
Asia. The search string was wider (Table 1) and included evidence of GLDC on indicators of natural 
resource management (i.e., land and water management, environmental quality, biodiversity, and 
system resilience). The search string consisted of (1) ten priority crops, including their common 
names, scientific names, and synonyms, (2) indicators of outcomes of adopting GLDC, (3) scale at 
which the study is conducted i.e., farm or field scale (excluding greenhouse or pot experiment), and 
(4) the region/country where the study was conducted. Including the study area terms limited the 
number of search results returned yet captured data that does not explicitly refer to the region 
(Africa or South Asia) where the study was conducted. 

Table 1. List of search terms (Web of Science syntax) used to retrieve publications indexed in Web of 
Science: core collection, ProQuest and SCOPUS. Timespan = all years; language = English and French. Further 
refinements were applied to limit search results to countries in Africa and South Asia, exclude irrelevant 
subject area and exclude magazines and other grey literature. 

Category Terms for topic search (TS=) 

Crops (Ground$nut* OR “Arachis hypogaea” OR pea$nut* OR soy$bean* OR soya$bean* OR “soja 
bean*” OR “Glycine max” OR pigeon$pea* OR “Cajanus cajan” OR “red gram” OR lentil* OR 
“Lens culinaris” OR “Lens esculenta” OR cowpea* OR “Vigna unguiculata” OR “black-eyed 
pea” OR “chick$pea*” OR “Cicer arietinum” OR “common bean” OR “French bean” OR 
“Phaseolus vulgaris” OR sorghum OR “guinea corn” OR “great millet” OR “Indian millet” OR 
“Sorghum bicolor” OR “finger millet” OR “African millet” OR “Eleusine coracana” OR “spiked 
millet” OR “pearl millet” OR “Pennisetum glaucum” OR “Pennisetum typhoides”) 

AND 

Outcome (Yield OR biomass OR “dry matter” OR grain OR “land equivalent ratio” OR "soil moisture" OR 
"soil water content" OR infiltration OR “soil erosion” OR “soil loss”  OR “run off” OR "organic 
matter" OR "soil organic carbon" OR “soil carbon” OR “bulk density” OR “carbon 
sequestration” OR “aggregate stability” OR "soil respiration" OR “soil fertility” OR “green 
manure” OR "total nitrogen" OR “total soil nitrogen” OR "total phosphorus" OR "Olsen 
phosphorus" OR "extractable phosphorus" OR "available phosphorus" OR "rainfall use 
efficiency"  OR "water use efficiency" OR "nutrient use efficiency" OR "nitrogen fixation" OR 
"greenhouse gas" OR “nitrous oxide emission” OR “carbon dioxide emission” OR “carbon 
emission” OR biodiversity OR "microbial biomass" OR macrofauna OR “macro organism” OR 
“arbuscular mycorrhizal fungi” OR “weed control” OR “pest control”) 

AND 



Scale (Agriculture* OR “agricultural system*” OR farm* OR field* OR plot*) 

AND 

Location of 
study 

(Africa OR Algeria OR Angola OR Benin OR Botswana OR “Burkina Faso” OR Burundi OR 
Cameroon OR “Cape Verde” OR “Central African Republic” OR Chad OR Comoros OR “Congo 
Brazzaville” OR “Democratic Republic of Congo” OR DRC OR “Côte d'Ivoire” OR Djibouti OR 
Egypt OR “Equatorial Guinea” OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR 
Guinea OR “Guinea-Bissau” OR Kenya OR Lesotho OR Liberia OR Libya OR Madagascar OR 
Malawi OR Mali OR Mauritania OR Mauritius OR Morocco OR Mozambique OR Namibia OR 
Niger OR Nigeria OR Rwanda OR Reunion OR “Sao Tome and Principe” OR Senegal OR 
Seychelles OR “Sierra Leone” OR Somalia OR South Africa OR South Sudan OR Sudan OR 
Swaziland OR Tanzania OR Togo OR Tunisia OR Uganda OR “Western Sahara” OR Zambia OR 
Zimbabwe OR “South Asia” OR Afghanistan OR India OR Pakistan OR Bangladesh OR “Sri 
Lanka” OR Nepal OR Bhutan OR Maldives OR Myanmar OR Burma) 

2.2 Selection and screening of publications 

The total number of publications found from each database or other searches, potential papers 
selected after reading the title and abstract and the number of relevant papers from which data was 
extracted are indicated in Figure 2. A three-step process was used to filter papers: (1) removal of 
duplicate references from the three databases and other sources; (2) examination of abstracts and 
titles of retrieved articles to remove irrelevant literature such as patents, periodicals, studies on 
medical topics, genetics, molecular biology, pollination, nutrition and biochemical analysis, (3) 
appraisal of the full text to examine studies that met the selection criteria and concurrently extract 
data. A pre-established criterion was used to select publications for inclusion in the study, selecting 
only publications that reported: (1) the outcome of growing any of the GLDC crops in Africa or South 
Asia, (2) original experimental or observational study conducted at field or farm scale, and (3) 
quantitative and qualitative data on carbon sequestration and its proxies. Pot and greenhouse 
experiments, laboratory studies and meta-analysis were excluded. Modeling studies and reviews 
were included when they presented eligible empirical data. 

Double screening was conducted on a subset (919) of the publications obtained to check agreement 
(on selection criteria) between assessors. During the double screening, two assessors independently 
screened the title and abstract of each publication to identify potential papers. Any publication for 
which there was a doubt about its relevance was referred to another assessor for a second opinion. 
Publications that met the inclusion criteria based on screening the title and abstract were obtained 
and used in full text appraisal. Selected publications were given a unique identification number and 
data therein was extracted into a Microsoft Excel spreadsheet. Care was taken to ensure that the 
same data was not extracted twice from multiple sources, for example, from a conference paper, 
thesis, and an article in a journal or a review paper. Publications that were excluded at each stage 
and the respective reasons are documented in Figure 2.  

 



 

Figure 2. Illustration of results from literature search and screening of records retrieved from 
bibliographic databases. A total of 437 publications were used for an in-depth review of indicators 
aligned to sequestering carbon in farming systems that include grain legumes and dryland cereals in 
South Asia and Africa. Publications in journals that appear on Cabell's Blacklist 
(https://www2.cabells.com/) were excluded. 

2.3 Elements of the database 

The type of information extracted from selected publications includes bibliographic information (e.g. 
author, year), year of experiment, study location (continent, country, study site and geographical 
coordinates), site characteristics (elevation, clay content, soil texture class, initial SOC and the depth 
to which soil samples were collected). Climatic conditions like rainfall – annual, seasonal or - during 
the growing period were also considered. The type of trial (on a farm or on a station), soil type, scale 
of investigation (field or farm), farming systems (continuous sole crop, intercrop, crop rotation and 
agroforestry), or the GLDC crop, cropping system, and tillage practices were taken into account. As 
were fertilizer (N or P) levels, organic amendments and whether the crops were grown under rain-
fed conditions or irrigation, and residue management (whether it was retained or removed). 

https://www2.cabells.com/


Quantitative information on means for treatment and control (when available) were recorded as 
reported in tables, within the text or extracted from figures using Web Plot Digitizer  (Rohatgi 2020). 
Additionally, the sample size (i.e., number of replicates or any other sample size recorded) was 
extracted. Missing rainfall data was obtained through the SamSamWater Climate Tool 
(SamSamWater Foundation 2018). 

Farming systems were categorized based on descriptions provided by the studies reviewed (Table 2). 
Soils reported under the USDA or other classification systems were re-classified following the 
international soil classification system for naming soils and creating legends for soil maps (IUSS 
Working Group WRB 2015). Inceptisols and Ultisols were, however, retained in the USDA soil 
taxonomy because: (1) Inceptisols were reported in many studies (45 publications with 81 
datapoints) conducted across 50 sites, and (2) Ultisols were reported interchangeably as Nitisols 
(seven publications), Acrisols (13 publications), Alisols (one publication) and solely as Ultisols in five 
publications. The soils were further grouped into three broad texture categories i.e., sandy soil, loam 
soil and clay soil, based on the reported sand, silt and clay fractions. These categories represent 
coarse textured soils (<20% clay), medium textured soils (20-32% clay) and fine textured soils (>32% 
clay), respectively. Initial SOC was divided into three groups: >1.5%, 1.0–1.5%, and < 1.0%. 



Table 2. This table denotes the reclassification of farming systems reported by the studies including grain legumes and dryland cereals in African and South Asia. The 
references are not exhaustive and refer to examples of studies that reported soil organic carbon or its proxies under agroforestry, crop rotation, intercrop and 
continuous sole crop. 

Farming system Description Examples  Reference from database 

Agroforestry A land management system which 
incorporates trees and shrubs in the 
same land area used for crop or 
livestock production. Four types of 
agroforestry practices were referred 
to in the studies reviewed. 

Parkland systems: Multipurpose trees scattered on 
farmlands, following farmer selection and 
protection. Farmers grow crops under the canopy of 
trees such as Faidherbia albida, Parkiabiglobosa, or 
Vitellaria paradoxa. 

Kho et al. (2001), Bayala et al (2003), Sanou et al 
(2012) 

Alley cropping (hedgerow intercropping): planting of 
annual crops between widely spaced rows of trees 
or shrubs. 

Droppelmann et al. (2000), Forster et al. (2013) 

Improved fallow: Land is rested from cultivation, 
during which fast-growing legume species are 
planted, e.g., to replenish soil fertility and provide 
products such as wood or fodder. 

Chirwa et al. (2004), Gathumbi et al. (2004) 

  Windbreaks: Trees are planted in one or more rows 
to provide shelter or protection from wind 

Leihner et al. (1993), Michels et al. (1998) 

Crop rotation The planting of different crops 
successively on the same land. 

Cereal-legume rotation, cereal-cereal rotation 
legume-legume rotation, and cereal or legume 
rotated with other crops e.g., mustards.  

(Waddington and Karigwindi 2001; Forster et al. 
2013) 

Intercrop Growing two or more crops at the 
same time and on the same piece of 
land.  

Row intercrops: Growing two or more crops grown 
in the same field simultaneously with one or more of 
the crops grown in a distinct row arrangement. 

Ghosh et al. (2004), Ramesh et al. (2005) 

Continuous 
cropping 

Growing one crop only during the 
cropping season. 

Continuous sole crop (monocropping): growing the 
same crop as a pure stand in successive seasons. 

Ghosh et al.(2005), Laberge et al. (2011) 



 

 

2.4 Estimation of aboveground and soil organic carbon 

The systematic literature search identified 437 publications (1319 observations) that reported the 
effect of GLDC on SOC and/or its proxies (carbon input from plant resides and rhizodeposition) in 
Africa and South Asia. These include 331 publications that reported carbon in aboveground residues 
and 144 publications that reported SOC in farming systems that included GLDC in Africa and South 
Asia. Aboveground carbon consists of all the carbon in the plant biomass i.e., straw, stover and other 
post-harvest residues (Appendix 1). Aboveground residues were considered dry matter when a 
publication explicitly reported that samples were oven-dried (65 or 75°C) to a constant weight. The 
term dry matter was used interchangeably with biomass to refer to the mass of the plant material in 
a dehydrated state. Consequently, 42 publications were excluded for their data of conversion of dry 
matter to aboveground carbon as they did not explicitly state how the weight of straw (27 
publications), stover (11 publications), haulms (3 publications) and stubble (1 publication) was 
determined (Appendix 1). In addition, the biomass of grain was not included in aboveground carbon 
as this was reported separately and is taken off the field. 

Data reported as or recalculated to dry matter was converted to aboveground carbon using the 
default fraction (47%) of carbon for crops documented by IPCC (2019). It is recommended to use 
crop specific data for these parameters where possible; because the actual percentage of carbon in 
residues varies for different crops. However, a quick review of the existing literature showed a 
general lack of data on carbon fractions for GLDC crops. Default values are recommended for 
converting dry matter to carbon content where crop specific data is not available (IPCC 2019). 

The amount of biomass carbon potentially added to the soil was estimated as the sum of carbon in 
aboveground residues, carbon in root biomass and rhizo-deposited carbon (Bolinder et al. 2007). 
Carbon in roots was calculated from aboveground carbon using literature values of root-to-shoot 
ratios measured at maturity; lentils: 0.22 (Gan et al. 2009), chickpea: 0.22 (Gan et al. 2009), soybean: 
0.15 (Ramesh et al. 2005), groundnut: 0.15 (Shridhar Rao et al. 2012), common bean: 0.23 (De Costa 
et al. 1997), pigeon pea: 0.21 (Rao and Itto 1998), cowpea: 0.27 (Laberge et al. 2011), pearl millet: 
0.31 (Brück et al. 2003), finger millet: 0.21 (Krishna and Reddy 2021) and sorghum: mean (0.29) of 
0.22 (Ghosh et al. 2004) and 0.36 (Ramesh et al. 2005). Rhizo-deposited carbon was estimated from 
carbon in root tissues assuming that 65% of carbon in roots is released through exudates and 
sloughing of root hairs and fine roots during growth (Bolinder et al. 2007). 

Data on SOC concentration (%) was limited to studies that examined the parameter in the topsoil (0-
30 cm depth). The 0-30 depth represents the zone where SOC is highly influenced by management 
practices and input from crop roots, and is acceptable for national carbon accounts (IPCC 2019). 
Data on the concentration of SOC in the top layer was extracted as reported in a study, then 
converted to percentage. Eight studies reported soil organic matter (SOM), which was converted to 
SOC by dividing it by 1.72, considering the units of SOM reported in the publication. However, very 
few studies reported SOC density (Mg/ha) or bulk density required to convert carbon concentration 
to carbon density and therefore the analyses in this study are based on SOC concentration (%). 

2.5 Independent observations, subgroups and statistical analysis 

Observations from the same study were considered as independent datapoints and included 
separately if they were from different locations (sites), seasons (year) or crop species. 
Recommended rates or common farmer practices were selected to constitute independent 
observations (datapoints). This was specifically done when a study reported data from multiple 
results because of different fertilizer levels, manure, tillage practices, residue management, rainfall 
or irrigation conditions, row patterns/proportions, sowings rates and plant densities. When a study 



 

 

reported multiple results for comparisons involving several varieties or cultivars, a mean was 
calculated and the number of varieties or cultivars was used as the new sample size. When a study 
reported both improved and local varieties, results for both types of varieties were selected and 
used to compare changes in aboveground carbon when farmers shifted from local to improved 
varieties. When multiple publications reported results on the same study (site) over different years, 
only data from the publication reporting the latest observation was extracted. When a study 
reported the data on the same crop grown in more than one season or year, the measurement at 
the start and end of the experiment was taken as the control and treatment mean (for SOC), 
respectively. Further adjustments were done during meta-analysis to evaluate under which 
conditions the crops affected aboveground carbon or SOC positively or negatively. 

Subgroup analysis was conducted on soil type, soil texture group, initial SOC, cropping system, the 
crop and the combination of crops (i.e. grain legumes, dryland cereal, other cereals [maize, wheat, 
rice, tef] or other crops [cassava, cotton, green grams, Guinea grass, Isabgol, menthol mint, mustard, 
Napier grass, safflower and sunflower]), to assess whether outcomes of GLDC integration are 
different for different conditions.  

The natural log-transformed response ratio (lnRR) was used as a measure of effect size to determine 
changes in aboveground carbon or SOC following inclusion of GLDC in farming systems. The lnRR was 
considered appropriate because it is scale-free and therefore allows comparison of the outcomes 
across studies that use different measurement procedures (Hedges et al. 1999). The lnRR was 
calculated using equation (1), where xE̅ and xC̅ are the means of the treatment and the control group 
for aboveground carbon and SOC (Hedges et al. 1999). 

lnRR = ln( xE̅/xC̅) = ln(xE̅)-ln(xC̅)   (1) 

Bootstrapping methods were used to estimate 95% confidence intervals around means of 
aboveground carbon values, absolute SOC and lnRR for different categorical variables through the 
application of 10,000 iterations using the boot package in the R programming language 3.4.2 (R Core 
Team 2018). The values (lnRR) were back-transformed and presented as means and 95% CI of 
response ratios. The 95% CI shows the magnitude and direction of change in aboveground carbon 
and SOC under treatment compared to the control, where 95% CI is greater than one and suggests 
that SOC or its proxies significantly increased under GLDC compared to the control. The means of 
categories or subgroups are therefore significantly different from one another if their 95% CI does 
not overlap. The effects were significant when the 95% CI lies below (decrease) or above (increase) 
one. The percentage change was calculated from weighted lnRR using equation 2. 

Change (%) = 100 × (explnRR)-1   (2) 

Because different comparators (control groups) were reported, changes in SOC were evaluated in 
two ways for different subgroups that met the minimum number of three studies and 12 
observations. The first method compared SOC values before and after the inclusion of GLDC in 
farming systems. This category evaluated publications that reported SOC values at the start of the 
experiment (based on initial site characteristics) and SOC values at the end of the experiment. The 
second compared SOC values in farming systems with or without GLDC. This category evaluated 
publications that reported SOC values where the treatment group included a GLDC and a control 
group where no GLDC were grown.  



 

 

3. Results 

3.1 Distribution of the studies 

A total of 437 publications reported data related to carbon sequestration. The studies were spread 
widely across 32 countries (Figure 3a) and covered large ranges of annual rainfall (10 to 3784 mm 
year-1), elevation (2 to 2740 ma.s.l.), 15 different soil types, four farming systems and other 
management practices. Three studies were reported in book chapters; the rest (434) were reported 
in peer reviewed journal articles. Most of the studies were conducted at a field scale (65%); few 
studies (5%) were conducted at a farm scale while 30% of the publications did not report the size of 
plots used. The number of publications reporting studies on aboveground carbon or SOC in different 
countries is shown in Figure 3b. The highest number of studies were reported in India; which had 
38% of all studies reviewed (n= 451). In Africa, the other countries where a high number of studies 
were reported are Niger (11%), Nigeria (7%) and Ethiopia (7%). These countries represent 89% 
(n=188) and 44% (n=251) of the studies reported in South Asia and Africa, respectively. Fourteen 
countries in Africa and three countries in South Asia were reported in less than five publications. 

 

Figure 3. Location of studies that reported aboveground carbon (●) or soil organic carbon (○) in 
farming systems that had sorghum, millets or any of the grain legumes in Africa and South Asia (a); 
and the number of publications that reported aboveground carbon or soil organic carbon in Africa 
and South Asia (b). 

Of the 142 publications reporting SOC, 80% were conducted on research stations while 20% were 
conducted on farmers’ fields. Nearly all studies reported in India were conducted on research 
stations (91%, N=80). In Africa, 63% of the studies (N=62) were conducted on research stations while 
37% were conducted on farmers’ fields. Across the two regions, publications reviewed mostly 
reported GLDC under continuous sole crops (60%) and in fewer cases, in rotations (16%), as 
intercrops (19%) or in agroforestry systems (6%) (n= 484). A similar trend was observed in the 
regions where the crops were mainly integrated in farming systems as continuous sole crops in 
South Asia (63%) and in Africa (55%); and less in crop rotations (29%), and intercrops (15%) in South 
Asia; and crop rotations (17%) and intercrops (11%) in Africa. There was only one study in South Asia 
(India) where GLDC were integrated in agroforestry. Seventy-four percent of the publications 
referred to studies conducted on soils with low SOC (<1.0%), 16% on soils with medium SOC levels 
(1.0-1.5%) and 10% of studies were conducted on soils with high SOC (>1.5%). 

Sorghum (21%) and pearl millet (19%) were the two leading GLDC reported for studies conducted in 
Africa. The next most mentioned GLDC in Africa were cowpea and soybean, reported in 17% and 
13% of the studies reviewed. On the other hand, soybean and sorghum are the leading crops for 
studies conducted in South Asia, reported in 17% and 13% of the studies reviewed. There were also 



 

 

studies where aboveground carbon or SOC resulted from of a combination of two GLDC or a GLDC 
and a non-GLDC. Six such combinations (maize/cowpea, maize/soybean, sorghum/cowpea, 
sorghum/groundnut, sorghum/soybean and wheat/lentil) showed results and were effective for 
studies conducted in Africa; while South Asia had 32 such combinations. It is important to note that 
this is what is reported in research and may not represent what farmers have on their farms. 

3.2. Aboveground carbon stocks in farming systems with GLDC 

Farming systems with GLDC stock an average of 1.76±0.05 Mg/ha of plant carbon in aboveground 
residues. However, this value varies significantly with regions. Studies reported significantly more 
aboveground carbon in South Asia (2.29± 0.05 Mg/ha) than in Africa (1.51±0.05 Mg/ha) (Figure 4). 
Estimates of carbon in aboveground residues and the respective 95% confidence interval (CI) for the 
different moderators are presented in Appendix 2 for data aggregated across regions. Aboveground 
carbon varied among soil types, with significantly higher amounts in Andosols, Inceptisols and 
Luvisols than in Arenosols, Plinthosols and Fluvisols (Figure 4). When cropping systems were 
compared, aboveground carbon was significantly higher in intercrops, followed by continuous sole 
crops (Figure 4). The lowest amount of aboveground carbon was found in agroforestry systems 
(0.94±0.10 Mg/ha); however, the biomass of trees was not included for agroforestry treatments 
because this was not reported. Differences between aboveground carbon in crop rotations and 
agroforestry systems were not significant.   

 

Figure 4. Aboveground carbon in farming systems including grain legumes and dryland cereals in 
Africa and South Asia. The vertices represent the 95% confidence limits of the estimate. Numbers 
within brackets indicate the number of publications [N] and number of observations [NO]. Differences 
among subgroups in each category are significant when the CI does not overlap. 

When GLDC were grown as main crops, much of the aboveground carbon was associated with 
farming systems that had finger millet, pigeon pea and sorghum (Figure 4). A similar trend was 
observed for data disaggregated across regions, except that pearl millet had the second largest 



 

 

amount of aboveground carbon after sorghum in South Asia (Figure 5; Table 3). The lowest amount 
of aboveground carbon was found in lentils, which were also reported in only five publications with 
six datapoints (Figure 4). The amount of aboveground carbon that could be added to the soil ranged 
from 1.24±0.18 Mg/ha in cowpea to 5.36±0.83 Mg/ha in finger millet when residues were retained 
in the field; and from 0.45±0.19 Mg/ha in soybean to 2.18±0.79 Mg/ha in finger millet when residues 
were removed in Africa (Table 3). In South Asia, potential carbon added ranged from 0.99±0.22 
Mg/ha in lentils to 4.60±0.42 Mg/ha in sorghum when residues were retained and from 
0.41±0.13 Mg/ha in lentils to 2.11±0.65 Mg/ha in sorghum when residues were removed from the 
field (Table 3). 

 

Figure 5. Aboveground carbon in farming systems associated with different crops by region. 

 



 

 

Table 2. Aboveground carbon (mean±standard error, and 95% confidence interval [CI]), belowground carbon (carbon in root biomass and rhizo-deposits) and total carbon 
(Mg/ha) potentially available for addition to the soil in Africa and South Asia. N refers to the number of publications that mentioned the crop while NO refers to the number 
of independent observations (datapoints) where the crop was mentioned. 

Region Priority crop 
Aboveground 
carbonb 

95% CI,  
[0.25, 0.725] 

Carbon in root 
biomass 

Carbon in 
rhizo-
depositsc 

Potential carbon inputd 

N NO 
Residues 
retained 

Residues 
removed 

a) Africa Chickpea 0.91±0.13 [0.69, 1.23] 0.20±0.03 0.12±0.02 1.24±0.18 0.51±0.19 7 21 

Common bean 1.42±0.15 [1.16, 1.73] 0.33±0.03 0.21±0.02 1.95±0.20 0.82±0.29 20 48 

Cowpea 0.98±0.08 [0.84, 1.15] 0.27±0.02 0.17±0.01 1.42±0.12 0.63±0.20 48 139 

Finger millet 3.98±0.62 [2.65, 5.06] 0.84±0.13 0.54±0.08 5.36±0.83 2.18±0.74 3 11 

Groundnut 1.36±0.16 [1.08, 1.71] 0.20±0.02 0.13±0.02 1.69±0.20 0.61±0.26 25 64 

Lentil 0.94±0.01 [0.93, 0.94] 0.21±0.00 0.13±0.00 1.28±0.01 0.53±0.19 1 2 

Pearl millet 1.33±0.09 [1.16, 1.54] 0.41±0.03 0.27±0.02 2.01±0.14 0.94±0.28 48 142 

Pigeon pea 2.21±0.38 [1.55, 3.06] 0.46±0.08 0.30±0.05 2.98±0.51 1.21±0.44 13 30 

Sorghum 2.10±0.15 [1.84, 2.42] 0.61±0.04 0.40±0.03 3.22±0.21 1.43±0.44 50 111 

Soybean 1.00±0.09 [0.86, 1.23] 0.15±0.01 0.10±0.01 1.25±0.11 0.45±0.19 56 77 

b) South 
Asia  

Chickpea 1.20±0.15 [0.96, 1.57] 0.26±0.03 0.17±0.02 1.63±0.20 0.67±0.25 24 39 

Common bean 2.46±0.58 [1.35, 3.62] 0.57±0.13 0.37±0.09 3.40±0.80 1.43±0.49 4 7 

Cowpea 1.88±0.37 [1.34, 2.91] 0.51±0.10 0.33±0.06 2.72±0.53 1.22±0.43 13 29 

Finger millet 1.18±0.32 [0.61, 1.86] 0.25±0.07 0.16±0.04 1.59±0.43 0.65±0.23 5 9 

Groundnut 1.64±0.16 [1.39, 2.05] 0.25±0.02 0.16±0.02 2.05±0.20 0.74±0.32 21 44 

Lentil 0.73±0.16 [0.33, 0.98] 0.16±0.04 0.10±0.02 0.99±0.22 0.41±0.13 4 5 

Pearl millet 2.91±0.25 [2.50, 3.49] 0.90±0.08 0.59±0.05 4.40±0.37 2.07±0.63 8 38 

Pigeon pea 2.75±0.34 [2.13, 3.47] 0.58±0.07 0.37±0.05 3.70±0.46 1.50±0.54 9 23 

Sorghum 3.11±0.28 [2.59, 3.71] 0.90±0.08 0.59±0.05 4.60±0.42 2.11±0.65 28 56 

Soybean 2.12±0.30 [1.68, 2.94] 0.32±0.05 0.21±0.03 2.65±0.38 0.95±0.41 26 46 
aAboveground carbon was estimated from post-harvest residues, assuming a carbon content of 47% in dry matter (IPCC 2019). 
bCarbon in roots was estimated from aboveground resides using root-to-shoot ratios from literature (see section 2.4 for values and references). 
cCarbon in rhizodeposits was estimated from carbon in roots, assuming that 65% of all carbon allocated in roots is released as sap exudates and during sloughing of root hairs 
and fine roots during the growing season (Bolinder et al. 2007). 
dCarbon input was estimated as the sum of carbon in aboveground residues, belowground carbon and root extra carbon.  



 

 

Across the two regions, there was a trend towards a decrease in aboveground carbon with time 
within field studies covering several years, although the differences were not significant. Average 
aboveground carbon decreased from 1.76±0.06 Mg/ha, 95% CI = [1.68, 1.92] in the first year to 
1.75±0.08 Mg/ha, 95% CI = [1.60, 1.92]) and 1.44±0.15 Mg/ha, 95% CI = [1.19, 1.79] in the second 
and third year of the experiments, respectively. There was also a non-significant trend towards 
higher aboveground carbon when residues were retained (1.40±0.11 Mg/ha, 95% CI = [1.21, 1.67]) 
compared to when residues were removed from the field (1.15±0.16 Mg/ha, 95% CI = [0.88, 1.53]). 
When growing conditions (water regime: irrigated or rain fed) were considered, aboveground 
carbon was significantly higher under irrigated conditions (2.72±0.2 Mg/ha, 95% CI = [2.37, 3.15]) 
compared to purely rain fed conditions (1.71±0.09 Mg/ha, 95% CI = [1.55, 1.91]). 

3.3. Absolute SOC concentration in farming systems with GLDC 

The amount (mean ±SE) of SOC concentration under farming systems with GLDC across the regions 
was 0.76±0.04%. Unlike aboveground carbon (Figure 4), there was significantly higher SOC 
concentration in Africa (0.96±0.06%) than in South Asia (0.58±0.04) (Figure 6). Soil organic carbon in 
studies located on Ferralsols and Ultisols were significantly higher than the rest of the soil types 
(Figure 6). On average, initial SOC of sites located on Ferralsols (1.30%) and Ultisols (1.40%) was 
higher than that of sites located on Arenosols (0.39%), Cambisols (0.56%), Inceptisols (0.65%), 
Lixisols (0.58%), Luvisols (0.58%) and Vertisols (0.64%). When farming systems were compared, SOC 
was significantly higher in agroforestry and in intercrops than in continuous sole crop (Figure 6). Soils 
under common bean and pigeon pea had significantly higher SOC concentration than all other crops 
except lentil (Figure 6; Figure 7); soil under soybean had significantly higher SOC than sorghum, pearl 
and finger millet (Figure 6). 

 

Figure 6.Soil organic carbon concentration at 0-30 cm depth on farms or fields including grain 
legumes and dryland cereals in Africa and South Asia. The vertices represent the 95% confidence 
limits of the estimate. Numbers within brackets indicate the number of publications [N] and number 
of observations [NO]. Differences among subgroups in each category are significant when the CI do 
not overlap. 



 

 

 

 

Figure 7. Soil organic carbon concentration in farming systems associated with different crops by 
region. 

3.4 Changes in aboveground carbon due to presence of GLDC 

Fifty-nine publications with 182 paired observations fulfilled the selection criteria for evaluating 
changes in aboveground carbon due to the presence of GLDC. Inclusion of GLDC in farming systems 
significantly increased aboveground carbon, both in Africa: (RR: 1.02, 95% CI = [1.00, 1.05]) and in 
South Asia (RR: 1.27, 95% CI = [1.16, 1.40]). The increase was largest in South Asia (27%) and 
marginal in Africa (2%). Changes in aboveground carbon were positive and significant when GLDC 
were grown as intercrops or rotations but not in agroforestry (Figure 8). Intercropping GLDC 
increased aboveground carbon by 44% on average while growing them in rotation increased it by 4% 
(Figure 8).  



 

 

 

Figure 8. Variations in response ratios (RR) of aboveground carbon with cropping systems and crop 
combinations. The different crop combinations are intercropping or rotating dryland cereal (DC: 
sorghum, finger millet, pearl millet) with grain legumes (GL: chickpea, common bean, cowpea, lentil 
pigeon pea or soybean), or trees or other cereals (maize, wheat, rice, oat or tef) or vice versa; and 
changing from local to improved varieties of GLDC. The vertices represent the 95% confidence limits 
of RR. The grey line indicates the RR = 1 and represents the same response in treatment and control. 
Significant changes are indicated when the 95% confidence intervals lie below (decrease) or above 
(increase) the grey line. Negative values under “change (%)” represent a decrease while positive 
values represent an increase relative to initials SOC content at the start of the experiment. Numbers 
within brackets indicate the number of publications [N] and number of observations [NO]. 

When different combinations were evaluated, planting dryland cereals or other cereals (maize, 
wheat, rice and tef) as companion crops for grain legumes resulted in a more than 50% increase in 
aboveground carbon. On the contrary, planting grain legumes as a companion crop in dryland 
cereals or other cereals resulted in a 40% increase in aboveground carbon. Surprisingly, growing 
dryland cereals (C4 plants) in agroforestry increased aboveground carbon by 24% (Figure 8). Growing 
dryland cereals in rotation with grain legumes resulted in a 27% increase in the aboveground 
biomass. There were no significant differences among different combinations. Fourteen publications 
with 29 observations reported the presence of aboveground carbon when farmers changed from 
traditional to improved varieties of chickpea, common bean, cowpea, soybean, pearl millet and 
sorghum. Aboveground carbon was depressed (-40%) when farmers shifted from local to improved 
varieties (Figure 8). 

3.5 Changes in SOC concentration due to presence of GLDC 

3.5.1 Comparing SOC at the start and end of the experiment 

Eighty-one publications with 144 paired observations reported data on SOC content at the start 
(initial SOC content) and at the end of the experiment (final SOC content), allowing for evaluation of 
changes in SOC due to inclusion of GLDC in farming systems. Across different climate and soil 



 

 

conditions and agronomic practices, the inclusion of GLDC in farming systems showed a non-
significant trend towards higher SOC concentration (RR: 1.04; 95% CI= [0.94, 1.12]). The proportion 
of observations that showed an increase for the combined data were more (59%; n=108) than those 
that showed a decrease (41%). Although the differences were not statistically significant when the 
two regions were compared, the trend towards increased SOC was generally stronger in South Asia 
(RR: 1.07, 95% CI = [0.95, 1.20]) than in Africa (RR: 1.02; 95% CI = [0.94, 0.10]).  

Soil organic carbon significantly increased in response to GLDC under Cambisols and Ferralsols, but 
decreased under Lixisols and Luvisols (Figure 9). Inclusion of GLDC did not have a significant effect in 
Ultisols, Vertisols, Arenosols and Inceptisols. Inclusion of GLDC in farming systems increased SOC 
under clay soils but did not have a significant effect under loam and sandy soils (Figure 9). SOC 
significantly increased where the initial SOC was below 1% (RR=1.11) but decreased in soils than had 
more than 1.5% SOC (RR=0.73) at the start of experiments (Figure 9). Soils that had moderate SOC 
(between 1 and 1.5%) at the start of experiment only showed a non-significant trend towards higher 
SOC (RR=1.07) at the end of the experiment (Figure 9). 

 

Figure 9.Variations in response ratios (RR) of soil organic carbon concentration (SOC) to GLDC with 
soil type, soil texture group and initial SOC for studies comparing initial and final SOC or SOC at the 
start and end of the experiment. The vertices represent the 95% confidence limits of RR. The grey line 
indicates the RR = 1 and represent same response in the treatment and control. Significant changes 
are indicated when the 95% confidence intervals lie below (decrease) or above (increase) the grey 
line. Negative values under “change (%)” represent a decrease while positive values represent an 
increase, relative to initial SOC content at the start of the experiment. Numbers within brackets 
indicate the number of publications [N] and number of observations [NO]. 

At the end of the experiment, SOC was significantly higher under intercropping, but did not show 
significant differences between initial and final SOC content when GLDC were included under crop 
rotation or monocrops (Figure 10). Differences between cropping systems were not significant. 
When individual GLDC were compared, SOC was significantly higher at the end of the experiment 
compared to initial values under pigeon pea, chickpea and soybean, but lower under sorghum and 
finger millet (Figure 10). There were no significant differences on SOC under different crops except 
between pigeon pea and sorghum (Figure 10). 



 

 

 

Figure 10.Variations in response ratios (RR) of soil organic carbon concentration (SOC) with soil 
cropping systems, the crop and the combination of crops for studies comparing initial and final SOC 
content or SOC at the start and end of the experiment. Other cereals are rice, maize, tef and wheat; 
other crops are cotton, green grams, menthol mint, safflower and sunflower. The vertices represent 
the 95% confidence limits of RR. The grey line indicates the RR = 1, i.e. where responses in the 
treatment and control are the same. Significant reductions or increases are indicated when the 95% 
confidence intervals lie below or above the grey line, respectively. Negative values under “change 
(%)” represent a decrease while positive values represent an increase, relative to SOC at the start of 
the experiment. Numbers within brackets indicate the number of publications [N] and number of 
observations [NO]. 

3.5.2 Comparing SOC in farming systems with and without GLDC 

Forty-two publications with 80 paired observations reported listed different combinations of GLDC 
that facilitated the evaluation of changes in SOC in farming systems which included GLDC compared 
to those that did not. The overall mean effect size (RR=1.54, 95% CI: [1.44, 1.63]) was greater than 
one, suggesting that SOC was higher in farming systems which included GLDC than in those that did 
not. The effect size and corresponding percentage change of different combinations are presented in 
Figure 11. Planting grain legumes as companion crops where other cereals (maize, wheat, tef or rice) 
or other crops (cassava, castor, Guinea grass, menthol mint, Napier grass or sacred basil) were the 
main crops that significantly increased SOC by 27% and 9% respectively, compared to monocrops of 
other cereals or other crops (Figure 11). Similarly, it was found that planting grain legumes on land 
that was previously under other cereals significantly increased SOC by 25% while planting other 
cereals in plants that had grain legumes increased SOC by 18% (Figure 11). On the contrary, 
intercropping other cereals as companion crops in farming systems where grain legumes were the 
main crops; or intercropping grain legumes as companion crops in farming systems with dryland 
cereals as main crops did not show significant differences compared to monocrops of the main crop 
(Figure 11). Planting dryland cereals in agroforestry systems significantly increased SOC (by 15%) 
compared to growing dryland cereals alone (Figure 11).  



 

 

 

Figure 11.This figure shows variations in response ratios (RR) of soil organic carbon concentration 
with crop combinations for studies comparing farms or fields with GLDC and those without these 
crops. The cereals planted are rice, maize, tef and wheat; Other crops planted are cassava, castor, 
Guinea grass, menthol mint, Napier grass and sacred basil. The vertices represent the 95 % 
confidence limits of RR. The grey line indicates the RR = 1, i.e. where responses in the treatment and 
control are the same. Significant reductions or increases are indicated when the 95% confidence 
intervals lie below or above the grey line, respectively. Negative values under “change (%)” represent 
a decrease while positive values represent an increase, relative to the control group. Numbers within 
brackets indicate the number of publications [N] and number of observations [NO]. 

  



 

 

4. Discussion 

The results show the potential of sorghum, millets and grain legumes to enhance carbon 
sequestration in farming systems in Africa and South Asia, and the opportunities to develop several 
pathways to increase carbon sequestration in a large number of countries. No studies were found in 
32 out of the 64 countries admissible for selection. This difference represents a gap in research, 
considering that the studies included the period from 1975 to 2020. The fewer studies in some 
countries suggests moderate research effort. It is also possible that only few studies in these 
countries met the selection criteria, or publications on the subject are in languages other than 
English and French. Studies conducted in South Asia were concentrated in India, a country known for 
intensive cereal production, and one of the top five countries that account for over half the cereal 
production in the world. 

The amount of plant carbon potentially available for input to the soil is large and varied depending 
on the crop (species), type of crop (legume or cereal) and cropping system. Differences in quantities 
between crops are attributed to differences in growth habits or climatic conditions, which limit the 
amount of residues that can be realized by the crop. Cereals and pigeon pea (woody perennial) had 
the largest amount of aboveground carbon (>2 Mg ha-1). Pigeon pea is a multipurpose crop with long 
growing periods that allows it to accumulate more carbon compared to other legumes (Bayala et al. 
2018, 2020). Low aboveground carbon under cowpea could be associated to growing conditions. 
Cowpea and finger millet are tolerant to drought and are often grown in arid and semi-arid areas 
where biomass production is low (Odeny 2007). The results underscore the importance of 
considering the growth habits of the crop for rotation or intercropping to maximize carbon 
sequestration. 

The quantity of aboveground residues available for return to the soil is large, although the actual 
amount of plant carbon that can be added to the soil depends on whether residues are returned or 
removed from the field. Residue retention increases carbon sequestration by raising the quantity of 
carbon added to the soil from post-harvest residues and can in turn improve crop productivity 
(Johnson et al. 2006; Liu et al. 2014). On the contrary, residue removal lowers carbon inputs into the 
soil, and tilts the equilibrium towards net loss (Raffa et al. 2015; Bolinder et al. 2020; Lu 2020). In 
terms of climate mitigation, in situ accumulation of plant residues represents a net gain since 
atmospheric carbon is added to the soil without reduction in soil carbon where residues are 
obtained. However, residue retention is not common in Africa, where crop residues are needed for 
feed and fuel. Land preparation in Africa also involves the burning of gathered residues every year at 
the onset of the rainy season. Such practices reduce the biomass to be returned to the soil and also 
kill the soil communities that contribute to decomposition and aggregate formation. 

Aboveground carbon was greatly increased when GLDC were integrated as intercrops but depressed 
under agroforestry. Intercrops produce more biomass per unit area because of the combined 
harvest from the component crops, which accounted for about 50% increase in aboveground carbon 
in this study; and because of complementarity / facilitation among components (Brooker et al. 
2015). The latter is due to reduced competition and increased resource use efficiency among crops 
that utilize resources at different times or at varied depths within the soil profile (Duchene et al. 
2017). Crops grown under agroforestry had low aboveground carbon because of competition with 
trees or a smaller population of the companion crop compared to monoculture (Kuyah et al. 2019). 
Studies that compare carbon sequestration under improved and local varieties were few, and 
indicated that improved varieties of GLDC produced less biomass carbon compared to local varieties. 
This suggests that high yielding varieties which produce more grain may have fewer residues that 
remain after harvesting. This presents a tradeoff between productivity and agricultural carbon 
sequestration. Carbon input from such varieties may to a larger extent come from root biomass, 
especially where improved varieties are bred to withstand drought. Much of the comparison 



 

 

between local and improved varieties has focused on yield, with indication that improved grain 
yields have low residue biomass. However, improved varieties produce large amounts of residues 
when the harvest index (ratio of grain to total plant mass aboveground) is not changed in the 
process of breeding (Johnson et al. 2006). The dearth of data makes it difficult to determine varieties 
(local or improved) with greater capacity for carbon sequestration.  

Absolute SOC concentration in farms and fields where GLDC were grown in Africa (0.96±0.04) and in 
South Asia (0.58±0.06%) is low, and corresponds to characteristic low SOC levels in the regions (Lal 
2004, 2008). Low soil carbon content in these regions is attributed to continuous low input, 
extractive agriculture in Africa and severe soil degradation and excessive tillage in South Asia (Lal 
2004). Degraded soils have low biomass production, low input use efficiency and therefore lower 
amounts of crop residue are returned to the soil. Estimates of SOC in both regions are lower than 
the general threshold (1.74% carbon or 3% organic matter) that is considered critical for supporting 
crop production in low input agriculture on tropical soils (Musinguzi et al. 2016). SOC concentrations 
close to 1.74% were only found in farming systems that included legumes i.e. common bean 
(1.71±0.16%) and pigeon pea (1.68±0.19%). Based on SOC concentration, Musinguzi et al.(2016) 
broadly classified soils (in Uganda, Africa) as low fertility (<1.2%), medium fertility (1.2-1.7%) and 
high fertility (>1.7%). GLDC are therefore grown on soils that are low in soil fertility, as revealed also 
by the majority (74%) of publications that referred to studies conducted on soils with <1% SOC. 

GLDC increased SOC when grown under intercrops and crop rotation, relative to the initial SOC 
content. Intercropping and crop rotation are leading measures used to raise cropping intensity in 
smallholder systems in Africa and South Asia (Godfray and Garnett 2014; Duchene et al. 2017; 
Franke et al. 2018b; King and Blesh 2018). They can enhance soil carbon sequestration by increasing 
the amount of aboveground residues that can be returned to the soils (McDaniel et al. 2014; 
Tiemann et al. 2015). These measures can also increase carbon input from roots e.g. through 
production of more root biomass or exudates (Cong et al. 2015). Introduction of plants which may 
have carbon compounds that are more resistant to microbial metabolism, or by improving the ability 
of soil microbial communities to rapidly process plant residues and protect them in aggregates can 
also enhance soil carbon sequestration(Tiemann et al. 2015). The effects of cropping systems on 
carbon sequestration are modified by the type of crop, tillage and soil characteristics at the site 
(Blanco-Canqui and Lal 2004). 

The greatest increase in SOC was found in systems including legumes (pigeon pea, chickpea and 
soybean) while systems including cereals showed a decline in SOC (sorghum) or no effect (pearl 
millet). The use of grain legumes as companion crops in cereals (dryland and other cereals) increased 
SOC relative to initial SOC content. It also increased SOC in the intercrop/subsequent crop relative to 
the cereal monoculture or continuous sole cropping. Similarly, SOC increased significantly under 
legume monocrops but decreased under cereal monocrops, when the final SOC was compared to 
the initial SOC content in respective monocultures. Primary studies attribute  higher soil carbon in 
systems with legumes to high quality residues that promote microbial growth efficiency and 
aggregation (Drinkwater et al. 1998; Blanco-Canqui and Lal 2004; McDaniel et al. 2014). Other 
reasons for higher soil carbon include production of large quantities of biomass in some legumes e.g. 
pigeon pea (Abdurahman et al. 1998), improved biomass production of the subsequent crop in 
rotations (Franke et al. 2018b), increased release of carbon in exudates in the root zone (Tiemann et 
al. 2015) or increasing nitrogen and phosphorus use efficiency of cereal crops (Franke et al. 2018b; 
Ndayisaba et al. 2021). High SOC increase under pigeon pea is attributed to its capacity to take up 
more carbon and to transfer substantial amounts of it to the soil via roots and litter fall (Bayala et al. 
2018, 2020). Pigeon pea has extensive and deep root systems which increase belowground biomass 
and carbon storage at deeper soil profiles where it is locked and protected from disturbance and 
weather fluctuation. Low SOC under some legumes can be attributed to limited biomass input from 
the legume, and probably the chemical composition of the inputs (Tiemann et al. 2015). 



 

 

Soil organic carbon significantly increased on clay soils and soils with low initial SOC (<1%) but 
decreased in soils with high (>1.5%) SOC. This is consistent with existing literature: a positive 
relationship between SOC and clay content and a negative relationship between carbon 
sequestration and initial SOC (Blanco-Canqui and Lal 2004; Lal 2004; Jagadamma and Lal 2010). A 
recent meta-analysis reported comparable results: higher SOC increase in clay soils compared to 
sandy soils (Gross and Glaser 2021). Increasing SOC with increase in clay content suggest that soils 
with high clay content accrued SOC more rapidly than sandy soils. Sandy soil has limited capacity to 
stabilize organic compounds (Blanco-Canqui and Lal 2004), and low productivity (equal to  low 
carbon inputs) due to limited capacity to retain nutrients or water (Nkurunziza et al. 2019). On the 
contrary, clay soil has the capacity to protect SOC from breakdown by soil microbes through the 
formation of aggregates or humification of SOC (Blanco-Canqui and Lal 2004; Lal 2004). Clay content 
can also affect accumulation of SOC indirectly by retaining soil moisture thereby increasing plant 
productivity (Franzluebbers et al. 1996). The negative relationship between carbon sequestration 
and initial SOC is explained thus: SOC accumulates rapidly where initial SOC content is far from its 
saturation level. A similar trend was found in a meta-analysis by Gross and Glaser (2021), where the 
large increase in SOC occurred on soils with initial SOC lower than 1%. This suggests that efforts 
aimed to increase soil carbon sequestration should prioritize regions with low SOC content.  

  



 

 

5. Conclusion 

The results show the potential of sorghum, millets and grain legumes to enhance carbon 
sequestration in farming systems in Africa and South Asia, and therefore improve soil quality and 
mitigate climate change. The quantity of aboveground residues available for return to the soil is 
large. This is critical in Africa and South Asia, where low SOC is a key constraint for crop production. 
The large amount of carbon linked to aboveground residues suggest that residue return can play an 
important role in maintaining or increasing carbon stocks in farming systems, especially where there 
is no addition of organic amendments. However, the volume of residues added to the soil might be 
less than the amount quantified in this study because of competing needs for livestock feed, fuel and 
other uses. The results suggest cropping intensity holds much promise for increasing the amount of 
soil carbon in farming systems with GLDC. It was also proven that soils which have low carbon 
concentration but high clay content have the greatest potential for carbon sequestration when 
cropped with GLDC. The type of crop has significant influence on the amount of carbon sequestered 
in agricultural systems. Finally, this study found differences in aboveground carbon and SOC 
concentration among dryland cereals and grain legumes. Comparing dry matter production revealed 
that cereals (finger and pearl millet, and sorghum) and pigeon pea had the largest potential for 
aboveground carbon (>2 Mg/ha); legumes on the other hand, had the greatest influence on SOC 
concentration. In conclusion, the integration of GLDC in farming systems has the potential to 
contribute to climate mitigation and increased productivity through increased carbon sequestration. 

Study limitations 

This working paper is based on carbon in aboveground residues and SOC concentration in 
publications that reported on GLDC crops in Africa and South Asia. The results reflect what has been 
published and may not exactly represent what farmers grow. Even though aboveground residues 
provide significant carbon input, there are a host of factors (e.g. tillage, organic amendment, 
elevation, slope, pH etc.) that influence the amount of carbon added to the soil. These factors were 
either rarely or not systematically reported. Other information not reported in most publications 
was bulk density, previous land uses, variance metrics, and in some studies, sample size. Methods 
for reporting SOC were also not standardized, with only a few studies providing data on SOC before 
the adoption of GLDC. In this study, initial SOC information is inferred from initial soil properties 
reported in the methods. These limitations make it difficult to evaluate conditions under which the 
GLDC offer the greatest carbon benefits. Identifying conditions under which GLDC can make positive 
contributions requires analyses that include these factors. There were a few publications that 
reported aboveground carbon under improved and local varieties, and no publication reported SOC 
under the two varieties. This makes it difficult to assess what happens to SOC when farmers change 
from local to improved varieties of GLDC. Evidence reported in grey literature was not captured in 
this review because of the difficulty of locating and reviewing scientific evidence in this area. This is 
literature that is often unpublished research or publications not available through normal channels; 
or publications such as mainstream databases. The brief period of this review did not have scope for 
a comprehensive appraisal of grey literature. 
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Appendices 

Appendix 1. Aboveground carbon and soil carbon groups reported in publications reviewed for studies 
conducted in Africa and South Asia. 

Carbon pool used for 
analysis 

Reported carbon class or proxy for soil organic 
carbon No. of studies 

Aboveground carbon 

Dry matter/aboveground biomass 193 

Fodder (dry) 19 

Aboveground residues (stalk, stover, straw, 
stubble, haulm) yield 

165* 

Green manure (dry) 2 

Soil organic carbon 

Annual carbon input from residues 6 

Soil organic carbon 132 

Soil organic matter 9 

Soil carbon stocks 10 
*42 publications did not specify how the weight of aboveground residues reported were determined, and therefore not 
considered as dry matter for estimation of aboveground carbon in this review. 

 

  



 

 

Appendix 2.  Estimates (mean ± standard error [SE} and 95% confidence interval [CI]) of aboveground carbon 
(Mg/ha) in farming systems with grain legumes and dryland cereals in Africa and South Asia. N is the 
number of publications while NO is the number of observations. 

Category Subgroup Mean±SE 0.25 CI 0.975 CI N NO 

Overall mean Overall mean 1.76±0.05 1.66 1.85 330 1036 

Region 
Africa 1.51±0.05 1.42 1.62 210 708 

South Asia 2.29±0.10 2.10 2.49 120 328 

Type of trial 
On farm 1.56±0.07 1.43 1.71 98 354 

On station 1.83±0.06 1.72 1.96 238 682 

Soil type 

Andosols 2.41±0.51 1.55 3.62 6 19 

Arenosols 0.96±0.06 0.85 1.10 50 189 

Cambisols 2.53±0.28 2.00 3.10 12 47 

Ferralsols 1.79±0.21 1.43 2.28 12 33 

Fluvisols 1.06±0.23 0.67 1.61 4 10 

Inceptisols 2.25±0.20 1.89 2.67 33 58 

Lixisols 1.58±0.12 1.37 1.83 47 128 

Luvisols 2.14±0.24 1.73 2.71 28 77 

Plinthosols 1.19±0.11 1.00 1.42 4 34 

Ultisols 1.26±0.18 1.00 1.73 22 46 

Vertisols 1.76±0.21 1.44 2.28 41 391 

Cropping 
system 

Agroforestry 0.94±0.10 0.78 1.22 23 70 

Crop rotation 1.24±0.10 1.07 1.45 41 121 

Intercrop 2.23±0.12 2.01 2.48 57 233 

Monocrop 1.77±0.06 1.66 1.90 245 612 

Crop type 

Chickpea 1.10±0.11 0.91 1.37 31 60 

Common bean 1.55±0.15 1.28 1.88 24 55 

Cowpea 1.14±0.10 0.98 1.37 61 168 

Finger millet 2.72±0.48 1.86 3.75 9 20 

Groundnut 1.47±0.12 1.27 1.74 46 108 

Lentil 0.80±0.12 0.48 0.97 5 6 

Pearl millet 1.66±0.10 1.48 1.89 56 180 

Pigeon pea 2.48±0.26 2.02 3.03 22 53 

Sorghum 2.44±0.14 2.19 2.74 78 164 

Soybean 1.42±0.13 1.21 1.77 62 124 

Year of 
experiment 

One 1.79±0.06 1.68 1.92 323 626 

Two 1.75±0.08 1.60 1.92 161 309 

Three 1.44±0.15 1.19 1.79 54 81 

Water regime Irrigated 2.72±0.20 2.37 3.15 68 157 

 Rain fed 1.71±0.09 1.55 1.91 99 306 

Residue 
management 

Removed 1.15±0.16 0.88 1.53 25 61 

Retained 1.40±0.11 1.21 1.67 48 128 

 

  



 

 

Appendix 3. Estimates (mean ± standard error [SE} and 95% confidence interval [CI]) of absolute soil organic 
carbon in farming systems with grain legumes and dryland cereals in Africa and South Asia. N is the number 
of publication while NO is the number of observations. 

Category Subgroup Mean±SE 0.25 CI 0.975 CI N NO 

Overall mean Overall mean 0.76±0.04 0.71 0.81 142 278 

Region 
Africa 0.96±0.06 0.84 1.08 62 129 

South Asia 0.58±0.04 0.52 0.68 80 149 

Type of trial 
On farm 0.84±0.07 0.71 0.98 30 76 

On station 0.72±0.04 0.64 0.81 113 202 

Soil type 

Arenosols 0.43±0.12 0.25 0.75 14 20 

Cambisols 0.56±0.06 0.47 0.71 12 25 

Ferralsols 1.90±0.15 1.51 2.13 6 10 

Inceptisols 0.48±0.07 0.39 0.70 17 22 

Lixisols 0.57±0.05 0.48 0.67 39 58 

Luvisols 0.53±0.08 0.38 0.67 6 14 

Ultisols 1.41±0.19 1.05 1.80 10 19 

Vertisols 0.81±0.11 0.63 1.06 27 50 

Cropping system 

Agroforestry 1.17±0.22 0.83 1.73 8 13 

Crop rotation 0.74±0.05 0.65 0.85 57 90 

Intercrop 0.94±0.08 0.79 1.11 26 71 

Sole cropping 0.60±0.06 0.50 0.73 59 104 

Crop type 

Chickpea 0.57±0.165 0.40 1.23 10 19 

Common bean 1.71±0.16 1.36 1.99 3 7 

Cowpea 0.65±0.12 0.43 0.91 15 28 

Finger millet 0.40±0.06 0.32 0.58 9 11 

Groundnut 0.51±0.12 0.34 0.86 12 18 

Lentil 1.27±0.41 0.69 2.22 7 10 

Pearl millet 0.35±0.04 0.29 0.48 23 35 

Pigeon pea 1.68±0.19 1.31 2.05 12 17 

Sorghum 0.59±0.04 0.52 0.67 28 63 

Soybean 0.99±0.06 0.87 1.12 41 70 

Year of 
experiment 

One 0.74±0.04 0.67 0.83 135 217 

Two 0.79±0.08 0.64 0.97 7 7 

Three 0.77±0.22 0.42 1.36 28 47 

Water regime 
Irrigated 0.68±0.11 0.45 0.94 21 46 

Rain fed 0.68±0.06 0.57 0.82 47 98 

Residue 
management 

Removed 0.70±0.12 0.49 0.98 14 28 

Retained 0.69±0.07 0.57 0.85 42 54 

  



 

 

Appendix 4 References of the systematic review 

The list denotes publications from which data on soil organic carbon (SOC) or its proxies 
(aboveground biomass, soil organic matter or carbon stocks) was extracted for the review. The 
review yielded 437 publications spread across 32 countries in Africa and South Asia. The publications 
reported absolute quantities and/or changes aboveground carbon/SOC when dryland cereals 
(sorghum, finger or pearl millets) or grain legumes (chickpea, common bean, cowpea, lentils, pigeon 
pea or soybean) were integrated in farming systems in Africa and South Asia. 

Abate M, Hussien T, Bayu W, Reda F (2017) Diversity in root traits of sorghum genotypes in response to Striga 
hermonthica infestation. Weed Research 57 (5):303-313. 

Abbasi MK, Manzoor M, Tahir MM (2010) Efficiency of Rhizobium inoculation and P fertilization in enhancing 
nodulation, seed yield, and phosphorus use efficiency by field grown soybean under hilly region of Rawalakot 
Azad Jammu and Kashmir, Pakistan. Journal of Plant Nutrition 33 (5-8):1080-1102 

Abbasi MK, Tahir MM, Azam W, Abbas Z, Rahim N (2012) Soybean Yield and Chemical Composition in 
Response to Phosphorus–Potassium Nutrition in Kashmir. Agronomy journal 104 (5):1476-1484.  
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