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Abstract: The impact of chemical to organic fertilizer substitution on soil labile organic and stabilized
N pools under intensive farming systems is unclear. Therefore, we analyzed the distribution of soil
total N (STN), particulate organic N (PON), microbial biomass N (MBN), dissolved organic N (DON),
and mineral N (NO3

− and NH4
+) levels down to 100 cm profile under wheat–maize rotation system

in northern China. The experiment was established with four 270 kg ha−1 N equivalent fertilizer
treatments: Organic manure (OM); Organic manure with nitrogen fertilizer (OM + NF); Nitrogen
fertilizer (NF); and Control (CK). Results found that the OM and OM + NF treatments had significantly
higher STN, PON, MBN, DON, and NO3

− contents in 0–20 cm topsoil depths. Conversely, the NF
treatment resulted in the highest (p < 0.01) DON and NO3

− depositions in 40–100 cm subsoil depths.
The NH4

+ contents in selected profile depths were significantly highest (p < 0.01) under OM treatment.
The correlations between STN and its fractions were positively significant at 0–10 and 10–20 cm topsoil
depths. Our results suggest that partial substitution of chemical fertilizer with organic manure could be
a sustainable option for soil N management of intensive farming systems.

Keywords: organic manure; nitrogen fertilizer; soil total N; labile organic N; mineral N; soil fertility

1. Introduction

Soil nitrogen (N) availability influences the yield, grain N recovery and protein content
of cereal crops [1–3]. Therefore, N fertilization is inevitable for maintaining crop productiv-
ity and grain nutritional quality of cereal-based dryland farming systems where N is often
yield-limiting [4,5]. However, in wheat–maize growing dryland farming areas of North
China Plain (NCP), the application of chemical N fertilizer (often overdosed) has become
a regular practice for decades to achieve higher yields [6]. Such long-term fertilization
with chemical fertilizer has aggravated acidification, nutrient imbalance, enzyme activities,
and compaction of soils, thereby suppressing crop growth [7–10]. Moreover, due to low
nitrogen use efficiency (NUE; ~33% on average) of major cereal crops most of the unutilized
N often leaks out from the farming systems in various N forms, contributing to environ-
mental contamination, global warming, and human health issues [11–14]. On the other
hand, repeated application of organic fertilizer (i.e., manures) was reported to be beneficial
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for soil organic matter (SOM) content, pH buffering, aggregate formation, water holding
and nutrient retention capacity. Moreover, crop productivity is identical when equal total
nutrients are supplied from organic or chemical sources [15,16]. Therefore, organic manure
substitutions for chemical fertilizer have been suggested as a viable approach to ensure
sustainable future food security, to restore soil fertility and structural properties, and to
reduce environmental impacts of chemical fertilizer [17–20]. Still, their impacts on soil
labile organic and stabilized N pools under intensively managed dryland farming systems
is less understood.

Although nitrogen is a highly mobile element in soil, soil total N (STN) status changes
relatively slowly due to its large pool size. Therefore, STN changes are most frequently
reported under long-term soil fertility studies [21,22]. Although continuous N input
increases STN content in the profile, in topsoil depths, significantly higher total N is often
reported with organic or organic–inorganic combined fertilization [17,22,23]. The reason
for that can be attributed to organic fertilizer induced increases in soil organic matter (SOM)
and available soil N content, because STN status responds to SOM content positively and
correlates strongly with available soil N content [24,25]. The labile organic fractions of STN
are actively involved in soil N mineralization and considered as sustainable soil fertility
indices, which are described as particulate organic N (PON), microbial biomass N (MBN),
and dissolved organic N (DON). The dynamics of these pools vary temporarily, respond
sensitively to soil fertility management approaches, and affect the short and long-term N
supply [25–27].

Despite variations, soil mineral N pool (NO3
− and NH4

+) represents only a small
fraction of STN which are readily available for plant acquisition. Application of chemical
N fertilizer increases mineral N contents in the profile, but it often exhibits a potential
risk of NO3

− leaching and groundwater contamination [28]. In fact, significant NO3
−

leaching has been reported recently under chemically managed wheat–maize rotations
from this area [29]. In contrast, manure-containing treatments have been found to increase
the mineral N content in topsoil layers while reducing the NO3

− leaching by influencing N
immobilization processes [28–31]. Therefore, chemical fertilizer substitution with organic
fertilizer could be a sustainable option to reduce N losses.

Soil labile organic N pools are more sensitive than STN to agricultural management
practices [32]. These pools are actively involved in short-term N transformations and play
a significant role in soil mineral N supply [32,33]. Despite their importance in soil nutrient
pools, soil fertility studies often focused on inorganic N pools (NO3

− and NH4
+) [29,34].

In recent years, however, DON has been getting special attention among scientists due
to its substantial contribution to N leaching pathways of forest, grassland, as well as
agroecosystems [35–40]. For example, in Europe, average DON leaching from agricultural
ecosystems accounted for about 26% of total dissolved N leached [41]. In another study in
Australia, DON makes up to 40% of the deep drainage nitrogen from irrigated Vertosol
cotton-wheat–maize production systems [42]. More recently, significant DON leaching has
been reported at high N rates from maize–legume cover rotations under Mediterranean
course soil conditions [40]. However, the MBN and PON contents of cultivated soils
have been identified greater under continuous manuring or organic–inorganic balanced
fertilization than exclusively applied fertilizer N [43]. Nevertheless, only a few fertility
studies investigated the distribution of labile organic N pools in cultivated soil in diverse
environments, some of which only examined topsoil depths. Therefore, information is
limited to conclude the effects of chemical fertilizer substitution with organic manure
on the distribution of labile organic N pools in the whole soil profile under intensively
managed farming systems.

The crop productivity and sustainability of the agroecosystems are highly depen-
dent on the short-term (seasonal) and long-term (years to decades) dynamics of SOM,
including the turnover of soil labile organic fractions and the regeneration of stabilized
nutrient pools [44]. Understanding the dynamics of these pools is essential for long-term
soil fertility management decisions. Although, recent soil management studies reported
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that continuous substitution (partial or total) of chemical fertilizer with organic fertilizer
significantly increases SOM status, SOC and STN content [22,43,45,46]. Still, their impact
on the size and distribution of soil N pools especially those labile organic N pools in the
whole soil profile under intensively managed wheat–maize farming systems of northern
China is unclear. Despite being an indicator of overall soil quality, SOM can be insensitive
to new management practices, and STN changes in the soil profile could be prolonged [47].
Therefore, in this study, we aimed: (1) to investigate the effects of organic manure substitu-
tions for chemical fertilizer on size and distribution of STN and its labile organic (PON,
MBN, and DON) and mineral (NO3

− and NH4
+) fractions in the whole soil profile; and

(2) to evaluate how such fertilizer substitution treatments affect the correlations among
STN and its fractions; under intensively managed farming system.

2. Experimental Methods
2.1. Experimental Site

The field experiment was conducted at the dryland water-saving experimental station
of Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences,
Hengshui, Hebei province of China (115◦10′~116◦34′ E and 37◦03′~38◦23′ N). The site
is located at North China flat plain between 17.5 and 28 m above sea level and belongs
to the warm temperate semi-humid climate with a continental monsoon. The recorded
annual mean precipitation was 497.0 mm, unevenly distributed, mostly fallen in summer
months (July to September), while winter months received 120–160 mm. The annual
mean temperature, sunshine duration, evapotranspiration, and frost-free period were
12.8 ◦C, 2509.4 h, 1785.4 mm, and 201 days, respectively. The soil is deep, slightly alkaline
(pH 7.8), loamy, and classified as ‘Fluvo-aquic’ according to the FAO-UNESCO system of
soil classification [48].

At the beginning of this experiment, the initial soil samples were collected from
0–20 cm topsoil profile, and soil organic matter, alkali-hydrolysable N, available P, avail-
able K, and bulk density were recorded as 1.65%, 71.90 mg N kg−1, 22.6 mg P kg−1,
171.6 mg K kg−1, and 1.48 g cm−3, respectively.

2.2. Experimental Design

Four N equivalent treatments were established in 2014 based on farmers’ recom-
mended rate of N (270 kg ha−1) for dryland farming systems of northern China [49]. The
treatments were as follows: (1) Organic manure (OM), 100% N from composted cattle
manure; (2) Organic manure with nitrogen fertilizer (OM + NF), 50% N from composted
cattle manure plus 50% N from urea; (3) Nitrogen fertilizer (NF), 100% N from urea;
and (4) Control (CK), with zero N fertilization. Three replicates for each treatment were
arranged in a 17.4 × 10 m2 plot maintaining 0.8 m spacing between plots and borders.

The irrigated winter wheat (Triticum aestivum L.) and rain-fed summer maize (Zea
mays L.) rotation system was followed with alternation of wheat varieties (HengH1401,
water-saving; and Cangmai6005, drought-resistant) in each calendar year. Crops were
harvested each year, and following each harvest, the maize crop residues were removed
while the wheat straws were returned to the field for recycling. After each harvesting of
summer maize between early to mid-September, a 15–20 cm deep moldboard ploughing
was practiced. Manure treatments which contained 341.6 g organic C kg−1, 19.1 g N kg−1,
10.1 g P kg−1, and 8.0 g K kg−1, were applied before ploughing and during the soil
preparation for winter wheat. The N equivalence of organic manure to urea fertilizer (N
46%) was assessed before each application based on the total Kjeldahl nitrogen content of
composted cattle manure. For OM + NF and NF treatments, 40% of total urea fertilizer
was applied before sowing as a basal dose and the remaining 60% was side dressed
during returning green stage of wheat development. Besides, 57.6 kg P ha−1 from triple
superphosphate (P2O5 46%), and 68.5 kg K ha−1 from potassium sulfate (K2O 60%) were
also applied to wheat across all treatments. Each year, winter wheat was sown between
1 and 10 October at 330 seeds/m2 with 15 cm row spacing using a mechanical seeder and
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harvested at maturity in early June. Small-scale sprinklers were used for wheat irrigation
at, before sowing (120 mm), returning green stage (80 mm), and heading stage (80 mm).
After winter wheat harvest, summer maize (Zhengdan958) was planted by a mechanical
planter with minimum tillage following a 90 mm supplemental irrigation. Chemical pest
control measures were applied to control weeds and insect pests.

2.3. Soil Sampling

Soil samples were collected on 27 September 2019 following the harvest of summer
maize. Soil cores down to 100 cm soil profile from three random points in each treat-
ment plot were sampled using a standard auger (8 cm diameter). Each soil core of the
selected profiles was separated into successional sub-samples at 10 cm depth interval. The
three sub-samples of each depth category from each treatment plot were thoroughly mixed
to make a composite sample. After removing organic stubbles, each composite sample
was divided into two parts. One part was air-dried and kept for analysis of soil chemical
properties, and the second part of the fresh sample was passed through a 2 mm sieve and
stored at 4 ◦C for biochemical analysis.

2.4. Soil Analysis

Air-dried soil was used for the analysis of STN, SOC, and PON. For analysis of STN
and SOC, soil samples were grounded and passed through a 0.15 mm sieve. STN was
determined following the Kjeldahl digestion-distillation procedure as recommended by
Bremner and Mulvaney (1982) [50]. SOC was estimated using the K2Cr2O7 oxidation-
titration method as described by Blake (1965) [51]. Briefly, 0.1 g sieved soil was digested
by boiling with 5 mL 0.8 M K2Cr2O7 and 5 mL concentrated H2SO4 in an oil bath at
180 ◦C for 5 min. The organic C content in the digested soil-solution was measured by
titration method using 0.2 M FeSO4·7H2O in presence of C12H8N2·H2O indicator. PON
was measured using the procedure as described by Bronson et al. (2004) [52]. Briefly, 20 g
of air-dried soil (<2 mm) was dispersed in 60 mL sodium hexametaphosphate solution
(5 g L−1) using a reciprocal shaker for 16 h. The soil suspension was rinsed with deionized
water and passed through a 0.15 mm (53 µm mess) sieve. The remnant materials on the
sieve were oven-dried and weighed after removing visible stones. The total nitrogen
content in PON was estimated following the same procedure for STN determination.

The MBN, DON, and mineral N (NO3
− and NH4

+) content in soil was measured from
fresh soils. MBN was determined using the fumigation-extraction method of Vance et al.
(1987) [53]. In brief, two sets of 15 g soil samples were re-wetted and incubated for 24 h in
the dark at 25 ◦C and 40–45% water holding capacity. One set of soil samples was subjected
to CHCl3 fumigation, and the next one was CHCl3-free. After incubation, organic nitrogen
in soil samples was extracted with 45 mL 0.5 M K2SO4 solution, shaken at 200 rev/min
for 30 min, and filtered. The organic nitrogen content in the extracts was estimated by dry
combustion using a CN analyzer (Elementar Analysensysteme GmbH, Hanua, Germany).
The microbial biomass nitrogen (MBN) was calculated as: MBN = [(organic N in fumigated
soil–organic N in non-fumigated soil)/KE], where KE is 0.57 (Jenkinson, 1988) [54].

The DON content was determined using the procedures described by Gigliotti et al.
(2002) [55]. Briefly, 10 g fresh soil was mixed with 50 mL water, shaken for 1 h on a reciprocal
shaker, and then the colloidal suspension was centrifuged at 15,000× g rev/min at 25 ◦C
for 10 min. Next, the translucent solution was passed through a 0.45 µm membrane filter.
The DON in the filtrate was determined by a continuous flow CN analyzer (Elementar
Analysensysteme GmbH, Hanua, Germany). The mineral N (NO3

− and NH4
+) content

in soil was estimated using the KCl extraction method [56]. Briefly, 10 g fresh soil was
suspended with 2 M KCl solution at 1:10 soil-to-solution ratio using a reciprocal shaker
at 180 rev/min for 30 min. The extract was filtered, and the concentration of NO3

− and
NH4

+ in the filtrates were determined using a continuous flow automated colorimeter
(AA3, Automatic chemical analyzer, Easychem Plus, Europe).
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2.5. Statistical Analysis

Data of all soil parameters were presented on an oven-dried weight basis. Analysis of
variance (ANOVA) was performed using the SPSS Statistics 25.0 software package (SPSS
Inc. IBM, Chicago, IL, USA). The main treatment effects on variable means were detected
and compared using the least difference (LSD) at the 0.05 probability level.

3. Results
3.1. Soil Total N and Organic C

Five-year continuous substitution of chemical fertilizer with organic manure treat-
ments (OM and OM + NF) significantly improved the soil total N (STN) contents in topsoil
depths (Figure 1A). The average STN contents of OM, OM + NF, and NF treatments were
increased by 32.9% (0.27 g kg−1), 8.4% (0.07 g kg−1), and 8.7% (0.07 g kg−1), respectively,
when compared with the CK. The OM treatment had the significantly highest STN contents
in 0–30 cm topsoil depths, which was an average 32% (0.41 g kg−1), 46.8% (0.54 g kg−1),
and 50.3% (0.57 g kg−1) greater than OM + NF, NF, and CK treatments, respectively. The
STN contents of OM + NF treatment at 0–10 and 10–20 cm topsoil depths were 19.1%
(0.24 g kg−1) and 17.53% (0.22 g kg−1) greater over CK, and significantly higher than NF
treatment (Figure 1A). The STN variations between NF and CK treatments were identical
(p > 0.05) except at 40–50 cm depth of the profile.
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nitrogen fertilizer; NF, nitrogen fertilizer; CK, control.

Soil organic C (SOC) differences among treatments were significant across the profile
depths, and SOC contents were higher with OM and OM + NF treatments (Figure 1B).
The average SOC contents of OM, OM + NF, and NF treatments increased by 65.2%
(4.42 g kg−1), 38% (2.57 g kg−1), and 21.6% (1.46 g kg−1), respectively, when compared
to the CK. Although all treatments demonstrated higher SOC concentrations in 0–20 cm
topsoil depths, the SOC contents of OM and OM + NF treatments were significantly
greater (p < 0.01) than NF and CK treatments. The OM, OM + NF, and NF treatments had
an average of 90% (9.85 g kg−1), 52.9% (5.78 g kg−1), and 15.8% (1.72 g kg−1) higher SOC in
0–20 cm topsoil depths. A gradual declining trend in SOC contents with increased profile
depths was observed under all treatments.

3.2. Soil Organic C/TN Ratio

Significant variations were observed among fertilizer substitution treatments on soil
organic C/TN ratio across the selected profile, and treatment effects were higher in topsoil
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layers (Figure 1C). The average soil organic C/TN ratio of OM, OM + NF, and NF treatments
were increased by 22.4% (1.99), 24.1% (2.14), and 10.5% (0.93), respectively, when compared
to the CK. The soil organic C/TN ratio of each depth under OM and OM + NF treatments
were statistically similar, and organic C/TN ratio differences among OM, OM + NF, and
NF treatments at 0–10, 10–20, and 20–30 cm soil depths were non-significant. Under all
treatments, we found a gradual declining trend in soil organic C/TN ratio with an increase
in profile depths.

3.3. Labile Organic N Pools

The variations among fertilizer substitution treatments on the depth distribution of
soil labile organic N fractions in the profile were statistically significant (Figure 2A–C). The
particulate organic N (PON) differences among treatments were pronounced in 0–20 cm
topsoil layers, while a slight variation was observed at 40–50 and 50–60 cm subsoil depths
(Figure 2A). The OM and OM + NF treatments had 106.5% (0.49 g kg−1) and 56.5%
(0.26 g kg−1), and 93.5% (0.43 g kg−1) and 47.8% (0.22 g kg−1) higher accumulation of PON
at 0–10 and 10–20 cm soil layers, respectively, when compared to the CK. The NF treatment
did not significantly affect PON contents at 0–10 and 10–20 cm topsoil layers. The observed
PON differences among treatments were statistically identical at 20–30, 30–40, 60–70, 70–80,
80–90, and 90–100 cm soil profile depths.
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particulate organic N (A), microbial biomass N (B), and dissolved organic N (C) in the profile. ** Significant differences
among treatments at p < 0.01, * significant differences among treatments at p < 0.05. OM, organic manure; OM + NF, organic
manure with nitrogen fertilizer; NF, nitrogen fertilizer; CK, control.

Irrespective of soil depths, the MBN differences among treatments were significant,
and MBN contents were higher with OM and OM + NF treatments (Figure 2B). The MBN
contents under OM and OM + NF treatments at 0–10 and 10–20 cm topsoil depths were
identical but significantly highest (p < 0.01) over NF and CK treatments. The average MBN
contents of OM, OM + NF, and NF treatments were increased by 32.8% (8.14 mg kg−1),
39.4% (9.77 mg kg−1), and 2.9% (0.73 mg kg−1), respectively, when compared to the CK.
We found a gradual declining trend in soil MBN contents with increased in profile depths
under all treatments.

The variations among fertilizer substitution treatments on soil DON contents were
significant across the profile depths (Figure 2C). The DON contents in 0–30 cm topsoil
depths of OM and OM + NF treatments were significantly higher (p < 0.01) than other treat-
ments, while NF treatment deposited significantly highest (p < 0.01) DON in 40–100 cm
subsoil depths (Figure 2C). The average DON contents in 0–30 cm profile depths un-
der OM, OM + NF, and NF treatments were increased by 77.3% (40.77 mg kg−1), 46.9%
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(24.72 mg kg−1), and 20.1% (10.61 mg kg−1), respectively, when compared to the CK. In
contrast, the average DON content in 40–100 cm subsoil depths of NF treatment was
53.7% (31.75 mg kg−1), 49.1% (29.91 mg kg−1), and 83.2% (41.26 mg kg−1) greater than
OM, OM + NF, and CK treatments, respectively. The DON contents at 30–40 cm depth of
OM, OM + NF, and NF treatments were identical but significantly higher (p < 0.01) than
CK treatment.

3.4. Mineral N Pools

The variations among treatments on NO3
− and NH4

+ content were significant across
the selected profile (Figure 3A,B). The NF treatment had the highest (23.9 mg kg−1) aver-
age NO3

− content in the profile, which was 21.4% (4.36 mg kg−1), 13.1% (3.33 mg kg−1),
and 696.7% (20.89 mg kg−1) higher than OM, OM + NF, and CK treatments, respec-
tively. However, the average treatment effect on NO3

− content in 0–30 cm topsoil layers
was OM > OM + NF > NF > CK while below 30 cm soil layers NO3

− accumulation
followed NF > OM + NF > OM > CK (Figure 3A). Compared to CK, the average NO3

−

content in 0–30 cm topsoil layers of OM, OM + NF, and NF treatments were increased
by 912.9% (33.71 mg kg−1), 532.1% (19.65 mg kg−1), and 180% (6.65 mg kg−1). On the
other hand, the NF soil accumulated 85.8% (187.53 mg) of profile total NO3

− in 30–100 cm
profile depths, which was an average 145.6% (17.63 mg kg−1), 47.63% (9.51 mg kg−1), and
998.7% (27.3 mg kg−1) higher than OM, OM + NF, and CK treatments, respectively. The
NO3

− content differences among OM, OM + NF, and NF treatments at 30–40 cm depth
were non-significant.
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Figure 3. Effect of five years of continuous N equivalent fertilizer substitution treatments on the
depth distribution of NO3

− (A) and NH4
+ (B) in the soil profile. ** Significant differences among

treatments at p < 0.01, * significant differences among treatments at p < 0.05. OM, organic manure;
OM + NF, organic manure with nitrogen fertilizer; NF, nitrogen fertilizer; CK, control.

Irrespective of soil depths, NH4
+ contents of OM treatment were significantly highest

(Figure 3B). The average NH4
+ content of OM treatment was 2.52 mg kg−1, which was 55.9%

(0.86 mg kg−1), 51.4% (0.84 mg kg−1), and 36.7% (0.67 mg kg−1) greater than OM + NF,
NF, and CK treatments, respectively. The NH4

+ content of OM + NF treatment was
significant (p < 0.05) only at 0–10 and 10–20 cm topsoil depths (Figure 3B), an average 26.4%
(0.5 mg kg−1) and 24.1% (0.47 mg kg−1) higher than NF and CK treatments, respectively.
However, the average NH4

+ contents OM + NF and NF treatments in 20–100 cm soil
depths were 64.4% (0.96 mg kg−1) and 50.4% (0.82 mg kg−1) lower than OM treatment,
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respectively. Soil NH4
+ variations between NF and CK treatments were identical (p > 0.05)

in all depths of the selected profile.

3.5. Correlations among STN and Its Fractions

The STN was positively and significantly correlated with its labile organic N (PON,
MBN, and DON) and mineral N (NO3

− and NH4
+) fractions in topsoil layers (0–10 and

10–20 cm) (Table 1). Among the labile organic N fractions, the PON showed the highest
correlation with STN in the topsoil layers, followed by DON and MBN. The correlation
between STN and NO3

− was more significant than between STN and NH4
+. The labile

organic N fractions showed a higher correlation with NO3
− than NH4

+ in topsoil layers.
However, correlations among the parameters were weak and non-significant in most depths
below 20 cm of the selected soil profile.

Table 1. Correlations (Pearson’s) among STN and its fractions in 0–10 and 10–20 cm soil depths.

Parameter a STN PON MBN DON NO3− NH4
+

0–10 cm

STN 1
PON 0.952 ** 1
MBN 0.795 ** 0.861 ** 1
DON 0.800 ** 0.747 ** 0.631 * 1
NO3

− 0.903 ** 0.933 ** 0.802 ** 0.845 ** 1
NH4

+ 0.728 ** 0.795 ** 0.805 ** 0.789 ** 0.896 ** 1

10–20 cm

STN 1
PON 0.901 ** 1
MBN 0.752 ** 0.839 ** 1
DON 0.760 ** 0.692 * 0.621 * 1
NO3

− 0.934 ** 0.883 ** 0.848 ** 0.889 ** 1
NH4

+ 0.844 ** 0.842 ** 0.802 ** 0.561 0.787 ** 1
a STN, soil total N; PON, particulate organic N; MBN, microbial biomass N; DON, dissolved organic N.
** Significant at p < 0.01, * Significant at p < 0.05.

4. Discussion
4.1. Effect of Fertilizer Substitution Treatments on STN, SOC, and Organic C/TN Ratio

Our study suggests that chemical to organic fertilizer substitutions (OM and OM + NF
treatments) increases soil total N (STN) content in topsoil layers which is in agreement with
previous studies [22,43,57]. The possible reason can be attributed to the significant influence
of continuous manuring on soil N fractions because continuous manure inputs (exclusive or
combined with chemical fertilizer) increase soil organic matter (SOM) content [22,43]. SOM
could enhance soil microbial abundance and activity by providing C sources for microbial
metabolism [58]. As the SOM decomposes, it releases particulate organic matter (POC and
PON) and dissolved organic matter (DOC and DON) along with mineral nutrients [59–61].
The leftovers (concentrations) of those nitrogenous compounds (PON, MBN, and DON)
that remained in the topsoil profile following soil–microorganism–plant interactions were
higher under the OM and OM + NF treatments, likely contributed to STN storage. The
positive and significant correlations found among STN and its fractions support this
assumption. Previous research has found that the STN content is closely related to soil
N availability, which is consistent with our findings [62]. However, we did not find
a major improvement in STN content under the NF soil profile. Previous research found
that in a chemically fertilized maize-based cropping system, aboveground N uptake was
significantly greater than N immobilization [63]. Moreover, the SOC content under the
NF soil profile was substantially lower compared to the OM and OM + NF soil profiles.
Therefore, high aboveground N uptake by crops along with low SOC content possibly
affected the microbial N immobilization of NF soil. Moreover, due to maize residue removal
(in the current study), crop litter or root exudation contributions under NF treatment might
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be limited to maintaining SOM status and supporting soil aggregation (due to reduced
PON content). As a result, most fertilizer N that remains at the topsoil profile after crop
uptake and microbial utilization is perhaps not immobilized but leached down to subsoil
layers or contributed to other soil N loss pathways.

Composed cattle manure is a rich source of organic C. Therefore, by substituting
N fertilizer with manure-containing treatments (OM or OM + NF) in the wheat–maize
growing system for five years, we found significant increase in SOC contents in the profile,
specifically in 0–20 cm topsoil depths. Many previous studies with organic–inorganic fertil-
ization also reported substantial improvement in SOC with manure-containing treatments
compared to the exclusive chemical fertilization [17,23]. Our results found an improvement
(p < 0.05) in SOC contents in 20–50 cm subsoil depths of NF treatment than CK. The pos-
sible reason might be attributed to increased rhizodeposition and belowground biomass
production of wheat–maize cropping system under N fertilization. However, average SOC
contents in the profile of OM and OM + NF treatments were 35.9% (2.95 g kg−1) and 13.5%
(1.11 g kg−1) greater than the NF treatment. Such SOC changes explained in this paper
indicate that organic manure substitutions for chemical N fertilizer can play a key role in
improving soil fertility and productivity through soil C sequestration.

Soil organic C/TN ratio represents the interaction of soil C and N cycling and the
stability of SOM [64]. Nitrogen fertilization increases SOM stock in maize-based cropping
systems by influencing net primary production and rhizodeposition, affecting soil C/N
ratio through SOC changes [65]. Thus, irrespective of N sources applied (OM, OM + NF,
or NF), we found an improvement in soil organic C/TN ratios in the profile. Still, the
average soil organic C/TN ratio of the OM and OM + NF treatments was higher than
the NF treatment. The main reason for that is likely the constant input of high C/N
organic sources, because manure-containing treatments (OM and OM + NF) increased the
average SOC content in the profile substantially higher than NF treatment alone. However,
translocation of high C/N organic compounds from topsoil layers to subsoil layers with
percolating water from irrigation or rainfall could contribute to higher organic C/TN
distribution in subsoil layers as found under OM and OM + NF treatments. Meanwhile,
deposition of clay associated low C/N containing SOM clay fractions in subsoil layers
likely came up with the gradual declination of soil organic C/TN ratios with an increase in
profile depths as previously suggested [25,66].

4.2. Effect of Fertilizer Substitution Treatments on Labile Organic N Pools

After a 5-year substitution of chemical fertilizer with organic manure, we found signif-
icant (p < 0.01) improvement in PON content mostly at topsoil depths (0–10 and 10–20 cm)
of the profile. Qiu et al. (2016) and Hai et al. (2010) also found higher PON content with ma-
nure containing treatments than chemical fertilization alone [43,67]. The PON contents were
highest with OM treatment, second by OM + NF treatment, and marginal with NF treat-
ment, indicating that the organic manure was the primary factor affecting N concentration
in particulate organic matter (POM). Previous studies agree with our explanation [67,68].
Manure application increases soil organic matter (SOM) content, whose turnover releases
particulate organic matter (POM; POC and PON), which can remain in topsoil layers for
several years due to their short turnover time (<10 years) [22,59,69,70]. Moreover, POM
being associated with clay minerals promotes soil aggregation, thus could reduce PON
turnover by strengthening its physical protection against microbial oxidation [44]. Hence
N concentration in aggregate associated POM is greater than free POM [67]. These findings
indicate that higher PON accumulation in topsoil layers of OM and OM + NF treatments
likely facilitated through manure-induced soil aggregation. However, soils under NF and
CK treatments probably had reduced SOM and soil aggregates due to limited organic C
sources. Consequently, lower PON contents were observed in those profiles.

The differences in soil MBN content among fertilizer substitution treatments were
significant across the selected profile. MBN contents were higher with manure-containing
treatments in all sampling depths, and variations between OM and OM + NF treatments
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were insignificant except at 20–30 cm soil depth. Conversely, the NF treatment had no sig-
nificant influence on soil MBN content over the CK treatment. A substantial increase in soil
MBN contents with organic manure and organic–inorganic combined fertilizer treatments
were reported by Guo et al. (2019) [57]. Liang et al. (2011) and Qiu et al. (2016) also found
significantly higher MBN content in topsoil depths under combined fertilization [43,71].
Manure application increases soil microbial abundance and diversity, primarily by im-
proving organic C availability for microbial metabolism [22,46,69]. Moreover, the highest
SOC content (found in this study) and constant SOC turnover rate were resultant with
organic (manure) or organic–inorganic combined fertilizer treatments [57]. These findings
indicate that OM and OM + NF treatments likely supplied readily mineralizable organic
carbon for microbial metabolism in a relatively consistent manner, possibly the main reason
for higher MBN contents in those soils. Moreover, conventional tillage (practiced in this
study) perhaps accelerated manure effects on microbial growth and activity by increasing
aeration. Therefore, applying OM and OM + NF treatments, we found the highest MBN
concentrations at topsoil depths (0–10 and 10–20 cm). The higher SOM decomposition,
soil respiration, enzyme activities, and biomass content as recorded in topsoil layers of
previous studies [72], further supports our assumption. However, some dissolved organic
C (DOC) in manure soils can be deposited to deeper layers by earthworm borrow, decaying
root holes, and leaching [73]. Such deposition of DOC likely leads to microbial biomass dis-
tribution in the subsoil layers. Apparently, soil microbial growth and activity were reduced
by limited microbial resources (organic C, in particular) under NF or CK treatments. As
a result, no significant improvement in MBN content was noticed in those profiles.

The DON contents in topsoil depths were substantially increased with OM and
OM + NF treatments, while in subsoil depths (below 40 cm), DON contents were dom-
inated (p < 0.01) by NF treatment. These variations among treatments clearly indicate
that substituting organic manure for chemical fertilizer improves soil DON content and
increases the DON retention capacity of the soil. SOM is the major source of DOM (DOC
and DON) [61]. The DOM being released from decomposing SOM could incorporate
into the soil aggregates due to their reactive nature to soil particles [44,60]. Therefore,
improved soil aggregation and aggregate stability under manure treatment likely pro-
moted higher accumulation of DON in topsoil layers of OM and OM + NF treatments.
However, DON is highly mobile and significant DON leaching was often reported under N
fertilization [34,40]. We also found significant DON deposition in all selected depths of OM,
OM + NF, and NF treatments over the CK (control). However, average DON deposition in
40–100 cm subsoil depths of chemical fertilizer (NF) treatment was 49.1% (29.91 mg kg−1)
to 53.7% (31.75 mg kg−1) greater than its organic substitutes. In other words, chemical
fertilizer substitution with organic fertilizer substantially reduced potentially leachable
DON content in the profile. Although root exudates and turnover are likely the primary
sources of DON in chemically fertilized agricultural soils, the exact mechanism of how
chemical fertilizer influences DON distribution is unclear [74,75]. Still, less availability
of leached DON for plant and microbes than mineral N forms, as previously found in
agroecosystems [40], could cause DON accumulation in subsoil layers.

4.3. Effect of Fertilizer Substitution Treatments on Mineral N Pools

Our research indicated that NO3
− contents in 0–30 cm topsoil depths were increased

(p < 0.01) with chemical to organic fertilizer substitution (OM or OM + NF), while NO3
−

depositions in 40–100 cm subsoil depths were enhanced (p < 0.01) with exclusive nitrogen
fertilizer (NF) treatment. Organic substitutions retained significantly higher NO3

− in
surface layers, possibly for manure-induced enhanced soil aggregation and SOM content,
which could provide some physical protection against leaching. Moreover, soil NO3

−

held in the aggregates is covered from microbial reduction, which may further assist in
retaining NO3

− in the topsoil profile. Conversely, the relatively poor soil conditions un-
der continuous chemical fertilization likely had inadequate physical protection against
NO3

− leaching from the persistent downward flow of water from precipitation or irriga-
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tion, because percolating water can readily translocate NO3
− to deep soil layers [76]. As

a result, the significantly highest NO3
− accumulation occurred in subsoil layers of chemical

fertilizer treatment.
Although soil NH4

+ has multiple fates, nitrification is believed to be a single major fate
of available NH4

+ due to cultivated soils’ high nitrification potential [77]. Moreover, soil
microbes prefer NH4

+ for N assimilation than other N forms [78]. Therefore, lower available
NH4

+ contents compared to NO3
− were often reported in soil fertility studies [22,43]. The

report presented in this paper is also in line with previous studies. In our selected profiles,
the depth distribution of available NH4

+ ranged between 1.34 and 2.96 mg kg−1 soil.
Still, OM treatment contained significantly higher NH4

+ in all selected depths. Gradually
released NH4

+ from organic manure likely supported more active microbial biomass with
greater N demand that was probably met by NO3

− immobilization. Thus, the turnover
of high microbial biomass could contribute to the soil NH4

+ pool. Furthermore, because
NH4

+ and K+ compete for the same ion-exchange sites of 2:1 clay minerals due to their
identical size and valence properties [79,80], the potassium (K) content (8.0 g kg−1) of
applied manure could also contribute to the release of clay fixed NH4

+ in subsoil depths of
OM treatment.

4.4. The Correlations among STN and Its Fractions

The correlations among STN and its fractions were positive and significant only at
0–10 and 10–20 cm surface layers (Table 1), most possibly for topsoil properties (the higher
microbial abundance and activity with enhanced resource availability) that support SOM
decomposition and nutrient mineralization [81,82]. These correlations indicate that STN
was the primary determinant of profile’s labile organic N (PON, MBN, and DON) and
mineral N (NO3

− and NH4
+) content. In other words, changes (positive or negative) in

labile organic N and mineral N pools by soil management practices could impact soil
total N stocks. As microbial turnover of particulate organic matter releases dissolved
organic matter, that influences soil microbial biomass [59,83,84]; the positive and significant
correlations found among PON, MBN, and DON confirm that they are closely linked.

5. Conclusions

Our observations revealed that chemical N fertilizer, when 100% substituted with
organic manure, exhibited the most significant improvements in STN, SOC, labile organic
N (PON, MBN, and DON), and mineral N (NO3

− and NH4
+) content of the profile,

especially in 0–30 cm topsoil layers. Organic manure combined with chemical fertilizer
(50% substitution) moderately improved topsoil labile organic and mineral N pools, still
significant over chemical N fertilizer treatment. Application of chemical fertilizer alone
showed little or no improvement in STN, PON, and MBN content of the profile but
significantly increased DON and NO3

− concentration in subsoil layers leading to a potential
risk of N leaching and groundwater contaminations. As labile organic pools are the
early indicators of long-term changes in stabilized nutrient pools, our findings suggest
that chemical fertilizer substitution with organic manure (100% or 50%) could improve
the sustainability of intensively managed farming systems by improving labile organic
N and mineral N pools while reducing the potential risk of N leaching. However, we
recommend 50% organic substitution for chemical fertilizer because it improves topsoil
N pools significantly as well as substantially reduces leachate (DON, NO3

−, and NH4
+)

deposition in deep soil.
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