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Present study was carried out to characterize the genetic architecture of three sink size 

component traits (panicle length, panicle diameter and grain size) through genetic and 

QTL analyses. The plant materials for genetic analysis consisted of two crosses for 

the generation means and variance analyses, and one cross for triple test cross (TTC) 

analysis for each of three traits. The material for QTL analysis consisted of 188 F2 and 

their F2:3 progeny mapping populations of  a cross between the two inbred lines. The 

plant materials were developed during the 2005-06 and the field experiments were 

conducted during the 2006 rainy and 2007 summer seasons. 

Scaling and joint scaling tests revealed that a simplistic additive-dominance 

model did not adequately explain the observed variation for all the three traits in both 

seasons, providing an evidence for the presence of epistasis. The six-parameter model 

and the TTC analysis revealed significance of both additive and dominance effects for 

cross 1 of panicle length, panicle diameter and grain size. However, cross 2 of panicle 



length and panicle diameter revealed only additive effects and grain size showed the 

presence of both additive and dominance gene effects. All three types of interactions 

(additive x additive, additive x dominance and dominance x dominance) were found 

to be significant in cross 1 for all the traits across seasons using generation means 

analysis. However, TTC analysis revealed the presence of all types of epistasis for 

panicle length and panicle diameter. For grain size, it revealed the presence of only 

additive x dominance and dominance x dominance (j + l) epistasis. In cross 2, additive 

x additive (i) interaction alone was significant for panicle length and panicle diameter, 

whereas for grain size, dominance x dominance (l) followed by additive x dominance 

(j) contributed significantly across seasons.  The estimates of broad and narrow-sense 

heritability were high for all the traits. Correlation coefficient estimates revealed that 

panicle length, panicle diameter and grain size were positively and significantly 

associated with grain yield in their respective trait-specific crosses. 

The linkage map constructed using 44 markers (SNP, SSR, EST-SSR and STS 

markers) with 188 F2:3 progenies had a total length of 1018.7 cM. The average 

distance between the marker pairs was 23 cM.  QTL analysis performed as composite 

interval mapping (CIM) identified eight genomic regions for panicle length, one each 

on LG 1, 2, 4 and 7; and two each on LG 3 and 6. The variation explained by these 

QTLs ranged from 6.1 to 18.2%. For panicle diameter, five QTLs were found across 

LG 2, 3, 5, 6 and 7 and the variation explained by these individual QTLs ranged from 

6.3 to 30.2%.  For grain size also five QTLs were identified across LG 1, 3, 5, 6 and 7 

and the individual QTLs explained 6.1 to 21.2% of the observed phenotypic variation 

across F2 and F2:3  data sets. From the mapped QTLs, one QTL on LG 2 for panicle 

length, two QTLs each on LG 2 and 3 for panicle diameter and one QTL on LG 3 for 

grain size are identified as candidate QTLs for marker-assisted selection.  
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1. Introduction 

 
Pearl millet is a major cereal crop grown in the semi-arid regions of Asia and Africa. 

It is cultivated on about 26 million ha in Asia and Africa. Of this, more than 40% of 

the area is in Asia, where India is a major producer of this crop with about 10 million 

ha and an average productivity of 870 kg ha-1 (Agricultural statistics, 2006). Pearl 

millet’s ability to produce grains with high nutritive value even under hot, dry 

conditions on infertile soils of low water holding capacity, where other cereal crops 

fail, makes it a highly desirable crop for farmers in such harsh environments. Further, 

the high biomass yield of pearl millet is an attribute that increases its value as a fodder 

crop, with respect to stover and green forage. Pearl millet breeding programme at 

ICRISAT, Patancheru, mainly focuses on the development of parental lines for high-

yielding hybrids. This is a tough remit, considering the harsh environments where it is 

grown (Harinarayana et al., 1999; Gill and Turton, 2001). Despite this, considerable 

improvement has already been achieved. The increasing trend in the reduction of 

pearl millet cropping area would require a further increase in grain yield potential to 

meet growing demands for pearl millet grain.  

Grain yield is a function of total dry matter and harvest index. Therefore, 

enhancing the total dry matter, harvest index or both can increase grain yield. The 

harvest index could be increased through improving the sink size capacity. In pearl 

millet, the poor sink capacity with low harvest index (15 - 20%) is a basic problem of 

the species itself (Yagya and Bainiwal, 2001), causing this crop to produce low grain 

yields. Therefore, in pearl millet emphasis needs to be given to increase sink size 

component traits to achieve further advance in productivity.  

In pearl millet, high grain yield potential can be realized more readily through 

the investment in large panicle and grain size than in large tiller numbers under 



 14

favourable environmental conditions for crop growth (Kelly et al., 1996 and van 

Oosterom et al., 1996). In many correlation studies, traits such as panicle length, 

panicle diameter and grain size are identified as important sink size components since 

these traits have shown direct positive correlation to grain yield (Jindla and Gill, 

1984; Maman et al., 2004), and hence breeding for these traits would be helpful in 

developing varieties with higher grain yield and better acceptability among farmers. 

Breeding work for the development of new plant types requires variability in 

germplasm. The ICRISAT Genetic Resources Unit at Patancheru has assembled wild 

and cultivated pearl millet germplasm from different countries that provides wide 

variability for panicle length (5 - 114 cm), panicle thickness (13 - 55 mm) and 1000-

grain mass (4 - 21 g). Trait-specific gene pools (TSGP) have also been developed at 

this center for long panicle, thick panicle and large grain size by random mating the 

selected pearl millet accessions originating from diverse agro-climatic regions with 

considerable diversity (Rao et al., 1998). These gene pools have yet to be effectively 

utilized in applied breeding programmes. 

Knowledge about genetic factors responsible for the inheritance of sink size 

characters, for which there is a great genetic variability in the germplasm collections, 

is essential for any applied breeding programme. Despite five decades of research 

about the type of gene action and gene effects, there is still debate about the type of 

gene action predominating for important traits as it varies depending upon the source 

of genotypes and the evaluation environments. Almost all the previous pearl millet 

studies have been conducted using parental material not as diverse as those now 

available with pearl millet research programme at ICRISAT, which were included in 

the present study.  
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The genetical studies based on the means and variances of basic generations, 

is a simple method for estimating the gene effects for a polygeneic trait and has been 

reviewed in many crop species. The greatest merit of generation means analysis lies in 

its ability to estimate the epistatic effects (Mather and Jinks, 1982). The possibility of 

epistasis accounting for a significant proportion of genetic variance of quantitative 

trait has been investigated extensively in previous studies in crop plants. Amount and 

type of epistasis can have a major consequence on both the reliability of predictions 

and the design of breeding programme. Statistically, detection of epistasis using 

generation means analysis is more reliable and efficient than by the analysis of 

variance approach (Lamkey and Lee, 1993). However, it has its own limitations and 

several assumptions. Triple test cross is a powerful method of genetic analysis, which 

provides unbiased estimates for epistasis. In addition, it also estimates the additive 

and dominance components of variation with high accuracy when epistasis is absent 

(Kearsey and Jinks, 1968). 

In recent years, quantitative traits loci (QTL) analysis has become a key tool 

for studying the genetic architecture of complex traits using molecular markers, 

facilitating estimation of the minimum number of genomic regions that affect a trait, 

the distribution of gene effects and the relative importance of additive, dominance and 

epistatic gene actions (Tanksley, 1993; Kearsey and Farquhar, 1998 and Laurie et al., 

2004). In pearl millet, genomic positions of QTLs were mapped for disease 

resistances (Jones et al., 1995; Morgan et al., 1998), abiotic stress tolerances 

(Howarth et al., 1997; Yadav et al., 1999, 2000, 2002, 2004; Bidinger et al., 2007) 

and for grain and stover yield and quality components (Hash and Bramel-Cox, 2000; 

Hash et al., 2001, 2003; Yadav et al., 2003). However, the major determinants of sink 

capacity traits such as panicle length, panicle diameter and grain size in pearl millet 
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has been sparingly subjected to QTL analysis. Understanding the nature of QTLs and 

the magnitude of their effects for sink size traits in pearl millet combined with the 

knowledge of genetic parameter estimates through conventional genetic analysis will 

help the plant breeder to determine a breeding strategy to improve these traits in the 

applied breeding programmes. 

From the aforesaid views, the present study was taken up with the following 

objectives:-  

• To estimate the gene effects of sink size traits (panicle length, panicle 

diameter and grain size) based on generation means and triple test cross 

analyses using diverse range of parental lines. 

 
• To estimate the components of variances and heritabilities for sink size traits. 

 
• To investigate the association of sink size traits with grain yield and other 

yield component traits. 

 
• To determine the number and chromosomal locations of loci controlling sink 

size traits and their genetic effects through QTL analysis using F2 and F2:3 

mapping populations. 

 
• To propose a suitable breeding strategy for the improvement of sink size 

traits in pearl millet. 
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2. Review of Literature 

 
Grain yield in crops is one of the most important target traits in plant breeding 

programme. It is largely determined by the relationship between the source and sink 

capacity. Increasing the sink size capacity is seen as one of the important approaches 

to increase the grain yield potential (Yoshida, 1972). In pearl millet, the sink size 

components panicle length, panicle diameter and grain size are the major determinants 

of grain yield. Selection for sink size component traits to increase the grain yield 

potential in breeding programmes has been effective to a limited extent because of 

their compensatory relationships (Grafius et al., 1976; Grafius, 1978). Little 

consideration has so far been given to the genetic mechanism underlying sink size 

traits in pearl millet. Understanding the genetic components and the magnitude of 

their effects on sink size component traits in pearl millet will help the plant breeder to 

determine the selection strategy to improve these traits in applied breeding 

programmes. Present study was made to characterize the genetic architecture of sink 

size component traits in pearl millet on the basis of genetic and QTL analyses. 

Literature pertaining to this objective is reviewed below. 

 

2.1. Architecture of grain yield components  

Pearl millet is an important dual-purpose, staple crop in the crop-livestock production 

systems of the arid and semi-arid zones. Severe drought stress is a regular feature in 

this environment, but its timing and intensity are unpredictable (Sharma and Pareek, 

1993; van Oosterom et al., 1996). In areas where the crop is likely to experience mid-

season drought stress, minimizing the risk of a crop failure is more important than 

yield potential per se, and farmers preferentially grow landraces that produce many 

but small productive panicles (Kelley et al., 1996; van Oosterom et al., 1996; 
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Dhamotharan   et al., 1997; Bhatnagar et al., 1998; Christinck, 2002). By contrast, in 

areas under favourable conditions for crop growth, where drought stress is less of a 

problem, low-tillering cultivars with large panicles and large grain size have been 

bred and are widely adopted (Kelley et al., 1996; van Oosterom et al., 1996).  

Grain yield in pearl millet is highly correlated with grain number per panicle 

(Bidinger and Raju, 2000a). Final grain number in cereals is predominantly 

determined by the fraction of surviving florets, rather than the maximum number of 

floret primordia initiated (Miralles et al., 1998). Hence, grain number is determined 

during a brief period around anthesis (Saini and Westgate, 2000), when the success or 

failure of individual developing florets is dependent upon the growth of the non-grain 

part (structural panicle mass, SPM - representing panicle size) of the reproductive 

organ (Kirby, 1988). Strong correlations between SPM and final grain number have 

been reported in wheat (Fischer, 1993; Miralles et al., 1998). The SPM represents the 

amount of resources the plant has allocated as a sink for subsequent post-flowering 

reproductive growth, and can thus be considered a measure of potential grain yield. 

The efficiency with which the potential sink size is realised is determined during grain 

filling, when the SPM has been fixed. Panicle size (length and diameter) in pearl 

millet is a major determinant of SPM, which, in turn, controls the final number of 

florets per panicle.  

A study conducted by van Oosterom et al. (2006) in pearl millet revealed that 

panicle number and size (SPM per panicle) were positively correlated with grain yield 

under optimal conditions. Therefore, genotypic differences in grain yield under 

optimum conditions are predominantly a consequence of differences in dry matter 

partitioning, rather than resource capture. Further, the reduced ability of high-tillering, 

small-panicled landraces to realize their potential sink size (grain yield per unit SPM) 
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was associated positively with a lower grain number and a lower individual grain 

mass per unit SPM.  

Correlation studies showed that high tillering landraces with small panicles 

tended to flower earlier than low tillering large panicle types. These associations 

accounted for the low stover mass of the high tillering, small-panicled landraces, and 

the later-flowering landraces tended to have a higher stover biomass, an association 

commonly observed under optimum growing conditions (Bidinger et al., 1994).  

Low-tillering, and large grain sizes are particularly relevant to the Iniadi 

landrace from the adjoining Togo – Ghana – Benin – Burkina Faso region of western 

Africa. Breeding materials derived from this source are presently being widely used in 

the ICRISAT and national breeding programmes in India and Western and Southern 

Africa (Andrews and Kumar, 1996). This type of material was reported to be more 

sensitive to variation in plant population than the traditional high tillering cultivar, 

and thus may be less adapted to production systems where plant population densities 

are low, either by design or due to stand loss caused by natural factors.  

Bidinger and Raju (2000a) reported that the average panicle productivity 

increased in a curvilinear fashion in both the low-tillering and high-tillering types 

under low population densities.  However, the low-tillering types were much more 

responsive to the increasing environmental resources than the high tillering types. The 

low-tillering types demonstrated a greater ability to adjust panicle productivity 

through both grain numbers per panicle and individual grain mass than the high 

tillering types. Similarly, van Oosterom et al. (2003) observed that the high-tillering 

landraces had no obvious advantage under the drought conditions than the low-

tillering large-seeded cultivars that have been bred for high yield potential through a 

greater investment of assimilates into panicle mass and individual grain mass.  
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Grain size is the other component that has large influence on sink size. 

Individual grain mass in cereals is determined early in the grain filling period by 

endosperm cell division and its number and size (Jenner et al., 1991). Pearl millet 

grain is about one-third the size of sorghum and the individual grain mass varies from 

less than 5 mg to more than 15 mg (Murthy et al., 1967a). Pearl millet grain has, on 

an average, 75% endosperm, 17% germ and 8% bran (Abdelrahman et al., 1984). The 

proportion of germ in pearl millet is thus about twice that of sorghum, which is a 

factor contributing to higher nutritive value of pearl millet grain. 

Small individual grain mass and its correlate of a large grain number are 

important adaptive features of pearl millet to the arid climates in which it evolved, 

allowing short grain filling periods, rapid seed germination, and large seed numbers to 

compensate for high rates of failure in seedling establishment (deWet et al., 1992). 

Large individual grain mass, in contrast, is a useful characteristic in managed 

agricultural environments. Large grain mass is advantageous in crop establishment, 

conferring improved rates of seedling emergence and plant stands (Lawan et al., 

1985), faster initial seedling growth and faster early crop growth (Chhina and Phul, 

1982). 

 In addition, large grain size (mass) improves processing quality of the grain; 

increasing the ease of decortication and improving flour yield with both hand 

pounding and commercial milling methods (Rooney and McDonough, 1987). A large 

grain size can bring a higher market price (Phul and Athwal, 1969) and is often found 

to be a preferred characteristic in pearl millet cultivars in farmer surveys (Choudhary 

et al., 1997). 
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2.2. Genetic studies The choice of plant breeding methodology for upgrading the 

yield potential largely depends on the availability of reliable information on the nature 

and magnitude of gene effects present in the population. Fisher (1918) developed the 

model to partition the total genetic variance in a population into components due to 

additive, dominance and epistatic variance. Cockerham (1954) and Kempthorne 

(1954) partitioned the total digenic epistatic variance into additive x additive, additive 

x dominance and dominance x dominance variance components by showing how 

these epistatic components of variance are involved in the covariance between 

relatives. Since the pioneering work of Jinks (1954), which implicated epistasis in the 

expression of heterosis, attempts have been made to classify digenic interaction into 

primary categories, namely duplicate and complementary epistasis (Mather and Jinks, 

1982). Knowledge on these genetic components and their relative magnitude in 

controlling various traits has led to the proposal of many breeding methods that 

capitalize on different types of gene action, including recurrent selection for general 

combining ability and inbred per se selection (additive effects), recurrent selection for 

specific combining ability (dominance effects), and reciprocal recurrent selection 

(both additive and dominance effects).  

Various experimental designs have been proposed for the estimation of the 

genetic components. In general, the study of gene effects has been approached in two 

ways.  One approach is based on the analysis of generation means while the other 

utilizes the genetic variances. Mather (1949) presented several generation mean 

comparisons for the estimation of additive and dominance effects. The primary 

function of generation means analysis is to obtain information on additive, dominance 

and epistatic gene effects from crosses derived from two lines. Several models have 

since been developed based on generation means for the estimation of genetic effects 
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(Anderson and Kempthorne, 1954; Hayman, 1958; Van der Veen, 1959; Gardner and 

Eberhart, 1966). Genetic variance analysis characterizes the predominant types of 

genetic variance into additive and non-additive (including dominance and non-allelic 

interactions) in populations, an activity leading to the development and analysis of 

mating designs, including diallel, line x testers, and the North Carolina mating designs 

(Hallauer and Miranda, 1988). 

Present study aims to measure the genetic components of sink size component 

traits of pearl millet using two complementary biometrical designs (generation means 

and triple test cross analysis). The generation means analysis estimates the net genetic 

effects on the mean phenotypic values of the generations (Kearsey and Pooni, 1996). 

The triple-test-cross (TTC) design, analyses the genetic variance components 

(Kearsey and Jinks, 1968; Kearsey, 1980). These two approaches (means analysis and 

variance analysis) are complementary because they measure different aspects of 

underlying gene action and interaction (Jinks, 1979; Fenster et al., 1997). As the 

generation means analysis measures net genetic effects on means while the TTC 

measures variance components, their parameters are not correlated. Thus, when the 

effects of increasing and decreasing dominant alleles are spread evenly between the 

two populations, the generation means analysis will show a zero net dominance (i.e. 

ambidirectional dominance), whereas a TTC analysis may detect significant 

dominance variance (because the variance is unaffected by the net direction of 

dominance). Alternatively, when dominance is directional rather than ambidirectional, 

the generation means analysis has the advantage of showing the direction of the 

dominance, which cannot be inferred from the variance analysis. Similarly, the 

generation means analysis may detect epistatic interactions near fixation, while the 

variance resulting from the same alleles may be very small. Either analysis taken 
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alone may produce an ambiguous indication of the genetic architecture, but together 

provide a clearer picture on the genetic architecture of the trait.  

 
2.2.1. Genetic components of sink size traits in pearl millet 

Literatures related to the study of genetic components for sink size traits panicle 

length, panicle diameter and grain size in pearl millet using generation means and 

variances approaches are reviewed below. 

 
2.2.1.1. Panicle length 

The most important transmission criterion of a trait from one generation to the next 

and for predicting the short-term response to selection is the narrow sense heritability, 

the ratio of additive variance to phenotypic variance. Hence, additive gene action is a 

crucial assumption of most models in quantitative genetics and breeding. This gene 

action indicates that the effect of an allele, or more precisely, of an allelic substitution, 

will be the same regardless of the genetic background in which it takes place. For a 

single locus case it indicates an absence of dominance and for two or more loci it 

refers to the lack of epistasis (Holland, 2001). 

Several studies reported the importance of additive gene effects in pearl millet. 

Singh and Sagar (2001) studied the gene effects of panicle length in pearl millet under 

both irrigated and rainfed environments and reported significant additive nature of 

gene effect under rainfed condition using six-parameter model. The importance of 

additive gene effect for panicle length was emphasized by Singh et al. (2000) using 

joint scaling test. Using both scaling and joint scaling tests, Joshi and Desale (1996) 

also revealed predominance of additive gene effect for this trait in all the six crosses 

studied. Findings of Mangath et al. (1994) revealed panicle length to be governed 

mainly by additive gene effects in six generations of the two crosses studied, 
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involving short and medium panicle type parental lines. The inheritance of panicle 

length studied through six-generation means analysis by Shinde and Patil (1987) also 

revealed that additive gene effects were more important than dominance and epistatic 

effects for this trait. Similar studies conducted by Singh and Singh (1972) and Singh 

et al. (1972) showed significant additive gene effects for panicle length. These reports 

were in agreement with the results of variance component approaches for 

determination of gene action of panicle length such as diallel analysis conducted by 

Izge et al. (2007), line x tester analysis by Girgla et al. (1985) and North Carolina 

Design II analysis by Sandhu and Phul (1984). 

Most researchers discount the contribution dominance plays in the genetic 

architecture of traits as it is only additive genetic variance that predicts the short-term 

response to selection (Lynch, 1994). Fuerst et al. (1997) reported that dominance 

genetic variation has been ignored in genetic evaluation systems and in many 

breeding programmes due to computational complexity and inaccurate estimations. 

Dominance variance arises due to an average difference between two alleles of a 

heterozygote, this results from the fact that heterozygotes are not exactly intermediate 

between the monozygotes. 

Significant role of dominance gene action in the inheritance of grain yield 

component traits has also been reported in pearl millet. Singh and Sagar (2001) 

reported the predominance of dominance gene action for panicle length in both 

irrigated and rainfed environment of the two crosses studied through generation 

means. Similarly, Sheoran et al. (2000) also revealed that the magnitude of 

dominance gene effect was significant over additive gene effect in a cross across two 

different locations using joint scaling test proposed by Cavalli (1952). 
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The experiment involving six generations of six crosses conducted by Gandhi 

et al. (1999) also showed significant dominant gene effects in five crosses for this 

trait. However, higher influence of partial dominance for this trait was reported by 

Gill et al. (1968). Jain et al. (1961) also observed partial dominance for panicle 

diameter in a diallel cross. 

Contrary to the above reports on the role of independent nature of gene action 

for the inheritance of panicle length, Ramamoorthy and Das (1994) and Desale (1993) 

observed the role of both additive and dominance gene effects for this trait using 

generation means analysis. 

The estimates of additive and dominance variance may allow the predictions 

of genetic advance for a particular trait (Gallais, 1993). However, it is also important 

to consider the proportion of between locus interactions (epistasis) for any trait. 

Amount and type of epistasis in crop species can have a major consequence on both 

the reliability of predictions and design of breeding programmes. Epistasis is the 

interaction of alleles at different loci. The value of an allele or genotype at one locus 

depends on the genotype at other epistatically interacting loci, complicating the 

picture of gene action. 

Presence of significant epistatic interactions for panicle length in pearl millet 

has also been emphasized in many studies. Additive x additive gene interaction for 

panicle length was noted in a cross studied by Singh et al. (2000) through the six-

parameter model. Similarly, Gandhi et al. (1999) and Shinde and Patil (1987) 

observed additive x additive interaction with duplicate epistasis for panicle length in 

various crosses through the six-parameter model proposed by Hayman (1958). 

However, Ramamoorthy and Das (1994) reported dominance x dominance with 

duplicate epistasis for this trait using generation means of various crosses studied. 
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Complementary type of epistasis was also reported by Sheoran et al. (2000) for 

panicle length. Ramamoorthi (1996) also observed similar type of epistasis for this 

trait. The significant contribution of additive x dominance interaction for panicle 

length was revealed by Singh and Singh (1972) using the generation means. 

The presence of non-allelic interaction for panicle length was reported through 

8 x 8 diallel analysis of dwarf pearl millet by Mukherji et al. (1981). Murthy et al. 

(1967b) also observed the major role of non-allelic interaction for panicle length from 

a line x tester analysis.  

 
2.2.1.2. Panicle diameter 

The generation means of parents (P1 and P2), their F1 and F2 and back cross 

populations (BC1 and BC2) of two crosses studied by Mangath et al. (1994) revealed 

additive nature of the inheritance for panicle diameter. The importance of additive 

gene effects for panicle diameter was also reported by Singh et al. (1972) in six 

generations of two crosses studied using Hayman’s (1958) approach. Similar highly 

significant additive effects for this trait was also reported by Ramamoorthi (1996) 

using the method suggested by Mather and Jinks (1972). Adequacy of additive-

dominance model for the inheritance of panicle diameter has been emphasized by 

Girgla et al. (1985) using line x tester analysis. Further, this study reported significant 

additive effects for this trait. Additive effect for this trait has also been reported by 

Mukherji et al. (1981) in a diallel analysis involving a set of 8 dwarf pearl millet 

genotypes.  Bains (1971) also reported preponderance of additive genetic variance for 

this trait through diallel analysis. Since the effect of selection depends on the amount 

of additive genetic variance and not on the genetic variance in general, Sprague 

(1967) opined that in any selection scheme, additive variance would be important 

when the commercial product retains high degree of heterozygosity and 
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heterogeneity, hence population improvements methods like recurrent selection for 

general combining ability would best exploit this type of gene effects. 

Dominance gene effects for this trait have also been reported in various 

studies. Experiments conducted in two environments by Sheoran et al. (2000) 

revealed higher magnitude of dominance gene effects for panicle diameter in both the 

environments using joint scaling test of Cavalli (1952). The estimates of dominance 

gene effects were also found to be significant and greater than additive gene effects in 

a study conducted by Gandhi et al. (1999) and Singh and Singh (1972) through 

Hayman’s (1958) six-parameter model. In a study conducted by Singh et al. (1999), 

dominance gene effect was found to be contributing maximum to the inheritance of 

panicle diameter. Analysis of six generation means by Joshi and Desale (1996) using 

both scaling and joint scaling test also revealed preponderance of dominance 

component for panicle diameter. However, partial dominance for panicle diameter 

was reported by Jindla (1981), Gupta and Nanda (1968) and Jain et al. (1961) and 

over dominance for this trait was observed by Mukherji et al. (1981), Singh et al. 

(1979) and Nanda and Phul (1974). 

 Contrary to the above reports, the importance of both additive and dominance 

gene action for this trait has also been reported.  Observations made by Singh et al. 

(2000) revealed that the three parameter model was adequate to detect the genetic 

difference for panicle diameter and reported the presence of both additive and 

dominance gene effects for this trait. Absence of epistasis for panicle diameter 

through generation means has also been reported by Sagar and Singh (1996) 

indicating the adequacy of additive - dominance model. Importance of both additive 

and dominance gene effects for inheritance of panicle diameter was also reported by 

Desale (1993). Tyagi et al. (1975) also reported the presence of both additive and 
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non-additive gene actions for panicle diameter using generation means analysis.  

 Various studies have also suggested the epistatic effects for panicle diameter. 
Complementary type of epistasis was observed by Sheoran et al. (2000) in a six 
generation experiment conducted in both rainfed and irrigated environment. Similar 
observations has been made by Singh et al. (1972) for this trait through Hayman’s 
(1958) approach. Conversely,  Gandhi et al. (1999) and Ramamoorthi (1996) reported 
the presence of duplicate dominant interaction for panicle diameter in six-generation 
means of a cross. The contribution of additive x dominance interaction was found to 
be highly significant for panicle diameter by Singh and Singh (1972) from six 
generation studied according to Hayman’s (1958) approach. Inheritance of non-
additive nature of gene action through variance analysis was accentuated by Hepziba 
et al. (1996), Balakrishnan and Das (1996), Gill et al. (1978) and Singh and Murthy 
(1973). 
2.2.1.3. Grain size  

Additive gene effects for 500-grain weight was observed by Singh et al. (2000) based 

on least square estimate of Cavalli (1952). The results of seven generations of a cross 

studied by Phul and Athwal (1969) revealed that a major portion of the variation in 

the inheritance of grain size (weight of 1000-grain mass) was due to additive gene 

effects. Inheritance of 1000-grain weight was reported to be due to additive genetic 

variance in a study by Izge et al. (2007) using a diallel analysis. Yadav et al. (1981) 

also reported additive genetic variance for the expression of 500-grain weight under 

two environments from a line x tester analysis. In the past, erosion of epistatic 

variance was considered as prime cause of increase in additive genetic variance in a 

number of empirical studies (Bryant et al., 1986; Lopez-Fanjul and Villaurede, 1989). 

However, considerations have now placed a greater importance on the dominance 

effects acting through changes in gene frequencies as the cause (Willis and Orr, 

1993). 

The role of dominance gene action for 1000-grain weight has also been 

reported in various studies. Sheoran et al. (2000) showed that 1000-grain weight was 

predominantly under dominance gene effect than additive gene effects in a study 

involving six basic generations of a cross studied under two environments (irrigated 
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and rainfed). The gene action for 1000-grain weight was observed to be 

predominantly dominant type in the six generations of four crosses studied by Shinde 

and Patil (1987). However, Shinde et al. (1984) reported overdominance for this trait 

through generation means analysis.  

On the contrary, genetic analysis of six basic generations of the three crosses 

of pearl millet studied by Gotmare and Govila (1999) indicated both additive as well 

as non-additive gene actions for 500-grain mass. Similarly, Phul and Athwal (1969) 

reported both additive and non-additive gene action for 250-grain weight. Presence of 

both additive and dominance gene effects for 1000-grain mass were also reported by 

Chand et al. (1973) in various crosses.  

Non-additive gene effects for the inheritance of grain weight were reported by 

Aher (1993) and Desale (1993). Vaidya et al. (1983) also found non-additive gene 

action though line x tester analysis for grain size, measured from weight of 400-

grains. Gupta and Nanda (1968) reported partial dominance for 1000-grain using 

diallel analysis involving six pearl millet lines. 

Sheoran et al. (2000) revealed additive x additive interaction to be highly 

significant for 1000-grain weight in the crosses studied using generation means in two 

environments. Griffing (1960) and Cockerham (1984) have shown that the additive 

epistatic variance, which contributes to the initial response to selection in an outbred 

population declines with the continued random mating if the recombinant fraction is 

greater than zero. Additive x dominance interaction for 500-grain mass was also 

observed for two crosses of six generations studied by Singh et al.  (2000). Gill et al. 

(1974) also reported similar findings for test grain weight. Presence of both additive x 

dominance and dominance x dominance type of gene actions for 1000-grain weight 
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was observed by Chand et al. (1973) in various crosses through generation means 

analysis. 

Interactions of additive x dominance type and the presence of complementary 

epistasis for grain size were indicated from studies made on six generations by Phul 

and Athwal (1969). However, Singh et al. (1972) reported duplicate epistasis for this 

trait by analyzing six generations of a cross using Hayman’s (1958) method.  Joshi 

and Desale (1996) reported non-allelic interactions to be predominant for 1000-grain 

mass from the six crosses analyzed through generation means. 

In spite of extensive analysis carried out there are still limitations that exist in 

applications. The following limitations were observed in most of the studies: (i) No 

test of adequacy of additive-dominance model has been made and it is assumed that 

non-allelic genes neither interact nor are linked. (ii) The estimation of parameters is 

correlated as unweighted analysis has been performed. In order to overcome these 

limitations, Virk (1988) suggested a weighted analysis using sufficient numbers of 

generation that will provide a chi-square (χ2) test for the adequacy of the model and 

also mentioned that the most efficient means of estimation of genetic component will 

be provided by triple test cross analysis. 

The other important factors for the accurate estimation of genetic components 

are the type and size of population under the study. According to Burr and Burr 

(1991) the choice of the population type for genetic studies has important 

consequences concerning the efficiency and utility of the genetic information. Hanson 

(1959) and Liu (1998) demonstrated that a given population size affects the power to 

estimate as well as the accuracy of the recombination frequency.  

Most of the earlier studies on generation means were made in crosses between 

less divergent elite lines which indicates that genes with decreasing and increasing 
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effects may be equally shared by both the parental strains (dispersed), so the estimate 

may be biased because the mean expression of parental and back cross generation 

depends upon the distribution of genes with increasing and deceasing effects between 

the parental strains. Mean expression thus changes with distribution of genes. 

Therefore, selecting the lines showing extreme divergence, one parental strain that 

bears all the genes with increasing effects and other line possessing all the genes with 

decreasing effects (associated) may precisely estimate the genetic effects. 

In spite of several genetic studies, specific information relating to the 

determination of ideal population size in a given generation needed to establish 

accurate genetic information have as yet been inconclusive, particularly for estimating 

the epistatic effects. Epistasis, as a phenomenon amenable to statistical analysis of 

segregating trait loci, can be difficult to detect. Consider the simple case of an inbred 

line with backcross population of 100 individuals, where two alleles are segregating at 

each locus. On average, only 25 lines will display the phenotype induced by a one-

way epistatic interaction between these two loci. If the phenotype was wholly 

determined by this interaction, then such sample size might be satisfactory. In 

practice, however, complex traits are influenced by many genetic and non-genetic 

factors, so a starting sample of 100 is usually too small for obtaining robust and 

compelling epistatic interactions. For example, in a backcross, every additional gene 

contributing to an interaction effect could potentially reduce the number of lines with 

epistatic phenotype by 50% (Frankel and Schork, 1996). However, for the 

backcrosses and F2 populations, Ferreira et al. (2006) reported a total of 200 as being 

sufficient from a simulation study with population sizes of 50, 100, 150, 200, 500 and 

1000 individuals. In pearl millet, few studies on generation mean analysis have 

adopted the population size of more than 200 individuals for segregating populations. 
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The optimization of population size is extremely important for optimizing time and 

costs associated with genetic analysis allowing breeding programs to obtain improved 

lines in selection process with the maximum efficiency. Keeping these views, present 

study utilizes the highly contrasting parental lines and also aims to optimize the 

population size required for the precise genetic estimates of pearl millet sink size 

component traits. 

Though genetic variance approach like diallel and line x tester are commonly 

employed to study the genetic components, Baker (1978) pointed out that these 

approaches have not been more informative, probably because of the assumptions of 

independently distributed genes and the absence of epistasis in the analysis, which are 

frequently not true. The other disadvantage noted is that the analysis is performed on 

univariate data. Diallel variance approach has also been frequently used in pearl millet 

genetic analysis of various characters. However, Virk (1988) reported that the 

estimates obtained from diallel cross in pearl millet suffer from the following 

limitations: (a) the estimates are biased by the presence of non-allelic interactions (b) 

the standard errors are approximately computed (c) the estimate are correlated (d) the 

environmental components of Vr and Wr have not been accounted and (e) the 

formulae of full-diallel cross have been mostly used even for half-diallel crosses.  

In general, Lamkey and Lee (1993) reported that studies estimating epistatic 

effect using analysis of variance approach reported non-significant epistatic variance, 

whereas generation means approach reported significant effects. Though, statistically 

there is more power to detect epistasis using generation means analysis than by using 

the analysis of variance approach, the inability to detect epistasis with both the 

methods cannot be taken as an evidence for the absence of epistasis because of the 

canceling of epistatic effects among the loci. To test the presence of epistasis, various 
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other powerful methods are needed such as triple test cross analysis, widely used to 

test the presence of epistatic variation. 

 

2.2.2 Triple test cross analysis 

Triple test cross (TTC), a multiple mating design which is an extension of the NCD 

III design of Comstock and Robinson (1952) proposed by Kearsey and Jinks (1968), 

is the best design currently available for detecting the presence of non-allelic 

interactions, and for estimating the additive and dominance effects with equal 

efficiency when epistasis is absent (Pooni et al., 1980). It can be applied to any 

population regardless of its gene and genotypic frequencies or its degree of inbreeding 

(Jinks et al., 1969; Perkins and Jinks, 1970). In pearl millet, only few studies has been 

attempted to estimate the genetic components using TTC analysis, which are reviewed 

here along with the studies on the relative efficiency of TTC over generation means 

and other variance approaches. 

Simplified triple test cross of 18 pearl millet lines studied by Singh et al. 

(1990a) showed significant epistatic, additive and dominance components of genetic 

variation for various traits studied. The additive component was noted as more 

important than the dominance component for panicle length and panicle diameter. 

 Singh et al. (1991) applied TTC for the genetic analysis of physiological traits 

in pearl millet. Significant epistasis was observed for various traits studied and 

additive and dominance components of genetic variance were found to be significant 

for all traits except peduncle length. 

Kearsey et al. (2003) examined the genetic control of 22 quantitative traits, in 

basic generations (parents, F1's, F2's, backcrosses), recombinant inbred lines (RILs) 

and a triple test cross (TTC) of Arabidopsis thaliana. The study revealed a good 

agreement between the basic generations, RILs and the TTC families. QTL analyses 
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were also consistent with the biometrical approach in many respects. However, 

significant inconsistencies were also reported. 

The results of a study comparing the efficiency of TTC and generation means 

analysis of faba bean crosses in their ability to detect genetic components by Bakheit 

et al. (2002) revealed the relative importance of additive and dominance components 

in both the approaches for most of the traits studied. However, larger magnitude of 

additive effects compared to dominance effects were observed in the triple test cross 

analysis than the additive effects in the ‘six-population’ analysis. Hence, it was 

reported that the triple test cross analysis is expected to provide more reliable estimate 

of additive and dominance components even if epistasis is present as compared to 

model fitting analysis. Kearsey et al. (1987) also reported a complete agreement 

between the findings of triple test cross and generation means analyses conducted to 

study the inheritance of heading date and dry matter production in Lolium perenne. 

Similar conclusions were also reported by Chaudhary (1997) in Vigna angularis, 

Pooni et al. (1978) in Nicotiana and Chahal and Singh (1974) in Gossypium. 

Nanda et al. (1990) reported TTC and model fitting (generation means) 

analysis to be in agreement with each other in the detection of genetic components of 

various quantitative traits while studying the 120 TTC families and six basic 

generations arising from two bread wheat crosses. Similar results were reported by 

Thomas and Tapsell (1983) and Tapsell and Thomas (1983) while studying the 

genetical and environmental control of quantitative traits in five crosses of spring 

barley using both TTC and model fitting analysis. 

Singh et al. (1986) compared the relative efficiency of diallel, partial diallel 

and TTC designs for understanding the genetic architecture of quantitative traits in 

spring wheat. The result revealed that in the absence of epistasis, all the three designs 
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gave similar genetic information. However, TTC appeared useful in deriving genetic 

information about the presence of epistasis and magnitude of additive and dominance 

components of genetic variation. 

The relative efficiency of generation means and North Carolina design III 

(TTC is an extension of NCD III design) was compared by Kearsey (1980) and the 

considerable advantages of the NCD III design was emphasized in the study. It was 

shown that in the six-generation design, generations should ideally be replicated in 

proportion to the total variation of each generation while in the NCD III, one should 

sample a minimum of only 20 F2 plants. 

Ponni and Jinks (1976) compared the efficiency and optimal size of TTC and 

two of its associate designs (Jinks et al., 1969; Jinks and Perkins, 1970) for their 

theoretical and practical efficiency in detecting epistatic variation in Nicotiana 

rustica. The results showed that the theoretical efficiencies do not differ much among 

the designs and the optimal sizes required by them to detect non-allelic interactions 

significantly are largely impractical except when the dominance and heritability are 

high and the degree of association is 50% or more. All the tests require much smaller 

experiment to detect duplicate epistasis than complementary epistasis. It was 

suggested to plan an experiment for the detection of complementary epistasis as this 

will be adequate to also detect duplicate epistasis, if present. 

 

2.2.3. Heritability estimates for sink size traits  

Heritability (degree of genetic determination) is an expression of the extent to which 

the genotype of an individual determines its phenotype. The phenotype of an 

individual is the sum of effects of its genotype, environment in which it grows, and 

genotype x environment interactions. Heritability in broad-sense reflects all possible 
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genetic contributions to a population's phenotypic variance, and it includes gene 

effects due to allelic variation (additive variance), dominance variation or which act 

epistatically. Broad-sense heritability is of little practical importance to plant breeders. 

Narrow-sense heritability often simply referred to as heritability, is an expression of 

the reliability with which phenotypic value guides to the breeding value. Narrow-

sense heritability is the breeder’s best estimate of breeding value and represents the 

portion of phenotypic variation, which behaves as if it arose from additive effects.  

The literatures reviewed here are corresponds to estimate of heritability in 

broad-sense. Lakshmana and Guggari (2001) studied 32 white grain pearl millet 

genotypes and reported high heritability for panicle length. High heritability estimates 

for this trait was also reported by Hepziba et al. (1993), Vyas and Srikant (1986) and 

Shinde et al. (1984). Singh et al. (1979) showed that selection for yield per plant 

should be based on panicle length, which showed high heritability. Madhava et al. 

(1971) also reported high estimates of heritability for this trait. 

High heritability for both panicle length and panicle diameter was reported by 

Varu et al. (2005). Rama et al. (1986) reported high estimates of heritability for 

panicle diameter.  

For 1000-grain weight, Borkhataria et al. (2005) reported high heritability 

estimates. Solanki et al. (2002) also revealed high heritability for this trait in three 

pearl millet composites (EC 87, EC 91 and HHVBC). On the contrary, Sachan 

and Singh (2001) observed moderate heritability for 1000-grain weight. Pathak and 

Ahmad (1988) reported high heritability estimate for 100-grain weight and 1000-grain 

weight, respectively. Kunjir and Patil (1986) reported high heritability for 500-grain 

weight. Chaudhary et al. (1980) analysed the six basic generations of three crosses 
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derived from four diverse pearl millet inbreds and found that heritability estimate for 

1000-grain weight was more than 60%.  

High heritability estimates for all three sink component traits panicle length, 

panicle diameter and 100-grain weight were reported by Gupta et al. (1988) while 

evaluating seventy-two S3 progeny lines and 144 S4 progeny lines under two spacing, 

60 cm and 30 cm between rows. 

 

2.2.4. Correlation studies 

The improvement of one character by selection frequently causes simultaneous 

changes in other characters. The effect is the result of correlations between characters, 

which may be genetic or environmental in nature. Genetic correlations arise from 

pleiotropy, from linkages between loci controlling the characters or from random 

genetic drift. According to Falconer (1989), pleiotropy is the chief cause of genetic 

correlations, while Mather and Jinks (1982) have argued that linkage is the more 

likely explanation. If the correlation is heritable, i.e. additive, then the correlated 

response may be predicted from an early generation. The response is measured by the 

change in the mean of the distribution of lines for the correlated character compared 

with the distribution of lines derived without any selection. Literature on correlation 

studies for grain yield and its component traits in pearl millet is reviewed here. 

Positive significant association of sink size component traits panicle length, 

panicle diameter and test grain weight with grain yield was reported by Salunke et al. 

(2006), Unnikrishnan et al. (2004), Kumar et al. (2002), Anarase and Ugale (2001), 

Poongodi and Palaniswamy (1995), and Mukherji et al. (1981). 

Vidyadhar et al. (2007) showed significant positive correlation of both panicle 

length and panicle diameter with grain yield. Similar positive associations were also 

reported by Thangasamy and Gomathinayagam (2003) and Satish (2002). It was 
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suggested that selection should be based on panicle length and panicle diameter for 

the development of high-yielding lines in pearl millet. Positive significant association 

of panicle length and test grain weight was reported by Chikurte et al. (2003) and 

Yoshida et al. (1999). However, under terminal water stress conditions, Patil 

and Jadeja (2006) reported that grain yield per plant was negatively correlated with 

panicle length and panicle diameter but positively and significantly associated with 

grain weight.  

Borkhataria et al. (2005) reported highly significant and positive correlation 

for panicle diameter, 1000-grain weight with grain yield in 22 hybrids of pearl millet, 

indicating the major role of these traits in controlling grain yield. Similar positive 

association was also reported by Kulkarni et al. (2000) and Harer and Karad (1999). 

Conversely, Borole and Patil (1991) reported negative association of panicle diameter 

and 500-grain weight with grain yield. However, the association was positive with 

panicle length. 

Varu et al. (2005) and Yadav et al. (2001) emphasized that selection for 

panicle length may result in grain yield improvements in pearl millet due to their high 

significant positive correlations with grain yield. Navale et al. (1999) reported that 

panicle diameter had highest positive correlation with grain yield. Singh and 

Sabharwal (2003) and Singh and Govila (1989) reported a significant and positive 

association of 1000-grain weight with grain yield. Navale et al. (2000) also showed 

that 500-grain weight was positively correlated with grain yield. 

Positive and significant correlation of panicle length with plant height; panicle 

diameter with plant height and 1000-grain weight was reported by Poongodi and 

Palaniswamy (1995). Positive and significant correlation between panicle diameter 

and 500-grain weight was also observed by Borole and Patil (1991). However, Kunjir 
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and Patil (1986) reported negative correlation of panicle length, panicle diameter and 

500-grain weight with tillers per plant. 

From the literature cited above on the correlation of yield component traits 

with grain yield, it could be inferred that panicle length, panicle diameter and grain 

size are very important target traits to realize potential grain yield in pearl millet. 

 

2.3. QTL studies 

2.3.1. QTL analysis overview 

Characters exhibiting continuous variation are termed quantitative traits. Quantitative 

traits show continuous phenotypic variation in a population resulting from the 

combined allelic effects of many genes and environmental conditions and their 

interactions (Falconer and Mackay, 1996). In crop plants, most traits of agricultural 

and economical significance exhibit quantitative inheritance. These include grain and 

biomass yield, plant maturity, disease resistance and stress tolerance. The genetic loci, 

which control quantitative traits, are referred to as QTLs (quantitative trait loci). 

QTLs are identified by statistical analysis of complex traits that are typically affected 

by more than one gene and often by environment. The earliest documented 

experiments on linkage analysis between quantitative effects and marker genotypes 

have been reported by Sax (1923) who noted that seed size in bean, a complex trait, 

was associated with seed coat color, a simple, monogenically-controlled trait.  New 

interest was generated when studies with maize and tomatoes demonstrated that some 

markers explained much of the phenotypic variance of complex characters (Tanksley, 

1993). As a consequence, vigorous research on QTL mapping for quantitative traits 

was initiated in many crop species (Lee, 1996). With the development of 

comprehensive DNA marker maps (Tanksley et al., 1992; Causse et al., 1994), it is 

now possible to search for QTL throughout the genomes of most species. Genetic 
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linkage maps assist in understanding the inheritance of complex traits and to improve 

them through marker-assisted breeding. In addition to marker-assisted selection 

(MAS), flanking markers of a trait on a genetic map can be used to determine the 

position on a physical map to clone and characterize genes controlling trait variation 

(Lagudah et al., 2001). 

  
2.3.2. Types of molecular markers  

The investigation of genomic structure and gene dynamics is facilitated by the use of 

polymorphic molecular markers in coding and non-coding regions to detect sequence 

variation between individuals. The usefulness of a particular marker system in 

providing linkage information is dependent upon the degree of polymorphism and the 

mode of inheritance of alleles (presence/absence or co-dominance). The types of 

molecular marker techniques used are either based on hybridization or polymerase 

chain reaction (PCR) methods. Hybridization-based techniques detect restriction 

fragment length polymorphisms (RFLP) and Diversity Array Technology (DArTTM) 

polymorphisms. Whereas random amplified polymorphic DNA (RAPD), sequence 

tagged sites (STS), amplified fragment length polymorphisms (AFLP) and 

microsatellites or simple sequence repeats (SSR) are detected by using the polymerase 

chain reaction (PCR), as is the more recently developed marker system single 

nucleotide polymorphism (SNP), which can maximally detect and exploit variation 

between any two individuals of a given species.  

 

2.3.2.1. RFLP, AFLP and STS markers  

The development of restriction fragment length polymorphism (RFLP) markers 

revolutionized plant genome mapping, offering a new source of virtually unlimited 

co-dominant markers with extensive genome coverage (Beckmann and Soller, 1983). 
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Among the various molecular markers developed, RFLPs were developed first and 

initially used for human genome mapping (Botstein et al., 1980). Later, they were 

adopted for plant genome mapping (Weber and Helentjaris, 1989).  

In pearl millet, RFLP markers were utilized in the development of first genetic 

map (Liu et al., 1994). RFLP-based maps of pearl millet were used to map QTL for 

resistance to downy mildew (Jones et al., 1995, 2002); rust and pyricularia leaf blast 

(Morgan et al., 1998); tolerance to drought (Yadav et al., 2002, 2004; Bidinger et al., 

2007); components of grain and stover yield and quality (Hash et al., 2001, 2003; 

Yadav et al., 2003) and for characteristics involved in domestication (Poncet et al., 

2000, 2002). RFLP markers also allowed improving the understanding of complex 

relationships between pearl millet genome and those of other cultivated graminaceous 

species (Devos and Gale, 1997; Devos et al., 2000). RFLP maps have also been 

developed for a number of species like maize (Helentjaris et al., 1986, Helentjaris 

1987), tomato (Bernatzky and Tanksley 1986, Helentjaris et al., 1986, Zamir and 

Tanksley 1988), lettuce (Landry et al., 1987), rice (McCouch et al., 1988), pepper 

(Tanksley et al., 1988), Arabidopsis (Chang et al., 1988), rye (Börner and Korzun, 

1998; Korzun et al., 2001), barley (Graner et al., 1991; Heun et al., 1991) and peanut 

(Halward et al., 1992).  

Amplified fragment length polymorphisms (AFLPs) produced a source of 

PCR-based markers with the potential to rapidly saturate genetic maps.  In pearl 

millet, AFLP markers have been used for the saturation of maps (Hash and Bramel-

Cox, 2000). Faure et al. (2002) fine-mapped a downy mildew resistance gene in pearl 

millet using AFLP markers. The high efficiency, reproducibility and reliability of 

AFLP have been mentioned in a number of recent publications, leading to 

recommendation of their use for the analysis of genetic linkage and gene mapping. 
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AFLP markers have been used to construct maps for barley (Becker et al., 1995; 

Waugh et al., 1997; Qi et al., 1998), sugar beet (Schondelmaier et al., 1996), soybean 

(Keim et al., 1997), petunia (Gerats et al., 1995), rice (Maheswaran et al., 1997), 

wheat (Lotti et al., 1998) and tomato (Haanstra et al., 1999). 

 Although the RFLP and AFLP techniques are powerful and reliable in 

identifying markers closely linked to genes of interest, they had some disadvantages 

for use in MAS and map-based cloning (Rafalski and Tingey, 1993). Limitations to 

the large-scale, locus-specific application of RFLPs and AFLPs include the intensity 

of labour involved and the high costs. Hence, conversion of these markers into 

sequence-specific polymerase chain reaction (PCR) markers is required for screening 

large breeding populations at low costs (Dussle et al., 2002). The conversion of linked 

markers to sequence tagged sites (STS) overcomes problems associated with RFLPs 

and AFLPs. STS is a short, unique sequence that identifies a specific locus and can be 

amplified by PCR. They are obtained by sequencing terminal regions of genomic 

fragments and cDNAs expressing RFLP. Since they are based on a specific sequence, 

STS markers more reliably detect the same locus. There are several instances where 

RFLP and AFLP markers have been converted to STS markers for use in genetic 

mapping (Paran and Michelmore, 1993; Schachermayr et al., 1997; Feuillet et al., 

1995; Dedryver et al., 1996; Talbert et al., 1996; Blair and McCouch, 1997; Huang et 

al., 1997; Paltridge et al., 1998; Toojinda et al., 1998; Mohler et al., 2001). This 

marker system can hence be best utilized in pearl millet for both mapping studies and 

MAS, provided polymorphism detected is adequate (Hash and Bramel-Cox, 2000). 

 

2.3.2.2. Microsatellites 

Simple sequence repeats (SSR) also known as microsatellites, are a PCR-based 

marker system that remains the choice for most marker-assisted breeding applications  
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(Qi et al., 2004). Microsatellites are abundant in eukaryotic genomes. They are 

present in both coding and non-coding regions, and are usually characterized by high 

levels of polymorphism (Tautz 1989; Akkaya et al., 1992; Morgante and Olivieri 

1993; Wu and Tanksley 1993; Roder et al., 1995; Bryan et al., 1997; Zane et al., 

2002). Their abundance, co-dominant nature and high level of variability make them a 

suitable assay for detecting variations in a given population (Lagercrantz et al., 1993; 

Schug et al., 1997; Harr et al., 1998)  

The flanking sequences of SSRs are often unique, allowing primers to be 

designed that result in sequence tagged microsatellite (STMS) markers representing a 

single locus. The majority of the allelic variation of SSRs are thought to arise as a 

result of slip strand mis-pairing (SSM). SSM involves denaturing and displacement of 

strands of DNA duplex followed by mis-pairing of complementary bases at the site of 

an existing tandem repeat. When followed by replication or repair, this can lead to 

insertions or deletions of one or several of the short repeat units (Levinson and 

Gutman, 1987). Unequal crossing over can also generate tandem duplications in 

DNA, as well as insertion or deletion events in the sequence that flank the SSR region 

(Grimaldi and Crouau-Ray, 1997). All of these mechanisms can potentially generate 

allelic variation, providing an important source of highly polymorphic markers. This 

variation is detected by PCR amplification using primers complimentary to the 

flanking sequences. SSRs as a marker system have been shown to be highly 

reproducible between laboratories (Jones et al., 1997).  

The first report of microsatellites in plants was made by Condit and Hubbel 

(1991), suggesting their abundance in plant systems. Later, Akkaya et al. (1992) 

reported SSRs polymorphisms in soybean, which opened a new source of PCR-based 

molecular markers for other plant genomes. It has been demonstrated that 
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microsatellites are highly informative and locus-specific markers in many species 

(Song et al., 2002; Röder et al., 1998).  

 In pearl millet, bacterial artificial chromosome (BAC) library was initially 

utilized for the development of SSR markers (Allouis et al., 2001 and Qi et al., 2001). 

Utilizing SSRs as additional new sets of markers, Qi et al. (2004) presented an 

integrated genetic map in pearl millet. Further, SSRs based on pearl millet expressed 

sequence tags (ESTs) have also been developed (Senthilvel et al., 2004). These 

markers provide the base for genomic and comparative analyses of pearl millet and 

application of MAS in breeding programmes. 

Although microsatellites are reported to be highly informative and reproducible, 

co-dominant and locus specific (Powell et al., 1996), they have also several 

drawbacks, including the high cost and length of time required for their development. 

These are caused by the need to be isolated de novo from most species being 

examined for the first time (Zane et al., 2002). Although the initial cost may be 

significant, once developed the cost of implementing these markers is greatly reduced. 

In addition, they are easily transferable between laboratories as the sequence 

information can be distributed, allowing other research groups to generate their own 

primers.  

 

2.3.2.3. Single Nucleotide Polymorphism  

The primary candidate for the next (and perhaps final) generation of molecular marker 

is the single nucleotide polymorphism (SNP).  A SNP consists of a single base 

difference between two individuals within a given segment of DNA (Koebner and 

Summers, 2003). SNPs and insertion-deletions, which are the basis of most 

differences between alleles, provide an essentially inexhaustible source of 

polymorphic markers for use in the high resolution genetic mapping of traits, and for 
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association studies that are based on candidate genes or possibly whole genomes 

(Rafalski, 2002). SNP is the most common class of polymorphism within different 

plant, animal and microbe species. In maize (Zea mays), it is reported that the 

frequency of nucleotide change among varieties is high, at around one polymorphism 

per 31 bp in non-coding regions and one polymorphism per 124 bp in coding regions. 

Indels are also frequent in non-coding regions (one per 85 bp), but rare in coding 

regions (Ching et al., 2002). SNP frequencies in more conserved crop species, such as 

highly self-pollinated groundnut and chickpea may be much lower (Bryan et al., 

1999). 

In pearl millet, SNP markers based on single-strand conformational 

polymorphism were developed using annoted rice genomic sequence tags to identify 

the intron-exon borders in millet expressed sequence tags (Bertin et al., 2005). The 

rates of polymorphism were low but useable, with a mean PIC of 0.49 relative to 0.72 

for SSRs when tested on an eight genotype panel of pearl millet inbred lines (Bertin et 

al., 2005). However, the SSCP-SNP marker system has lower development costs than 

simple sequence repeats (SSRs), because much of the work is done in silico, and 

markers have similar deployment costs and throughput potential. The major 

advantage of the system is in comparative applications. Syntenic information can be 

used to target SSCP-SNP markers to specific chromosomal regions or, conversely, 

SSCP-SNP markers can be used to unravel detailed syntenic relationships in specific 

parts of the genome. Feltus et al. (2006) used a similar approach to develop conserved 

intron spanning primer (CISP) markers that detect syntenic polymorphic regions 

across monocots. These primers were designed from conserved introns flanking 

conserved (but polymorphic) exons - based upon in silico comparisons of sorghum 
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EST sequences with their rice genome sequence homologues. Polymorphic CISP 

markers include both SNPs and indels.  

The detection of single nucleotide polymorphisms (SNP) can be achieved by a 

number of techniques such as electrophoretic separation of PCR products, MALDI-

ToF mass spectroscopy and microarray  (Langridge et al., 2001; Gupta et al., 2001). 

However, a dominant SNP detection technology has not emerged so far. Direct 

sequencing of DNA segments from several individuals is the most direct way to 

identify SNP polymorphisms (Gaut and Clegg, 1993). However, the cost involved for 

direct sequencing has been a major limitation.  As the prices of DNA sequencing and 

SNP assays drop, the argument for SNPs will become more compelling. A recent 

report states that the average cost of SNP genotyping has been reduced from 

approximately US$ 1.00 to US$ 0.10 per assay, but that a further reduction to US$ 

0.01 per assay will be required before wide-scale usage of the technology becomes 

feasible (Roses, 2002). A rapid and simple method to reliably identify and score SNPs 

in DNA samples was recently developed by employing DHPLC technology (Oefner 

and Underhill, 1998; Bäümler et al., 2003a). Schwarz et al. (2003) reported that the 

cost-effective and high-throughput DHPLC genotyping technique is particularly 

suitable for routine diagnosis of SNPs in homologous HMW glutenin gene sequences. 

This technique showed it’s superiority, even compared to CAPS marker analysis. 

Automated sample feeding allows analysis of up to 200 isolates per day (Bäumler et 

al., 2003b).  

Koebner and Summers (2003) mentioned the merits of SNPs as: (i) they offer 

the potential for a high density of markers; the relevance of this to MAS is that it 

should be possible to find an informative marker in the right region in any segregating 

situation, even if the probability of finding polymorphism at any one SNP locus is 
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low; and (ii) SNP output is of the binary type and this presents an easier target for 

automated data interpretation than length-based outputs that are typical of sequence 

tagged microsatellites (STMS or SSR). In addition such data need not be generated by 

electrophoresis, giving the potential for simpler and cheaper analytical platforms. 

 

2.3.3. Mapping populations 

Populations used for mapping are usually derived from F1 hybrids between two lines 

(either homozygous or heterozygous), which show allelic differences for selected 

markers. Genetic maps of plants are constructed based on several different kinds of 

populations (Paterson, 2002), with each population structure having unique strengths 

and weaknesses. Four types of population are commonly used for map construction 

and mapping experiment, they are F2 population, back cross population (BC), doubled 

haploid (DH) population, and recombinant inbred lines (RILs). Most genetic mapping 

populations in plants have been derived from crosses between largely homozygous 

parents. The present study employs both an F2 population and the plant version of the 

daughter design made by replacing the phenotypic value of an F2 plant by the mean of 

its F3 progeny, called the F2:3 progeny population (Austin and Lee, 1996; Fisch et 

al.,1996). 

The F2 mapping populations can be quickly developed and they harbor all 

possible combinations of parental alleles (Lander et al., 1987). However, each F2 

individual has a different genotype and no replication or experimental design can be 

employed to effectively control environmental influence. So for the inheritance of 

quantitative traits with low heritability the precision of QTL mapping is relatively 

low. To solve these problems, one can take family means as the unit of phenotypic 

measurement (Mather and Jinks, 1982; Paterson, 1997; Lynch and Walsh, 1998; 

Zhang et al., 2003; Zhang and Xu, 2004). This is an F2:3 design in plant genetics 
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(Austin and Lee, 1996; Cockerham and Zeng, 1996; Fisch et al., 1996; Jiang and 

Zeng, 1997; Chapman et al., 2003; Zhang and Xu, 2004; Kao, 2006) and daughter or 

grand daughter design in animal genetics (Weller et al., 1990). These designs are 

frequently used in mapping QTLs in both the plant and animal kingdoms. This is 

because the family mean-based heritability can be significantly increased by 

increasing the number of replicates used in phenotyping the progeny. In the data 

analysis, the method for the F2:3 design is adopted by simply replacing the F2 

phenotype by the average value of the F2:3 progeny (Zhang et al., 2003). A major 

disadvantage of the F2 population is that the data of marker genotypes cannot be 

repeatedly used. 

In pearl millet, several F2:3 and F2:4 mapping populations have been developed 

from diverse inbred lines of Asian, American and African origin (Hash et al., 2002). 

Some of the widely utilized mapping populations for linkage map construction and 

QTL mapping studies in pearl millet are detailed here. 

A population consisting of 133 F2 individuals was developed from a cross of 

LGD-1-B-10 and ICMP 85410 by Liu et al. (1994). LGD-1-B-10 is a downy mildew-

susceptible, extra-early, inbred segregant of (B 70 × Tift 756)-1-4-5 based on 

germplasm from Togo and India. ICMP 85410 is a downy mildew-resistant, dwarf, 

restorer, inbred segregant of (ICP 165 × ICP 220)-64 based on germplasm from 

Uganda, Mali and Nigeria. This population was utilized for construction of the initial 

RFLP-based genetic map of pearl millet (Liu et al., 1994), and for QTL mapping of 

downy mildew resistance (Jones et al., 1995). It was subsequently used by Devos et 

al. (2000) for comparative mapping of pearl millet with foxtail millet and rice. 

Poncet et al. (2000) developed a population consisting of 250 F2 individuals 

from a cultivated × wild F1 hybrid. The wild parent, Pennisetum glaucum ssp. 



 49

monodii, form mollissimum, referred to as 'Molli', is a S4 line generated from a natural 

wild population collected near Gao in Mali. The cultivated parent, P. glaucum ssp. 

glaucum cv. 'Souna', is an early-flowering landrace from Mali where sympatry with 

wild forms still occurs. This population was used to understand the genetic control of 

domestication traits in pearl millet. 

Yadav et al. (2002) developed a population consisting of 150 F2 individuals 

from a cross of two early-maturing inbred lines, H 77/833-2 and PRLT 2/89-33. H 

77/833-2 (H77) is the male parent of a number of thermotolerant, extra-early, high-

tillering and high-yielding pearl millet hybrids including HHB 67 (843A × H 77/833-

2), which is widely cultivated in north-western India. PRLT 2/89-33 (PRLT) is an 

inbred line derived from the ICRISAT’s Bold-Seeded Early Composite (BSEC). 

BSEC is an elite breeding population based predominantly on Iniadi landrace 

germplasm from West Africa. QTLs associated with drought tolerance were identified 

using this population (Yadav et al., 2002), along with genotype × environment 

interactions for grain and stover yield components in non-stress conditions (Yadav et 

al., 2003). 

A population consisting of 168 F2 individuals was developed from a cultivated 

× wild F1 hybrid by Poncet et al. (2002), which was used to identify QTLs affecting 

domestication traits. The wild parent was an individual from a population of the wild 

subspecies, P. glaucum ssp. monodii. The cultivated parent, Thiotande, was an S2 

inbred line selected from a Senegalese cultivar, which is cultivated during the off-

season, i.e. in a situation where no gene flow between the wild forms and this 

domesticated line occurs. 

For identification of genomic regions associated with drought tolerance Yadav 

et al. (2004) developed a population consisting of 151 F2 individuals from a cross of 
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two agronomically elite inbred seed parents, ICMB 841 and 863B. The two parents 

are known to produce hybrids that distinctly differ in their response to post-flowering 

drought stress. Parent 863B was bred from Iniadi landrace material from Togo and 

was selected for this study based on its combination of agronomic eliteness and 

superior combining ability for grain filling under terminal drought stress conditions. 

Parent ICMB 841 (Singh et al., 1990b) is the maintainer of the female parent of 

several high yielding hybrids (Govila et al., 1997), but it lacks tolerance to terminal 

drought stress. 

 
2.3.4. Linkage maps 

Construction of a genetic linkage map is based on observed recombination between 

marker loci in the experimental cross. Segregating families, e.g. F2 populations or BC 

progenies, DHs populations or RILs lines, are commonly used. Genetic map distances 

are based on recombination fractions between loci. Several computer packages are 

presently available for genetic linkage mapping but the most widely used are 

MAPMAKER/EXP (Lander et al., 1987), JoinMap (Stam, 1993), GMENDEL (Echt 

et al., 1992) and Map Manager QTX (Manly et al., 2001).  

Markers are assigned to linkage groups using the odds ratios, which refers to 

the ratio of the probability that two loci are linked with a given recombination value 

over a probability that the two are not linked. This ratio is called a logarithm of odds 

(LOD) value or LOD score (Risch, 1992; Stam, 1993). The critical LOD score used to 

establish linkage groups is 3.0. A LOD value of 3.0 between two markers indicates 

that linkage is 1000 times (i.e., 103) more likely than no linkage (Stam, 1993). Higher 

critical LOD values will result in greater numbers of fragmented linkage groups, each 

with a small number of markers, while lower critical LOD values will tend to create 

fewer linkage groups each with large numbers of markers per group. Two markers are 
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placed in distinct linkage groups if they are not linked to any member of the other 

group. At any stage in the calculation, there is a group of markers, which have been 

assigned to a linkage group and a group of free markers that have not yet been 

assigned. Various options (e.g., changing the parameters of analyses, excluding loci or 

individuals, generation of additional marker data for linkage groups with small 

numbers of markers, etc.) can be tested until researchers establish satisfactory linkage 

groups. Ideally one would like to arrive at a number of linkage groups that is the same 

as the haploid chromosome number of the species under study. For calculating map 

distances and determining locus order, the researchers need to specify several 

parameters, including a recombination threshold value and mapping function. The 

Haldane (1919) or Kosambi (1944) mapping functions are commonly used for 

converting the recombination fractions to map units or centiMorgans (cM). The 

Haldane mapping function takes into account the occurrence of multiple crossovers 

but the Kosambi mapping function accounts also for interference, which is the 

phenomenon of one cross-over inhibiting the formation of another in its neighborhood 

(Ott, 1985).  

Vision et al. (2000) proposed two experimental phases in the construction of a 

high-density genetic map. The first is to construct a high-confidence framework and 

the second is to add new markers to this framework. This two-phased strategy allows 

many markers to be placed on a well-measured map with a minimum of genotyping 

and avoids the loss in map resolution that would result from arbitrarily shrinking 

mapping population size.   

In pearl millet, the first molecular marker-based genetic map was generated by 

Liu et al. (1994) using 181 RFLP markers. The total length of this map, which 

comprised seven linkage groups, was 303 cM (Kosambi function) and the average 
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map distance between loci was about 2 cM, This initial map was transferred to several 

additional crosses (Busso et al., 1995; Liu et al., 1996) in studies of sex specific 

recombination rates. Further, this map has been used for high saturation marker 

genotyping using AFLP marker, additional homologus probes from pearl millet and 

heterologous probes from other grasses. This work has been extended to the total 

pearl millet genetic linkage map length to approximately 600 cM (Devos and Gale, 

1997). 

Devos et al. (2000) developed a linkage map consisting of 242 markers 

including RFLP and SSR markers covering 473 cM (Haldane function) across seven 

linkage groups with an average distance between loci of about 1.95 cM. This linkage 

map was derived from genotyping a mapping population of 133 F2 individuals of a 

cross involving LGD-1-B-10 and ICMP 85410, originally used by Liu et al. (1994) to 

generate the base map for this species.  

Poncet et al. (2000) constructed a linkage map of 32 RFLP markers 

comprising seven linkage groups and covering 171.6 cM (Haldane function) in a 

population of 250 F2 individuals developed from single F1 plant of a cultivated × wild 

pearl millet hybrid. 

Poncet et al. (2002) used a 168 individual F2 population developed from a 

cultivated × wild hybrid to construct a linkage map of 22 RFLP markers comprising 

seven linkage groups and covering 176.9 cM (Haldane function). 

A linkage map consisting of 50 RFLP markers comprising seven linkage 

groups and covering 352 cM (Haldane function) with an average map distance 

between loci of about 7 cM was developed by Yadav et al. (2002) using 150 F2 

individuals derived from a cross of two early-maturing inbred lines, H 77/833-2 and 

PRLT 2/89-33. 
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Azhaguvel et al. (2003) developed a skeleton genetic linkage map of 562 cM 

(Haldane function), comprising the seven expected pearl millet linkage groups. This 

map was constructed for an F2:3 mapping population of the cross IP 18293 × Tift 

238D1 using 33 homologous RFLP markers and three morphological markers.  

 Yadav et al. (2004) developed a linkage map based on the cross of two 

agronomically elite inbred, ICMB 841 and 863B. This map consisted of 91 markers 

covering 476 cM (Haldane function) across seven linkage groups with an average 

map distance between loci of about 5.2 cM. 

Qi et al. (2004) presented a consensus genetic map based on mapping data 

from four pearl millet F2 populations, comprising 65 SSR, 220 homologous RFLP and 

133 heterologous RFLP markers. These maps and markers provide the base for the 

QTL and comparative analysis of pearl millet and applications of MAS in breeding 

programmes. 

 

2.3.5. QTL analysis methods  

The principle of QTL mapping is to associate the phenotypically evaluated trait(s) 

with segregating molecular marker alleles using statistical tools. The map locations of 

QTLs can then be estimated by means of highly associated markers. QTL analysis can 

lead to the elucidation of QTL parameters in terms of number, position, effects and 

interactions between them. Association of morphological markers with quantitative 

traits in plants was observed early on (Sax, 1923; Everson and Schaller, 1955) and the 

first steps towards mapping of QTLs or polygenes were taken based on the scarce 

markers available (Thoday, 1961). Currently, relatively complete genetical maps exist 

for many crop species and algorithms have been developed for QTL mapping in a 

wide range of pedigrees (Paterson, 1995).   

A number of methods for mapping QTLs and estimating their effects have 
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been suggested and investigated (Edwards et al., 1987; Haley and Knott, 1992; Jiang 

and Zeng, 1995; Lander and Botstein, 1989; Jansen and Stam, 1994; Utz and 

Melchinger, 1994; Zeng, 1994). The most commonly used methods for QTL mapping 

are based on the maximum-likelihood method. From simple to more complicated, 

four approaches are commonly used – single marker analysis (SMA), interval 

mapping (IM), composite interval mapping (CIM) and multiple interval mapping 

(MIM). 

The simplest method is based on single marker analysis (SMA), where the 

differences between the phenotypic means of the marker classes are compared using 

F-statistics, linear regression or nonparametric tests (Sax, 1923, Edwards et al., 1987; 

Soller et al., 1976). SMA is the least informative of the analyses, because 

recombination (r), as well as the additive (a) and the dominant (d) effects of a QTL 

may be confounded. SMA often fails to give reliable estimates of numbers and 

positions of QTL and the magnitude of their effects (McMillan and Robertson, 1974, 

Lander and Botstein, 1989).  

Thoday (1961) introduced interval mapping (IM), and mathematical treatment 

of this method was presented by Lander and Botstein (1989). IM uses pairs of 

observable flanking markers to construct intervals within which to search for QTLs 

along the chromosomes. Factors that weaken interval mapping include the effects of 

additional QTLs in any single interval that contribute to the sampling variance. 

Further, if two QTLs are linked, their combined effects will cause biased estimates. 

The method of composite interval mapping (CIM) was proposed as solution to these 

limitations of simple interval mapping (SIM) (Jansen and Stam, 1994; Utz and 

Melchinger, 1994; Zeng, 1994). CIM performs the analysis in the usual way, except 

that the variance from other QTLs is accounted for by including partial regression 
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coefficients from markers (“cofactors”) in other regions of the genome. CIM gives 

more power and precision than SIM because the effects of other QTLs are not present 

as residual variance. CIM removes the bias that can be caused by QTLs that are linked 

to the position being tested. 

Multiple interval mapping (MIM) tends to be more powerful than either SMA 

or CIM. This method uses multiple marker intervals simultaneously to fit various 

putative QTLs directly into the model for mapping QTLs (Kao et al., 1999). MIM 

leads to more accurate QTL position and QTL effect estimates (Mayer, 2005). MIM is 

appropriate for the identification and estimation of genetic architecture parameters, 

including the number, genomic positions, effects and interactions of significant QTLs 

and their contribution to the genetic variance. 

The computer programs such as MAPMAKER/QTL (Lander et al., 1987; 

Whitehead Institute), QTL Cartographer (Basten et al., 1994, 1997), PLABQTL (Utz 

and Melchinger, 1996), Map Manager (Manly, 1997), QGene (Nelson, 1997) all have 

been used for performing QTL analysis. 

 
2.3.6. QTL studies in pearl millet 

Until 1990, there were no DNA-based pearl millet molecular markers and no mapping 

population for the development of linkage maps. At present, hundreds of pearl millet 

markers have been created (Liu et al. 1994; Allouis et al., 2001; Qi et al., 2001, 2004; 

Budak et al., 2003; Senthilvel et al., 2004; Bertin et al., 2005; and Mariac et al., 

2006), several mapping populations have been developed from diverse inbred lines of 

Asian and American origin (Hash et al., 2001) and detailed marker-based genetic 

linkage maps were produced (Liu et al., 1994, 1996; Devos et al., 2000 and Qi et al., 

2004). Using these maps, genomic positions of QTLs were mapped for disease 

resistances (Jones et al., 1995; Morgan et al., 1998), abiotic stress tolerances 
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(Howarth et al., 1997; Yadav et al., 1999, 2000, 2002, 2004; Bidinger et al., 2007), 

grain and stover yield and quality components (Hash and Bramel-Cox, 2000; Hash et 

al., 2001, 2003; Yadav et al., 2003).  

As a result of these findings, marker-assisted backcrossing (MABC) has been 

successfully utilized to improve downy mildew resistance of the male parental line of 

pearl millet hybrid HHB 67. However, for the identification of genomic regions for 

sink size component traits, much remains to be done. The present study aims at 

dissecting pearl millet sink size traits to improve the understanding for gene 

expressions affecting these components of grain yield. Details of QTLs identified in 

earlier studies for sink size and their component traits in pearl millet are summarized 

in Table 1 and are briefly described here.  QTLs controlling panicle length were 

reported on LG 1, 2 and 7 (Poncet et al., 2000), LG 7 (Poncet et al., 2002), and on LG 

4 (Nepolean, 2002). The variation explained by these QTLs ranged from 8.6 to 

35.9%. 

Six QTLs associated with panicle diameter were reported on LG 5 and 7 

(Poncet et al., 2000); LG 6 and 7 (Poncet et al., 2002), and two QTLs on LG 4  

(Nepolean, 2002), of which a QTL on LG 7 explained the maximum variation (62%). 

For 1000-grain weight, Yadav et al. (2002), Nepolean (2002) and Bidinger et 

al. (2007) reported a total of nine QTLs across six linkage groups (LG 1, 2, 3, 4, 6 and 

7). The QTL located on LG 1 explained highest amount of phenotypic variation. 

 Poncet et al. (2000) and Poncet et al. (2002) identified a total of four QTLs 

contributing to panicle weight, these QTLs were mapped on LG 2, 5, 6 and 6. The 

variation explained by QTL on LG 2 was maximum (60.9%). 

Nepolean (2002) identified three QTLs for single panicle grain weight on LG 

4, 6 and 7 explaining a total variation of 54.7% of observed variation.  
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Yadav et al. (2004) reported six QTLs for panicle harvest index on LG 1, 2, 3, 

5, 6 and 7. Bidinger et al. (2007) also reported four QTLs on LG 1, 2, 3 and 4 for this 

trait. The variation explained by these QTLs ranged between 13.8% and 72%. 

A total of 12 QTLs for plant height have been reported across five linkage 

groups LG 1, 4, 5, 6 and 7 (Poncet et al., 2000, 2002; Nepolean, 2002; Azaguvel et 

al., 2003). These QTLs individually explained from 8.2 to 34.7% of observed 

variation for this trait in the various mapping populations studied. 

For productive tillers, a total of eighteen QTLs were identified across LG 1, 2, 

4, 6, 7 (Poncet et al., 2000, 2002; Nepolean, 2002 and Yadav et al., 2002, 2003). The 

variation explained by these individual QTLs ranged between 9.2% and 31.6%. 

 

2.3.7. Conclusions from QTL mapping studies 

In the traditional models of quantitative genetics, simplifying assumptions were made 

about equality and strict additivity of gene effects (Falconer and Mackay, 1996). From 

the results of the QTL mapping experiments it has become clear that such 

assumptions are incorrect. In many mapping experiments, a relatively small number 

of QTLs account for very large portions of phenotypic variance, with increasing 

numbers of genes accounting for progressively smaller portions of variance, until the 

significance threshold is reached (Paterson, 1995). The number of QTLs located for 

particular traits in individual studies varies from one to sixteen, usually being below 

five (Kearsey and Farquhar, 1998). The proportion of phenotypic variation explained 

by each QTL and all QTLs together depends on the heritability of the trait as well as 

on the portion of revealed QTLs. QTLs are usually spread over all chromosomes, but 

clusters of QTLs in certain chromosomal regions have been observed as well. 

Differences occur in QTL incidence when quantitative traits are scored in many 

environments or during many years.  



 58

 The actual number of loci and their effects on a quantitative trait can be 

difficult to determine. QTL mapping can underestimate the number of QTLs and their 

individual effects are often over-estimated (Barton and Keightley, 2002). QTLs can 

be undetected because of lack of recombinants if they are closely linked to each other 

and have opposite effects, or if the threshold limit for detection of QTLs is too small. 

They can also be overlooked when closely linked QTLs, with effects in the same 

direction, appear as a single QTL with a large effect. The effects of a statistically 

significant QTL are often overestimated particularly when the mapping population 

size is small (Barton and Keightley, 2002). The detection of QTLs depends on the 

quality of the genetic map, in particular the resolution of the map is determined by the 

number of markers, ensuring that marker order is correct.  
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3. Materials and Methods 

 
The plant materials and the population for genetic and QTL mapping studies on sink 

size traits were selected and developed in the Pearl Millet Breeding Unit, and the 

laboratory work was carried out in the M.S. Swaminathan Applied Genomics 

Laboratory at the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT), Patancheru, Andhra Pradesh. The materials and methods utilized in this 

study are detailed here. 

 
3.1. Plant materials  

Pearl millet germplasm collections at ICRISAT has accessions with widest range for 

panicle length, panicle diameter and grain size. Over the period, pearl millet 

improvement programme at ICRISAT has utilized these germplasm accessions for the 

development of trait-specific breeding lines. In the present study, trait-specific 

breeding lines representing large contrasts for panicle length, panicle diameter and 

grain size were utilized to develop the basic genetic populations.  

 

3.1.1. Plant material selection 

To generate genetic populations for studying the genetic control of sink size traits, 

three groups of parental inbred lines were selected. The first group included two pairs 

of contrasting inbred lines for panicle length with diverse pedigree having similar 

flowering period. These were selected from the advance trait-specific breeding lines 

during 2005 rainy season. In a similar way, two pairs of contrasting lines for each of 

panicle diameter and grain size were also selected from their trait-specific breeding 

lines to form the second and third groups, respectively.  

For identifying QTLs for sink size traits, two inbred lines showing substantial 

variation for the sink size traits and also for molecular marker were selected for 
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mapping population development. The inbred line used as female parent had small 

grain size (5 g) and the parent used as male had large grain size (13 g). These lines 

also had substantial contrast for panicle length and panicle diameter. The pedigree of 

selected parental lines and their pair-wise cross combination in each group are 

presented in Table 2 and 3. 

 

3.1.2. Development of genetic and mapping populations  

The cross combinations subjected to generation means, triple test cross (TTC) and 

QTL studies are presented in Table 3.  

For developing the basic genetic populations for generation means analysis, 

the selected parental lines in each group were sown in 4 m four-row plots in a 

crossing block to generate F1s during post-rainy season of 2005-06. Selfing and 

crossing between the selected contrasting lines was carried out during January and 

February 2006. The crosses were made between lines with low trait value as seed 

parent and lines with high trait value as pollen parent in all the trait-specific groups. 

Number of plants selfed and crossed in each group was ensured to get enough parental 

and F1 seeds for generating F2 and backcross populations and for further field 

evaluations. Crossed F1s and selfed panicles were harvested separately. Panicles were 

threshed after proper drying to the optimum moisture content. For generating F2 and 

back cross populations, the parental lines and their F1’s of each group were planted 

under greenhouse conditions. Parental lines were sown in 5 pots and their F1’s in 10 

pots at two staggered sowings with a week interval during April 2006. Three plants 

were maintained in each pot. In each trait-specific group, the F1’s were selfed to 

generate the F2 seeds and also backcrossed with their female and male parent to 

generate BC1 and BC2 population, respectively during May-June 2006. Backcrossed 

and selfed panicles were harvested, dried and threshed. Thus, six generation (P1, P2, 
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F1, F2, BC1 and BC2) were obtained in all the three trait-specific groups for generation 

means evaluation trial. 

For generating TTC families, a single cross from each trait-specific group was 

selected based on the maximum contrast between the parental lines (Table 3). The 

parental lines and the F1s of selected cross from each trait-specific group were sown 

in two-row plots at three staggered sowing with one-week interval to synchronize 

with the flowering period of the F2 population (planted in 20 rows) along with the six-

generation evaluation trial during 2006 rainy season.  Sixty individual F2 plants were 

tagged from the six-generation population trial of selected cross of each trait-specific 

group. The tillers of tagged F2 plants were selfed to collect pollen. Pollens collected 

from individual F2 plants were used for crossing to their respective parents (P1 and P2) 

and F1 to produce three types of families L1i (P1 x F2i), L2i (P2 x F2i), and L3i (F1 x F2i) 

in each trait-specific group. Crossed panicles were harvested, dried and threshed. 

For identifying QTLs for sink size traits, two inbred lines showing substantial 

variation for the sink size traits and also for molecular marker were subjected for 

mapping population development (Table 3). The F1 seeds were produced by making a 

plant-to-plant cross during the post-rainy season of 2005-06. F1 seeds were sown in 

pots under greenhouse conditions during April 2006 and F2 seeds generated. The 

selfed panicles were harvested from individual F1 plants and threshed separately. The 

F2 seeds from a single F1 plant were sown during 2006 rainy season for phenotypic 

observation on sink size and agronomic traits, and the resulting F2 populations were 

also utilized to generate F2-derived F3 (F2:3) progenies. A set of 188 F2:3 progenies 

were derived from the F2 population, which were subjected to both genotyping and 

phenotypic observations (Figure 1). 
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3.2. Field experiments 

The trials were conducted on ICRISAT farm, Patancheru. Generation means trials 

were evaluated during the 2006 rainy season and 2007 summer season. In both the 

seasons, six generations (P1, P2, F1, F2, BC1 and BC1) of the two crosses from each 

trait-specific group were planted in a randomized complete block design in three 

blocks. In each block, parents and their F1s, backcrosses (BC1s and BC2s) and F2s 

were raised in 2, 6 and 20 row plots, respectively. 

For triple test cross trial, the TTC families of each trait-specific group were 

evaluated along with the generation means trial planted as one experiment during 

2007 summer season in a randomized complete block design with three replications. 

It consisted of 180 TTC families (60 each of L1i, L2i and L3i) planted in single-row 

plots. 

For QTL mapping experiment, F2 and their F2:3 mapping populations were 

evaluated during the 2006 rainy season and 2007 summer season, respectively. 

During the rainy season of 2006, F2 seeds from a single F1 panicle were sown in 20-

row plot along with parents for phenotypic observations on single plant basis. In 2007 

summer season, 188 F2:3 progenies were evaluated for phenotypic observations on 

sink size and agronomic traits. For this, each of 188 F2:3 progenies and their parental 

lines were raised in single-row plot in a randomized complete block – α design with 

three replications. The parental lines were repeated 10 times in each replication. 

 For all the trials, the rows were 4 m long and 60 cm apart, and the seeds were 

hand dibbled at a spacing of 20 cm in each row.  Seeds were treated with fungicide 

before sowing to protect from soil borne pathogens. Standard cultural practices were 

followed to raise a successful crop. The experiments were protected from insect and 

pest by spraying appropriate chemicals. 
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3.3. Phenotypic observations 

For generation means analysis, observations were recorded on 20 individual plants 

each in parents and their F1s, 100 plants each in backcrosses (BC1 and BC2) and 350 

plants in F2 population from each block for a cross. For the TTC analysis, data were 

recorded on 10 competitive plants from each of the 180 TTC families in each 

replication. For both the analyses, phenotypic observations on panicle length, panicle 

diameter and grain size were recorded in their respective trait-specific crosses. 

For correlation analysis, observations were recorded on 100 F2 plants for days 

to 50% flowering, plant height, productive tiller number, panicle length, panicle 

diameter, grain size and grain yield in the generation means trial during 2007 summer 

season. 

In the F2 mapping population, observations were recorded for panicle length, 

panicle diameter, grain size, plant height and productive tiller number on 188 

individual F2 plants and 20 plants each in the parents during 2006 rainy season. In F2:3 

mapping population, observations were recorded for panicle length, panicle diameter, 

grain size, panicle weight, panicle grain weight, plant height and productive tiller 

number on 10 random plants in each of 188 F2:3 progenies.  

The observed traits are described here. 

3.3.1.  Days to 50% flowering  

Number of days taken from sowing to the emergence of stigma in individual plants 

was recorded. This trait was observed in the F2 population of all the crosses of 

generation means trials for correlation analysis. 

 
3.3.2.  Plant height (cm) 

Plant height was measured in centimeter from the ground level to the tip of the 

highest panicle. This trait was observed in the F2 population of all the crosses of 
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generation means trial for correlation analysis and also in the F2 and F2:3 mapping 

populations. 

 
3.3.3.  Productive tiller number  

Total number of productive tillers (tillers with grain bearing panicles) of individual 

plants was counted and recorded. This trait was observed in the F2 population of all 

the crosses of generation means trial for correlation analysis and also from the F2 and 

F2:3 mapping populations. 

 
3.3.4.  Panicle length (cm) 

Length of the panicle was measured in centimeter from its base to its tip at maturity. 

The panicle of the main tiller of the plant concerned was used for this measurement. 

This trait was observed in all the six basic generations of panicle length group crosses, 

F2 population of panicle diameter and grain size group crosses and in F2 and F2:3 

mapping populations. 

 
3.3.5.  Panicle diameter (mm)  

At maturity, the diameter of the panicle was measured in millimeter on the thickest 

portion of the panicle using vernier caliper. This trait was observed in all the six basic 

generations of panicle diameter group crosses, F2 population of panicle length and 

grain size group crosses and in F2 and F2:3 mapping populations. 

 
3.3.6.  Grain size (1000-grain weight) 

As an index of grain size, weight of 1,000 grains taken from the open-pollinated 

panicles of each entry was measured in grams. This trait was observed in all the six 

basic generations of grain size group crosses, F2 population of panicle length and 

panicle diameter group crosses and in F2 and F2:3 mapping populations. 
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3.3.7.  Panicle weight (g) 

Panicle weight in grams was determined from the weight of individual main stem 

panicles. This trait was observed in F2:3 mapping population. 

 
3.3.8.  Panicle grain weight (g) 

Grains obtained from the individual open-pollinated main stem panicles were weighed 

in grams. This trait was observed in F2:3 mapping population. 

 
3.3.9.  Panicle harvest index (%)  

Derived as an index from the ratio of panicle grain weight to total panicle weight of a 

particular panicle. This trait was observed in F2:3 mapping population. 

 
3.3.10. Grain yield per plant (g) 

Grains obtained from open-pollinated panicles of the individual plant were weighed 

and recorded in grams. This trait was observed in the F2 population of all the crosses 

of generation means trials for correlation analysis.  

 

3.4. Laboratory procedures 

3.4.1. DNA extraction and purification 

Around 30 selfed seeds from each of 188 F2:3 progenies  and both parents were grown 

in pots under greenhouse conditions. Bulk DNA was obtained from approximately 30 

mg representative per F2:3 progeny and parental lines by using CTAB method (Mace 

et al., 2003) with slight modifications. DNA was further purified by RNase digestion 

followed by extraction with phenol:chloroform:iso-amyl alcohol (25:24:1) and 

ethanol precipitation as described by Mace et al. (2003). The reagents required for 

DNA extraction are listed in Appendix 1 and the adopted procedure of 96-well plate 

mini DNA extraction is described here. 
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A) Preparation 

1. Two chrome-plated grinding balls (4 mm in diameter), pre-chilled at –20°C for 

about 30 minutes, were dispersed by an automatic ball disperser to 12-x 8- well 

polypropylene strip extraction tubes with strip caps  (Marsh Biomarket, USA) that 

were kept on ice. 

2. 3% CTAB buffer was pre-heated at 65°C in water bath (Precision Scientific 

Model: Shaking Water Bath 50) before starting DNA extraction. 

3. Leaf stips of six-inches long were collected from 25–30 one week-old seedlings of 

parents or F2:3 progeny and cut into small pieces (approximately 30 mg), which 

were then transferred to an extraction tube fitted in a box. This was repeated for 

all 188 F2:3 progenies and parental lines, to fill two 96-well boxes. 

B) Grinding and extraction 

1. 450 µl of pre-heated 3% CTAB buffer was added to each extraction tube 

containing leaf sample, and tightly capped with polyethylene strip caps. 

2. Grinding was carried out using a Sigma Geno-Grinder (Spex Certiprep, USA) at 

500 strokes/minute for 2 minutes. 

3. Grinding was repeated until the colour of the solution became pale green and leaf 

strip pieces were sufficiently macerated. After the first round of grinding, the 

boxes were checked for leakage by taking them out from the Geno-Grinder and 

were shaken for proper mixing of leaf tissues with buffer. 

4. After grinding, the box with the tubes was fixed in a locking device and incubated 

at 65°C in a water bath for 10 minutes with occasional manual shaking. 

C) Solvent extraction 

1. 450 µl of chloroform:iso-amyl alcohol (24:1) mixture was added to each tube, 

tubes were inverted twice for proper mixing and the samples were centrifuged at 
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6200 rpm for 10 minutes (Sigma laboratory centrifuge model 4K15C with 

QIAGEN rotor model NR09100: 2 x 1120 g Sw). 

2. After centrifugation, the aqueous layer (approximately 300 µl) was transferred to a 

fresh tube (Marsh Biomarket). 

D) Initial DNA precipitation 

1. To each tube containing the aqueous layer, 0.7 volume (approximately 210 µl) of 

cold (kept at –20°C) isopropanol was added. The solution was carefully mixed 

and the tubes were kept at –20°C for 10 minutes. 

2. The samples were centrifuged (same centrifuge as earlier) at 6200 rpm for 15 

minutes. 

3. The supernatant was decanted under the fume hood and pellets were allowed to air 

dry for about 30 minutes. 

E) RNase A treatment 

1.  In order to remove co-isolated RNA, pellets were dissolved into 200 µl of low salt 

TE buffer (T1E0.1) and 3 µl of RNase A. 

2. The solution was incubated at 37°C for 30 minutes or overnight at room 

temperature. 

F) Solvent extraction 

1. After incubation, 200 µl of phenol:chloroform:isoamyl alcohol (25:24:1) was 

added to each tube, mixed and centrifuged (same centrifuge as earlier) at 5000 

rpm for 10 minutes. 

2. The aqueous layer in each tube was transferred to a fresh tube (Marsh Biomarket) 

and 200 µl of chloroform:isoamyl alcohol (24:1) was added to each tube, mixed 

and centrifuged at 5000 rpm for 10 minutes.  

3. The aqueous layer was transferred to fresh tube (Marsh Biomaket). 
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G) DNA Precipitation 

1. 15 µl (approximately 1/10th volume) of 3 M sodium acetate (pH 5.2) and 300 µl (2 

volumes) of absolute ethanol (kept at –20°C) were added to each of the tubes and 

the mixture was subsequently incubated in a freezer  (–20°C) for 5 minutes. 

2. Following the incubation at –20°C, the tubes were centrifuged (same centrifuge as 

earlier) at 6200 rpm for 15 minutes. 

H) Ethanol wash 

1. After centrifugation, the supernatant was carefully decanted from each tube in 

order to ensure that the pellet remained inside the tube. 

2. Subsequently, 200 µl of 70% ethanol was added to each of the tubes and this was 

followed by centrifugation (same as earlier) at 5000 rpm for 5 minutes. 

I) Final re-suspension 

1. The supernatant was carefully decanted and the pellet was allowed to air dry for 

one hour. 

2. Dried pellets were re-suspended in 100 µl of T10E1 buffer and kept overnight at 

room temperature to dissolve completely. 

3. The resuspended DNA samples were stored at 4°C. 

 
3.4.2. Quantification of DNA concentration and quality check 

The quality of DNA in each sample was checked using 0.8% agarose gels, stained 

with ethidium bromide. 1 µl of DNA sample was mixed with 1 µl of orange dye and 3 

µl of distilled water, and loaded in each well of the agarose gel (Appendix 2). The gel 

was run at 100 V for 5 minutes, after which the quality of DNA was checked under 

ultra-violet transilluminator. A smear of DNA indicated poor quality whereas a clear 

band indicated good quality DNA. Samples of poor quality DNA were re-extracted.  
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The DNA quantity present in each experimental sample was assessed using a 

fluorescence spectrophotometer (Spectrafluor plus, Tecan, Switzerland) by staining 

DNA with picogreenTM (1/200 dilution) (Juro supply Gmbh, Switzerland). Based on 

the Relative Fluorescence Units (RFU) values and using a calibration graph. DNA 

concentration of each experimental sample was calculated (DNA concentration = –

2.78273 + 0.002019*RFU). The DNA concentration of each experimental sample was 

then normalized at 2.5 ng/µl to produce working samples be used in PCR reactions. 

 

3.4.3. Marker polymorphism  

A total of 331 primer pairs, which includes 96 markers of each SNP, SSR, EST-SSR, 

and 43 STS markers, were initially assayed on two parental lines to detect 

polymorphism. This resulted in identification of 109 polymorphic markers. A final set 

of 44 primer pairs were chosen based on their expected marker locations across the 

genome, banding pattern (at least 2bp differences in allele size between parents) and 

consistent amplification, to allow reliable genotyping using PAGE and/or capillary 

electrophoresis of the mapping population.  

The selected polymorphic primer pairs with sequence information of both 

forward and reverse primers are listed in Table 4. 

 

3.4.4. Polymerase chain reaction (PCR)  

PCR reactions were conducted in 96 and 384-well plates in a GeneAmp PCR system 

PE 9700 (Applied Biosystem, USA) DNA thermocycler. The PCR were performed in 

volumes of 5 µl using three different reaction protocols (Table 5). A touchdown PCR 

program was used to amplify the DNA fragments. Reaction conditions were as 

follows. 
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Initial denaturation for 15 minutes at 94°C (to minimize primer dimer 

formation and to activate the Taq polymerase), subsequently 10 cycles of denaturation 

for 10 seconds at 94°C, annealing at 61°C to 52°C for 20 seconds, the annealing 

temperature for each cycle is reduced by 1°C, and extension at 72°C for 30 seconds. 

This was followed by a 20 minutes extension at 72°C to ensure amplification of equal 

lengths of both DNA strands (Smith et al., 1995). 

 
Table 5. Polymerase chain reaction components  

Reaction 
Primer 
(2 pM) 

MgCl2 

(10 mM) 
dNTPs 
(2 mM) 

DNA 
(2.5ng/µl) 

Taq         
(0.5 U/µl) 

Buffer 
(10X) 

DDW 
(µl) 

1 0.50 1.00 0.25 1.00 0.20 0.50 1.55 

2 1.00 1.00 0.38 0.50 0.20 0.50 1.43 

3 0.50 0.75 0.50 0.50 0.25 0.50 2.00 

 

 
3.4.5. Non-denaturing PAGE (Polyacrylamide Gel Electrophoresis) 

The PCR products of EST-SSR and STS markers were separated on 8% non-

denaturing PAGE (Plate 1a and 1b). The materials required were sequencing gel 

apparatus (glass plates, spacers, casting apparatus) and combs (68 or 100 wells). The 

reagents required are detailed in Appendix 3 and the protocol used for PAGE gel 

preparations is as follows. 

A. For 8% gel (plate size 38 × 30 cm) 75 ml of gel solution will be sufficient. 

a. 10X TBE buffer      7.5 ml 

b. V/V acrylamide/bisacrylamide (29:1)  20.0 ml 

c. Distilled water                47.5 ml 

            Mix these ingredients in 200 ml Erlenmayer flask. 
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B. Vigorously mix the solution and add 450 µl APS, swirl the flask and then 

immediately add 100 µl TEMED and mix. Pour the solution using a syringe (100 

ml) that fits into the slot between the glass plates, and insert the comb (upside 

down, in order to form wells). Allow the acrylamide solution to polymerize for 30 

to 60 minutes. Gels can be stored overnight as long as the plate ends are wrapped 

in pre-wetted tissue paper (1X TBE) and covered with plastic film. 

C. After polymerization, set up the gel for running. Remove the comb. Fill the lower 

tank with 0.5X TBE buffer (approximately 250-300 ml) and the back plate and 

upper reservoir too (approximately 400 ml). Ensure that wells are covered with 

the buffer. Clean the wells by aspirating and dispensing 0.5X TBE buffer on the 

wells using a Pasteur pipette to remove small fragments of gel and tiny bubbles 

from the top of the wells. Insert the comb back on top of the wells [comb tips 

should rest on the well (<1 mm deep), don’t force it into the well]. 

D. Pre-run the gel to warm it, for at least 10 minutes at 5 V/cm (400 V, 9 W, 

depending on width of the gel). 

E. Make up the samples for loading with 5X loading buffer to give a final 

concentration of 1X (for instance 2 µl sample + 2 µl water + 1 µl 5X loading 

buffer). Mix properly and load between 3-5 µl (depending on size of the slots) 

onto each well of the gel. 

F. Run the gel at approximately 5 V/cm (400 V, 9 W, depending on width of the 

gel). Higher voltage causes the gel to overheat and result in un-even run of the 

samples. Run the gel until the desired resolution has been reached (front of the 

tracking dye should reach a few cm above the end of the gel) 

G. After the run, carefully pull apart the plates, so that the gel is attached to the front 

plate and start silver staining. 
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3.4.6. Single-strand conformational polymorphism (SSCP) gel electrophoresis  

The PCR products of SSCP-SNP markers were denatured at 94oC for 5 minutes and 

cooled to 4oC immediately. The denatured products were separated on 300 x 380 x 0.4 

mm SSCP gels using mutation detection enhancement (MDE) gel solution (Martins-

Lopes et al., 2001; Bertin et al., 2005). This method uses the same equipment and 

laboratory techniques as PAGE, except that SSCP uses an MDE gel matrix rather than 

the polyacrylamide gels. The gel mix consisted of 7.5 ml of 10X TBE buffer, 20 ml of 

MDE gel solution and 47.5 ml distilled deionised water, and polymerized by adding 

100 µl TEMED and 450 µl APS. Fragment were electrophoresed for 16 h at a constant 

power of 8 W at room temperature and then silver-stained (Plate 1c). 

DNA separation of SSCP gels was based on both size and conformation. As 

the conformation was not known in advance, the precise relative gel positions of 

individual SSCP-SNP could not be predicted. Nevertheless, the mobility of the typical 

two-band SSCP profile for single-copy amplification was consistent over runs and, 

once assessed was used for post-hoc classification of individual phenotypes. 

 
3.4.7. Silver Staining 

After running the PAGE or MDE gel, electrophoresed DNA fragments were 

visualized using a modified silver staining procedure (Bassam, 1991). The reagents 

required are listed in Appendix 4 and the following steps were adopted for silver 

staining: 

A. Rinse the gel in 2 liters of distilled water for 5 minutes (with gentle shaking of the 

container holding the gel). 

B. Soak the gel in 2 liters of 0.1% CTAB for 20 minutes (with gentle shaking of the 

container holding the gel). 
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C. Incubate the gel in 2 liters of 0.3% ammonia for 15 minutes (with gentle shaking 

of the container holding the gel). 

D. Place the gel in silver nitrate solution (2 liters) for 15 minutes (with gentle shaking 

of the container holding the gel). 

E. Place the gel in de-ionized water for a few seconds. 

F. Place the gel in sodium carbonate solution (developer, 2 liters) and gently shake 

until the bands become visible. 

G. Rinse the gel in water (2 liters) for 1 minute to stop the staining. 

H. Place the gel in glycerol solution (fixative, 2 liters). 

I. Dry the gel (overnight for scanning or 30 minutes for first reading). 

After silver staining of the gel, it was placed on a bench-viewer. The size (in base 

pairs) of the parental alleles for each SSR or SSCP-SNP were estimated based on their 

migration relative to the 100 bp DNA ladder (fragments ranging from 100 bp to 1000 

bp), and presence or absence of parental alleles in each of the F2:3 progenies were 

scored. The dried gel was removed (after scoring) from the front glass plate by 

soaking in concentrated NaOH solution for a few hours (or overnight). 

 
3.4.8. Genotyping using capillary electrophoresis 

The PCR products amplified using fluorescence-labeled primers genomic SSRs were 

separated by capillary electrophoresis using an ABI Prism 3700 automatic DNA 

sequencer  (Applied Biosystems Inc.). This has the ability to detect size differences of 

less than 2 bp using a fluorescence-based detection system, thus dispensing with the 

need for radioactivity or laborious manual polyacrylamide gel techniques.  

For this purpose, forward primers were labeled with 6-FAM™ (Blue), VIC™ 

(Green), NED™ (Yellow) or PET™ (Red) fluorophores (Applied Biosystems). PCR 

products of 4 primer pairs labeled with different dyes or same-flourophore-labeled 
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primers with non-overlapping amplicons (in terms of size) were pooled (post-PCR). 

The products of different flourophore–labeled primers were pooled in different 

proportion (1.0 µl of 6-FAM–labeled product, 0.8 µl of VIC-labeled product, 1.4 µl of 

NED–labeled product, and 1.0 µl of PET-labeled product). The pooled PCR products 

were then mixed with 0.25 µl of GeneScan 500™ LIZ® internal size standard (Applied 

Biosystems) and 7.0 µl of Hi-Di™ Formamide (Applied Biosystems). The final 

volume was made up to 12 µl with sterile double-distilled water. DNA fragments 

were denatured for 5 minutes at 95oC  (Perkin Elmer 9700, Applied Biosystem) and 

cooled immediately on ice.  

 

3.4.8.1. Fragment size fractionation   

The PCR products with denatured DNA were electrophoresed and the capillary run 

was performed using the “Genscan2 POP6 Default” run module and “G5” filter-set. 

The analysis module used was “GS500 analysis”. The fragments were separated in a 

50 cm capillary array using POP6 (Performance Optimized Polymer, Applied 

Biosystems) as separation matrix. 

 

3.4.8.2. Data Processing 

The GenScan 3.1 software (Applied Biosystems) was used to size the peak pattern in 

relation to the internal size standard, GeneScan 500™ LIZ®. The principle behind this 

is that standards are run in the same lane or capillary injection as the samples, which 

contain fragment of unknown sizes labeled with different flourophores. Genscan® 

analysis software automatically calculates the size of unknown DNA fragments by 

generating a calibration sizing curve based upon the migration times of the known 

fragments in the standard. The unknown fragments are mapped on to the curve and 

the sample data is converted from migration times to fragments size. Genotyper 3.7 
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(Applied Biosystems) was used for allele calling. The peaks were displayed with base 

pair values and height (amplitude) in a chromatogram (Plate 1d). The height of the 

chromatogram peaks (representing the alleles) obtained through capillary 

electrophoresis is directionally proportionate to the signal strength, which in turn is 

determined by the amount of amplified product in the sample. 

 

3.4.9. Scoring of amplified bands 

The banding pattern of each of amplified PCR products of various marker systems 

were scored as follows: 

A = Homozygote for the allele for female parent at a locus. 

B = Homozygote for the allele for male parent at a locus. 

H = Heterozygote carrying the alleles from both parents.  

-  = Missing data for the individual at a locus. 

After scoring individual progenies, the data set was assembled in Microsoft Excel 

spreadsheet in a format suitable for linkage analysis by MAPMAKER (i.e. rows = 

genotype score at a given locus; columns = individual F2:3  progenies).  

 

3.5. Statistical analysis 

3. 5.1. Genetic analysis 

3.5.1.1. Generation means analysis 

The analysis of variance was performed on non-segregating generations (P1, P2 and 

F1) for the crosses evaluated during 2006 rainy season and 2007 summer season, 

separately to assess the variation between blocks. The ‘F’ value was tested at 2, 57 

degrees of freedom. In the case of non-significance of mean squares between blocks, 

the observed data from each block were pooled for further analysis.  
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As results of analysis of variance showed non-significant variation between 

the blocks for all the traits, the observed data for each trait from each block were 

pooled, and subjected to generation means analysis as three sets of different 

population size.  

(i) Set 1 consisted of three individual blocks (B1, B2 and B3) with a population size of 

20, 100 and 350 plants for parents and their F1’s, backcrosses and F2 population, 

respectively.  

(ii) Set 2 consisted of three two-way block combinations [i.e. block 1 and 2 (B12), 

block 1 and 3 (B13), and block 2 and 3 (B23)] with a population size of 40, 200 and 

700 plants for parents and their F1’s, backcrosses and F2 population, respectively.  

(iii) Set 3 consisted of observations pooled across all the three blocks (B123) with a 

population size of 60, 300 and 1050 plants for parents and their F1’s, backcrosses 

and F2 population, respectively.  

The main objective of this exercise was to examine the optimum population 

size required for accurate estimation of gene effects, based on the consistency of the 

estimates within and between the sets. 

 

3.5.1.1.1. Scaling test 

The basic generations data obtained were first used for a scaling test to examine the 

adequacy of a simple additive-dominance model. The scaling test for A, B and C 

scales were calculated as per the method suggested by Mather (1949).  

2112

122

111

P-P-F2-F4 = C

F-P-B2 =B

F-P-B2 =A

 

Where,  B and  B  ,F  ,F  ,P  ,P 212121 are the means of P1, P2, F1, F2, BC1 and 

BC2 generations, respectively.  
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Variance of the scales were calculated as:                                                                                           

 

 

 

Where, VA, VB and VC are variance of the respective scales A, B and C; 

 BV and  BV,FV ,FV,PV ,PV 212121 are variances of mean of P1, P2, F1, F2, BC1 and 

BC2 generations, respectively, which were calculated by dividing the variances of 

these generations with the respective number of plants observed. 

Standard errors for A, B and C scales were calculated by estimating the square 

root of respective variances. 

C

B

A

V = C of S.E.

V = B of S.E.

V =A  of S.E.

 

To test the deviation of scales from the hypothetical value of zero, ‘t’ test was 

applied as:  

C

B

A

VC = Cfor t 

VB = Bfor t 

VA =A for t 

 

The observed ‘t’ values were compared with the tabular t values at n–1 

degrees of freedom, where n is the number of plants used in deriving the variances of 

all the generations involved.  

 
3.5.1.1.2. Joint scaling test 

Joint scaling test of Cavalli (1952) was performed to estimate the three-parameter 

model consisting of mid-parental value (m), dominance (h) and additive (d) gene 

effects following the least square method proposed by (Mather and Jinks, 1971). 

2112C

122B

111A

PV+PV+F4V+F16V = V

FV+PV+B4V = V

FV+PV+B4V = V
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Adequacy of three-parameter model was tested using chi-square test for goodness of 

fit at 3 (n–3) degrees of freedom, where n is the number of generation from which the 

three parameters were estimated. 

 
3.5.1.1.3. Six-parameter model 

Equations formulated by Hayman (1958) were utilized to obtain six parameters the 

average effect (m), additive effect (d), dominance effect (h), additive x additive 

interaction (i), additive x dominance (j) interaction and dominance x dominance (l) 

interaction for the traits where a simple additive-dominance model was inadequate to 

explain the observed variation. 
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Variances of the estimates of these parameters were obtained as linear 

combinations of variance of means of generations used to compute these six 

parameters. 

212 12 1 (l)

221 1(j)

221 (i)

21122 1(h)

21(d)

 2m
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1
+P
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1
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 BV+ BV  = V

 FV  =  V
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Standard error was then obtained by taking the square root of the respective 

variances and significant departure of the estimate of the parameters from zero was 

tested applying ‘t’ test with the tabular t values at n–1 degrees of freedom, where n is 

the number of plants used in deriving the variances of all the generations involved. 

 

3.5.1.2. Triple test cross analysis  

‘Triple Test Cross’ (TTC) design, which is a simple extension of design III of 

Comstock and Robinson (1952) proposed by Kearsey and Jinks (1968) provides not 

only an unambiguous test for epistasis, but also provides an efficient estimate of 

additive and dominance components in the absence of epistasis. In the present study, 

triple test cross analysis has been carried out using the TTC model proposed by 

Kearsey and Jinks (1968). 

 
3.5.1.2.1. Test for epistasis  

The detection of epistasis was performed according to Kearsey and Jinks (1968). The 

test of significance of the difference [(L1i + L2i – 2L3i) where, i = F2 individuals] 

provides information about the presence or absence of epistasis. Therefore, L1i + L2i – 

2L3i for each line (F2 individuals) and each replication was first computed and then 

tested.  

The total epistasis for ‘n’ (n = 60) degree of freedom was calculated as 

uncorrected genotype (F2 individuals) sums of square based on the total of these 

components over the replications.  

Total epistasis          = 
n

i

∑
=

+

60

1

2

3i2i 1i  )L2 -L L(
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The total epistasis was partitioned into two components. The correction factor 

(c.f) measures mainly the epistasis of additive x additive (i) type with one degree of 

freedom. 

[i] epistasis (c.f)      = 

2
60

1

3i2i 1i  )L2 -L L(

n

i








+∑

=  

The corrected genotypes sum of squares is a measure of the combined additive 

x dominance and dominance x dominance (j + l) epistasis with n – 1 degrees of 

freedom.  

[j+l] epistasis        = 
n

i

∑
=

+

60

1

2

3i2i 1i  )L2 -L L(
– 

2
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1
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The sum of squares associated with the interaction of total epistasis with 

blocks (i.e. Total epistasis x block interaction) was calculated as the difference 

between uncorrected total sum of squares and sum of squares of total epistasis with 

n(r–1) degrees of freedom. The  (i) type of epistasis x block interaction sum of square 

was calculated as the difference between uncorrected replication sum of squares and 

sum of squares of (i) type epistasis with (r–1) degrees of freedom. The (j + l) type of 

epistasis x block interaction sum of squares was calculated as the difference between 

line sum of squares and sum of squares of (j + l) type epistasis with (n–1)(r–1) 

degrees of freedom. Where, n is the number of F2 individuals and r is the number of 

replication.  

Each of three types of epistasis can be tested against their respective 

interaction with blocks. However before testing individual epistasis, the homogeneity 

of the interaction was first tested as proposed by Singh and Choudhary (1999). As 

there were only two variances (i x block and (j + l) x block) homogeneity was tested 

using ‘F’ test. 
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F (2, 118) = Mean square of ‘i’ x block interaction / Mean square of (j + l) x 

block interaction  

When the interactions with blocks were non-significant, then ‘i’ and (j + l) 

type of epistasis were tested against the total epistasis x block interaction.  

 
3.5.1.2.2 Additive-dominance model  

On the assumption of no epistasis, an additive-dominance model was fitted to the 

observed data as outlined by Kearsey and Jinks (1968). 

 

3.5.1.2.2.1. Estimation of additive variance component (D)  

The sum of L1i + L2i for each F2 genotype was calculated replication wise and 

subjected to analysis of variance as:  

 
 

Source of variation df MS Expected 

Replication  

Genotype sum (L1i + L2i)  

Error 

r–1 

n–1 

(n–1)(r–1) 

MSr  

MSs  

Mse 

 

σ
2e + 2r σ 2s 

 σ 2e 

 

Where, r = replications; n = number of F2 plants used in producing TTCs; 

MSr, MSs, Mse = mean squares of replications, genotypes (sums) and error, 

respectively; σ 2e and σ 2s = expected mean square of error and genotypes (sums).  

The observed mean squares were substituted into the equations as follows: 

 
σ

 2s = (MSs – MSe)/2r  

σ
 2s = (1/8)D  

D    = 8 (MSs – MSe )/2r  
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3.5.1.2.2.2. Estimation of dominance component (H)  

The difference in L1i – L2i for each F2 genotype was calculated replication wise and 

subjected to analysis of variance as:  

 

Source of variation df MS Expected 

Replication  

Genotype sum (L1i – L2i)  

Error 

r–1 

n–1 

(n–1)(r–1) 

MSr  

MSd  

Mse 

 

σ
 2e + 2r σ 2d  

σ
 2e 

 

Where, r = replication; n = genotypes; MSr, MSd, Mse = mean squares of 

replication, genotype (differences) and error, respectively; σ 2e and σ 2d = expected 

MS of error and genotypes (differences).  

The observed mean squares were substituted into the equations as:  

 
σ

 2d = (MSd – MSe)/2r  

σ
 2d = (1/8)H  

H    = 8(MSd – MSe)/2r  

 
3.5.1.2.2.3. Degree of dominance  

Degree of dominance was calculated as (H/D)1/2, where H and D are the dominance 

and additive variance components, respectively.  

 

3.5.1.2.2.4. Correlation coefficient (rs,d)  

The correlation coefficient (rs,d) between the sum (L1i + L2i) and the genotypic 

differences (L1i – L2i) was calculated. Significant positive or negative correlations 

would indicate a predominant direction towards decreasing or increasing values of the 

trait, respectively (Jinks et al., 1969).  
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3.5.1.3. Estimation of components of variances and heritabilities  

The component of variances and heritabilities were estimated for the set 3 data 

(pooled across all the three blocks) from the generation means trials evaluated during 

2006 rainy season and 2007 summer season.  

 

3.5.1.3.1. Variance estimates 

On the assumption of absence of non-allelic interactions, phenotypic variances of the 

six generations were used to compute four parameters Ew, D, H, and F as per the 

method suggested by Mather and Jinks (1971).  

12

w22 1

2 12

121w

VB - VB =     F

E - VF - VB +VB =    H

)VB +(VB  - 2VF =    D

)2VF + VP + (VP 
4

1
 = E

 

Where, VP1, VP2, VF1 and V B2 are variance of respective generations. 

Ew = non-heritable variance due to environment. 

D = fixable variance due to additive genes 

H = non-fixable variance due to dominance 

Dominance ratio = (H/D)1/2 

 

3.5.1.3.2. Heritability estimates 

The heritabilities were estimated based on the method suggested by Mather and Jinks 

(1971).  

Broad-sense heritability  2w2 VF)E - (VF× 100 =  

Narrow-sense heritability 2212 VF)}VB + (VB - {2VF × 100=   

The range of heritabilities was characterized as low (<30%), moderate (31 - 

60%) and high (> 61%) as described by Robinson et al. (1949).  
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3.5.1.4. Correlation analysis 

 The association between yield and its component traits as well as inter-association 

among the yield component traits were worked out following the method suggested 

by Goulden (1952) for the observed traits in F2 population of all the crosses evaluated 

for generation means during summer season of 2007.  

 

( ) ( )
 

 ∑Y-∑  Y∑X-∑  X

∑ ∑YX-∑XY
  =  )r (t coefficienn  Correlatio  

2222xy  

 
  Where, rxy is simple correlation coefficient between the traits ‘X’ and ‘Y’ 

The significance of correlation coefficient was tested using ‘t’ value with (n–

2) degrees of freedom given by Snedecor and Cochran (1967). 

 

3.5.2. QTL analysis 

3.5.2.1. Phenotypic analysis  

The analysis of variance for phenotypic data sets observed from F2:3 progenies were 

performed using the Residual Maximum Likelihood algorithm (ReML), which 

provides the Best Linear Unbiased Predictors (BLUPs) of the performance of the 

genotypes (Patterson and Thompson, 1971) using GenStat Ver 8.0 (2005). ReML 

estimates the components of variance by maximizing the likelihood of all contrasts 

with zero expectations. The predicted means were calculated with each trait and each 

entry with entries considered as fixed effects, and block and entry × replication 

interaction as random effects, in the analysis. The methodology for estimating the 

heritability (broad-sense) and correlation coefficients for the observed traits are 

detailed in sections 3.5.1.3.2 and. 3.5.1.4. 
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3.5.2.2. Linkage map construction 

Marker classes at each locus were summarized for all individuals into the three 

different genotypic classes expected for an F2 population. The segregation of each 

marker was tested with a chi-square test for goodness of fit to the expected Mendelian 

segregation ratio (1:2:1) of the parental configuration.  

The linkage map was constructed with MAPMAKER/EXP V.3.0 (Lander et 

al., 1987). The Haldane (1919) mapping function was used to convert the 

recombination frequencies to genetic distances in centiMorgans (cM). The analysis 

was carried out by evaluating the mapping population as an F2 population using two-

point analysis to identify linked pairs at a LOD score of 3.5. The ‘Sequence all’ 

command was used for two-point (or pair-wise) linkage analysis. While the ‘Group’ 

command was used to group the marker in a sequence into different linkage groups. 

The ‘Compare’ command was used to calculate the maximum likelihood map for each 

specified order of markers and reported the orders sorted by likelihood of their maps. 

One sequence can specify more than one order of loci. For example, the sequence ‘{1 

2 3}’ specifies three different orders ‘1 2 3’, ‘1 3 2’ and ‘2 1 3’. MAPMAKER reports 

only the 20 most likely orders. The order having a log-likelihood of 0.0 was selected 

as the best order. The obtained order was then analyzed further using a three-point 

linkage analysis via the ‘Ripple’ command. Other markers were added using the ‘Try’ 

command and their positions were fine-tuned using the ‘Ripple’ command. The 

‘Ripple’ command was used to assign exact orders of markers. Marker loci on linkage 

groups that were more than 50 cM apart were considered to be unlinked. The markers 

used in the present study have been already mapped in previous studies and they were 

used as reference for the map obtained in the present study to compare the linkage 

distance, marker position and marker order in linkage groups. Markers used in the 
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present study were therefore assigned to linkage groups based on their known 

chromosome locations and their order in the present F2:3 mapping population was 

verified using MAPMAKER. 

 
3.5.2.3. Quantitative trait loci (QTL) analysis 

The data sets of 188 F2 population and the predicted means of F2:3 progenies and their 

genotyping data from 44 markers were used to identify genomic regions associated 

with the traits using composite interval mapping (CIM) analysis. Computations were 

performed using the software package PLABQTL ver 1.1 (Utz and Melchinger, 

1995), which performs CIM using a regression approach (Haley and Knott, 1992) 

with selected markers as cofactors. Markers to serve as cofactors were identified 

using step-wise regression with an F-to-enter and F-to-delete threshold value of 2.5. 

The presence of putative QTL in an interval was tested using a critical LOD threshold 

as determined by PLABQTL using the Boneferroni chi-sqaure approximation (Zeng, 

1994) corresponding to a genome-wise type I error of 0.25. Since the mapping 

population used in the present study constituted F2 and F2:3 progenies, along with the 

additive (A) model, additive-dominance (A+D) and epistatic (A+D+AA+AD+DD) 

genetic models were also included. The detection of QTL in the epistatic model is 

conducted without epistatic effects. Only in the final simultaneous fit all specified 

digenic epistatic effects are estimated for the detected set of QTLs using a stepwise 

regression procedure whereby the F-to-Enter value (and F-to-Drop) is obtained by 

using the Bonferroni bound at alpha = 0.05.  

Genetic effect was positive if alleles from male parent contributed to the trait 

of interest and negative if alleles from female parent contributed towards the trait of 

interest.  Estimate of genetic effects of each of detected QTL, the LOD score, and the 

total proportion of phenotypic variances explained jointly by all detected QTLs were 
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obtained by fitting a multiple linear regression model that simultaneously included all 

the detected QTL. After the QTL analysis, the identified QTLs for traits were 

assigned to the linkage groups based on position of makers using MapChart 2.1. 
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4. Results 

 
The results of genetic and QTL analyses for panicle length, panicle diameter, grain 

size and other agronomic traits are presented in this chapter. 

 

4.1. Genetic analysis 

4.1.1.  Generation means analysis  

The observations recorded on the six basic generations of two trait-specific crosses 

each for panicle length, panicle diameter and grain size evaluated during 2006 rainy 

season and 2007 summer season were subjected to generation means analysis to 

elucidate the genetic architecture underlying these traits. 

 

4.1.1.1. Analysis of variance 

Analysis of variance for non-segregating generations (P1, P2 and F1) of six basic 

generations of all the crosses evaluated during 2006 rainy season and 2007 summer 

season, revealed non-significant variation between blocks for the observed traits 

(Table 6). Since, there was no significant difference between the blocks, the 

observations from each block of a season were pooled as three sets of different 

population sizes.  

(i) Set 1 consisted of three individual blocks (B1, B2 and B3) with a population size of 

20, 100 and 350 plants for parents and their F1’s, backcrosses and F2 population, 

respectively.  

(ii) Set 2 consisted of three two-way block combinations [i.e. block 1 and 2 (B12), 

block 1 and 3 (B13), and block 2 and 3 (B23)] with a population size of 40, 200 and 

700 plants for parents and their F1’s, backcrosses and F2 population, respectively.  
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(iii) Set 3 consisted of observations pooled across all the three blocks (B123) with a 

population size of 60, 300 and 1050 plants for parents and their F1’s, backcrosses 

and F2 population, respectively.  

 

4.1.1.2. Mean performance of six generations 

The mean performance of six basic generations (P1, P2, F1, F2, BC1and BC2) for panicle 

length, panicle diameter and grain size are presented in Table 7 to 9. The mean 

performance of six-generations for the set 3 population size (pooled over three blocks) 

are illustrated here (Figure 2). 

 

4.1.1.2.1. Panicle length 

Panicle length varied from 16.5 cm to 17.5 cm in P1 and from 67.1 to 66.5 cm in P2, 

across the two seasons (2006 rainy and 2007 summer seasons) in cross 1, while in F1 

it varied from 36.7 to 39.1 cm, which was 12% and 7% less than the mid-parental 

values, suggesting apparently the presence of partial dominance of genes for smaller 

panicle over those for the longer panicle. (Table 7). The panicle length in F2 was 

between 35.3 cm and 35.8 cm, which was 4% and 8% less than the F1, during 2006 

rainy season and 2007 summer season, respectively. The BC1 population had 25.4 cm 

and 26.1cm long panicles, which was 55% and 49% more than the P1, whereas in BC2 

population it was between 42.7 cm and 41.9 cm, which was 36% and 37% less than 

P2, during 2006 rainy season and 2007 summer season, respectively. 

 The mean performance for panicle length in cross 2 is presented in Table 7.  

The panicle length in P1 varied from 16.3 cm to 17.4 cm across the two seasons, while 

in P2 it varied from 46.8 cm to 44.9 cm. The panicle length in F1 varied between 29.6 

cm and 30.5 cm, which was 6% and 1% less than the mid-parental values, while in F2 

population it varied from 28.7 to 28.5 cm, which was 3% and 7% less than the F1 
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during 2006 rainy season and 2007 summer season, respectively. The panicle length 

in BC1 varied from 21.7 to 22.4 cm, which was 33% and 29% more than the P1, 

whereas in BC2 population it varied from 37.5 to 35.9 cm, which was 20% and 19% 

less than the P2 during 2006 rainy season and 2007 summer season, respectively. 

  
4.1.1.2.2. Panicle diameter 

The observed mean performance for panicle diameter of six generations in cross 1 are 

presented in Table 8. Panicle diameter of the thin-panicle parent (P1) was between 

17.9 mm and 18.5 mm, while in the thick-panicle parent (P2) it was 49.0 mm and 48.3 

mm during 2006 rainy season and 2007 summer season, respectively. The panicle 

diameter in F1 varied between 35.1 and 34.9 mm, which was 5% and 4% higher than 

the mid-parental values, while in F2, it decreased by 15% (29.7 mm) and 18% (28.7 

mm) as compared to F1 during 2006 rainy season and 2007 summer season, 

respectively. In the BC1 population, it was 22.7 mm in both the seasons, which was 

26% and 22% more than the P1 during 2006 rainy season and 2007 summer season, 

respectively, while in BC2 it varied from 38.6 to 37.3 mm, which was 21% and 23% 

less than the P2 during 2006 rainy season and 2007 summer season, respectively. 

 The mean performance for panicle diameter of six generations in cross 2 are 

presented in Table 8. The panicle diameter in P1 varied from 14.4 to 15.6 mm, while 

in P2 it varied from 41.4 to 40.1 mm during 2006 rainy season and 2007 summer 

season, respectively. The panicle diameter in F1 varied from 26.7 to 27.3 mm, which 

was 4% and 2% less than the mid-parental values across two seasons, while in F2 

population it varied from 24.3 to 24.5 mm, which was 9% and 10% less than the F1, 

during 2006 rainy season and 2007 summer season, respectively. The panicle 

diameter in BC1 population varied from 18.9 to 19.1 mm, which was 31% and 22% 

more than P1, while in BC2 population it varied from 32.2 to 32.5 mm, which was 
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22% and 19% less than P2, during 2006 rainy season and 2007 summer season, 

respectively.  

 
4.1.1.2.3. Grain size 

Small grain size parent (P1) had 4.4 g and 5.0 g of 1000-grain weight, while in the 

large grain size parent (P2) had 13.1 g and 13.50 g during 2006 rainy season and 2007 

summer season, respectively (Table 9). The grain size (1000-grain weight) in F1 

varied from 8.3 to 8.7 g, which was 5% and 6% less than the mid-parental values, 

while in F2 it varied from 7.9 to 8.6 g, which was 5% and 1% less than the F1 during 

2006 rainy season and 2007 summer season, respectively. In the BC1 population, 

1000-grain weight varied from 6.3 g to 6.8 g, which was 42% and 36% more than P1, 

while in BC2 population, it was between 9.0 g and 9.8 g, which was 32% and 27% 

less than P2 during rainy season of 2006 and summer season of 2007, respectively.  

 The mean performance for grain size in cross 2 during 2006 rainy and 2007 

summer is presented in Table 9. The grain size (1000-grain weight) in the small-seed 

parent (P1) was between 5.2 g and 5.9 g, while in the large-seed parent (P2) it was 

13.8 g and 14.9 g during 2006 rainy season and 2007 summer season, respectively. 

The F1 had 8.6 to 9.7 g of 1000-grain weight, which was 10% and 12% less than the 

mid-parental values, while the F2 population had 8.5 to 9.5 g, which was 2% less than 

the F1 during 2006 rainy season and 2007 summer season, respectively. In the BC1 

population, 1000-grain weight varied from 7.0 to 7.4 g, which was 34% and 26% 

more than P1, while in the BC2 population it varied from 9.6 to 11.3 g, which was a 

decrease of 30% and 24% compared to P2 during 2006 rainy season and 2007 summer 

season, respectively.  
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4.1.1.3. Three -parameter model estimates  

First, the observed mean of six generations for panicle length, panicle diameter and 

grain size were subjected to a scaling test to assess the adequacy of the additive-

dominance model. Scales A, B and C were estimated and tested with their respective 

standard errors. The joint scaling test was used for the estimation of the three 

parameters (mid-parent [m], additive [d] and dominance [h] effects), and their 

goodness of fit was tested following a chi-square distribution with three degrees of 

freedom.  

 
4.1.1.3.1. Panicle length 

In cross 1, A, B and C scale estimates were highly significant across sets and seasons, 

except scale A which was non-significant in B3 block of set 1 during 2006 rainy 

season (Table 10). The joint scaling test showed that m, d and h components were 

highly significant across sets and seasons. However, the magnitude of additive genetic 

component was 78% (–24.9) and 85% (–23.9) higher than the magnitude of 

dominance gene effect for set 3 during 2006 rainy season and 2007 summer season, 

respectively. This trend was also observed in other sets across seasons. The χ2 values 

were highly significant for all the sets across seasons.  

 The scaling tests for panicle length in cross 2 showed significant values for all 

the three scales across different sets and seasons except during 2006 rainy season, 

where scale A showed a non-significant value in B1 block of set 1 and scale B showed 

a non-significant value in B2 and B3 blocks of set 1 and B13 and B23 blocks of set 2 

(Table 11). Highly significant values for m, d and h components were obtained 

through joint scaling test across sets and seasons. However, the additive component 

for set 3 was 84% (–15.2) and 92% (–13.5) higher than the dominance component 
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across seasons. This trend was also observed in other sets. The χ2 values were found 

to be significant across all sets and seasons.  

 
4.1.1.3.2. Panicle diameter 

The scaling test for panicle diameter in cross 1 showed highly significant values for 

A, B and C across sets and seasons. Joint scaling test showed highly significant 

estimates for the additive effects across sets and seasons (Table 12). The dominance 

component, which was non-significant in all the three sets in rainy season of 2006, 

was highly significant in summer season of 2007 except in B3 block of set 1. 

However, χ2 values were highly significant for all the sets in both the seasons. It 

indicates the inadequacy of additive-dominance model for this trait.  

 In cross 2, the scaling test showed significant values for all the three scales 

across sets in both the seasons, except for scale B in B3 block of set 1 during summer 

season of 2007 (Table 13). Joint scaling test showed highly significant d and h 

components across sets and seasons, except B1 block of set 1 during 2006 rainy 

season, where dominance component showed a non-significant value. The estimated 

additive component (–13.2) was higher in magnitude as compared to the dominant 

component (–1.9) for set 3 in 2006 rainy season. This trend was also observed in all 

other sets across seasons. The χ2 values to test the goodness of fit of three-parameter 

model were found to be significant in all the sets across seasons.  

 

4.1.1.3.3. Grain size 

For this trait in cross 1, scale A was non-significant in all the sets in both the seasons 

(Table 14). However, scales B and C were significantly differed from zero in all the 

sets except scale C in B2 block of set 1, which showed a non-significant value during 

2007 summer season. The three parameters (m, d and h) obtained using joint scaling 
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test were found to be highly significant for this trait across all the sets in both the 

seasons. The additive gene effect (–3.9) was higher in magnitude than the dominance 

gene effects (–1.0), and the χ2 values were also found to be highly significant for set 3 

during 2006 rainy season. This trend was observed in all sets across seasons. 

For cross 2, scale A was non-significant in all the sets during 2006 rainy 

season. However, it was significant in all the sets except in B1 bock of set 1 during 

2007 summer season (Table 15). Scales B and C were significant in all the sets in 

both the seasons. The estimates of (d) and (h) were highly significant, and the additive 

effect (–3.9) was 85% higher than the dominance effect (–0.57) in set 3 during 2006 

rainy season. Similar trend was also observed in other sets and seasons.  The χ2 values 

were also significant in all the sets across seasons. 

 

4.1.1.4. Six-parameter model estimates 

Simple additive-dominance model was inadequate, as revealed by significant values 

for A, B and C scales, suggesting the presence of non-allelic interactions in the 

genetic control of all the three sink size traits. These results were also supported by 

the three-parameter model of joint scaling test, showing large and significant χ2 

values. Therefore, six-parameter model was used to determine the type and magnitude 

of gene action involved in the inheritance of sink size traits.  

 

4.1.1.4.1. Panicle length 

For panicle length in cross 1, both additive and dominance effects were significant 

and negative in all the sets across seasons (Table 16). The additive effect (–17.3) was 

higher in magnitude than the dominance effect (–9.8) in set 3 during 2006 rainy 

season. This pattern was also observed in all other sets in both the seasons. The 

additive x additive (i) interaction was significant in most of the blocks and sets in both 
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the seasons, except blocks B1 and B3 in set 1, block B13 in set 2 during 2006 rainy 

season and B2 block of set 1 during 2007 summer season. Additive x dominance (j) 

and dominance x dominance (l) interactions were positive and significant in all the 

three sets in both the seasons. The magnitude of dominance x dominance interaction 

(25.5) was 81% and 68% higher than additive x additive (–4.72) and additive x 

dominance (8.06) interactions, respectively in set 3 during 2006 rainy season, and this 

pattern was also observed across other sets and seasons. The negative sign of 

dominance effect and positive sign of dominance x dominance interaction indicated a 

duplicate type of epistasis in all sets in both the seasons. 

 In cross 2, the average effect was highly significant for this trait in all the three 

sets in both the seasons (Table 17). The additive component was negative and highly 

significant in all the sets in both the seasons. Conversely, the dominance component 

was found to be non-significant across all sets in both the seasons. Among the 

interacting components, the additive x additive interaction was non-significant in set 1 

across seasons, however in set 2, it was significant in all the three blocks during rainy 

season of 2006 and in block B12 during summer season of 2007. Significance of this 

interaction was also detected in set 3 in both the seasons. The other interacting 

components, additive x additive and dominance x dominance effects were non-

significant in all the sets across seasons. Both the dominance and dominance x 

dominance components were in the positive direction, indicating the presence of 

complementary type of epistasis, however, these components were non-significant in 

this cross. 

 
4.1.1.4.2. Panicle diameter 

The additive effect for this trait in cross 1 was highly significant in all the three sets in 

both the seasons (Table 18). The dominance effect was significant to highly 
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significant across the seasons in set 1, whereas in set 2 and set 3, this component was 

highly significant in both the seasons. The magnitude of additive effect (–15.9) was 

higher than the dominance effect (5.5) in set 3 during 2006 rainy season. Similar trend 

was observed across the other sets in both the seasons. The additive x additive 

interaction was significant only in B1 block of set 1 during both the seasons. However, 

it was significant for all the block combinations in set 2 at varying levels in both the 

seasons. This interaction was also found to be highly significant in set 3 across 

seasons. The additive x dominance interaction was non-significant in all the sets in 

both the seasons except B3 block of set 1 during 2007 summer season. However, the 

dominance x dominance interaction was highly significant and positive across all the 

sets in both the seasons, except B3 block of set 1 during 2006 rainy season. The 

dominance x dominance interaction (10.8) was 65% higher in magnitude than the 

additive x additive interaction (3.8) in set 3 during 2006 rainy season. Similar trend 

was observed across all the sets in both the seasons. Complementary type of epistasis 

was inferred for this trait, as signs of both dominance (h) and dominance x dominance 

(l) component were in the positive direction. 

In cross 2, the average effect was highly significant in all the sets in both the 

seasons (Table 19). The additive effect for this trait was highly significant and 

negative in all the sets in both the seasons. Significant and positive dominance effect 

was observed in block B1 of set 1 during 2006 rainy season and in all the three blocks 

of set 1 during 2007 summer season with varying levels of significance. However, 

this component was highly significant in set 2 and set 3 across all the blocks in both 

the seasons except in block B23 of set 2 during 2006 rainy season. The magnitude of 

additive effect (–13.3) was higher than dominance effect (3.9) in set 3 during 2006 

rainy season. Similar trend was observed across other sets and seasons. The additive x 
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additive interaction was positive and significant in all sets across seasons. The 

additive x dominance interaction was non-significant in all the sets during rainy 

season of 2006, whereas it was significant in 2007 summer season for B2 and B3 

blocks in set 1 and B13 and B23 blocks in set 2 with varying levels of significance. 

However, it was detected with high level of significance in set 3. The dominance x 

dominance interaction was non-significant across sets and seasons. As dominance 

component was negative and dominance x dominance components was positive, 

duplicate type of epistasis was inferred for this trait in this cross. 

 
4.1.1.4.3. Grain size 

 In cross 1, the additive effect for this trait was highly significant in all the sets in both 

seasons (Table 20). The dominance component was negative and significant in B1 and 

B2 blocks of set 1 during 2006 rainy season and B2 and B3 blocks during 2007 summer 

season with varying level of significance. However in set 2 and 3, this component was 

highly significant in both the seasons. The magnitude of additive effect (–2.7) was 

higher than dominance effect (–1.5) in set 3 during 2006 rainy season. Similar trend 

was also observed across other sets and seasons. Additive x additive interaction was 

significant only in B1 block during 2006 rainy season and B2 block during 2007 

summer season in set 1 at varying levels. Similarly, in set 2 also this interaction was 

significant in two blocks in both 2006 rainy season (B12 and B13) and 2007 summer 

season (B12 and B23). However in set 3, this component was highly significant across 

the seasons. Both the additive x dominance and dominance x dominance interaction 

were significant across all the sets and seasons. The dominance x dominance 

interaction (4.8) was 77% and 65% higher in magnitude than the additive x additive 

(–1.1) and additive x dominance (1.7) interaction components, respectively in set 3 of 

2006 rainy season. This interacting component also showed a higher magnitude as 
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compared to all other components across all the sets and seasons. The negative sign of 

dominance component and positive sign of dominance x dominance component 

indicated the presence of duplicate epistasis in this cross. 

The additive effect for grain size in cross 2 was highly significant in all the 

sets in both the seasons (Table 21). The dominance component was significant in set 1 

for block B2 and B3 during 2006 rainy season and block B2 during 2007 summer 

season. This component in set 2 was significant at varying levels across seasons. 

However, it was highly significant in set 3 across seasons. The additive component (–

2.6) was 43% higher than the dominance component (–1.5) in set 3 of 2006 rainy 

season. This trend was also evidenced across all other sets and seasons. The additive x 

additive interaction was non-significant in all the sets in both the seasons except in set 

3 during 2007 summer season. The additive x dominance interaction was highly 

significant in all the three sets during 2006 rainy season. During summer season of 

2007, this component was significant at varying levels in set 1 and set 2 population 

sizes. However in set 3, it was highly significant across seasons. The dominance x 

dominance interaction was significant across all the three sets. The dominance x 

dominance interaction (3.46) was 51% higher in magnitude than the additive x 

dominance interaction (1.7) component in set 3 during 2006 rainy season. This 

interacting component was also higher as compared to all other components across all 

the sets and seasons. The negative sign of dominance component and positive sign of 

dominance x dominance interaction indicate a duplicate type of epistasis for this trait. 

 
4.1.2. Triple test cross analysis 

The detection, estimation and interpretation of epistasis has progressed much faster at 

the level of first degree statistics (Mather and Jinks, 1982) which has certain 

limitations due to the cancellation of genetic effects. The TTC technique of Kearsey 



 99

and Jinks (1968) tests the presence of epistasis and estimates additive (D) and 

dominance (H) components with a higher degree of precision in the absence of 

epistasis. Even in the presence of epistasis, it provides estimates of additive and 

dominance components, which are useful for comparison with variance estimates 

from filial generation data. In the present study, the detection of epistasis and additive 

and dominance components (assuming no epistasis) for panicle length, panicle 

diameter and grain size in one cross (cross 1) from each trait-specific group was 

carried as per the method given by Kearsey and Jinks (1968), and the results are 

presented in Table 22 to 24. 

 
4.1.2.1. Panicle length 

Analysis of variance showed that the interaction of blocks with additive x additive (i) 

as well as additive x dominance and dominance x dominance (j + l) epistatic 

component was non-significant. Therefore, the individual epistatic components were 

tested against total epistasis x block interactions. Total epistasis was highly significant 

for this trait. Further, partitioning of the total epistasis showed the highly significant 

contribution of additive x additive (i) and additive x dominance and dominance x 

dominance (j + l) interactions (Table 22). However, the relative magnitude of mean 

squares due to additive x dominance and dominance x dominance (j + l) interaction 

was higher as compared to additive x additive interaction. 

On the assumption of absence of epistasis, analysis of variances for sums (L1i 

+ L2i) and differences (L1i – L2i) revealed the significance of their respective mean 

squares. Accordingly, the additive effect and dominance component were highly 

significant for this trait. The relative magnitude of additive effect (371.6) was lower 

than the dominance component (465.1). However, as this cross gave evidence of 

significant epistasis for this trait, the estimates of the additive effect and dominance 
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component were biased by unknown extent. The average degree of dominance was in 

the range of overdominance, as the estimate was greater than unity (1.12). The 

correlation coefficient (rsd) of sum (L1i + L2i) and differences (L1i – L2i) was negative 

and significant (–0.59) for this trait, indicating that dominant allele have increasing 

effects on the trait. 

 

4.1.2.2. Panicle diameter 

Analysis of variance showed that the interaction of blocks with additive x additive (i) 

as well as additive x dominance and dominance x dominance (j + l) epistatic 

component was non-significant (Table 23). Therefore, the individual epistatic 

components were tested against total epistasis x block interactions. The mean squares 

due to total epistasis was highly significant. The partitioning of the epistatic variance 

showed significant additive x additive and additive x dominance and dominance x 

dominance interactions for this trait.  

The significance of mean squares due to sums and differences revealed the 

importance of both additive and dominance components. The estimate of additive 

effect (157.4) component was relatively higher than the dominance component 

(135.4). The degree of dominance was partial as evident from the estimate being less 

than unity (0.93) for this trait. The estimated value for correlation coefficient (rsd) of 

sum and differences was negative and significant (–0.67) for this trait, indicating that 

dominant alleles have increasing effects on the trait. 

 

4.1.2.3. Grain size 

Analysis of variance showed that interaction of blocks with additive x additive (i) as 

well as additive x dominance and dominance x dominance (j + l) epistatic component 

was non-significant. Therefore, the individual epistatic components were tested 
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against total epistasis x block interactions. Mean square for epistasis provided 

evidence for significant total epistatic effect (Table 24). When the overall epistasis 

was partitioned, the results showed non-significant additive x additive  (i) epistasis for 

this trait. However, the additive x dominance and dominance x dominance (j + l) 

epistasis was highly significant. 

Analysis of variance for sums and differences, on the assumption of no 

epistasis indicated significant mean squares for this trait. These results provide 

evidence for the presence of both additive and dominance genetic components for this 

trait. The estimated additive (9.87) component was lesser than the dominance 

component (12.34). The degree of dominance being more than unity (1.12) revealed 

overdominance for this trait. The estimated value for correlation coefficient (rsd) of 

sums and differences was non-significant, indicating symmetrical distribution of 

dominant alleles among parents.  

 

4.1.3. Estimation of components of variances and heritabilities  

The variance components attributed to total genetic, additive and dominance variation 

along with dominance ratio and heritabilities (broad and narrow sense) were estimated 

for panicle length, panicle diameter and grain size. These estimates were obtained 

from the variance of six generations of trait-specific crosses evaluated during 2006 

rainy and 2007 summer seasons. The results are presented in Table 25. 

 

4.1.3.1. Panicle length 

Panicle length in cross 1 had an additive variance (D) of 83.2 and 90.3 and dominance 

variance (H) of 14.2 and 9.0, while in cross 2 the additive variance was 43.0 and 55.8 

and dominance variance was 4.9 and 3.2 during 2006 rainy season and 2007 summer 

season, respectively. The magnitude of additive variance was much greater than the 
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dominance variance, and the dominance ratio was less than unity in both the crosses 

and the seasons. Broad-sense heritability was high in both the crosses, ranging from 

94.9 to 98.1% across seasons. Narrow-sense heritability ranged from 83.8 to 90.5% 

across the crosses and the seasons.  

 

4.1.3.2. Panicle diameter 

Panicle diameter in cross 1 had an additive variance (D) of 31.0 and 29.9 and 

dominance variance (H) of 13.82 and 14.8, while in cross 2 the additive variance was 

27.7 and 29.5 and dominance variance was –0.1 and –1.7 during 2006 rainy season 

and 2007 summer season, respectively. The magnitude of additive variance was 

higher than the dominance variance component, and the dominance ratio was less 

than unity in both the crosses across seasons. The estimated values for heritabilities in 

broad and narrow sense ranged between 90.5% and 95.9% and 64.0% and 91%, 

respectively across the crosses and the seasons.  

 
4.1.3.3. Grain size 

The additive variance for grain size was 9.1 and 5.2, while the dominance variance 

was –3.1 and –0.5 in cross 1 during 2006 rainy season and 2007 summer season, 

respectively. In cross 2, the additive variance was 5.2 and 7.1 and the dominance 

variance was –0.03 and –0.8 during 2006 rainy season and 2007 summer season, 

respectively.   

The dominance ratio was found to be positive and less than unity in both the 

crosses across seasons. The estimated values for broad-sense heritability varied from 

88.0 to 95.8% and narrow-sense heritability ranged between 89.0% and 96.1% across 

crosses and seasons for this trait.  
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4.1.4. Character association in trait-specific crosses  

Simple correlation coefficients were estimated for the observed traits in F2 population 

of trait-specific crosses evaluated during 2007 summer season and the results are 

presented in Table 26. 

 

4.1.4.1. Panicle length crosses 

The association of panicle length in cross 1 with panicle diameter (0.11), days to 50% 

flowering (0.02) and productive tiller number (0.01) was non-significant. However, it 

showed significant and positive associations with grain size (0.17), plant height (0.25) 

and single plant yield (0.22).  

In cross 2, panicle length showed positive and significant association with 

panicle diameter (0.23), whereas it had positive and non-significant association with 

grain size (0.12). However, days to 50% flowering (0.36), plant height (0.38) and 

single plant yield (0.32) exhibited highly significant positive correlation with this 

trait, whereas, productive tiller number (0.09) showed positive non-significant 

associations.  

 
4.1.4.2. Panicle diameter crosses 

Panicle diameter in cross 1 exhibited positive significant correlation with panicle 

length (0.19) and positive and highly significant correlation with grain size (0.28) and 

single plant yield (0.43). However, the association of panicle diameter with days to 

50% flowering (–0.28) was negative and highly significant. Whereas, plant height 

(0.04) and productive tiller number (0.14) showed positive but non-significant 

associations with this trait. In cross 2, association of panicle diameter with panicle 

length (0.48), grain size (2.70) and single plant yield (0.35) was positive and highly 

significant. Positive and significant association of panicle diameter with days to 50% 
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flowering (0.20) and plant height (0.22) was also observed. However, the productive 

tiller number (0.08) showed non-significant association with this trait. 

 

4.1.4.3. Grain size crosses 

Grain size showed positive and highly significant association with panicle diameter 

(0.49) and single plant yield (0.32) in cross1. In cross 2 also grain size showed a 

highly significant association with panicle diameter (0.67) and single plant yield 

(0.31). This trait showed non-significant association with all other traits. However, the 

association of grain size was positive with panicle length (0.05) and days to 50% 

flowering (0.09) and negative with plant height (–0.01) and productive tiller number 

(–0.03) in cross 1. Similar association was also observed in cross 2 except with days 

to 50% flowering (–0.16), where the association was negative. 

 
4.2. QTL analysis  

QTL analysis was performed for the observed traits in the F2 and F2:3 mapping 

populations and their results are presented below. 

 
4.2.1. Phenotypic analysis 

Data were recorded on sink size and agronomic traits from the F2 and F2:3 population 

trials conducted during 2006 rainy season and 2007 summer season, respectively.  

 
4.2.1.1. Analysis of variances 

The analysis of variance for the replicated phenotypic data sets from the F2:3 trial was 

performed using the Residual Maximum Likelihood algorithm (ReML), which 

provides the Best Linear Unbiased Predictors (BLUPs) of the performance of the 

genotype (Patterson and Thompson, 1971). The predicted means were calculated 

considering entries as fixed effects and the block and entry × replication interaction as 
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random effects. The variances due to F2:3 progenies were highly significant (P > 0.01) 

for all the observed traits except productive tiller number which showed significance 

only at 5% level and panicle harvest index which was non-significant.   

 

4.2.1.2. Mean performances  

The mean performance of parents across 2006 rainy season (F2 trial) and 2007 

summer season (F2:3 trial) and means of F2 and F2:3 mapping populations for the 

observed traits are presented in Table 27. 

The panicle length in P1 was 28.6 cm and for P2 it was 24.6 cm, while in F2 

and F2:3 it was 27.8 cm and 27.4 cm, respectively. Panicle diameter in P1 was 18.4 

mm and in P2 it was 35.1 mm, while it was 26.4 mm in F2 population and 26.0 mm in 

F2:3 progenies. Grain size (1000-gran weight) in P1 was 5.4 g, while in P2 it was 12.0 

g, whereas in F2 population, it was 8.1 g and in F2:3  progenies it was 8.7 g.  

Plant height in P1 was 101.2 cm. while in P2 it was 108.6 cm, whereas in F2 

population it was 114.2 cm and in F2:3 progenies it was 108.9 cm. Productive tiller 

number in P1 was 2.7 and in P2 it was 1.3, while it was 2.4 in the F2 population and 

1.7 in F2:3 progenies.   

Panicle grain weight in P1 was 15.1 g and in P2 it was 22.8 g, while the F2:3 

population had a mean of  21.7 g. Panicle weight in P1 was 21.2 g and in P2 it was 

37.2 g, while it was 33.6 g for F2:3 progenies. Panicle harvest index was 63.3% and 

65.8 % in P1 and P2, respectively, while in F2:3 it was 64.8%.  

  
4.2.1.3. Heritability estimates 

Heritability in broad-sense was estimated for the observed traits in both F2 and F2:3 

mapping populations (Table 27). High heritability estimates were obtained for panicle 

length (0.71), panicle diameter (0.72) and plant height (0.87) in the F2 population data 
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set, however for grain size (0.59) the heritability estimate was moderate and for 

productive tiller number (0.35) it was low. In F2:3 progenies, the heritability estimates 

were high for all the traits ranging between 0.62 and 0.92,  except for panicle harvest 

index (0.56) which showed a moderate heritability. As expected, the heritability 

estimates from the replicated data sets of F2:3 for all the observed traits were 

comparatively higher than that of  F2 population data set. Except for productive tiller 

number, the heritability estimates were significantly greater than 0.50 for all the 

observed traits in both F2 and F2:3 populations, which is a prerequisite for effective 

QTL mapping. 

 

4.2.1.4. Frequency distributions 

The variation observed for the sink size and agronomic traits in F2 and F2:3 mapping 

progenies are presented graphically through frequency distributions (Figure 3 to 6). 

Panicle length in F2 population showed a bimodal distribution whereas in F2:3 it 

showed a continuous symmetrical distribution. For panicle diameter an irregular 

distribution was observed in F2 population, however in F2:3 progenies it showed a 

symmetrical distribution. Grain size presented a continuous symmetrical distribution 

in both the F2 and F2:3 populations.  

For plant height, the distribution was slightly skewed to the left in F2 

population, while in F2:3 progenies, it presented a normal distribution. Similarly, 

productive tiller number presented a skewed distributions toward left in both F2 and 

F2:3 mapping populations.  

Panicle grain weight, panicle weight and panicle harvest index in F2:3 

progenies presented a moderately symmetrical distribution. The continuous 

symmetrical distribution for traits panicle length, panicle diameter and grain size 

indicated that they are likely to be polygenic in nature and quantitatively inherited 
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Transgressive segregants were observed for panicle length and plant height in 

both F2 and F2:3 mapping populations. Panicle grain weight, panicle weight and 

panicle harvest index also showed transgressive segregants in F2:3 progenies. The 

occurrence of transgressive segregants might be the result of complementation of 

favourable and unfavourable alleles from either of the parents. 

 
4.2.1.5. Phenotypic correlations 

Phenotypic correlations were calculated on F2:3 mapping population for all the traits 

under study (Table 28). Correlation coefficient revealed the degree of association 

among traits and also indicated the chances of identifying co-mapped QTLs for the 

correlated traits. 

 A positive significant correlation was observed for panicle length with panicle 

grain weight (0.221), plant height (0.427) and productive tiller number (0.210); 

panicle diameter with grain size (0.553), panicle grain weight (0.276) and panicle 

weight (0.438); grain size with panicle weight (0.271) and panicle grain weight 

(0.200); panicle grain weight with panicle weight (0.867), panicle harvest index 

(0.406) and productive tiller number (0.244); panicle harvest index with productive 

tiller number (0.267). Similarly, significant negative correlation was observed for 

panicle length with panicle diameter (−0.300); panicle diameter with panicle harvest 

index (−0.225), plant height (−0.226) and productive tiller number (−0.302); and grain 

size with productive tiller number (−0.239). 

 

4.2.2. Molecular analysis 

4.2.2.1. Parental polymorphism  

A total of 331 primer pairs, which included 96 primer pairs each of SNP, SSR and 

EST-SSR markers, and 43 STS markers were initially screened on parental lines to 
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detect polymorphism, which resulted in identification of 109 primer pairs. A total of 

44 markers with known map positions, evenly distributed across the seven pearl millet 

linkage groups and showing clear allelic differentiation between the parents were 

finally selected for genotyping the F2:3 mapping population. The selected markers 

included 24 SNPs, 10 SSRs, 6 EST-SSRs and 4 STSs (Table 29).  

 

4.2.2.2. Marker segregation in mapping population 

The segregation pattern of 44 marker loci in F2:3 mapping population were tested for 

the goodness of fit to the expected ratio 1:2:1 [1= Homozygote for female parent (P1), 

2 = Heterozygote, 1= Homozygote for male parent (P2)] using χ2 test. The calculated 

χ
2 values were compared with table value at 2 degree of freedom for each marker 

locus and the results are present in Table 30. 

A total of 4 markers out of 44 marker loci showed significant χ2 value for 

segregation distortion when compared with table value at 1% probability level. These 

markers were located on LG 2 (Xicmp3063), LG 3 (Xpsms31), LG 5 (Xpsms18) and 

LG 7 (Xpsmp2027). 

 
4.2.3 Linkage map construction    

A linkage map was constructed using the genotypic data of 44 markers genotyped on 

188 F2:3 individuals by applying the F2 model in MAPMAKER/EXP V.3.0 software 

programme. Linkage distances in terms of centimorgan (cM) values were calculated 

using the Haldane function. The linkage map was constructed using a LOD default 

value of 3.5 and maximum inter-marker distance of 50.0 cM. The details of linkage 

groups (LG) to which 44 markers were assigned and linkage distances between the 

marker loci in each group are given in Table 30 and Figure 7. 

The number of markers mapped per linkage group and the length of each 
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linkage group are presented in Table 31. The highest number of markers were found 

on LG 3 (9 markers), followed by LG 1 (8 markers), LG 2 (8 markers), LG 5 (7 

markers) and LG 6 (6 markers). The linkage groups 7 (4 markers) and 4 (2 markers) 

had lowest number of mapped markers. The linkage map thus constructed had a total 

length of 1018.7 cM. The average distance between the marker pairs was 23 cM with 

a range of 14 cM on LG 1 to 38 cM on LG 6. However, there were some gaps wider 

than 50 cM on LG 2, 3, 5 and 6.  

 

4.2.3.1. Linkage group 1 

The number of polymorphic loci for LG 1 was 18% of the total markers mapped. 

There was no clustering of markers on this linkage group. It comprised of 5 SNPs, 1 

SSR, 1 EST-SSR and 1 STS markers, which together covered a total distance of 110 

cM with an average distance of 13.8 cM between marker loci. The distribution of 

markers in this linkage group is ideal for QTL mapping, except for the large gap (44.1 

cM) between markers Xpsms58 and Xpsms29. 

 
4.2.3.2. Linkage group 2 

The linkage map of chromosome 2 comprised of 8 markers covering a total distance 

of 195 cM with an average distance of 24.4 cM between marker loci. LG 2 is 

relatively well covered with 5 SNPs, 1 SSR, 1 EST-SSR and 1 STS marker. The 

marker distribution in this linkage group was also ideal for QTL mapping, except for 

the large gap (95.3 cM) between Xpsms75 and Xpsms73. 

 
4.2.3.3. Linkage group 3 

Nine markers were mapped on LG 3 covering a distance of 180 cM with 5 SNPs, 2 

SSRs, 1 EST-SSR and 1 STS marker. The average inter-marker distance was 20 cM, 

however, gaps of more than 30 cM exists between marker loci Xicmp3073 -Xpsms68 
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and between Xpsms31 - Xpsmp2068.  

 

4.2.3.4. Linkage group 4 

This linkage group had only two mapped markers (1 SNP and 1 SSR) with an interval 

of 37.7 cM, with poorest coverage among the seven linkage groups. Clearly more 

polymorphic markers need to be identified that can map to this linkage group, so that 

QTL detection on this linkage group will be practical. 

 

4.2.3.5. Linkage group 5 

In this linkage group seven markers were mapped, including 3 SNPs, 2 SSRs, 1 EST-

SSR and 1 STS markers. The total length of this linkage group is 170.0 cM with an 

average inter-marker distance of 24.6 cM. Three large gaps exist in this linkage group, 

which were found between the marker loci Xicmp3027 - Xpsmp2064; Xpsms2 - 

Xpsmp345 and between Xpsmp345 - Xpsms18.  

 

4.2.3.6. Linkage group 6 

Six markers constitute linkage group 6, which includes 3 SNP, 1 SSR and 2 EST-SSR 

markers covering a total length of 228 cM. This linkage group was the longest among 

the seven linkage groups with an average inter-marker distance of 38 cM. While the 

centromeric region of this linkage group is well covered, the proximal and distal arms 

needs much higher density of markers. 

 
4.2.3.7. Linkage group 7 

This linkage group contains only four markers and covers a distance of 96 cM with 2 

SNP and 2 SSR markers. The average distance between adjacent markers was 24.0 

cM, but additional markers need to be mapped onto this linkage group before QTL 

detection will be effective across its entire length. 
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4.2.4. Mapping QTLs for sink size and agronomic traits  

Mapping of QTLs was carried out using phenotypic and genotypic data for 188 F2:3 

mapping population and also for F2 population. QTL analysis was carried out in F2:3 

progenies for panicle length, panicle diameter, grain size, panicle weight, panicle 

grain weight, panicle harvest index, plant height and productive tiller number, and in 

F2 population for panicle length, panicle diameter, grain size, plant height, and 

productive tiller number. PLABQTL was used to analyze the data by composite 

interval mapping (CIM) procedure using different genetic models (additive, additive-

dominance and epistasis). The CIM method was implemented using a LOD of 2.5 as 

the threshold value for identifying significant QTLs. 

Individual putative QTLs were detected for both sink size components and 

agronomic characters. According to Tanksley et al. (1996), regions of the genome are 

identified to contain a putative QTL if the results meet one or more of the following 

criteria: (i) a significant effect observed for a single marker/trait combination at a 

single environment with P<0.001 (ii) significant effects observed in the same 

direction (i.e. either all positive effects or all negative effects) for a single marker/trait 

combination at one or two environments with P<0.01 and (iii) significant effects 

observed in the same direction for a single marker/trait combination at one or two 

environments with P<0.1. Based on these criteria in the present study, a total of 27 

putative QTLs were identified for a total of seven targeted characters. 

 
4.2.4. 1. Panicle length 

Additive genetic model identified seven QTLs, one each on LG 1, 2, 3, 4 and 7 and 

two each on LG 6 using F2:3 progeny data for this trait (Table 32). The LOD scores for 

these ranged from 2.9 to 8.0. The variation explained by these individual QTLs due to 

their additive effect ranged from 6.8 to 25.9%. The favourable alleles for the QTLs on 



 112

LG 1, 2, 6 and 7 were from P1 parent while for the QTLs on LG 3 and LG 4, the 

positive effect was from male P2 parent. The total variation explained by additive 

model was 40.7%. This model failed to detect any QTLs for the F2 data set. 

 The additive-dominance model identified eight QTLs using the F2:3 progenies, 

one each on LG 1, 2, 4 and 7 and two each on LG 3 and LG 6. The LOD scores for 

these QTLs ranged from 2.6 to 8.2 (Figure 8). The additive effects individually 

explained 4.5 to 26.9% of the variation while the dominance effects explained 0.0 to 

1.4% of the variation. Panicle length QTLs on LG 3 and 4 had favourable alleles from 

P2 parent, while for the other loci the favourable alleles came from P1 parent. In the F2 

population, two QTLs on LG 2 and 6 were detected with LOD values of 3.3 and 3.7, 

respectively explaining 0.5 and 3.4% additive effect of variation and dominance 

effects explaining 0.7% and 3.4% of variation, respectively. The total variation 

explained by the model was 42.7 % in the F2:3 data set and 13.1%  in F2 data set. 

Epistatic model revealed additive × additive and dominance × dominance QTL 

pair interactions for this trait in the F2:3 progeny data set. This pair-wise epistatic 

interactions explained between 6.5 to 12.3% of observed variation. No significant 

epistatic interactions were detected in the F2 population. A total of 40.1% variation in 

the F2:3 progenies and 12.5% variation in F2 population was explained through this 

model.  

On the whole, QTL analysis identified eight genomic regions distributed one 

each on LG 1, 2, 4 and 7 and two each on LG 3 and LG 6 that contributed 

significantly to the genetic control of panicle length. The variation explained by 

individual QTLs ranged from 6.1 to 18.2%. Though significant interaction among the 

QTLs on LG 1, 3, 6 and 7 were detected using the epistatic model, the total variation 

explained through the additive-dominance model for this trait was high in both F2 
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population (13.1%) and F2:3 progenies (42.7%). 

 

4.2.4.2. Panicle diameter 

Four QTLs were detected for this trait on LG 2, 3, 6 and 7 using F2:3 progenies data 

following additive model (Table 33). The LOD scores ranged from 3.6 to 14.7 and the 

variation explained by these individual QTLs ranged between 8.9 and 28.6%. The 

favourable alleles for all QTLs were contributed from P2 parent. The portion of 

observed variation explained through this model was 44.3%. 

 Additive-dominance model identified five QTLs for this trait, distributed 

across LG 2, 3, 5, 6 and 7 using F2:3 progeny data set. The LOD score ranged between 

2.6 and 14.7 (Figure 8). The portion of phenotypic variation explained by additive 

effects ranged from 3.6 to 29.1% and those explained by dominance effects ranged 

between 0.1 to 2.8%. The favourable alleles were all contributed by the P2 parent. The 

portion of observed phenotypic variation explained by this model was 45.8%.  

Using the epistatic model, a QTL on LG 2 showed significant additive x 

dominance interaction effects with a QTL on LG 3 and this interaction explained 

2.8% of the observed phenotypic variation for panicle diameter.  The epistatic model 

explained 41.0% of observed phenotypic variation. 

In total, five QTLs significantly associated with panicle diameter were found 

on LG 2, 3, 5, 6 and 7 using the F2:3 progenies data set. The variation explained by 

these individual QTLs ranged from 6.3 to 30.2% with LOD values of 2.6 to 14.7. 

Additive x dominance interaction was observed between QTLs located on LG 2 and 

LG 3. However, the additive-dominance model explained the highest portion of 

observed variation (45.8 %) for this trait. All three models failed to detect any 

significant QTLs for this trait using the F2 data set. 
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4.2.4.3. Grain size 

The additive model detected two QTLs for this trait using the F2:3  progeny data set 

(Table 34). These were mapped on LG 1 and 3 with LOD values of 2.8 and 3.1, and 

explained 6.4 and 10.4% of variation, respectively. This model also detected two 

QTLs using the F2 population data set, one each on LG 3 and 6 with LOD values of 

8.8 and 4.8, respectively, and explained 22.9 and 9.9% of observed variation. The 

favourable alleles for all these QTLs were from P2 parent.  This model explained a 

total of 13.3% of observed variation in the F2:3 progenies and 32.2% in the F2 

population. 

The additive-dominance model detected five QTLs using the F2:3 progenies 

data set (LG 1, 3, 5, 6 and 9) and the LOD scores for these QTLs ranged from 2.5 to 

3.7 (Figure 8). The variation explained by these QTLs ranged from 0.3 to 9.7% due to 

additive effects and ranged from 0.1 to 4.2% due to dominance effects. However, only 

two QTLs were detected for this trait using the F2 data set. These QTLs on LG 3 and 

6 had LOD scores of 9.4 and 6.6, and additive effects explaining 24.0% and 13.2% of 

observed variation and dominance effects explaining 2.3% and 3.9%, respectively. 

The favourable alleles for all QTLs for this trait were contributed by P2 parent. The 

portion of observed variation explained by this model was 23.6% in the F2:3 progenies 

and 35.6% in the F2 population. 

 The epistatic model detected significant interaction among the identified 

QTLs. Dominance x dominance interaction and additive x dominance interaction was 

noticed among the QTLs detected in the F2:3 progenies. The variation explained by 

significant pair-wise epistatic interactions ranged between 3.1% and 4.3%. In the F2 

population, dominance x dominance interaction was observed between the two 

detected QTLs and this explained 7.9% of the observed variation for grain size. This 
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model explained observed variation of 29.6% and 41.1% for the F2:3 progenies and F2 

population data sets, respectively. 

 In general, across F2 and F2:3 progeny populations using the three genetic 

models, a total of 5 QTLs were identified using all the three genetic models for grain 

size. These QTLs were distributed across LG 1, 3, 5, 6 and 7. The QTLs on LG 3 and 

LG 6 were detected in both F2 and F2:3 data sets. Individual QTLs explained 6.1 to 

21.2% of the observed phenotypic variation. The epistatic model detected significant 

interactions among all the detected QTLs. The observed variation for this trait was 

best explained through the epistatic model in both F2:3 progenies (29.6%) and F2 

population (41.4%). 

 

4.2.4.4. Panicle weight 

The additive model failed to detect any QTL for this trait. However, the additive-

dominance model detected a single QTL on LG 3 using F2:3 progenies data set (Table 

35). This QTL had a LOD value of 2.6 and explained only 2.8% of total variation 

observed (Figure 9). The additive and dominance effect for this QTL explained 3.8% 

and 0.3% of observed variation, respectively. The favourable allele for this QTL was 

from P2 parent. 

4.2.4.5. Panicle harvest index 

A single QTL for plant harvest index was identified using F2:3 progeny data set for 

both additive and additive-dominance models (Table 35). This significant QTL was 

mapped on LG 3 between marker loci Xicmp3073 and Xpsms68. This QTL had a 

LOD value of 3.0 and explained 3.7% of variation through the additive model. Using 

the additive-dominance model, it explained 4.7% of observed variation via additive 

effect and 1.6% via dominance effect (Figure 9). The favourable allele was from P2. 

4.2.4.6. Plant height 
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The additive model for plant height detected six QTLs, two on LG 1 and one each on 

2, 3, 4 and 5 using F2:3 progeny data set, with LOD scores ranging from 3.1 to 8.3 

(Table 36). The portion of observed variation explained by these individual QTLs 

ranged from 4.1% to 26.7%. Using F2 population data set, two QTLs were detected, 

one each on LG 1 and 5 with LOD values of 6.5 and 4.9 that explained 13.6% and 

9.1% of variation, respectively. The favourable alleles for the QTLs on LG 1, 2 and 3 

were contributed by P2 parent, while those on LG 4 and 5 were from P1. The total 

portion of variation explained by this model was 42.1% in F2:3 progenies and 18.2% in 

F2 population.  

 The additive-dominance model revealed same QTLs as obtained by the 

additive model except for an additional QTL on LG 1 detected in F2:3 progeny data 

set. The favourable allele for this additional QTL was from P2 parent. In the F2:3 data 

set, QTLs were detected at LOD scores ranging between 3.3 and 11.1 with additive 

effects explaining between 5.1% and 22.3% and dominance effects explaining 

between 0.0% and 4.4% of the total variation (Figure 10). Using the F2 population 

data set, two QTLs on LG 1 and 5 were detected with LOD values of 8.0 and 5.3, with 

additive effects explaining 14.1% and 9.9% and dominance effects explaining 3.9% 

and 0.9% of the total variation, respectively. The QTLs on LG 1 and 5 had favourable 

alleles from P1 and P2 parent, respectively. The total variation explained by this model 

was 49.3% and 20.1% for F2:3 progeny  and F2 population, respectively. The epistatic 

model did not detect any significant interaction among the identified QTLs in either 

of the populations. 

In general a total of six QTLs for plant height were detected, two on LG 1 and 

one each on LG 2, 3, 4 and 5 using all the three models in F2:3 data set, however, only 

two QTLs were identified on LG 1 and LG 5 using F2 data set. The proportion of 
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observed phenotypic variation explained by these individual QTLs ranged from 7.3 to 

23.6%. The LOD scores ranged from 3.1 to 11.0. The additive-dominance model 

explained a total of 49.3% observed variation for this trait. 

 
4.2.4.7. Productive tiller number 

The additive model failed to detect any QTLs for this trait. However, the additive-

dominance model detected a single QTL, which was flanked by marker loci Xpsm6 

and Xpsmp2203 on LG 7 (Table 37). This QTL had a LOD score of 3.5 and its 

additive effect explained 5.5% and the dominance effect explained 3.3% of the total 

observed variation (Figure 10). The favourable allele for this trait was contributed by 

P1 parent. 
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5. Discussion 

 
The increase in grain yield potential through improvement of sink size component 

traits is suggested to be a logical breeding objective in crop plants including pearl 

millet. However, these traits are complex, quantitative in nature, affected by many 

genes and environment along with interaction between genes and environments. In the 

present study, the genetic architecture of panicle length, panicle diameter and grain 

size were characterized through genetic and QTL analyses. The inferences drawn 

from the results are discussed here. 

 

5.1. Genetic analysis 

Plant genetics needs a methodology, which can provide reliable information on the 

nature of gene action from the quantum of genetic materials handled. Although many 

mating designs are available to generate wide genetic variability in experiments, the 

basic requisite is the information on the genetic mechanism involved in the 

inheritance of a trait in the base population (Comstock and Robinson, 1952).  In the 

present study, the nature of gene action for sink size traits was investigated using 

generation means and variances and triple test cross analyses. These methodologies 

provide information on the relative importance of additive, dominance and epistatic 

gene effects, in determining genotypic values of individuals. The variance 

components also allow the estimation of broad-sense and narrow-sense heritabilities. 

Narrow-sense heritability estimates are based on additive genetic variance (fixable 

component) and are better predictors of the effectiveness of selection in genetically 

heterogeneous population than broad-sense heritability.  

The inferences drawn from the results of generation means and variance 

analyses of two crosses performed for each of panicle length, panicle diameter and 
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grain size traits along with those from TTC analysis performed for one cross for each 

of these traits are discussed below. 

 
5.1.1. Genetic parameters for sink size traits 

 

5.1.1.1. Panicle length 

The mean values of the parents for panicle length of the two crosses studied across 

seasons (2006 rainy season and 2007 summer season) differed significantly. However, 

the difference was greater in parental lines of cross 1. The means of F1, F2 and 

backcross generations also substantially differed from one another. The F1s mean in 

both the crosses were lower than the mid-parental values, suggesting apparently the 

presence of partial dominance of genes with small panicle (P1) over those with longer 

panicle (P2). 

 Both scaling and joint scaling tests revealed that a simplistic additive-

dominance model did not adequately explain the observed variation for panicle length 

in both the crosses across seasons, providing an evidence for the presence of digenic 

or higher order interactions.  

The six-parameter model in the estimation of various genetic components for 

panicle length revealed that the additive effect was highly significant in both the 

crosses and the seasons. The dominance effect was significant in cross 1 in both the 

seasons, but its magnitude was lower than the additive effect. The significant effects 

of both additive and dominance components for panicle length in cross 1 was similar 

to the reports of Singh and Sagar (2001), Ramamoorthy and Das (1994) and Desale 

(1993). It was also substantiated from the TTC results where both additive and 

dominance gene effects contributed significantly to panicle length in cross 1. These 

results were in agreement with those of Singh et al. (1990a) who found significant 

additive and dominance effects for panicle length through triple test cross analysis.  
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The magnitude of additive component was higher than dominance component 

as evidenced from generation means and variances analyses, indicating the relative 

importance of additive gene effects in governing panicle length. The preponderance of 

additive gene effects for panicle length was also reported by Singh et al. (2000), Joshi 

and Desale (1996), Mangath et al. (1994), Shinde and Patil (1987), Singh and Singh 

(1972) and Singh et al. (1972). 

The degree of dominance for panicle length was found to be partial through 

generation means and variances in both the crosses across both seasons, whereas TTC 

analysis revealed overdominance for this trait. However, the estimates of dominance 

components through TTC may not be unbiased because of the presence of significant 

additive x dominance and dominance x dominance epistasis for this trait, which was 

evident from both TTC and generation means analyses. Influence of partial 

dominance for this trait was also reported by Gill et al. (1968). The significant 

dominance component and significant correlation between sums and differences for 

this trait through TTC analysis indicates unidirectional distribution of dominant 

alleles among the parents. The negative sign of correlation between sums and 

differences indicate that the dominant alleles carry positive effect on the trait. 

As a result of low magnitude of dominance and environmental variances, the 

broad and narrow-sense heritability estimates were high in both the crosses across 

seasons. High heritability for panicle length in pearl millet was also reported by Varu 

et al. (2005), Hepziba et al. (1993), Vyas and Srikant (1986), Singh et al. (1979) and 

Madhava et al. (1971).  

All the three types of interaction effects were significant in cross 1 for at least 

in one block of set 1 and two blocks of set 2, and were highly significant for set 3 in 

both the seasons. However, the magnitude of dominance x dominance interaction was 
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greater followed by additive x dominance and additive x additive interactions. These 

findings were in agreement with the results of Ramamoorthy and Das (1994) who 

reported higher magnitude of dominance x dominance interaction and Singh and 

Singh (1972) who reported a higher magnitude of additive x dominance than the 

additive x additive interaction for this trait. The test of epistasis through TTC analysis 

for this cross also revealed the presence of total epistasis. Partitioning of the total 

epistasis revealed that both additive x additive (i) and additive x dominance and 

dominance x dominance (j + l) epistasis were significant. However in cross 2, only 

additive x additive interaction was found to be significant in both the seasons. 

Significance of additive x additive interaction for this trait was also reported by Singh 

et al. (2000), Gandhi et al. (1999) and Shinde and Patil (1987).  

The negative sign of  (h) and positive sign of (l) components revealed the 

presence of duplicate epistasis for this trait in cross 1. Shinde and Patil (1987) and 

Sheoran et al. (2000) also reported duplicate epistasis for this trait. However in cross 

2, complementary epistasis was detected as both (h) and (l) components were in same 

direction (positive). Presence of complementary epistasis for this trait was also 

reported by Ramamoorthy and Das (1994). 

In general, for panicle length, all the six genetic components were significant 

in cross 1. Previous studies have not reported the significance of all the genetic 

components for this trait in any single cross. This may be because the parental lines 

did not represent extreme contrast for this trait in earlier studies, which in turn 

represents the dispersal of like genes between the parental lines. The dispersal of 

alleles among the parental lines may cause the canceling of some genetic effects, 

resulting in the underestimation of additive (d), additive x additive (i) and additive x 

dominance (j) interactions. Further, in cross 2, additive and additive x additive 
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interaction were significant. The attrition of other genetic components might be 

because the parental lines utilized in this cross may have been subjected to optimizing 

selection, and hence are expected to have a predominantly additive architecture with 

less pronounced dominance components (Gilchrist and Partridge, 2001). 

The estimated genetic components for panicle length under different sets of 

population size through six-generation means showed that the additive x additive 

interaction was frequently non-significant in the blocks of set 1 population size. 

However, this component was detected to be significant in the blocks of set 2 and 

detected with high levels of significance in set 3 population size in both the crosses 

across both seasons. The consistency in detection of significant genetic component 

under different population sizes are in part due to the change in allelic frequency with 

respect to population size, which would be precise in large population. Hence for 

panicle length, the optimum population size to detect all the genetic component 

reliably would be at least as that of set 2 (700 plants of F2 population and 200 plants 

each of BC1 and BC2 populations).  

The results of generation means and TTC analysis had a substantial agreement 

with each other in relation to the relative importance of additive, dominance and 

epistasis for panicle length. Thomas and Tapsell (1983) also reported similarly in the 

results of generation means and TTC analysis while studying the genetics of 

quantitative traits in barley. 

  
5.1.1.2. Panicle diameter 

The mean difference for panicle diameter between the parental lines was 

comparatively higher in cross 1 than cross 2. As expected, the means of six 

generations differed significantly in both the crosses across the sets and the seasons. 

The presence of partial dominance of genes with thick panicle over those of thin 
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panicle was inferred, as F1 means in both the crosses were higher than the mid-

parental values. 

 The significance of individual scales in scaling test, and χ2 value of joint 

scaling test indicated that simple additive-dominance model was not sufficient to 

explain the total genetic variation for panicle diameter in both the crosses. The lack of 

fit of additive-dominance model might reveal the presence of non-allelic interactions 

for this trait. 

 Both the additive and dominance gene effects for panicle diameter were found 

to be highly significant in the six-parameter model. The importance of both additive 

and dominance gene effects for panicle diameter was also reported by Singh et al. 

(2000), Sagar and Singh (1996) and Desale (1993). TTC analysis of variances for 

sums and differences indicated significance of their mean squares for panicle diameter 

of cross 1. These results also provide evidence for the presence of both additive and 

dominance gene effects in the genetic control of panicle diameter. However, higher 

estimates of additive component than the dominance component were observed 

through all different methods (generation means and variances and TTC). This 

suggests the presence of partial degree of dominance and additive x additive (i) 

epistasis for this trait. Presence of partial dominance for this trait was confirmed, as 

the estimates were less than unity in both the crosses across different methods. The 

significant dominant component and negative significant correlation between sums 

and differences from TTC suggests that dominant alleles are predominantly 

unidirectional among parents, and the dominant alleles more frequently carry the 

increasing effect for panicle diameter. As the additive variance estimates were higher 

than the dominance variance, the estimates of heritabilities were high for this trait in 

both the crosses across seasons suggesting that this trait is likely to show modest 
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response to the selection. High heritability for panicle diameter was also reported by 

Varu et al. (2005) and Gupta et al. (1988). 

Among the interaction components, additive x additive and dominance x 

dominance interactions were found to be the most important component for cross 1, 

being significant in both the seasons across different sets of population sizes. 

However, the magnitude of dominance x dominance interaction was higher than 

additive x additive interaction. The results of TTC analysis for cross 1 also revealed 

significant additive x additive and additive x dominance and dominance x dominance 

(j + l) epistasis. In cross 2, additive x additive interaction was highly significant in 

both the seasons. The additive x dominance interaction was also found to be 

significant during 2007 summer season. Singh and Singh (1972) also reported the 

significant additive x dominance interaction for this trait. The dominance x 

dominance interaction for panicle diameter in this cross was non-significant across 

seasons. The lack of dominance x dominance component in cross 2 may be accounted 

to the selection pressure which results in fixation of additive x additive component in 

the parental lines, as evidenced from comparatively lesser contrast between the 

parental lines of cross 2 than cross 1.  

The complementary type of epistasis was evidenced from the same sign 

(positive) of dominance and dominance x dominance components. This type of 

epistatsis was also reported by Sheoran et al. (2000). Conversely, Gandhi et al. (1999) 

and Ramamoorthy (1996) reported duplicate epistatsis for this trait. 

The estimated genetic components for panicle diameter under different sets of 

population size through six-generation means showed that the additive x additive 

interaction and additive x dominance components varied for their significant levels 

across different sets of population sizes. These interacting components were 
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frequently non-significant in the blocks of set 1 population size. However, these 

components were significant in the blocks of set 2 and set 3 population size. The 

consistency in detection of significant genetic component in both set 2 and set 3 

indicated that the set 2 population size is optimum for the detection all the 

components precisely.  

Both generation means and TTC analysis emphasized the importance of both 

additive and dominance components for panicle diameter. However their magnitude 

was larger in TTC analysis than generation means. For the interaction components 

also both approaches showed substantial agreement with each other. Similar 

conclusions were also drawn by Bakheit et al. (2002) in faba bean crosses and 

Kearsey et al. (1987) in Lolium perenne comparing the estimates of TTC and 

generation means analysis. 

 

5.1.1.3. Grain size 

In both the crosses, mean of parents showed large contrast for this trait. The mean of 

F1, F2 and backcross generations considerably varied from parents across seasons. The 

F1 mean was higher than the mid parental values suggesting partial dominance of 

genes with large grain size parent (P2) over those with small grain size parent (P1).  

 The scaling test for adequacy of additive-dominance model for genetic control 

of grain size indicated the presence of epistasis. The result of joint scaling test also 

confirmed that three-parameter model did not adequately explain the genetic control 

of grain size as the goodness of fit for this model through χ2 test showed highly 

significant values, and thus warranted the use of the six-parameter model. 

Six-parameter model revealed that both additive and dominance effects were 

significant for this trait in both the crosses across seasons. The role of both additive 

and dominance gene effects for the inheritance of grain size confirmed the earlier 
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reports of Gotmare and Govila (1999), Chand et al. (1973) and Phul and Athwal 

(1969). TTC analysis for cross 1 also revealed the significance of both additive and 

dominance components.  The generation means and variance analysis revealed higher 

magnitude of additive component than dominance component in both the crosses 

across season suggesting the presence of partial dominance. However, TTC analysis 

revealed overdominance for this trait, as the additive effect was lower in magnitude 

than the dominance. Estimates of additive and dominance variances for grain size 

may not be free from bias, since both the generation means and TTC analyses showed 

the presence of epistatic interactions. If the genes of like effect are not completely 

associated in the parents, it is possible that additive gene effects are underestimated as 

a result of the cancellation of additive (d), additive x additive (i) and additive x 

dominance (j) effects. However, dominance (h) effects are not influenced by the 

distribution of the alleles in the parents (Mather and Jinks, 1982). The significant 

dominance component and negative non-significant correlation coefficient between 

sums and differences in TTC, indicates an ambidirectional distribution of dominant 

and recessive allele among the parents and the dominance allele have increasing 

effects on the grain size. 

As generation means and variances revealed the higher magnitude of additive 

component than dominance component for this trait, the estimated  broad and narrow-

sense heritability values were high, which suggested a large proportion of genetic 

effects on the phenotypic expression of the trait, and that selection for this trait would 

be expected to be highly efficient. Similar high heritability estimates for this trait was 

also reported by Borkhataria et al. (2005) and Kunjir and Patil (1986). Conversely, 

Sachan and Singh (2001) reported moderate heritability for this trait. 

  The additive x additive interaction was significant only in cross 1, however its 
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magnitude was lower compared to other types of interactions. This type of interaction 

was also revealed by Sheoran et al. (2000) for this trait. In the interaction 

components, dominance x dominance followed by additive x dominance interaction 

contributed significantly towards the inheritance of grain size in both the crosses 

across both the seasons. The partitioning of significant total epistatic variation in TTC 

analysis also revealed that the additive x dominance and dominance x dominance (j + 

l) epistasis was significant while the fixable component additive x additive epistasis 

was non-significant. Chand et al. (1973) also reported the significance of both 

additive x dominance and dominance x dominance interactions for grain size.  

Whereas, Gill et al. (1974) reported only additive x dominance (j) interaction for this 

trait. However, Phul and Athwal (1969) carried out the most intensive study on the 

inheritance of grain size in pearl millet, which revealed that additive and additive x 

dominance interaction effects are of primary importance for grain size. 

Large significant dominance component and their interactions for grain size is 

a recognizable pattern underlying genetic parameters for fitness traits that might be 

the result of directional selection (Mather, 1966; 1983).  Willis and Orr (1993) opined 

that when a number of loci are controlled by dominant or overdominant loci for a 

trait, intense directional selection and to some extent stabilizing selection will not 

erode as much additive variance as it would if the trait were controlled purely by 

additive effects, and an additional expectation is that duplicate epistasis should also 

arise in directionally selected traits. Opposite sign of dominance (negative) and 

dominance x dominance (positive) components for grain size confirms the expectation 

of presence of duplicate interaction in both the crosses across both seasons. Singh et 

al. (1972) also reported duplicate epistasis for this trait. However, Phul and Athwal 

(1969) indicated the presence of complementary epistasis for grain size.  
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 Estimates of gene effects for grain size under different sets of population sizes 

through generation means showed significant additive x additive component in cross 

1 and dominance x dominance component in cross 2 which varied within set 1 blocks 

in both seasons. However, these components were significant under the population 

size of set 2, and were further detected with high level of significance in set 3.  Hence, 

the population size of set 2 could be optimum to detect all the genetic components 

determining the inheritance of grain size. 

TTC analysis revealed the importance of epistasis, particularly additive x 

dominance and dominance x dominance (j + l) epistasis along with additive and 

dominance components in the genetic control of grain size.  The results of generation 

means analysis also confirmed the above interpretation to a large extent, except for 

additive x additive interaction, which was found to be significant in generation means 

analysis. However its magnitude was lower than additive x dominance and dominance 

x dominance interactions. Nanda et al. (1990) also reported a general agreement 

between the results of TTC and generation means analyses while studying the 

inheritance of quantitative traits in bread wheat. 

 

5.1.2. Character associations in trait-specific crosses 

The most rapid improvement of economic traits is expected from selection applied 

simultaneously to all the component traits together. The association between two traits 

can be directly observed through the correlation coefficient of phenotypic values. The 

genetic cause of correlation is chiefly pleiotropy, though linkage is a cause of 

transient correlation particularly in populations derived from crosses between diverse 

lines (Falconer, 1960).  

In the present study, the results of correlation estimates revealed that panicle 

length, panicle diameter and grain size were positively and significantly associated 
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with grain yield in both the crosses in their respective trait-specific groups. Similar 

positive significant association for panicle length, panicle diameter and grain size with 

grain yield were reported by Salunke et al. (2006), Unnikrishnan et al. (2004), 

Anarase and Ugale (2001) and Poongodi and Palaniswamy (1995). Inter-correlation 

among these traits in their respective groups showed that panicle length in panicle 

length group had significant positive association with grain size in cross 1 and with 

panicle diameter in cross 2. Panicle diameter of panicle diameter had highly 

significant association with panicle length and grain size in both the crosses. Grain 

size of grain size group exhibited positive and significant association with panicle 

diameter in both the crosses studied. Positive and significant inter-correlation of grain 

size with panicle diameter was also reported by Poongodi and Palaniswamy (1995) 

and Borole and Patil (1991). The inter-correlation of these traits with other yield 

component traits in their respective groups revealed that panicle length had positive 

correlation with plant height in both the crosses; panicle diameter showed negative 

significant association with days to 50% flowering in cross 1, whereas in cross 2 it 

exhibited significant positive associations with days to 50% flowering and plant 

height.  

The observation of positive significant association among sink size traits and 

also with grain yield signified the possibilities for the improvement of grain yield 

through simultaneous selection of these traits in breeding programmes. Though 

panicle diameter and grain size exhibited strong positive correlation across groups and 

crosses, the associations of panicle length with panicle diameter and grain size were 

inconsistent across groups. Weak or negative association of panicle length with 

panicle diameter and grain size could be attributed to linkage or due to yield 

component compensation. Improvement of panicle diameter and grain size is quite 



 130

possible through simultaneous selection. However inclusion of panicle length with 

panicle diameter and grain size in simultaneous selection could have few obstacles 

due to their compensatory associations, which can be overcome through selective 

mating in early segregating population to break linkages and recombine genes, if the 

association is the result of somewhat tight linkage blocks. 

 
5.2. QTL analysis 

QTL analysis is an important approach for studying the genetic architecture of 

complex traits, facilitating estimation of number of genomic regions that significantly 

affect a trait, the distribution of gene effects and the relative importance of additive, 

dominant and epistatic effects (Mackay, 2001 and Laurie et al., 2004). In pearl millet, 

the major determinants of sink size traits such as panicle length, panicle diameter and 

grain size have been sparingly subjected to QTL analysis.  

In the present study, three important sink size traits, panicle length, panicle 

diameter and grain size, and their related traits like panicle weight, panicle grain 

weight and panicle harvest index, as well as agronomic traits like plant height and 

productive tiller number, were genetically dissected through QTL analysis in an F2 

and F2:3 mapping populations, primarily developed for grain size. Several interesting 

aspects regarding the number, genomic loci and genetic effects affecting sink traits 

and their component traits were revealed and their merits are further discussed here.  

 

5.2.1. Phenotypic analysis 

Phenotypic characterization of quantitative traits is a pre-requisite to the application 

of molecular genetic knowledge for broadening our understanding of their genetic 

control. As a first step in the analysis, the mean performance of sink size traits and 

other agronomic traits of parents and mapping populations were recorded. The mean 



 131

performance of the parents displayed substantial differences for all the observed traits. 

The analysis of variance for different traits under study revealed highly significant 

variation except for panicle harvest index among the F2:3 progenies, indicating that 

sufficient variation for these traits existed in the mapping population. 

The sink size component traits like panicle length, panicle diameter, grain size, 

panicle grain weight, panicle weight and plant height showed continuous distribution 

among the F2:3 progenies. Continuous distribution or absence of discrete segregating 

classes for a trait suggests that its inheritance is either determined by a large number 

of genes with small effects or a few major genes with substantial environmental 

effects. For productive tiller number and panicle harvest index, the distribution was 

skewed indicating the lack of enough variability for these two traits among the 

parental lines. Transgressive segregants were observed for panicle length, panicle 

grain weight, panicle weight and plant height. The presence of transgressive 

segregants might suggest that the parental lines had desirable and undesirable alleles 

in various proportions for loci governing these traits. However, it should be noted that 

the segregant plants in the F2 and F2:3 are still heterozygous at a large number of loci, 

so what might appear like a transgressive segregant could very much be the result of 

hybrid vigour 

 Heritability estimates measures the relative importance of heredity in 

determining the expression of a trait (Allard, 1960). The reliability of QTL mapping 

also largely depends upon the heritability of individual traits (Kearsey and Farquhar, 

1998). Heritability estimates (broad-sense) in F2 population (0.59 - 0.87) and from the 

replicated evaluations of the F2:3 progeny population (0.56 - 0.92) revealed that all the 

observed traits except productive tiller number had heritability value greater than 

50%, which is a prerequisite for effective QTL mapping. As expected, the heritability 
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estimates for all the observed traits from the replicated data sets of F2:3 progenies  were 

comparatively higher than the F2 population data set.  

The knowledge of correlations among the observed traits gives an idea about 

the assessment of changes brought about by selection that simultaneously influence 

correlated traits (Falconer, 1989). The genetic cause of correlation among the traits is 

either due to pleiotropy and /or linkage. In pleiotropy, the same genes determine the 

expression of more than one character and linkage is an association feature by which 

the traits are inherited together. The correlation arising from linkages are transient and 

can be manipulated. In the present study, correlation coefficients were estimated 

among the observed traits in the F2:3 progenies. Significant positive correlation was 

observed for panicle length with productive tiller number and panicle grain weight. 

However its association with panicle diameter was negative but significant. Similarly, 

panicle diameter had positive significant associations with grain size, panicle weight 

and panicle grain weight and negative significant associations with panicle harvest 

index, plant height and productive tiller number. There was also positive significant 

association of grain size with panicle grain weight and panicle weight and negative 

significant association with productive tiller number. In addition, panicle grain weight 

had positive significant correlations with panicle weight and panicle harvest index, 

and panicle harvest index had positive significant correlation with productive tiller 

number. These results indicate that by carefully selecting parental alleles associated 

with increasing or decreasing expression of traits, it should be possible to improve 

both the traits simultaneously. The correlations among these traits also give an 

indication of the common loci that might be mapped through QTL analysis.   
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5.2.2 Molecular analysis 

5.2.2.1. Parental polymorphism  

Mapping populations in many crop plant that involved crosses between unrelated 

parental lines with large contrast have shown high level of polymorphism than those 

which were closely related (Anderson et al., 1993 and Devos et al., 1995). In the 

present study also, the large contrast between the parental lines of mapping population 

provided a high degree of polymorphism for markers across most of the linkage 

groups. Among the 331 markers (96 each of SSCP-SNP, SSR, EST-SSR and 43 STS) 

assayed on parental lines for polymorphism, SSCP-SNP markers showed the highest 

level of polymorphism (41.7%), followed by SSRs (37.5%), EST-SSRs (29.2%) and 

STS markers (11.6%). This finding is contradictory to the report of Bertin et al. 

(2005) who observed comparatively low polymorphism for SNPs than the SSRs, as 

evident from the reported mean PIC values of 0.49 for SNP and 0.72 for SSR markers 

tested on the same genotypic panel of pearl millet inbreds. However, Rafalski (2002) 

reported 86% SNP polymorphism in maize inbreds, and found that the frequency of 

nucleotide change among inbreds was high, at around one in every 48 bp in non-

coding regions and one in every 130 bp in coding regions. SNPs are reported as an 

essentially inexhaustible source of polymorphic markers for use in high-resolution 

genetic mapping. SNP markers also have great advantages in unraveling detailed 

syntenic relationships in specific parts of the genome in comparative mapping 

applications (Rafalski, 2002).  

 Although both genomic SSRs and EST-SSRs showed less polymorphism than 

SNPs in this study, they were very informative, since they are co-dominant, locus 

specific and evenly distributed (Roder et al., 1995). In pearl millet, Qi et al. (2004) 

reported an average PIC value of 0.71 for SSR markers, which suggests that 
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microsatellite markers could be used successfully for many types of investigations.  

 The STS marker system showed very less polymorphism (11.6%) in the 

present study. The low level of polymorphism of the STS marker system was 

observed because much of the polymorphism of the RFLP markers on which they 

were based can no longer be detected without the use of multiple restriction enzymes 

(Money et al., 1993). However, these markers have proven to be useful to cover the 

telomeric regions of the chromosomes, where other marker systems showed relatively 

poor coverage. Once identified, polymorphic markers from different systems can be 

successfully utilized for various types of investigations including genome mapping, 

gene tagging, evolutionary studies and germplasm characterization.  

 

5.2.2.2. Marker segregation in the mapping population 

Identification of sufficient number of markers revealing polymorphism among 

parental lines is a prerequisite for the construction of a genetic linkage map. In the 

present study, the mapping population was based on a pair of genetically diverse 

inbreds, for which a higher number of polymorphic markers (109) with wide and 

better genome coverage were identified. From this, a set of 44 polymorphic markers 

well distributed across the seven pearl millet linkage groups were finally selected 

based on their positions in earlier linkage maps for genotyping a F2:3 mapping 

population with a population size of 188 progenies to construct the linkage map. The 

larger the mapping population, higher is the confidence in the estimates of 

recombination frequencies and map distances. The use of a large mapping population 

also gives a higher chance in detecting the QTLs with small effects and estimates the 

genetic effects of QTLs accurately (Kicherer et al., 2000). However, the optimum size 

of mapping population may depend on the genome size of the organism, the 

generation of mapping population and the nature of the trait under study  (Beavis, 
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1998). A population size of 188 F2:3 progenies used in the present study appears to be 

reasonably large compared to those used in several earlier studies, but not too large 

compared to the plant numbers in other studies (Poncet et al., 2000). 

Chromosomal regions that cause distorted segregation ratios may be detected 

as segregation distortion of mapped loci (Vogl and Xu, 2000). If segregation-distorted 

locus (SDL) segregates in a population, markers linked to this SDL will also show 

distorted segregation. In the present study, segregation pattern of 44 marker loci in the 

188 F2:3 mapping progenies were tested for the goodness of fit to the expected ratio of 

1:2:1 using χ2 test. A total of 4 markers out of 44 markers loci showed distorted 

segregation as revealed by the significant χ2 values. These markers were Xicmp3063, 

Xpsms31, Xpsms18 and Xpsmp2027. Markers that show obvious distortion are often 

excluded from the linkage analysis. However, this usually leads to reduction in 

genome coverage and failure in detection of few QTLs. An eclectic way would be to 

add segregation-distorted markers in the linkage analysis along with normally 

segregating markers and construct the map to determine map position of the distorted 

markers and then determine whether they need to be included or removed from the 

linkage map based on their relative positions in the map. In the present study, markers 

showing distorted segregation were mapped on LG 2 (Xicmp3063), LG 3 (Xpsms31), 

LG 5 (Xpsms18) and LG 7 (Xpsmp2027). Liu et al. (1994) and Yadav et al. (2004) 

also reported distorted marker segregation in pearl millet. No attempt was made to 

investigate the cause of these distortions, as most distortions appear to be cross-

specific. A possible mechanism suggests that there may be a gene present in the 

distorted segregation region that affects gametophtyic or zygotic competitiveness (Qi 

et al., 2004). For a correctly inferred marker order and map distance, influence of 

segregation distortion on QTL analysis could be negligible. However, if the 
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recombination fraction or the orders of marker loci are inferred incorrectly, basic 

assumptions of QTL analysis do not hold and the results may be imprecise (Sandbrink 

et al., 1995). The detection of QTLs through composite interval mapping which 

involves step-wise regression, however, would not be affected by segregation 

distortion of marker loci (Dao-Hua et al., 2005).  

 
5.2.3. Construction of linkage map 

The first molecular marker-based genetic map published for pearl millet had a genetic 

length of only 303 cM (Liu et al., 1994) and recently Yadav et al. (2004) constructed 

a linkage map consisted of 91 markers covering 476 cM. The present map spans 

1018.7 cM, covering all the seven linkage groups with an average marker interval of 

23.4 cM.  Thus, the present map covered a substantially larger proportion of the pearl 

millet nuclear genome compared to the earlier maps reported by Devos et al. (2000), 

Poncet et al. (2002), Yadav et al. (2002), Qi et al. (2004), Yadav et al. (2004) and 

Bidinger et al. (2007). LG 1, which had a length of about 110 cM, was comparable to 

the map length reported by Devos et al. (2000). The other linkage groups that were 

expected to provide nearly complete chromosome coverage are LG 2, 3, 5 and 6, 

which carried markers in the centromeric and distal regions. The two linkage groups 

that are short are LG 4 and 7 with genetic lengths of 37.7 cM and 96.0 cM, 

respectively. The unexpectedly shorter length of these two linkage groups were 

probably due to lack of enough polymorphic markers between the parents used in this 

study and/or an indication that recombination is unusually low in these linkage 

groups.  

A wide genome coverage was achieved mainly because the relative positions 

of most of these markers were already known and the markers selected were evenly 

distributed in the centromeric regions and distal ends across the linkage groups. The 
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percentage of markers assigned to the respective linkage groups (at least those having 

good coverage in this study) is in good agreement with estimates obtained by other 

researchers (Devos et al., 2000; Yadav et al., 2004). The number of markers assigned 

to each linkage group and their map distances is in part a reflection of the relative 

amount of genetic variation present among the linkage groups. The low marker 

coverage of LG 4 and LG 7 in present study might be due to parents used in this study 

being more similar for genomic regions in these linkage groups.  

The present map had large gaps in the distal regions for which the most 

probable reason could be that in the pearl millet recombination is extremely localized 

in the distal regions of chromosomes. According to Qi et al. (2004) the large gaps in 

the distal regions indeed represent regions of high recombination, rather than a 

general lack of markers in those regions. It is, however, possible on the other hand, 

that the pearl millet linkage maps are still incomplete and genomic sequences of rice 

and sorghum can be used to develop new markers that are located on distal regions of 

the linkage groups, provided colinearity is maintained in the distal chromosomal 

regions between rice, sorghum and pearl millet (Devos et al., 2000; Qi et al., 2004). 

 

5.2.4. Mapping quantitative trait loci (QTL) 

5.2.4.1. Mapping QTL for sink size traits 

The identification of markers associated with sink size trait QTLs would help breeders 

to construct beneficial allelic combinations and accelerate breeding programmes for 

the development of improved cultivars. Characterization of QTLs for sink size traits 

will also provide insight into the mode of their inheritance. The most practical 

application of the QTLs for sink size traits would be to perform marker-assisted 

selection aimed at efficient pyramiding of favourable QTL alleles to improve sink size 

structures in pearl millet. The QTLs mapped for sink size traits in the present study 
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are presented in Figure 11.  

 

5.2.4.1.1. Panicle length 

Earlier QTL mapping studies examining the panicle length in pearl millet have 

demonstrated that this trait is affected by genomic regions across LG 1, 2, 4 and 7 

(Poncet et al., 2000; 2002 and Nepolean, 2002). In the present study, using F2:3 data 

set, eight genomic regions, each on LG 1, 2, 4 and 7 and two each on LG 4 and 6 

showed associations with panicle length. Using the F2 data set two QTLs on LG 2 and 

6 were identified for panicle length. Alleles derived from the female parent (P1) were 

favourable for QTLs on LG 1, 2, 3, 6 and 7, while for the QTLs on LG 3 and 4, 

favourable alleles were contributed by the male parent (P2). Among the detected 

QTLs in the present study, the largest portion of variation (26.9%) was explained by a 

QTL on LG 2 (Xpsmp2237 – Xpsms89) followed by a QTL on LG 6 (Xpsms88 – 

Xpsmp2270), which explained 12.8% of observed variation.  

 Overall, the number of significant QTLs detected for panicle length varied 

between the two populations  (2 QTLs in F2 and 8 QTLs in F2:3). The detection of the 

additional QTLs (all with small effect) in F2:3 progenies may be the result of higher 

heritability estimates obtained from the replicated progeny trials.  

The total phenotypic variation explained by the additive-dominance model 

was marginally greater than that explained by the additive or epistatic models. 

However, significant additive x additive and dominance x dominance epistatic 

interactions were observed among the detected QTLs through epistatic model.  In the 

presence of epistasis the expected magnitude of the estimates of marginal effects 

(additive and dominance) of a QTL may substantially differ between the different 

genetic models. For example in the present study, the sign reversal for the additive 

effects of panicle length QTLs on LG 6 was observed between the additive - 



 139

dominance and epistatic model. In the additive - dominance model, the estimate of 

additive effects of the QTL may be confounded by additive x additive and additive x 

dominance interactions. Similarly, the estimate of dominance effects may be 

confounded by the additive x dominance and dominance x dominance interactions. 

 
5.2.4.1.2. Panicle diameter 

Five QTLs were detected and mapped on LG 2, 3, 5, 6 and 7 for panicle diameter 

using F2:3 progeny data set across all the genetic models. For all these QTLs, 

favourable allele was contributed from P2 parent. The QTLs on LG 5, 6 and 7 

corresponds with the previous reports for QTL positions of this trait (Poncet et al., 

2000; 2002). However, the additional QTLs on LG 2 between “Xpsms78 – Xpsms592 

and on LG 3 between “Xpsmp2272 - Xpsms17” had a LOD score greater than 14.0 

and cumulatively explained large proportion of observed phenotypic variation for this 

trait.  

All the three genetic models failed to detect any significant QTL(s) for panicle 

diameter using F2 data set. This may be due to the uncontrolled environmental 

influence on expression of the trait in single plants. However, the QTLs identified 

using the replicated F2:3 phenotypic data set could be highly reliable as progeny means 

from replicated field plots were used as the unit of phenotypic measurement for QTL 

analysis (Paterson, 1997).  

 
5.2.4.1.3. Grain size 

There were five putative QTLs detected for grain size on LG 1, 3, 5, 6 and 7 using F2:3 

data set while using the F2 data set detected two QTLs on LG 3 and 6. The QTLs 

mapped on LG 1 and LG 3 appear to be comparable to those reported by Bidinger et 

al. (2007) for this trait, and were highly under additive control. The QTLs found on 
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LG 6 and LG 7 appear to be similar to those reported by Yadav et al. (2002). The 

present study also mapped an additional QTL for grain size on LG 5, which has not 

been identified in earlier studies. However, this QTL also contributed significantly 

(6.4%) to the total phenotypic variation observed for grain size in this study. 

 Significant, additive x dominance and dominance x dominance interactions 

were observed among the detected QTLs, suggesting that the marginal effects of these 

QTLs could may biased.  According to Carlborg and Haley (2004), epistatic model is 

necessary for validating the importance of the detected QTLs. Further, the knowledge 

of the type of interactions can guide a researcher to choose the appropriate genetic 

background of recipient lines in MAS to obtain maximal gain.  

The lower level of observed phenotypic variation explained by the individual 

QTLs in the present study confirms the quantitative nature of grain size and its 

inheritance. It is also in agreement with the hypothesis that polygenes controlling 

important metric traits such as grain size are usually distributed among several 

genomic regions that may not be linked to one another (Fatokun et al., 1992). These 

results imply that transfer of large grain size cannot be approached easily through 

conventional breeding programmes. Therefore, the consistent QTLs identified in both 

F2 population and F2:3 progenies would be useful targets for marker-assisted selection 

for large grain size in pearl millet breeding programmes. 

 
5.2.4.2. Mapping QTLs for traits related to sink size.  

Although the primary purpose of this study was to identify QTLs for sink size traits 

(panicle and grain size), few other traits that are related to sink size such as panicle 

weight, panicle grain mass and panicle harvest index were also evaluated for QTL 

mapping. Poncet et al. (2000; 2002) have reported that LG 2, 5 and 6 were associated 

with panicle weight variation. Nepolean (2002) observed that panicle grain weight 
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variation is associated with QTLs on LG 4 and 7. Similarly, QTLs for panicle harvest 

index were identified across all seven linkage groups (Yadav et al., 2004 and Bidinger 

et al., 2007). Panicle harvest index used specifically as a measure of tolerance to 

terminal drought, indicates the ability to set and fill grains under limited moisture.  

In the present study, only a single QTL for each of panicle weight and panicle 

harvest index was detected on LG 3 (Figure 11). For panicle grain weight no QTLs 

were identified. The probable reason for the detection of only a single QTL or no 

QTLs for these traits may be the lack of enough variation among the parental lines 

and mapping population in this study.  

 
5.2.4.3. Mapping QTLs for agronomic traits 

QTL analysis was also made to map QTLs for agronomic traits such as plant height 

and productive tiller number. The identified QTLs for these traits are represented in 

Figure 11. 

 
5.2.4.3.1. Plant heightPoncet et al. (2000; 2002) mapped QTLs for plant height on LG 

1, 2, 5, 6 and 7. Similarly, Nepolean (2002) located QTLs for plant height on LG 4, 6 

and 7.  In addition, Azhaguvel et al. (2003) mapped two major semi-dwarfing genes, 

d1 and d2 on LG 1 and 4, respectively.  

 In the present study based d2 x d2 crosses, six QTLs were detected for plant 

height across five linkage groups (two on LG 1 and one each on LG 2, 3, 4 and 5) 

using F2:3 data set. Only two QTLs each on LG 1 and 5 were detected using F2 data 

set. The position of these QTLs is in agreement with other studies (Poncet et al., 

2000; 2002, Nepolean, 2002, Azhaguvel et al. 2003), except for the QTL on LG 3, 

which was not identified in earlier studies. However, the QTL on LG 3 also explained 

a larger portion of the phenotypic variance (21% in additive-dominance model) and 
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hence may be considered as another dwarfing gene locus. The recessive alleles for 

QTL on LG 1 and LG 2 were associated with reduced plant height, and were 

contributed by P2 and P1 parents, respectively. Two QTLs on LG 6 and 7 reported in 

earlier studies (Poncet et al., 2000; 2002, Nepolean, 2002) were not detected in the 

present study. These results indicate that QTLs for plant height are wide spread over 

the pearl millet genome. However, QTLs on LG 1, 3, 4 and 5 are important in 

controlling this trait in the population used in this study.   

Although five different sources of dwarfing genes were reported (Burton and 

Fortson, 1966), there is wide use of only d2 gene in breeding programmes. However, 

d2 dwarfing gene in pearl millet carries a yield penalty due to pleotropic association 

with reduced individual grain mass (Bidinger et al., 2001; Rai and Hana, 1999), 

although this can be overcome by manipulating the genetic background.  

 
5.2.4.3.2. Productive tiller number 

QTLs for this trait were previously mapped on LG 1, 2, 4, 6 and 7 (Poncet et al., 

2000, Yadav et al., 2002, Poncet et al., 2002, Nepolean, 2002 and Yadav et al., 2003), 

which suggests that productive tiller number is affected by several loci. In the present 

study, use of F2:3  progeny data set identified a single QTL for productive tiller 

number on LG 7, which might correspond to the QTL identified in earlier studies. The 

lack of detection of other QTLs in the present study may be due to less variation in 

the mapping population and low heritability (< 50%) observed for this trait. 

 

5.2.4.4. Co-mapped QTLs 

The quantitative traits affected by pleiotropism and linkage tend to reveal significant 

correlation among them. This, in turn, generally leads to identification of co-mapped 

QTLs. However, it is not possible to distinguish between pleiotropy and linkage as a 
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cause of a correlated effect on two traits until one has mapped the QTN (Quantitative 

Trait Nucleotide) responsible for phenotypic variation of each trait (Mackay, 2001). 

 In the present study, QTLs for panicle length and plant height were co-mapped 

on LG 2 (Xpsmp2237 - Xpsms89) and LG 4 (Xpsms77 - Xpsmp2084), and the 

favourable allele for of these QTLs were contributed by parent P1. Panicle diameter 

and panicle weight QTLs were co-mapped on LG 3 between Xpsmp2222 and 

Xpsms17 markers. The additive effects for these traits were contributed by parent P2. 

Similarly, genomic regions associated with panicle length, panicle diameter and grain 

size were co-mapped on LG 6 between Xpsms88 and Xpsms2270 markers. The 

panicle length QTL showed negative association with both panicle diameter and grain 

size. However, the panicle diameter QTL showed positive association with grain size 

QTL and their favourable alleles were contributed from P2 parent. Panicle length and 

productive tiller number had a common QTL on LG 7 between Xpsm6 and 

Xpsmp2203 markers and the allele for increased panicle length and reduced 

productive tiller number were contributed from P2 parent. 

 The results of present study suggested that many of the QTL regions appear to 

affect multiple traits. Further research needs to be done to learn whether there is a 

single gene with pleiotropic effect underlying such common QTLs or there is a cluster 

of tightly linked genes affecting several traits. As expected, co-mapped QTLs for the 

traits in present study also had significant correlations among them. 

There were additional QTLs for several pairs of associated traits that did not 

co-map. One of the reasons for not detecting common QTLs for significantly 

associated traits could be that the QTLs identified could explain only a part of the 

total variation. Further, it is possible that there are a number of QTLs with small 

effects that may be responsible for a large portion of the trait variation that are 
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common among those traits, but could not be detected with the size of mapping 

population used and heritabilities achieved in the present study. 

The co-mapped QTLs demonstrated the existence of genes or gene clusters 

with major effects, which are involved in the control of significant proportions of the 

phenotypic variation in several quantitatively inherited traits related to sink size 

components. Where favourable effects across several traits can be obtained with the 

allele of one parent of the population, such as the QTL for panicle diameter and grain 

size co-mapped on LG 6, then these QTL become obvious target for marker-assisted 

selection. 

 

5.2.5. Prospects for marker-assisted selection 

Early generation selection for quantitative traits in the field is difficult, its efficiency 

is unpredictable, and genotype screening for such traits requires replicated trials, 

which is resource intensive. Consequently, marker-assisted selection could be used to 

facilitate the transfer of genes for quantitative traits into well-adapted genotypes. 

However, there are certain considerations that need to be taken when deciding which 

QTL should be targeted in a MAS strategy. First of all, it is necessary to decide the 

genomic region (s) for which there is enough evidence for the presence of a major 

QTL. This can be achieved by setting appropriate thresholds (LOD more than 3) for 

the identification of QTLs, by detecting QTLs in the same genomic region under 

different conditions, and/or across several mapping studies. In the present study, the 

QTLs identified for panicle length on LG 2 and 6 (LOD greater than 3 in both F2 and 

F2:3 data sets); for panicle diameter on LG 2 and 3 with (LOD greater than 14 in F2:3  

data set); for grain size on LG 3 and 6 (LOD greater than 3 in both F2 and F2:3 data 

sets) along with two QTLs identified for plant height on LG 1 and 5 (LOD greater 

than 5 in both F2 and F2:3 data sets) fulfilled these criterion. However, the QTLs on 
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LG 6 for panicle length and grain size do not appear to be suitable for MAS because 

the favorable alleles at these tightly linked (and perhaps identical) QTLs are from the 

opposite parents, and both QTLs exhibited epistatic effects. Hence, it can be 

concluded that the QTLs on LG 2 for panicle length, LG 2 and 3 for panicle diameter, 

LG 3 for grain size and on LG 1 and 5 for plant height are promising candidates for 

MAS. Jefferies et al. (1997) demonstrated that molecular markers closely linked to 

genes of agronomic importance are useful tools for indirect selection in barley 

breeding. Marker-assisted selection is time-efficient, and depending on linkage 

relationships, has low selection error. However, MAS should be done on a case by 

case basis. Further investigation will be required to validate the importance of the 

genomic regions identified in the present study in other genetic backgrounds. This can 

be done simultaneously with exploratory MAS to introgress the favourable alleles 

identified for sink size traits in the current study, into a range of genetically diverse 

agronomically elite backgrounds. 

 
5.3. Genetic versus QTL analysis 

Genetic (generation means and TTC analysis) and QTL analysis were compared for 

their efficiency in elucidating the gene actions for grain size in cross 1. Based on the 

results of classical genetic and QTL analysis, the most noticeable finding was the 

prevalence and importance of epistasis, particularly dominance interactions for grain 

size as it explained a greater proportion of the total variation.  The models of gene 

actions including epistasis between different loci developed for conventional 

quantitative genetics and recent QTL mapping studies do not have the same level of 

applicability because the genetic effects in these model are defined with reference to 

different types of population (Yang et al., 2004). In both generation means and TTC 

analysis, the estimated parameters capture the net contribution of gene effects. 
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However, the consequences of summation over loci are quite different for various 

parameters. With the TTC design, it is possible to separate epistatic variance 

components from those of additive and dominance components, but one cannot 

clearly discriminate between additive x dominance and dominance x dominance 

variances. This is because coefficients for these two variances are almost identical in 

the genetic expectations. TTC analysis revealed the importance of epistasis, 

particularly additive x dominance and dominance x dominance (j + l) epistasis, along 

with additive and dominance components in the genetic control of grain size.  The 

results of generation means analysis confirmed this interpretation to a large extent, 

except that additive x additive interaction was also found to be significant in 

generation means. However, its magnitude was less than the additive x dominance 

and dominance x dominance interactions. Nanda et al. (1990) also reported a general 

agreement between the results of TTC and generation means analyses while studying 

the inheritance of quantitative traits in bread wheat. The results of biometrical genetic 

analysis on grain size reveals the presence of epistasis, dispersion and ambidirectional 

dominance, which must imply multiple QTL for this trait. The results of QTL analysis 

agrees with this hypothesis as five QTLs were detected for grain size in this study. 

QTL analysis results were also consistent with classical genetic approaches for the 

type and direction of epistatic interactions. Thus, dominance x dominance and 

additive x dominance epistasis were predominantly observed among the detected 

QTLs, in great agreement with both generation means and TTC analysis. However, 

there are also inconsistencies. The generation means indicated significant additive x 

additive epistasis, although TTC and QTL analyses didn’t revealed this epistasis for 

grain size. This may reflect the low power of TTC analysis and QTL detection with 
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given restricted sets of genotypes, as compared to generation means analysis, which 

used a much larger population size. 

 
5.4. Breeding strategies  

Quantitative genetic information of the traits provides much of the framework for the 

design and analysis of selection methods used in breeding programmes (Allard, 1960; 

Falconer and Mackay, 1996; and Cooper et al., 1999). In the present study, the 

quantitative genetic parameters for three sink size traits (panicle length, panicle 

diameter and grain size) were determined using genetic and QTL analyses in crosses 

involving parents with large contrasts for these traits. Based on the relative 

importance of genetic parameters obtained for each trait, suitable breeding approaches 

for their improvement are discussed below. 

Pearl millet breeding comprises three broad activities (i) population 

improvement (ii) inbred development and (iii) hybrid or open-pollinated variety 

development. The objective of population improvement is to increase the frequency of 

favourable alleles while maintaining genetic variation. These populations then can 

serve as a potential source of superior inbreds without any genetic ceiling for future 

hybrid improvement. 

In the present study, additive genetic effects and additive x additive 

interactions were found to be of prime importance for panicle length in cross 2 and 

panicle diameter in both the crosses. Dominance effects were also observed, but were 

lower in magnitude than the additive effects. Under such conditions, mass selection 

can be effective, but S1 or S2 selection is likely to be more effective.  

Mass selection for panicle size (panicle length and diameter) and grain size 

has been practiced in pearl millet since the first deliberate attempts to improve this 

crop (Krishnaswamy, 1962). However, mass selection has not always produced the 
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gains desired. For instance, three cycles of mass selection for increased grain size and 

grain yield of pearl millet gave inconsistent responses (Khadr and Qyinloye, 1978). 

The extent to which mass selection can change a particular trait, however, is expected 

to correspond with its heritability. The heritability estimates (broad and narrow-sense) 

in the present study for panicle length and panicle diameter were high suggesting that 

mass selection could be successful for manipulating these traits. However, heritability 

estimates in the present study may be biased upwards as portions of epistatic variation 

were also exhibited by these traits.  The presence of non-additive gene action for these 

traits suggests that mass selection would be less effective. The effectiveness of mass 

selection, however, could be maximized by any technique that increases trait 

heritabilities on a single plant basis. One such technique is stratified mass selection, 

whereby environmentally induced plant-to-plant variations are limited to those 

occurring within relatively small strata of the overall experimental plot (Gardner, 

1961). 

Selections based on progeny performance using an inbred tester are of 

particular interest to breeders to hasten additive genetic variances in the population. 

Selection among S1 or S2 progenies is attractive on theoretical grounds because, in the 

absence of overdominance, it is expected to be appreciably more effective than 

testcross method for changing population gene frequencies (Comstock, 1964; Wright, 

1980). In pearl millet, Sastry et al. (1987) and Dutt and Bainiwal (2005) reported that 

S1 progeny selection method appears to be superior to either of half sib or full sib 

methods of progeny selection in exposing the hidden variability.  

In the present study, epistatic interactions were found to be the important 

genetic components for panicle length in cross 1 and grain size in both crosses. Along 

with epistatic interactions, additive and dominance gene effects were also found to be 
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significant for these traits. Hence, the successful breeding method for these traits 

would be the one that can capitalizes on epistatic as well as additive and dominance 

genetic variation. Reciprocal recurrent selection theoretically improves both additive 

and non-additive gene actions (Comstock et al., 1949). In pearl millet, Zaveri et al. 

(1988) reported that reciprocal full sib scheme might prove more rewarding, as in 

addition to improving the base population by selection, it is the most effective method 

for breeding hybrids from the inbred lines derived from each cycle of selection. 

However, because the testcross population is used for selection, the population 

performance per se will be improved only indirectly. In the absence of 

overdominance, progeny selection using either S1 or S2 lines is considered to be 

superior to other methods of recurrent selection for improvement of per se 

performance (Lamkey, 1992).  In pearl millet, Bidinger and Raju (2000b) also 

reported that it is possible to make a reasonable progress in increasing grain mass by 

S1 progeny selection, wherein alleles are fixed rapidly and deleterious homozygous 

alleles are exposed and eliminated early in selection (Weyhrich et al., 1998). 

Combining the progeny selection and reciprocal recurrent selection methods 

simultaneously should permit the benefits of non-additive and additive genetic effects 

(Goulas and Lonnquist, 1976; Dhilon, 1991). Progress from simultaneous selection is 

expected to be the summation of expected progress from each individual methods 

(Hallauer and Miranda, 1988). 

Quantitative theory in plant breeding has generally been supported by 

retrospectively analyzing data derived from populations that lack controls. New tools 

have recently been added to the arsenal of applied quantitative genetics, namely 

molecular markers. Molecular markers are now increasingly being employed to trace 

the presence of target alleles from non-recurrent parent (foreground selection) as well 
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as accelerating the recovery of the recurrent parent genome (background selection) in 

backcross programmes. In the present study, QTL analysis for sink size traits revealed 

9 QTLs for panicle length, 5 QTLs for panicle diameter and 5 QTLs for grain size, of 

which QTLs on LG 2 for panicle length, LG 2 and 3 for panicle diameter, LG 3 for 

grain size and LG 1 and 5 for plant height are identified as promising candidates for 

MAS. Transfer of these QTLs from donor to recipient line could be approached 

through marker-assisted backcrossing (MAB), which would lead to the significant 

improvement of these traits in the recurrent parent.  

The linked markers to known QTL of a trait can also be effectively utilized in 

population improvements. Recurrent selection was developed to allow gradual 

increase in the frequency of favourable alleles (Allard, 1960) and has proven effective 

for increasing mean performance while maintaining genetic variability (Hallauer and 

Miranda, 1981). However, high-intensity recurrent selection leads to the loss of 

genetic variability in population. Through the use of molecular markers linked to the 

target trait in high intensity recurrent selection, changes in trait variability at every 

cycle of selection could be monitored effectively and can avoid the loss of genetic 

variability between cycles of selection (Labate et al., 1999; Pinto et al., 2003). In 

maize, marker-QTL associations was successfully exploited in population 

improvement through marker-assisted recurrent selections (Edwards and Johnson, 

1994; Johnson, 2004).  

The breeding methods suggested based on conventional and molecular 

approaches would vary in effectiveness across populations for selection. Integrating 

molecular marker technologies such as MAS into breeding could become increasingly 

important in the coming years, to realize genetic gains with greater speed and 

precision. However, the method of choice for evaluation of individual plants from a 
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population would primarily depend on the cost of conducting each method. Hoeck et 

al. (2003) reported that phenotypic selection was estimated to be US$ 0.35 per plant 

for seed size in soybean. The cost for MAS was estimated to be a minimum of US$ 

0.75 per plant, assuming six multiplexed markers run on one lane for each plant. On 

the basis of these estimates, phenotypic selection would be preferred, however it also 

depends on traits under selection, and for few traits MAS could be warranted where 

phenotypic selection is least efficient.  Although MAS is currently used widely for 

simply inherited traits than for polygenic traits, with the development and access to 

reliable PCR-based marker such as SNPs and SSRs, which are simple to use, the cost 

of such techniques is progressively decreasing and may become affordable in the 

frameworks of breeding programmes for complex traits. Surely, better methods of 

gene mapping and estimation of breeding values through molecular markers are still 

needed, and integrating QTL mapping in applied breeding deserves further work. 
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6. Summary 

The present study was carried out to characterize the genetic architecture of three sink 

size component traits such as panicle length, panicle diameter and grain size in pearl 

millet through genetic and QTL analyses. The experimental material for genetic 

studies comprised of two trait-specific crosses each for panicle length, panicle 

diameter and grain size traits. The six basic generations (P1, P2, F1, F2, BC1 and BC2) 

were produced for all the crosses. Also, triple test cross (TTC) families [L1i (P1 x F2i), 

L2i (P2 x F2i) and L3i (F1 x F2i)] were generated for each trait-specific cross. The six 

basic generations were evaluated in a randomized complete block design with three 

blocks in 2006 rainy season and 2007 summer season. The TTC families were 

evaluated in a randomized complete block design with three replications during the 

2007 summer season. For QTL analysis, the mapping population comprised of 188 F2 

and their F2:3 progenies, developed from a cross between two inbred lines selected 

primarily with large contrast for grain size, but these also differed for panicle length 

and panicle diameter. The F2 and F2:3 mapping populations were evaluated during the 

2006 rainy season and 2007 summer season, respectively. The 188 F2:3 progenies were 

genotyped with 44 markers (24 SNP, 10 SSR, 6 EST-SSR and 4 STS) and linkage 

map was constructed using MAPMAKER/EXP V.3.0. software. Composite interval 

mapping (CIM) procedure was used for the QTL analysis using PLABQTL software.  

The salient findings of the study are as follows: -  

� Scaling and joint scaling tests revealed that a simplistic additive-dominance model 

did not adequately explain the observed variation for the three sink size traits in 

both the crosses across both seasons, providing an evidence for the presence of 

digenic or higher order interactions, and thus warranted the use of the six-

parameter model.  
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� For panicle length in cross 1, six-parameter model revealed significant additive (d) 

and dominance (h) components. All three types of epistatic interactions were 

significant in both seasons in this cross. These results were in agreement with the 

results of TTC analysis. However in cross 2, only additive effects and additive x 

additive interaction were significant for this trait. The presence of partial 

dominance was inferred for this trait, as the magnitude of additive component was 

greater than dominance component in both crosses.  

� For panicle diameter, generation means analysis revealed that the additive (d) and 

dominance (h) gene effects were highly significant in both crosses across the two 

seasons. TTC analysis for this trait also showed significant estimates for both 

additive and dominance components. As the magnitude of additive component 

was higher than the dominance component in both the crosses across both 

seasons, presence of partial dominance was inferred for this trait. Among the 

digenic interactions, additive x additive (i) interaction was found to be the most 

important component for this trait, being significant in both the crosses, followed 

by dominance x dominance (l) interaction which was significant in cross 1 across 

both seasons. However, test of epistasis in TTC analysis showed that all the three 

interactions components were significant.  

� For grain size, six-parameter model and TTC analysis revealed the importance of 

both additive (d) and dominance (h) effects. The higher magnitude of additive 

component than dominance component in both the crosses suggested the presence 

of partial dominance.  All three types of interactions were significant in cross 1. 

However, TTC analysis showed that only additive x dominance and dominance x 

dominance interaction components were significant. In cross 2, additive x 

dominance and dominance x dominance interaction components were significant.  
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� The estimates of narrow-sense heritability for panicle length, panicle diameter and 

grain size were found to be high in both crosses across seasons suggesting the 

predominance of additive genetic variances.  

� Correlation coefficient estimates in the trait-specific crosses revealed that panicle 

length, panicle diameter and grain size were positively and significantly 

associated with grain yield in both the crosses of their respective trait-specific 

group. Inter-correlation among these traits in their respective trait-specific groups 

showed that panicle length in panicle length group had significant positive 

association with grain size in cross 1 and with panicle diameter in cross 2. Panicle 

diameter of panicle diameter group had highly significant association with panicle 

length and grain size in both the crosses. Grain size of grain size group exhibited 

positive and significant association with panicle diameter in both the crosses.  

� The linkage map revealed that the highest number of markers were on LG 3 (9 

markers), followed by LG 1 (8 markers), LG 2 (8 markers), LG 5 (7 markers) and 

LG 6 (6 markers). The linkage group 7 (4 markers) and 4 (2 markers) had lower 

number of mapped markers. The basic map had a total length of 1018.7 cM. The 

average distance between the marker pairs was 23 cM.   

� QTL analysis identified eight genomic regions for panicle length using F2:3 data 

set, one each on LG 1, 2, 4, and 7 and two each on LG 3 and LG 4. The variation 

explained by individual QTLs ranged from 6.1 to 18.2%. Though significant 

interaction among the QTLs on LG 1, 3, 6 and 7 were detected using the epistatic 

model, the total variation explained through the additive-dominance model was 

high in both the F2 population (13.1%) and F2:3 progenies (42.7%). 

� For panicle diameter, five QTLs were found on LG 2, 3, 5, 6 and 7 using the F2:3 
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progeny data set. The variation explained by these individual QTLs ranged from 

6.3 to 30.2%. Additive x dominance interaction was observed between QTLs 

located on LG 2 and LG 3. The additive-dominance model explained the highest 

proportion of observed variation (45.8%) for this trait.  

� For grain size, a total of 5 QTLs were identified on LG 1, 3, 5, 6 and 7 across F2 

and F2:3  progenies. QTLs on LG 3 and 6 were detected in both F2 and F2:3 data 

sets. Individual QTLs explained 6.1 to 21.2% of the observed phenotypic 

variation. Variation for this trait was best explained through the epistatic model 

for both F2 population (41.4%) and F2:3 progenies (29.6%). 

 The findings from genetic study suggest that improvement of panicle length and 

panicle diameter through mass selection or family selection (S1 or S2) is expected to 

have a high degree of efficiency, as these traits revealed predominance of additive 

genetic effects than dominance and epistatic effects along with high heritability. 

Higher magnitude of dominance x dominance interaction along with additive effects 

for grain size suggests that the successful breeding method for this trait will be the 

one like reciprocal recurrent selection, which can capitalize on additive as well as 

non-additive genetic effects.  

From the QTLs mapped in this study, one QTL for panicle length on LG 2 (LOD 

greater than 3 in both F2 and F2:3 data sets); two QTLs for panicle diameter each on 

LG 2 and 3 (LOD greater than 14 in F2:3 data set) and one QTL for grain size on LG 3 

(LOD greater than 3 in both the F2 and F2:3 data sets) were identified as the candidate 

QTLs for validation and possible use in marker-assisted selection experiments. 
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Table 1. QTLs reported for sink size and agronomic traits in pearl millet.

Trait Author LG LOD
% Variation 

(R
2
)

Additive 

effect

Panicle length (cm)

Poncet et al.  (2000) 1 Xpsm858 - Xpsm515 2.45 13.20 1.27

2 Xpsm592 - Xpsm738 7.37 35.90 -2.13

7 Xpsm655 0.42

Poncet et al.  (2002) 7 Xpsm526 - rz404 2.35 8.60 -1.71

Nepolean (2002) 4 Xpsm568 - Xpsm512 6.22 22.10 -0.48

Panicle diameter (mm)

Poncet et al.  (2000) 5 Xpsm735 2.62 15.40 -0.34

7 Xpsm655 15.58 62.00 -0.54

Poncet et al.  (2002) 6 Est-E - Xpsm579 4.17 14.40 -2.03

7 Xpsm526 - rz404 2.16 6.40 1.33

Nepolean (2002) 4 Xpsm568 - Xpsm512 2.46 10.50 0.51

4 Xpsm512 - Xpsm344 5.97 21.00 0.71 Contd..

136 F2:4 testcross progenies 

derived from a cross of  PT 

732B x P 1449-2

Flanking markers Population  details

250 F2 individuals derived from 

wild x cultivated lines (Molli x 

Sonu)

168 F2 individuals derived from 

domesticated x wild hybrid 

(Thiotande x Wild)

250 F2 individuals derived from 

wild x cultivated cross (Molli x 

Sonu)

136 F2:4 testcross progenies  

derived from a cross of  PT 

732B x P 1449-2

168 F2 individuals derived from 

domesticated x wild cross 

(Thiotande x Wild)
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Trait Author LG LOD
% Variation 

(R
2
)

Additive 

effect

Grain size (1000-grain weight)

Yadav et al. (2002) 2 Xpsm394 - Xpsm214 4.46 21.80 0.05

6 Xpsm459 - Xpsm588 2.76 13.80 -0.04

6 Xugt1 - Xpsm87.1 1.90 11.30 -0.04

7 Xpsm718 - Xpsm266 2.96 17.20 -0.05

Bidinger et al. (2007) 1 Xpsm761 - Xpsm756 6.90 57.20 0.40

2 Xpsm322 - Xpsmp2059 6.60 34.60 0.30

3 Xpsm108 - Xpsmp2214 4.30 17.60 -0.20

6 Xpsm588 - Xpsm713 3.00 6.10 0.10

Nepolean (2002) 4 Xpsm568 - Xpsm512 3.00 11.60 0.54

Panicle weight (g)

Poncet et al.  (2000) 2 Xpsm176 - Xpsm592 16.04 60.90 -1.92

5 Xpsm651 - Xpsm735 2.99 22.50 -1.11

6 Xpsm696 - Est-E - - -0.60

Poncet et al.  (2002) 6 Est-E - Xpsm579 4.06 16.20 -1.17

Contd..

Flanking markers Population  details

250 F2 individuals derived from 

wild x cultivated lines (Molli x 

Sonu)

168 F2 individuals derived from 

domesticated x wild cross 

(Thiotande x Wild)

79 F2:4 testcross progenies 

derived from ICMB 841 x 863B

136 F2:4 testcross progenies 

derived from a cross of  PT 

732B x P 1449-2

150 F2:3 testcross progenies  

derived from H 77/833-2 x 

PRLT 2/89-33
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Trait Author LG LOD
% Variation 

(R
2
)

Additive 

effect

Panicle grain weight (g)

Nepolean (2002) 7 Xrm9-2b - Xpsms618 2.40 9.00 0.41

4 Xpsm84 - Xpsm612 3.58 12.40 0.54

6 Xpsm579 - Xpsm613b 2.73 12.30 0.51

Panicle harvest index (%)

Yadav et al. (2004) 1 Xpsm573 - Xpsm761 2.13 13.80 -

2 Dhn4 - Xpsm443 3.79 38.40 -

3 Xpsm325 - Xpsmp2070 4.17 22.30 -

5 Xpsmp2064 - Xpsm345 4.93 25.60 -

6 Xpsm514 - Xpsm870 3.03 35.60 -

7 Xpsmp2074 - Xpsm526 13.50 72.00 -

Bidinger et al. (2007) 1 Xpsm 761 - Xpsm756 5.30 49.50 1.30

2 Xpsmp2059 - Xpsmp250 6.00 50.80 1.60

3 Xpsm108 - Xpsmp2214 6.00 25.20 -0.50

4 Xpsm588 - Xpsm713 5.10 18.40 0.50

Contd..

Flanking markers Population  details

79 F2:3 testcross progenies 

derived from ICMB 841 x 863B

79 F2:4 testcross progenies  

derived from ICMB 841 x 863B

136 F2:4 progenies derived from 

a cross of  PT 732B x P 1449-2
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Trait Author LG LOD
% Variation 

(R
2
)

Additive 

effect

Plant height (cm)

Poncet et al.  (2000) 1 Xpsm516 - Xpsm756 2.68 15.70 4.61

2 Xpsm176 - Xpsm592 - - -10.44

5 Xpsm345 - Xpsm731 5.58 29.90 -21.41

5 Xpsm651 - Xpsm735 6.65 34.70 -24.75

6 Est-E - al6 - - 19.30

7 Xpsm655 2.73 16.10 -16.42

7 Xpsm812 2.47 14.20 -16.16

Poncet et al.  (2002) 6 Xpsm579 4.16 12.50 14.87

7 Xpsm562 - rz404 2.41 8.20 -19.85

Nepolean (2002) 4 Xpsm512 - Xpsm344 5.97 21.00 0.71

Azhaguvel et al. (2003) 1 Xpsm515 - Xpsm280 - - -

4 Xpsm84 - Xpsm413.2 - - -

Contd..

Flanking markers Population  details

250 F2 individuals derived from 

wild x cultivated cross (Molli x 

Sonu)

168 F2 individuals derived from 

domesticated x wild cross 

(Thiotande x Wild)

142 F2:3 testcross progenies 

derived from IP 18293 x Tift 

238D1

136 F2:4 testcross progenies  

derived from a cross of  PT 

732B x P 1449-2
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Trait Author LG LOD
% Variation 

(R
2
)

Additive 

effect

Productive tiller number

Poncet et al.  (2000) 1 Xpsm461 - Xpsm858 - - -1.27

2 Xpsm856 - Xpsm176 2.96 15.20 8.85

6 Est-E - al6 4.33 37.00 13.79

7 Xpsm655 2.33 12.90 5.79

Poncet et al.  (2002) 2 Xpsm592 - Xpsm662 2.36 6.30 2.98

4 Xpsm409.1 - Xpsms464 2.42 28.60 -6.76

Yadav et al. (2002) 2 Xpsm443 - Xpsm356 4.26 19.30 -2.15

2 Xpsm214 - Xpsm25 2.40 11.50 -1.11

2 Xpsm443 - Xpsm356 2.58 10.70 -0.93

4 Xpsm716 - Xpsm265 2.18 16.40 -1.23

4 Xpsm686 - Xpsm525 2.08 10.00 -0.79

6 Xpsm95 - Xpsm575 7.57 31.60 -2.92

7 Xpsm618 - Xpsm717 2.56 13.00 -1.15

Nepolean (2002) 7 Xrm9-2b - Xpsm618 2.45 9.20 -0.42

Yadav et al. (2003) 1 Xpsm858 - Xpsm565 2.65 - 0.68

2 Xpsm592 - Xpsm443 8.29 - -1.87

6 Xpsm95 - Xpsm575 2.34 - -1.07

7 Xpsm618 - Xpsm717 4.04 - -1.31

Flanking markers Population  details

168 F2 individuals derived from 

domesticated x wild cross 

(Thiotande x Wild)

150 F2 testcross progenies  

derived from H 77/833-2 x 

PRLT 2/89-33

104 F2:3 testcross progenies 

derived from H 77/833-2 x 

PRLT 2/89-33

250 F2 individuals derived from 

wild x cultivated cross (Molli x 

Sonu)

136 F2:4 testcross progenies 

derived from a cross of  PT 

732B x P 1449-2
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Table 2. Pedigree of parental lines involved in the development of trait-specific genetic populations. 

      

Group  Trait / Cross    Female parent   Male Parent 

      

1 Panicle length      

 Cross 1  (ICMB 89111 x IPC 1466)-21-1-3-6-B-5  x {((SRC II C3 S1-19-3-2xHHVBC)-5-3-1) x (IP19626-4-1-3)}-B-7-1-1 

 Cross 2  {(81B x SRL 53-1) x 843B}-30-2-B  x {ICMV-IS 94206-7 x (SRC II C3 S1-1-1-2 x HHVBC)-1-3-3}-B-10-1-1 

      

2 Panicle diameter     

 Cross 1  (96111Bx4017-3-3-B)-4-5-4-1-1-1-1-B-3 x HHVBC HS-10-1-2-1-1-1-1 

 Cross 2  NCD2 BC7F14- 12-1--3-5-5 x HHVDBC dwarf HS-249-1-2-1-B-3 

      

3 Grain size      

 Cross 1  (81Bx4025-3-2-B)-11-5-2-2-B-2 x HHVBC II D2 HS-302-3-1-6-8-2-6-2-B 

 Cross 2  {(ICMB 96555 x IP 10437)-8 x ICMB 97444}-6-4-1-1 x MC 94 C2 -S1-3-1-3-3-1-2-4-B 

           

 

Table 3. Crosses subjected for genetic and QTL studies.       

          

  Group 1   Group 2   Group 3 
Genetic / QTL studies 

  Panicle length    Panicle diameter    Grain size  

          

Generation means analysis  Cross 1 Cross 2  Cross 1 Cross 2  Cross 1 Cross 2 

          

Triple test cross analysis  Cross 1 -  Cross 1 -  Cross 1 - 

          

QTL analysis  - -  - -  Cross 1 - 
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Table 4. Sequence information of selected polymorphic markers.

P1 P2

1 Xpsms2 SSCP-SNP TGATGATCAATTGATTCATCCG TATTCAGCTGGACAATGTGCG 1450 1460 Bertin et al.  (2005)

2 Xpsms6 SSCP-SNP TGTCCCACTCTCTACAGATTC TATACACCACTCAACTTACTCA 420 750 Bertin et al. (2005)

3 Xpsms17 SSCP-SNP CCCTTCATGGTGAGGATGAG GACAGAGAAGCTTATCCTGC 340 338 Bertin et al. (2005)

4 Xpsms18 SSCP-SNP TGTGCCATCATCATTCTTGG CGAGATAGCATCTATGGTGC 220 218 Bertin et al. (2005)

5 Xpsms29 SSCP-SNP CCCTGCGTCAGCATCTCCTG GGTGGAGGACATCCTCAAAG 690 680 Bertin et al. (2005)

6 Xpsms31 SSCP-SNP ACGAGACCTTCATCTTCACTG CTTGACGACTGGGTGAGCTG 390 370 Bertin et al. (2005)

7 Xpsms32 SSCP-SNP TGGTAAGGCCAAGAAGATGG AAATCCGTCCATGTTCACGC 260 258 Bertin et al. (2005)

8 Xpsms39 SSCP-SNP CCTGAACGATGTCTCAATACC ATCAATGAGCCAGAGCTTGC 290 310 Bertin et al. (2005)

9 Xpsms41 SSCP-SNP TGAGGAGCATTTGTACAGGC CCATCGATGAGCTTCAGTTC 210 290 Bertin et al. (2005)

10 Xpsms58 SSCP-SNP GTTTCATGTCTGATCTCGACG AGACTCTTTCTGCCGTTGCG 360 350 Bertin et al. (2005)

11 Xpsms59 SSCP-SNP CTTTCACGTGTCTGCCAAGC TCAATCCTCTTGCTCGCAAC 290 300 Bertin et al. (2005)

12 Xpsms61 SSCP-SNP CTGGCTTCACACCTAGAGATG GGATAGCATTGCGAATGGTG 590 580 Bertin et al. (2005)

13 Xpsms68 SSCP-SNP AGGAGGTGGAGTCGATAAGG CTTTGCTCCTCTCGTTGTACG 290 288 Bertin et al. (2005)

14 Xpsms73 SSCP-SNP TTCACTTGCAAGCAAGATGG CTTGTATCCAGAGCTAAGACC 350 340 Bertin et al. (2005)

15 Xpsms74 SSCP-SNP TTCTGACACTGTGCCTTTAGC AGACCCAGCATGCACTCAAC 1100 1110 Bertin et al. (2005)

16 Xpsms75 SSCP-SNP AAGAGGGCCTTGAACTGTTG CAGATCTTTCAGGCTGTCTCC 385 380 Bertin et al. (2005)

17 Xpsms76 SSCP-SNP CAACCATGCTACTCTATCTGG GCAATGTCTGTCATGAACTG 400 398 Bertin et al. (2005)

18 Xpsms77 SSCP-SNP GGATGCTACCTTCTCCTTCAC AACCTTCTACAGCTTCGCTG 290 310 Bertin et al. (2005)

19 Xpsms78 SSCP-SNP GCGCGATCTTGAACCACTCG GCCATCTTCCTTGACCGCATC 300 298 Bertin et al. (2005)

20 Xpsms80 SSCP-SNP GTACAAGGAGATCGAGAACG GACGGAAGGTGTCAACAATG 850 800 Bertin et al. (2005)

21 Xpsms86 SSCP-SNP CGTACAAGGAGATCGAGAAC AATGTCGACATCAACAGCTC 750 740 Bertin et al. (2005)

22 Xpsms88 SSCP-SNP AATGCACTAGTCCACCGTCC CCTACACCACACGCTTCCTC 280 282 Bertin et al. (2005)

contd..

      Reference
Allele size 

S.No. Marker Type Forward primer sequence Reverse primer sequence
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P1 P2

23 Xpsms89 SSCP-SNP AGGGACACGCGAATACAAGC CTTGAGAAGGAGAGTTGTCTTC 580 578 Bertin et al. (2005)

24 Xpsms92 SSCP-SNP TGGTGATGCTGCTGCTTTAG CGACCGAGTACATCTTCTGG 380 385 Bertin et al. (2005)

25 Xpsmp2027 Genomic SSR AGCAATCCGATAACAAGGAC AGCTTTGGAAAAGGTGATCC 290 250 Qi et al. (2004)

26 Xpsmp2064 Genomic SSR ACCGAATTAAAGTCATGGATCG TTGATTCTTCTGACACAAATGAG 110 120 Qi et al. (2004)

27 Xpsmp2068 Genomic SSR CAATAACCAAACAAGCAGGCAG CTTCACTCCCACCCTTTCTAATTC 90 110 Qi et al. (2004)

28 Xpsmp2069 Genomic SSR CCCATCTGAAATCTGGCTGAGAA CCGTGTTCGTACATGGTTTTGC 210 212 Qi et al. (2004)

29 Xpsmp2078 Genomic SSR CATGCCCATGACAGTATCTTAAT ACTGTTCGGTTCCAAAATACTT 130 160 Qi et al. (2004)

30 Xpsmp2084 Genomic SSR AATCTAGTGATCTAGTGTGCTTCC GGTTAGTTTGTTTGAGGCAAATGC 240 250 Qi et al. (2004)

31 Xpsmp2203 Genomic SSR GAACTTGATGAGTGCCACTAGC TTGTGTAGGGAGCAACCTTGAT 185 190 Qi et al. (2004)

32 Xpsmp2222 Genomic SSR TGGCTTCCAGACTAATCATCAC TTATTTTAGCGGCGAGATTGAC 150 148 Qi et al. (2004)

33 Xpsmp2237 Genomic SSR TGGCCTTGGCCTTTCCACGCTT CAATCAGTCCGTAGTCCACACCCCA 250 240 Allouis et al. (2001)

34 Xpsmp2270 Genomic SSR AACCAGAGAAGTACATGGCCCG CGACGAACAAATTAAGGCTCTC 140 142 Allouis et al. (2001)

35 Xicmp3017 EST-SSR CACCAAACAGCATCAAGCAG AGGTAGCCGAGGAAGGTGAG 190 192 Senthilvel et al.  (2004)

36 Xicmp3027 EST-SSR ACACCATCACCGACAACAAA AGTGACCTGGGGTACAGACG 210 212 Senthilvel et al.  (2004)

37 Xicmp3063 EST-SSR TCCGGTAGAGACCGTAATGG GGCACTCCCTAGCAAAATGA 178 180 Senthilvel (Unpublished)

38 Xicmp3073 EST-SSR GCACGAGGGCCAGATTCTA TACACGGTGATGACACGACA 150 160 Senthilvel (Unpublished)

39 Xicmp3081 EST-SSR ACGCCGTTTTCGTGTAGTCT TCCACAAGGTGACCTCACTG 200 180 Senthilvel (Unpublished)

40 Xicmp3086 EST-SSR ACCAAACGTCCAAACCAGAG ATATCTCTTCGCTGCGGTGT 140 142 Senthilvel (Unpublished)

41 Xpsm37 RFLP-STS AAAGGTGTCGTTGTTGTGCC GACTGCTGGTCGGTCACG 498 500 JIC (Unpublished)

42 Xpsm345 RFLP-STS CTGGGGGAGAGAGAAGGG AAAAGGCTGGGAGAGTAGGC 195 200 JIC (Unpublished)

43 Xpsm592 RFLP-STS GCCACAGAAACACTGAAGATG GGAAGGCATCCAAGAGCC 820 815 JIC (Unpublished)

44 Xpsm669 RFLP-STS TAATGGGTAGGAAAACCTCGC GAAAAAGAGGCAGGCAAATG 885 900 JIC (Unpublished)

Reverse primer sequence
Allele size 

      ReferenceS.No. Marker Type Forward primer sequence





 
201

 
 

Table 6. ANOVA for parents and F1's  for sink size traits

Replication Error

Panicle length

Cross 1 P1 R 06 1.36 0.79 1.71

S 07 1.55 0.80 1.94

P2 R 06 0.69 3.03 0.23

S 07 6.03 2.63 2.29

F1 R 06 2.14 1.85 1.16

S 07 0.80 2.16 0.37

Cross 2 P1 R 06 1.12 1.69 0.67

S 07 1.95 1.97 0.99

P2 R 06 1.95 3.26 0.60

S 07 5.59 3.06 1.83

F1 R 06 3.87 2.68 1.44

S 07 1.12 2.90 0.38

Panicle diameter

Cross 1 P1 R 06 2.76 3.31 0.83

S 07 3.51 2.80 1.25

P2 R 06 1.08 3.93 0.27

S 07 1.30 1.98 0.66

F1 R 06 6.21 3.69 1.68

S 07 1.43 1.44 0.99

Cross 2 P1 R 06 3.64 1.32 2.75

S 07 1.29 1.20 1.07

P2 R 06 7.67 4.47 1.71

S 07 2.73 4.41 0.62

F1 R 06 4.31 1.89 2.28

S 07 0.29 3.14 0.09

Grain size

Cross 1 P1 R 06 0.07 0.31 0.21

S 07 0.49 0.42 1.19

P2 R 06 0.16 0.51 0.31

S 07 0.26 0.53 0.49

F1 R 06 0.33 0.65 0.52

S 07 1.03 0.81 1.27

Cross 2 P1 R 06 0.19 0.38 0.50

S 07 0.29 0.32 0.91

P2 R 06 0.62 0.78 0.79

S 07 0.95 0.39 2.43

F1 R 06 0.00 0.08 0.06

S 07 0.08 0.11 0.72

R 06 - Rainy 2006 S 07 -Summer 2007

Mean Squares
F ratio

Traits / 

Crosses
Parent / F1 Season
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Table 7. Mean performance of parents, F1, F2 and backcross generations for panicle length. 

Cross /

Season N N N

Cross 1

R 06 P1 20 16.15 + 0.20 16.29 + 0.21 16.91 + 0.22 40 16.22 + 0.14 16.53 + 0.16 16.60 + 0.16 60 16.45 + 0.13

P2 20 67.04 + 0.38 67.14 + 0.37 67.40 + 0.41 40 67.09 + 0.26 67.22 + 0.28 67.27 + 0.27 60 67.19 + 0.22

F1 20 37.04 + 0.28 36.39 + 0.32 36.78 + 0.31 40 36.72 + 0.22 36.91 + 0.21 36.59 + 0.22 60 36.74 + 0.18

F2 350 35.04 + 0.53 34.98 + 0.53 35.75 + 0.54 700 35.01 + 0.38 35.39 + 0.38 35.36 + 0.38 1050 35.26 + 0.31

BC1 100 25.52 + 0.47 24.35 + 0.47 26.38 + 0.49 200 24.93 + 0.33 25.95 + 0.34 25.36 + 0.34 300 25.42 + 0.28

BC2 100 43.59 + 0.94 41.91 + 0.97 42.70 + 0.96 200 42.75 + 0.68 43.14 + 0.67 42.30 + 0.68 300 42.73 + 0.55

S 07 P1 20 17.54 + 0.19 17.77 + 0.20 17.22 + 0.21 40 17.65 + 0.14 17.38 + 0.14 17.49 + 0.15 60 17.51 + 0.12

P2 20 67.64 + 0.39 66.20 + 0.37 65.51 + 0.34 40 66.92 + 0.29 66.57 + 0.31 65.85 + 0.25 60 66.45 + 0.24

F1 20 38.88 + 0.32 39.28 + 0.30 39.10 + 0.36 40 39.08 + 0.22 38.99 + 0.24 39.19 + 0.23 60 39.09 + 0.19

F2 350 35.41 + 0.53 35.18 + 0.55 36.80 + 0.53 700 35.30 + 0.38 36.10 + 0.38 35.99 + 0.38 1050 35.80 + 0.31

BC1 100 25.95 + 0.48 25.93 + 0.50 26.35 + 0.48 200 25.94 + 0.34 26.15 + 0.34 26.14 + 0.34 300 26.08 + 0.28

BC2 100 40.54 + 0.92 43.52 + 0.95 41.62 + 0.93 200 42.03 + 0.67 41.08 + 0.65 42.57 + 0.67 300 41.89 + 0.55

Cross 2

R 06 P1 20 16.23 + 0.26 16.56 + 0.32 16.10 + 0.29 40 16.39 + 0.20 16.16 + 0.19 16.33 + 0.22 60 16.29 + 0.17

P2 20 46.82 + 0.42 46.50 + 0.43 47.12 + 0.35 40 46.66 + 0.30 46.97 + 0.27 46.81 + 0.28 60 46.81 + 0.23

F1 20 29.98 + 0.34 29.71 + 0.39 29.12 + 0.37 40 29.84 + 0.25 29.55 + 0.26 29.41 + 0.27 60 29.60 + 0.21

F2 350 28.57 + 0.38 28.73 + 0.39 28.71 + 0.38 700 28.65 + 0.27 28.64 + 0.27 28.72 + 0.27 1050 28.67 + 0.22

BC1 100 22.18 + 0.50 21.32 + 0.51 21.50 + 0.51 200 21.75 + 0.36 21.84 + 0.36 21.41 + 0.36 300 21.67 + 0.29

BC2 100 36.97 + 0.58 37.52 + 0.57 37.89 + 0.58 200 37.24 + 0.41 37.43 + 0.41 37.70 + 0.41 300 37.46 + 0.33

S 07 P1 20 17.37 + 0.31 17.68 + 0.31 17.05 + 0.33 40 17.52 + 0.22 17.21 + 0.22 17.37 + 0.23 60 17.37 + 0.18

P2 20 45.09 + 0.40 44.22 + 0.38 44.14 + 0.39 40 44.66 + 0.28 44.61 + 0.29 44.18 + 0.27 60 44.48 + 0.23

F1 20 30.67 + 0.38 30.58 + 0.38 30.22 + 0.38 40 30.62 + 0.27 30.44 + 0.27 30.40 + 0.27 60 30.49 + 0.22

F2 350 28.40 + 0.40 28.52 + 0.39 28.53 + 0.41 700 28.46 + 0.28 28.47 + 0.28 28.53 + 0.28 1050 28.48 + 0.23

BC1 100 22.73 + 0.51 22.31 + 0.52 22.26 + 0.49 200 22.52 + 0.36 22.50 + 0.36 22.28 + 0.36 300 22.43 + 0.29

BC2 100 35.87 + 0.53 35.98 + 0.54 35.98 + 0.54 200 35.92 + 0.38 35.92 + 0.38 35.98 + 0.38 300 35.94 + 0.31

N – Population size R 06 - Rainy 2006 S 07 - Summer 2007

B123

Set 1 Set 2 Set 3

B1 B2 B3 B12 B13 B23
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Table  8. Mean performance of parents, F1, F2 and backcross generations for panicle diameter.

Cross /

Season N N N

Cross 1

R 06 P1 20 17.79 + 0.42 18.36 + 0.44 17.66 + 0.35 40 18.07 + 0.30 17.72 + 0.27 18.01 + 0.28 60 17.94 + 0.23

P2 20 49.31 + 0.46 48.94 + 0.44 48.88 + 0.44 40 49.12 + 0.31 49.09 + 0.31 48.91 + 0.31 60 49.04 + 0.25

F1 20 35.10 + 0.44 35.72 + 0.44 34.61 + 0.41 40 35.41 + 0.31 34.86 + 0.30 35.17 + 0.31 60 35.14 + 0.25

F2 350 29.38 + 0.37 29.66 + 0.37 30.09 + 0.38 700 29.52 + 0.26 29.74 + 0.26 29.87 + 0.27 1050 29.71 + 0.21

BC1 100 22.23 + 0.46 22.61 + 0.50 23.21 + 0.53 200 22.42 + 0.34 22.72 + 0.35 22.91 + 0.36 300 22.68 + 0.29

BC2 100 38.79 + 0.65 38.02 + 0.65 39.09 + 0.62 200 38.41 + 0.46 38.94 + 0.45 38.55 + 0.45 300 38.63 + 0.37

S 07 P1 20 18.82 + 0.39 18.05 + 0.36 18.70 + 0.36 40 18.43 + 0.27 18.76 + 0.26 18.37 + 0.26 60 18.52 + 0.22

P2 20 48.20 + 0.36 48.15 + 0.31 48.62 + 0.27 40 48.18 + 0.23 48.41 + 0.22 48.38 + 0.21 60 48.32 + 0.18

F1 20 34.74 + 0.27 35.19 + 0.24 34.72 + 0.29 40 34.96 + 0.18 34.73 + 0.20 34.95 + 0.19 60 34.88 + 0.16

F2 350 29.05 + 0.35 29.42 + 0.37 27.46 + 0.37 700 29.24 + 0.25 28.26 + 0.26 28.44 + 0.26 1050 28.65 + 0.21

BC1 100 22.21 + 0.45 22.72 + 0.47 23.05 + 0.49 200 22.46 + 0.33 22.63 + 0.33 22.88 + 0.34 300 22.66 + 0.27

BC2 100 38.39 + 0.65 37.50 + 0.64 35.98 + 0.63 200 37.95 + 0.46 37.19 + 0.46 36.73 + 0.45 300 37.29 + 0.37

Cross 2

R 06 P1 20 13.99 + 0.28 14.04 + 0.27 15.17 + 0.26 40 14.01 + 0.19 14.58 + 0.21 14.60 + 0.21 60 14.40 + 0.17

P2 20 40.70 + 0.49 41.47 + 0.45 41.93 + 0.47 40 41.09 + 0.34 41.31 + 0.35 41.70 + 0.32 60 41.37 + 0.28

F1 20 27.47 + 0.36 26.04 + 0.29 26.52 + 0.35 40 26.75 + 0.25 26.99 + 0.26 26.28 + 0.23 60 26.67 + 0.21

F2 350 23.61 + 0.29 24.02 + 0.30 25.27 + 0.28 700 23.81 + 0.21 24.44 + 0.20 24.65 + 0.21 1050 24.30 + 0.17

BC1 100 18.81 + 0.33 18.58 + 0.30 19.42 + 0.30 200 18.69 + 0.22 19.11 + 0.22 19.00 + 0.21 300 18.93 + 0.18

BC2 100 32.55 + 0.48 31.28 + 0.50 32.87 + 0.47 200 31.91 + 0.35 32.71 + 0.33 32.08 + 0.34 300 32.23 + 0.28

S 07 P1 20 15.58 + 0.25 15.41 + 0.28 15.91 + 0.19 40 15.49 + 0.19 15.74 + 0.16 15.66 + 0.17 60 15.63 + 0.14

P2 20 40.47 + 0.49 39.96 + 0.49 39.75 + 0.43 40 40.21 + 0.34 40.11 + 0.33 39.85 + 0.32 60 40.06 + 0.27

F1 20 27.23 + 0.39 27.28 + 0.40 27.46 + 0.40 40 27.25 + 0.28 27.34 + 0.28 27.37 + 0.28 60 27.32 + 0.23

F2 350 24.93 + 0.29 23.97 + 0.30 24.64 + 0.30 700 24.45 + 0.21 24.78 + 0.21 24.31 + 0.21 1050 24.51 + 0.17

BC1 100 20.00 + 0.26 18.24 + 0.30 19.01 + 0.28 200 19.12 + 0.21 19.51 + 0.19 18.63 + 0.21 300 19.08 + 0.17

BC2 100 32.09 + 0.51 32.34 + 0.49 33.20 + 0.46 200 32.22 + 0.35 32.64 + 0.34 32.77 + 0.34 300 32.54 + 0.28

N – Population size R 06 - Rainy 2006 S 07 - Summer 2007

B123

Set 1 Set 2 Set 3

B1 B2 B3 B12 B13 B23
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Table 9. Mean performance of parents, F1, F2 and backcross generations for grain size. 

Cross /

Season N N N

Cross 1

R 06 P1 20 4.45 + 0.12 4.34 + 0.12 4.42 + 0.14 40 4.40 + 0.08 4.44 + 0.09 4.38 + 0.09 60 4.40 + 0.07

P2 20 13.06 + 0.12 13.23 + 0.17 13.13 + 0.18 40 13.15 + 0.11 13.09 + 0.11 13.18 + 0.12 60 13.14 + 0.09

F1 20 8.42 + 0.15 8.17 + 0.21 8.37 + 0.18 40 8.30 + 0.13 8.40 + 0.12 8.27 + 0.14 60 8.32 + 0.10

F2 350 7.97 + 0.14 7.87 + 0.14 7.84 + 0.14 700 7.92 + 0.10 7.90 + 0.10 7.85 + 0.10 1050 7.89 + 0.08

BC1 100 6.33 + 0.15 6.24 + 0.16 6.23 + 0.16 200 6.28 + 0.11 6.28 + 0.11 6.24 + 0.11 300 6.27 + 0.09

BC2 100 8.95 + 0.12 8.98 + 0.12 9.02 + 0.12 200 8.97 + 0.08 8.98 + 0.08 9.00 + 0.08 300 8.98 + 0.07

S 07 P1 20 5.03 + 0.14 4.88 + 0.17 5.19 + 0.13 40 4.95 + 0.11 5.11 + 0.09 5.04 + 0.11 60 5.03 + 0.08

P2 20 13.52 + 0.13 13.40 + 0.14 13.63 + 0.21 40 13.46 + 0.10 13.58 + 0.12 13.52 + 0.13 60 13.52 + 0.09

F1 20 8.49 + 0.11 8.74 + 0.23 8.94 + 0.24 40 8.62 + 0.13 8.72 + 0.14 8.84 + 0.16 60 8.73 + 0.12

F2 350 8.53 + 0.13 8.63 + 0.12 8.69 + 0.12 700 8.58 + 0.09 8.61 + 0.09 8.66 + 0.09 1050 8.62 + 0.07

BC1 100 6.96 + 0.16 6.53 + 0.18 6.98 + 0.15 200 6.75 + 0.12 6.97 + 0.11 6.76 + 0.12 300 6.82 + 0.09

BC2 100 9.91 + 0.17 9.70 + 0.18 9.89 + 0.16 200 9.81 + 0.12 9.90 + 0.12 9.79 + 0.12 300 9.83 + 0.10

Cross 2

R 06 P1 20 5.31 + 0.12 5.24 + 0.15 5.12 + 0.14 40 5.28 + 0.10 5.22 + 0.09 5.18 + 0.10 60 5.22 + 0.08

P2 20 13.95 + 0.19 13.79 + 0.20 13.60 + 0.20 40 13.87 + 0.14 13.78 + 0.14 13.70 + 0.14 60 13.78 + 0.11

F1 20 8.59 + 0.06 8.60 + 0.07 8.57 + 0.06 40 8.59 + 0.05 8.58 + 0.04 8.59 + 0.04 60 8.59 + 0.04

F2 350 8.39 + 0.13 8.51 + 0.13 8.47 + 0.12 700 8.45 + 0.09 8.43 + 0.09 8.49 + 0.09 1050 8.46 + 0.07

BC1 100 6.99 + 0.16 7.09 + 0.15 6.96 + 0.16 200 7.04 + 0.11 6.98 + 0.11 7.02 + 0.11 300 7.01 + 0.09

BC2 100 9.78 + 0.18 9.47 + 0.17 9.61 + 0.19 200 9.63 + 0.13 9.70 + 0.13 9.54 + 0.13 300 9.62 + 0.10

S 07 P1 20 5.74 + 0.11 5.93 + 0.12 5.96 + 0.14 40 5.83 + 0.08 5.85 + 0.09 5.94 + 0.09 60 5.88 + 0.07

P2 20 14.85 + 0.16 15.14 + 0.20 14.56 + 0.14 40 15.00 + 0.13 14.71 + 0.11 14.85 + 0.13 60 14.85 + 0.10

F1 20 9.51 + 0.08 9.78 + 0.05 9.73 + 0.06 40 9.65 + 0.05 9.62 + 0.05 9.76 + 0.04 60 9.68 + 0.04

F2 350 9.33 + 0.15 9.52 + 0.12 9.51 + 0.14 700 9.42 + 0.10 9.42 + 0.10 9.52 + 0.09 1050 9.45 + 0.08

BC1 100 7.44 + 0.14 7.25 + 0.14 7.44 + 0.15 200 7.34 + 0.10 7.44 + 0.10 7.35 + 0.10 300 7.38 + 0.08

BC2 100 11.14 + 0.19 11.18 + 0.22 11.42 + 0.19 200 11.16 + 0.14 11.28 + 0.13 11.30 + 0.15 300 11.25 + 0.12

N – Population size R 06 - Rainy 2006 S 07 - Summer 2007

B123

Set 1 Set 2 Set 3

B1 B2 B3 B12 B13 B23
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Table 10. Scaling and joint scaling test for panicle length in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A -2.14 * + 1.01 -3.98 ** + 1.01 -0.92 + 1.04 -3.06 ** + 0.72 -1.53 * + 0.73 -2.45 ** + 0.74 -2.35 ** + 0.60

 B -16.91 ** + 1.95 -19.71 ** + 2.00 -18.78 ** + 2.00 -18.31 ** + 1.40 -17.85 ** + 1.39 -19.25 ** + 1.41 -18.47 ** + 1.14

 C -17.11 ** + 2.25 -16.30 ** + 2.25 -14.86 ** + 2.28 -16.70 ** + 1.59 -15.99 ** + 1.60 -15.58 ** + 1.60 -16.09 ** + 1.30

Summer 2007

 A -4.52 ** + 1.02 -5.19 ** + 1.05 -3.60 ** + 1.04 -4.85 ** + 0.73 -4.06 ** + 0.73 -4.40 ** + 0.74 -4.44 ** + 0.60

 B -25.44 ** + 1.91 -18.44 ** + 1.96 -21.36 ** + 1.93 -21.94 ** + 1.39 -23.40 ** + 1.37 -19.90 ** + 1.38 -21.74 ** + 1.13

 C -21.30 ** + 2.27 -21.80 ** + 2.32 -13.72 ** + 2.27 -21.55 ** + 1.62 -17.51 ** + 1.62 -17.76 ** + 1.63 -18.94 ** + 1.33

Joint scaling test

Rainy 2006

 m 40.98 + 0.21 41.08 + 0.21 41.50 + 0.22 41.04 + 0.15 41.23 + 0.15 41.29 + 0.15 41.19 + 0.12

(d) -25.00 ** + 0.21 -25.03 ** + 0.21 -24.71 ** + 0.23 -25.03 ** + 0.15 -24.87 ** + 0.16 -24.88 ** + 0.15 -24.93 ** + 0.12

(h) -4.85 ** + 0.35 -6.01 ** + 0.37 -5.63 ** + 0.38 -5.47 ** + 0.26 -5.23 ** + 0.26 -5.80 ** + 0.27 -5.50 ** + 0.21

 χ2 value 125.92 ** 147.47 ** 122.05 ** 270.73 ** 247.10 ** 265.54 ** 389.38 **

Summer 2007 

 m 41.69 + 0.21 41.30 + 0.20 40.84 + 0.19 41.42 + 0.15 41.05 + 0.16 41.05 + 0.14 41.15 + 0.13

(d) -24.40 ** + 0.21 -23.82 ** + 0.20 -23.80 ** + 0.19 -24.03 ** + 0.16 -23.89 ** + 0.16 -23.81 ** + 0.14 -23.89 ** + 0.13

(h) -4.50 ** + 0.38 -3.39 ** + 0.36 -3.30 ** + 0.39 -3.84 ** + 0.26 -3.66 ** + 0.28 -3.33 ** + 0.27 -3.57 ** + 0.22

 χ2 value 254.30 ** 179.36 ** 15.49 ** 417.81 ** 391.93 ** 322.55 ** 557.11 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123
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Table 11. Scaling and joint scaling test for panicle length in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A -1.84 + 1.08 -3.61 ** + 1.13 -2.21 * + 1.12 -2.73 ** + 0.78 -2.02 ** + 0.78 -2.91 ** + 0.80 -2.55 ** + 0.64

 B -2.86 * + 1.28 -1.16 + 1.28 -0.46 + 1.26 -2.01 ** + 0.90 -1.66 + 0.90 -0.81 + 0.90 -1.49 * + 0.73

 C -8.70 ** + 1.72 -7.55 ** + 1.81 -6.59 ** + 1.74 -8.13 ** + 1.25 -7.65 ** + 1.23 -7.07 ** + 1.26 -7.62 ** + 1.02

Summer 2007

 A -2.56 * + 1.14 -3.64 ** + 1.15 -2.76 * + 1.11 -3.10 ** + 0.81 -2.66 ** + 0.79 -3.20 ** + 0.80 -2.99 ** + 0.65

 B -4.02 ** + 1.20 -2.84 * + 1.21 -2.40 + 1.22 -3.43 ** + 0.85 -3.21 ** + 0.85 -2.62 ** + 0.86 -3.09 ** + 0.70

 C -10.17 ** + 1.83 -8.97 ** + 1.80 -7.52 ** + 1.87 -9.57 ** + 1.28 -8.84 ** + 1.31 -8.24 ** + 1.30 -8.89 ** + 1.06

Joint scaling test

Rainy 2006

 m 31.07 + 0.23 31.12 + 0.25 31.36 + 0.21 31.10 + 0.17 31.24 + 0.16 31.25 + 0.17 31.20 + 0.13

(d) -15.08 ** + 0.23 -15.00 ** + 0.25 -15.54 ** + 0.22 -15.04 ** + 0.17 -15.33 ** + 0.16 -15.27 ** + 0.17 -15.21 ** + 0.14

(h) -1.92 ** + 0.41 -2.34 ** + 0.46 -2.95 ** + 0.42 -2.13 ** + 0.30 -2.50 ** + 0.30 -2.65 ** + 0.31 -2.44 ** + 0.25

 χ2 value 28.05 ** 23.21 ** 16.12 ** 48.84 ** 41.42 ** 38.62 ** 63.47 **

Summer 2007 

 m 30.68 + 0.24 30.50 + 0.23 30.20 + 0.24 30.58 + 0.17 30.43 + 0.17 30.35 + 0.16 30.45 + 0.14

(d) -13.66 ** + 0.24 -13.23 ** + 0.23 -13.51 ** + 0.24 -13.44 ** + 0.17 -13.57 ** + 0.17 -13.38 ** + 0.17 -13.47 ** + 0.14

(h) -1.19 ** + 0.44 -1.06 * + 0.44 -0.88 * + 0.44 -1.10 ** + 0.31 -1.02 ** + 0.31 -0.96 ** + 0.31 -1.02 ** + 0.25

 χ2 value 37.21 ** 31.40 ** 20.44 ** 67.90 ** 55.54 ** 51.43 ** 86.94 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123
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Table 12. Scaling and joint scaling test for panicle diameter in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A -8.42 ** + 1.10 -8.86 ** + 1.17 -5.85 ** + 1.18 -8.64 ** + 0.80 -7.14 ** + 0.81 -7.36 ** + 0.84 -7.71 ** + 0.67

 B -6.82 ** + 1.45 -8.61 ** + 1.44 -5.32 ** + 1.37 -7.72 ** + 1.02 -6.07 ** + 1.00 -6.97 ** + 1.00 -6.92 ** + 0.82

 C -19.77 ** + 1.82 -20.12 ** + 1.83 -15.39 ** + 1.82 -19.95 ** + 1.29 -17.58 ** + 1.28 -17.75 ** + 1.30 -18.43 ** + 1.05

Summer 2007

 A -9.14 ** + 1.02 -7.80 ** + 1.04 -7.31 ** + 1.08 -8.47 ** + 0.73 -8.23 ** + 0.74 -7.56 ** + 0.75 -8.09 ** + 0.61

 B -6.15 ** + 1.37 -8.35 ** + 1.34 -11.37 ** + 1.32 -7.25 ** + 0.96 -8.76 ** + 0.96 -9.87 ** + 0.94 -8.63 ** + 0.78

 C -20.28 ** + 1.60 -18.88 ** + 1.61 -26.92 ** + 1.65 -19.58 ** + 1.14 -23.59 ** + 1.15 -22.89 ** + 1.17 -22.02 ** + 0.94

Joint scaling test

Rainy 2006

 m 32.05 + 0.28 32.07 + 0.28 32.33 + 0.26 32.07 + 0.20 32.23 + 0.19 32.25 + 0.19 32.19 + 0.16

(d) -15.93 ** + 0.29 -15.46 ** + 0.29 -15.50 ** + 0.26 -15.70 ** + 0.20 -15.69 ** + 0.19 -15.48 ** + 0.20 -15.62 ** + 0.16

(h) -0.02 + 0.52 0.53 + 0.52 0.24 + 0.48 0.24 + 0.37 0.11 + 0.35 0.24 + 0.36 0.18 + 0.29

 χ2 value 144.93 ** 155.69 ** 85.77 ** 300.18 ** 227.54 ** 232.36 ** 377.44 **

Summer 2007 

 m 31.89 + 0.24 31.82 + 0.22 32.31 + 0.21 31.85 + 0.16 32.10 + 0.16 32.05 + 0.15 32.00 + 0.13

(d) -15.18 ** + 0.25 -15.36 ** + 0.23 -15.26 ** + 0.22 -15.30 ** + 0.17 -15.17 ** + 0.16 -15.31 ** + 0.16 -15.25 ** + 0.13

(h) 1.22 ** + 0.38 2.10 ** + 0.34 0.10 + 0.37 1.65 ** + 0.25 0.73 ** + 0.26 1.14 ** + 0.25 1.18 ** + 0.21

 χ2 value 213.69 ** 196.37 ** 325.24 ** 405.00 ** 519.99 ** 502.62 ** 706.48 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123
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Table  13. Scaling and joint scaling test for panicle diameter in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A -3.84 ** + 0.81 -2.92 ** + 0.72 -2.85 ** + 0.74 -3.38 ** + 0.55 -3.35 ** + 0.56 -2.88 ** + 0.53 -3.20 ** + 0.45

 B -3.07 ** + 1.13 -4.96 ** + 1.13 -2.69 ** + 1.10 -4.02 ** + 0.81 -2.88 ** + 0.80 -3.83 ** + 0.79 -3.58 ** + 0.66

 C -15.19 ** + 1.48 -11.51 ** + 1.45 -9.03 ** + 1.44 -13.35 ** + 1.06 -12.11 ** + 1.05 -10.27 ** + 1.03 -11.91 ** + 0.86

Summer 2007

 A -2.80 ** + 0.70 -6.20 ** + 0.78 -5.34 ** + 0.71 -4.50 ** + 0.53 -4.07 ** + 0.50 -5.77 ** + 0.53 -4.78 ** + 0.43

 B -3.52 ** + 1.19 -2.55 * + 1.17 -0.82 + 1.09 -3.04 ** + 0.83 -2.17 ** + 0.81 -1.69 ** + 0.80 -2.30 ** + 0.66

 C -10.80 ** + 1.51 -14.03 ** + 1.54 -12.00 ** + 1.50 -12.42 ** + 1.08 -11.40 ** + 1.06 -13.02 ** + 1.07 -12.28 ** + 0.87

Joint scaling test

Rainy 2006

 m 26.22 + 0.25 26.74 + 0.23 27.85 + 0.24 26.54 + 0.17 26.99 + 0.18 27.26 + 0.17 26.93 + 0.14

(d) -12.97 ** + 0.25 -13.28 ** + 0.24 -13.14 ** + 0.24 -13.12 ** + 0.17 -13.09 ** + 0.18 -13.26 ** + 0.17 -13.16 ** + 0.14

(h) -0.74 + 0.44 -1.93 ** + 0.39 -2.70 ** + 0.42 -1.61 ** + 0.31 -1.69 ** + 0.32 -2.29 ** + 0.29 -1.88 ** + 0.25

 χ2 value 109.59 ** 74.74 ** 43.89 ** 167.92 ** 139.47 ** 112.72 ** 204.38 **

Summer 2007 

 m 27.24 + 0.25 26.73 + 0.25 27.39 + 0.21 26.99 + 0.17 27.29 + 0.16 27.06 + 0.16 27.11 + 0.14

(d) -12.08 ** + 0.24 -12.27 ** + 0.25 -11.96 ** + 0.21 -12.16 ** + 0.17 -12.04 ** + 0.16 -12.13 ** + 0.16 -12.11 ** + 0.14

(h) -1.73 ** + 0.44 -2.03 ** + 0.46 -2.32 ** + 0.41 -1.85 ** + 0.32 -1.98 ** + 0.30 -2.13 ** + 0.31 -1.97 ** + 0.25

 χ2 value 54.08 ** 111.85 ** 95.66 ** 157.59 ** 138.94 ** 206.81 ** 248.35 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123



 
209 

 

Table  14. Scaling and joint scaling test for grain size in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A -0.21 + 0.36 -0.04 + 0.40 -0.33 + 0.40 -0.12 + 0.27 -0.27 + 0.27 -0.18 + 0.28 -0.19 + 0.22

 B -3.58 ** + 0.31 -3.44 ** + 0.36 -3.46 ** + 0.35 -3.51 ** + 0.23 -3.52 ** + 0.23 -3.45 ** + 0.25 -3.49 ** + 0.19

 C -2.48 ** + 0.64 -2.46 ** + 0.71 -2.93 ** + 0.69 -2.47 ** + 0.48 -2.70 ** + 0.47 -2.69 ** + 0.50 -2.62 ** + 0.39

Summer 2007

 A 0.40 + 0.36 -0.55 + 0.46 -0.18 + 0.40 -0.08 + 0.29 0.11 + 0.27 -0.37 + 0.31 -0.11 + 0.24

 B -2.19 ** + 0.39 -2.75 ** + 0.44 -2.79 ** + 0.45 -2.47 ** + 0.29 -2.49 ** + 0.30 -2.77 ** + 0.31 -2.58 ** + 0.25

 C -1.40 * + 0.59 -1.26 + 0.70 -1.94 ** + 0.72 -1.33 ** + 0.46 -1.67 ** + 0.47 -1.60 ** + 0.50 -1.53 ** + 0.39

Joint scaling test

Rainy 2006

 m 8.48 + 0.08 8.40 + 0.09 8.34 + 0.10 8.43 + 0.06 8.40 + 0.06 8.38 + 0.07 8.41 + 0.05

(d) -3.97 ** + 0.08 -3.95 ** + 0.09 -3.85 ** + 0.10 -3.95 ** + 0.06 -3.90 ** + 0.06 -3.90 ** + 0.07 -3.92 ** + 0.05

(h) -0.84 ** + 0.16 -1.14 ** + 0.20 -0.85 ** + 0.20 -1.01 ** + 0.13 -0.84 ** + 0.13 -1.01 ** + 0.14 -0.96 ** + 0.11

 χ2 value 140.04 ** 102.55 ** 102.71 ** 237.17 ** 241.37 ** 206.07 ** 340.66 **

Summer 2007 

 m 9.15 + 0.09 9.02 + 0.10 9.11 + 0.11 9.09 + 0.07 9.14 + 0.07 9.08 + 0.08 9.11 + 0.06

(d) -4.08 ** + 0.09 -4.11 ** + 0.10 -3.85 ** + 0.10 -4.10 ** + 0.07 -3.96 ** + 0.07 -3.98 ** + 0.07 -4.02 ** + 0.06

(h) -0.84 ** + 0.14 -0.92 ** + 0.22 -0.82 ** + 0.23 -0.90 ** + 0.13 -0.87 ** + 0.14 -0.89 ** + 0.16 -0.90 ** + 0.12

 χ2 value 37.63 ** 38.91 ** 42.11 ** 72.96 ** 78.44 ** 80.09 ** 114.16 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123
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Table  15. Scaling and joint scaling test for grain size in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Scaling test 

Rainy 2006

 A 0.09 + 0.35 0.33 + 0.35 0.23 + 0.35 0.21 + 0.25 0.16 + 0.25 0.28 + 0.25 0.22 + 0.20

 B -2.98 ** + 0.42 -3.45 ** + 0.41 -2.95 ** + 0.43 -3.21 ** + 0.29 -2.96 ** + 0.30 -3.20 ** + 0.29 -3.12 ** + 0.24

 C -2.87 ** + 0.59 -2.21 ** + 0.58 -1.99 ** + 0.54 -2.54 ** + 0.41 -2.43 ** + 0.40 -2.10 ** + 0.40 -2.36 ** + 0.33

Summer 2007

 A -0.38 + 0.32 -1.21 ** + 0.32 -0.81 * + 0.33 -0.79 ** + 0.23 -0.60 ** + 0.23 -1.01 ** + 0.23 -0.80 ** + 0.19

 B -2.08 ** + 0.41 -2.55 ** + 0.48 -1.45 * + 0.42 -2.32 ** + 0.32 -1.77 ** + 0.29 -2.00 ** + 0.32 -2.03 ** + 0.25

 C -2.31 ** + 0.64 -2.55 ** + 0.56 -1.94 ** + 0.60 -2.43 ** + 0.43 -2.13 * + 0.44 -2.25 ** + 0.41 -2.27 ** + 0.35

Joint scaling test

Rainy 2006

 m 9.20 + 0.10 9.06 + 0.10 8.94 + 0.10 9.13 + 0.07 9.06 + 0.07 9.00 + 0.07 9.07 + 0.06

(d) -3.95 ** + 0.10 -3.81 ** + 0.11 -3.84 ** + 0.11 -3.89 ** + 0.07 -3.89 ** + 0.07 -3.83 ** + 0.08 -3.87 ** + 0.06

(h) -0.72 ** + 0.12 -0.58 ** + 0.13 -0.44 ** + 0.12 -0.65 ** + 0.09 -0.57 ** + 0.09 -0.51 ** + 0.09 -0.57 ** + 0.07

 χ2 value 64.31 ** 79.03 ** 54.20 ** 141.38 ** 117.64 ** 132.11 ** 194.60 **

Summer 2007 

 m 10.05 + 0.09 10.11 + 0.10 10.04 + 0.09 10.09 + 0.07 10.05 + 0.06 10.06 + 0.07 10.07 + 0.05

(d) -4.39 ** + 0.09 -4.44 ** + 0.10 -4.28 ** + 0.09 -4.41 ** + 0.07 -4.34 ** + 0.07 -4.34 ** + 0.07 -4.36 ** + 0.06

(h) -0.66 ** + 0.12 -0.41 ** + 0.12 -0.40 ** + 0.11 -0.57 ** + 0.09 -0.54 ** + 0.09 -0.39 ** + 0.08 -0.51 ** + 0.07

 χ2 value 34.56 ** 52.98 ** 24.07 ** 81.968 ** 55.99 ** 73.618 ** 103.91 **

*, ** significance at 5% and 1% level, respectively χ2 - Chi-square value

Set 3

B123
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Table 16. Estimates of the genetic components using six-parameter model for panicle length in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 35.04 + 0.53 34.98 + 0.53 35.75 + 0.54 35.01 + 0.38 35.39 + 0.38 35.36 + 0.38 35.26 + 0.31

(d) -18.06 ** + 1.06 -17.57 ** + 1.07 -16.32 ** + 1.08 -17.82 ** + 0.75 -17.19 ** + 0.75 -16.94 ** + 0.76 -17.32 ** + 0.62

(h) -6.49 * + 3.03 -12.72 ** + 3.04 -10.22 ** + 3.07 -9.60 ** + 2.15 -8.35 ** + 2.15 -11.47 ** + 2.16 -9.81 ** + 1.76

(i) -1.93 + 3.01 -7.40 * + 3.01 -4.84 + 3.04 -4.67 * + 2.13 -3.39 + 2.14 -6.12 ** + 2.14 -4.72 ** + 1.75

(j) 7.38 ** + 1.08 7.86 ** + 1.10 8.93 ** + 1.11 7.62 ** + 0.77 8.16 ** + 0.77 8.40 ** + 0.78 8.06 ** + 0.63

(l) 20.98 ** + 4.79 31.09 ** + 4.85 24.55 ** + 4.89 26.04 ** + 3.41 22.76 ** + 3.42 27.82 ** + 3.45 25.54 ** + 2.80

(h/d)
1/2 0.60 0.85 0.79 0.73 0.70 0.82 0.75

Summer 2007

 m 35.41 + 0.53 35.18 + 0.55 36.80 + 0.53 35.30 + 0.38 36.10 + 0.38 35.99 + 0.38 35.80 + 0.31

(d) -14.59 ** + 1.04 -17.59 ** + 1.07 -15.27 ** + 1.05 -16.09 ** + 0.75 -14.93 ** + 0.74 -16.43 ** + 0.75 -15.82 ** + 0.61

(h) -12.37 ** + 3.00 -4.53 ** + 3.10 -13.50 ** + 3.00 -8.45 ** + 2.16 -12.94 ** + 2.13 -9.02 ** + 2.16 -10.13 ** + 1.76

(i) -8.66 ** + 2.98 -1.83 + 3.08 -11.24 ** + 2.97 -5.25 * + 2.15 -9.95 ** + 2.11 -6.53 ** + 2.14 -7.24 ** + 1.75

(j) 10.46 ** + 1.06 6.63 ** + 1.09 8.88 ** + 1.06 8.54 ** + 0.77 9.67 ** + 0.76 7.75 ** + 0.77 8.65 ** + 0.63

(l) 38.62 ** + 4.73 25.45 ** + 4.88 36.20 ** + 4.76 32.04 ** + 3.42 37.41 ** + 3.36 30.83 ** + 3.42 33.42 ** + 2.79

(h/d)
1/2 0.92 0.51 0.94 0.72 0.93 0.74 0.80

*, ** significance at 5% and 1% level, respectively

Set 3

B123
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Table 17. Estimates of the genetic components using six-parameter model for panicle length in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 28.57 + 0.38 28.73 + 0.39 28.71 + 0.38 28.65 + 0.27 28.64 + 0.27 28.72 + 0.27 28.67 + 0.22

(d) -14.79 ** + 0.76 -16.20 ** + 0.77 -16.39 ** + 0.77 -15.49 ** + 0.54 -15.59 ** + 0.54 -16.29 ** + 0.54 -15.79 ** + 0.44

(h) 2.46 + 2.19 0.95 + 2.23 1.44 + 2.20 1.70 + 1.56 1.95 + 1.55 1.19 + 1.56 1.62 + 1.27

(i) 4.01 + 2.14 2.77 + 2.18 3.93 + 2.15 3.39 * + 1.53 3.97 ** + 1.52 3.35 * + 1.53 3.57 ** + 1.24

(j) 0.51 + 0.80 -1.23 + 0.81 -0.88 + 0.80 -0.36 + 0.57 -0.18 + 0.57 -1.05 + 0.57 -0.53 + 0.46

(l) 0.69 + 3.51 2.01 + 3.56 -1.27 + 3.54 1.35 + 2.50 -0.29 + 2.49 0.37 + 2.50 0.48 + 2.03

(h/d)
1/2 0.41 0.24 0.30 0.33 0.35 0.27 0.32

Summer 2007

 m 28.40 + 0.40 28.52 + 0.39 28.53 + 0.41 28.46 + 0.28 28.47 + 0.28 28.53 + 0.28 28.48 + 0.23

(d) -13.13 ** + 0.74 -13.67 ** + 0.75 -13.72 ** + 0.73 -13.40 ** + 0.53 -13.43 ** + 0.52 -13.70 ** + 0.52 -13.51 ** + 0.43

(h) 3.03 + 2.22 2.12 + 2.21 1.98 + 2.24 2.57 + 1.56 2.50 + 1.58 2.05 + 1.57 2.37 + 1.28

(i) 3.59 + 2.17 2.49 + 2.17 2.35 + 2.19 3.04 * + 1.53 2.97 + 1.54 2.42 + 1.54 2.81 * + 1.25

(j) 0.73 + 0.78 -0.40 + 0.79 -0.18 + 0.78 0.17 + 0.56 0.28 + 0.55 -0.29 + 0.55 0.05 + 0.45

(l) 3.00 + 3.48 4.00 + 3.51 2.81 + 3.48 3.50 + 2.47 2.90 + 2.46 3.40 + 2.47 3.27 + 2.01

(h/d)
1/2 0.48 0.39 0.38 0.44 0.43 0.39 0.42

*, ** significance at 5% and 1% level, respectively

Set 3

B123



 
213 

Table 18. Estimates of the genetic components using six-parameter model for panicle diameter in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 29.38 + 0.37 29.66 + 0.37 30.09 + 0.38 29.52 + 0.26 29.74 + 0.26 29.87 + 0.27 29.71 + 0.21

(d) -16.56 ** + 0.80 -15.41 ** + 0.82 -15.88 ** + 0.81 -15.99 ** + 0.57 -16.22 ** + 0.57 -15.65 ** + 0.58 -15.95 ** + 0.47

(h) 6.07 ** + 2.23 4.72 * + 2.27 5.56 * + 2.28 5.40 ** + 1.59 5.82 ** + 1.60 5.14 ** + 1.61 5.45 ** + 1.31

(i) 4.53 ** + 2.17 2.64 + 2.20 4.21 + 2.23 3.58 * + 1.54 4.37 ** + 1.55 3.43 * + 1.57 3.79 ** + 1.27

(j) -0.80 + 0.86 -0.12 + 0.87 -0.27 + 0.86 -0.46 + 0.61 -0.53 + 0.61 -0.20 + 0.61 -0.40 + 0.50

(l) 10.72 ** + 3.68 14.84 ** + 3.75 6.96 + 3.72 12.78 ** + 2.62 8.84 ** + 2.61 10.90 ** + 2.64 10.84 ** + 2.15

(h/d)
1/2 0.61 0.55 0.59 0.58 0.60 0.57 0.58

Summer 2007

 m 29.05 + 0.35 29.42 + 0.37 27.46 + 0.37 29.24 + 0.25 28.26 + 0.26 28.44 + 0.26 28.65 + 0.21

(d) -16.19 ** + 0.79 -14.78 ** + 0.79 -12.93 ** + 0.80 -15.49 ** + 0.56 -14.56 ** + 0.57 -13.85 ** + 0.56 -14.63 ** + 0.46

(h) 6.22 ** + 2.15 4.82 * + 2.19 9.29 ** + 2.20 5.52 ** + 1.53 7.75 ** + 1.55 7.04 ** + 1.56 6.77 ** + 1.27

(i) 4.99 * + 2.12 2.73 + 2.16 8.23 ** + 2.17 3.86 * + 1.51 6.61 ** + 1.53 5.47 ** + 1.54 5.31 ** + 1.25

(j) -1.50 + 0.83 0.27 + 0.83 2.03 * + 0.83 -0.61 + 0.59 0.27 + 0.59 1.15 * + 0.59 0.27 + 0.48

(l) 10.30 ** + 3.54 13.43 ** + 3.56 10.46 ** + 3.59 11.86 ** + 2.51 10.38 ** + 2.54 11.96 ** + 2.54 11.40 ** + 2.07

(h/d)
1/2 0.62 0.57 0.85 0.60 0.73 0.71 0.68

*, ** significance at 5% and 1% level, respectively

Set 3

B123
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Table  19. Estimates of the genetic components using six-parameter model for panicle diameter in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 23.61 + 0.29 24.02 + 0.30 25.27 + 0.28 23.81 + 0.21 24.44 + 0.20 24.65 + 0.21 24.30 + 0.17

(d) -13.74 ** + 0.58 -12.70 ** + 0.58 -13.45 ** + 0.55 -13.22 ** + 0.41 -13.60 ** + 0.40 -13.08 ** + 0.40 -13.30 ** + 0.33

(h) 8.39 ** + 1.70 1.92 + 1.73 1.46 + 1.64 5.16 ** + 1.22 4.92 ** + 1.19 1.69 + 1.20 3.92 ** + 0.99

(i) 8.27 ** + 1.64 3.64 * + 1.68 3.49 * + 1.58 5.95 ** + 1.18 5.88 ** + 1.14 3.57 ** + 1.16 5.13 ** + 0.95

(j) -0.39 + 0.65 1.02 + 0.64 -0.08 + 0.61 0.32 + 0.46 -0.23 + 0.45 0.47 + 0.45 0.19 + 0.37

(l) -1.35 + 2.75 4.23 + 2.73 2.06 + 2.64 1.44 + 1.96 0.35 + 1.92 3.14 + 1.92 1.65 + 1.58

(h/d)
1/2 0.78 0.39 0.33 0.62 0.60 0.36 0.54

Summer 2007

 m 24.93 + 0.29 23.97 + 0.30 24.64 + 0.30 24.45 + 0.21 24.78 + 0.21 24.31 + 0.21 24.51 + 0.17

(d) -12.09 ** + 0.57 -14.10 ** + 0.58 -14.18 ** + 0.54 -13.09 ** + 0.41 -13.14 ** + 0.39 -14.14 ** + 0.40 -13.46 ** + 0.33

(h) 3.68 * + 1.71 4.87 ** + 1.73 5.46 ** + 1.66 4.28 ** + 1.22 4.57 ** + 1.19 5.17 ** + 1.20 4.67 ** + 0.98

(i) 4.48 ** + 1.64 5.28 ** + 1.66 5.84 ** + 1.60 4.88 ** + 1.17 5.16 ** + 1.15 5.56 ** + 1.15 5.20 ** + 0.95

(j) 0.36 + 0.63 -1.83 ** + 0.65 -2.26 ** + 0.58 -0.73 + 0.45 -0.95 * + 0.43 -2.04 ** + 0.44 -1.24 ** + 0.36

(l) 1.84 + 2.74 3.48 + 2.79 0.32 + 2.62 2.66 + 1.96 1.08 + 1.90 1.90 + 1.91 1.88 + 1.57

(h/d)
1/2 0.55 0.59 0.62 0.57 0.59 0.60 0.59

*, ** significance at 5% and 1% level, respectively

Set 3

B123
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Table 20. Estimates of the genetic components using six-parameter model for grain size in cross 1.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 7.97 + 0.14 7.87 + 0.14 7.84 + 0.14 7.92 + 0.10 7.90 + 0.10 7.85 + 0.10 7.89 + 0.08

(d) -2.62 ** + 0.19 -2.75 ** + 0.20 -2.79 ** + 0.20 -2.68 ** + 0.14 -2.70 ** + 0.14 -2.77 ** + 0.14 -2.72 ** + 0.11

(h) -1.65 * + 0.69 -1.64 * + 0.71 -1.26 + 0.71 -1.64 ** + 0.49 -1.45 ** + 0.49 -1.45 ** + 0.50 -1.52 ** + 0.41

(i) -1.31 * + 0.67 -1.03 + 0.67 -0.86 + 0.68 -1.17 * + 0.47 -1.08 * + 0.47 -0.94 + 0.48 -1.07 ** + 0.39

(j) 1.69 ** + 0.21 1.70 ** + 0.22 1.56 ** + 0.23 1.69 ** + 0.15 1.63 ** + 0.16 1.63 ** + 0.16 1.65 ** + 0.13

(l) 5.10 ** + 1.01 4.52 ** + 1.06 4.64 ** + 1.06 4.81 ** + 0.73 4.87 ** + 0.73 4.58 ** + 0.75 4.75 ** + 0.60

(h/d)
1/2 0.79 0.77 0.67 0.78 0.73 0.72 0.75

Summer 2007

 m 8.53 + 0.13 8.63 + 0.12 8.69 + 0.12 8.58 + 0.09 8.61 + 0.09 8.66 + 0.09 8.62 + 0.07

(d) -2.95 ** + 0.23 -3.16 ** + 0.25 -2.91 ** + 0.21 -3.06 ** + 0.17 -2.93 ** + 0.16 -3.04 ** + 0.17 -3.01 ** + 0.14

(h) -1.17 + 0.71 -2.44 ** + 0.75 -1.51 * + 0.70 -1.80 ** + 0.52 -1.34 ** + 0.50 -1.97 ** + 0.51 -1.71 ** + 0.42

(i) -0.38 + 0.70 -2.04 ** + 0.71 -1.04 + 0.64 -1.21 * + 0.50 -0.71 + 0.47 -1.54 ** + 0.48 -1.15 ** + 0.39

(j) 1.29 ** + 0.25 1.10 ** + 0.28 1.31 ** + 0.25 1.20 ** + 0.19 1.30 ** + 0.18 1.20 ** + 0.19 1.23 ** + 0.15

(l) 2.17 * + 1.11 5.34 ** + 1.23 4.02 ** + 1.12 3.75 ** + 0.83 3.09 ** + 0.79 4.68 ** + 0.84 3.84 ** + 0.67

(h/d)
1/2 0.63 0.88 0.72 0.77 0.68 0.81 0.75

*, ** significance at 5% and 1% level, respectively

Set 3

B123
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Table 21. Estimates of the genetic components using six-parameter model for grain size in cross 2.

Season / Set 1 Set 2

Parameter B1 B2 B3 B12 B13 B23

Rainy 2006

 m 8.39 + 0.13 8.51 + 0.13 8.47 + 0.12 8.45 + 0.09 8.43 + 0.09 8.49 + 0.09 8.46 + 0.07

(d) -2.79 ** + 0.25 -2.39 ** + 0.23 -2.65 ** + 0.24 -2.59 ** + 0.17 -2.72 ** + 0.17 -2.52 ** + 0.17 -2.61 ** + 0.14

(h) -1.07 + 0.73 -1.82 ** + 0.70 -1.51 * + 0.69 -1.44 ** + 0.51 -1.29 * + 0.50 -1.67 ** + 0.49 -1.47 ** + 0.41

(i) -0.02 + 0.72 -0.91 + 0.69 -0.72 + 0.68 -0.46 + 0.50 -0.37 + 0.49 -0.81 + 0.48 -0.55 + 0.40

(j) 1.53 ** + 0.27 1.89 ** + 0.26 1.59 ** + 0.27 1.71 ** + 0.19 1.56 ** + 0.19 1.74 ** + 0.19 1.67 ** + 0.16

(l) 2.91 * + 1.14 4.02 ** + 1.10 3.44 ** + 1.12 3.47 ** + 0.79 3.18 ** + 0.80 3.73 ** + 0.78 3.46 ** + 0.65

(h/d)
1/2 0.62 0.87 0.76 0.75 0.69 0.81 0.75

Summer 2007

 m 9.33 + 0.15 9.52 + 0.12 9.51 + 0.14 9.42 + 0.10 9.42 + 0.10 9.52 + 0.09 9.45 + 0.08

(d) -3.71 ** + 0.23 -3.93 ** + 0.26 -3.98 ** + 0.24 -3.82 ** + 0.18 -3.84 ** + 0.17 -3.96 ** + 0.18 -3.87 ** + 0.14

(h) -0.93 + 0.76 -1.96 ** + 0.73 -0.85 + 0.75 -1.44 ** + 0.53 -0.89 + 0.53 -1.41 ** + 0.52 -1.25 ** + 0.43

(i) -0.15 + 0.75 -1.21 + 0.72 -0.32 + 0.74 -0.68 + 0.52 -0.23 + 0.53 -0.76 + 0.52 -0.56 * + 0.43

(j) 0.85 ** + 0.25 0.67 * + 0.29 0.32 + 0.26 0.76 ** + 0.19 0.58 ** + 0.18 0.50 * + 0.20 0.61 ** + 0.16

(l) 2.61 * + 1.13 4.97 ** + 1.19 2.58 * + 1.14 3.79 ** + 0.82 2.60 * + 0.80 3.78 ** + 0.82 3.39 ** + 0.67

(h/d)
1/2 0.50 0.71 0.46 0.61 0.48 0.60 0.57

*, ** significance at 5% and 1% level, respectively

Set 3

B123
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Table 22. Triple test cross analysis for panicle length.

ANOVA  for testing epistatic model (L1i +L2i - 2L3i)

Source DF SS MS F ratio

[i] type  epistasis 1 53.93 53.93 ** 12.19

[j+l] type  epistasis 59 13212.74 223.94 ** 50.63

Total epistasis 60 13266.68 221.11 ** 49.99

[i] x block 2 2.81 1.40 0.31

[j+l] x block 118 528.00 4.47

Total epistasis x block 120 530.80 4.42

ANOVA  for testing additive model (L1i + L2i ) 

Source DF SS MS F ratio

Replication 2 0.64 0.32 0.29

Lines (sums) 59 16509.56 279.82 ** 251.84

Error 118 131.11 1.11

Additive component (D)         = 371.62

ANOVA  for testing dominance model (L1i - L2i ) 

Source DF SS MS F ratio

Replication 2 6.07 3.04 2.70

Lines (differences) 59 20648.68 349.98 ** 311.08

Error 118 132.76 1.13

Dominance component (H)    = 465.14

Degree of dominance             = 1.12

Direction of dominance (r)     = -0.59**
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Table 23. Triple test cross analysis for panicle diameter.

ANOVA  for testing epistatic model (L1i +L2i - 2L3i)

Source DF SS MS F ratio

[i] type  epistasis 1 127.67 127.67 ** 39.26

[j+l] type  epistasis 59 8802.63 149.20 ** 45.88

Total epistasis 60 8930.29 148.84 ** 45.77

[i] x block 2 1.03 0.51 0.16

[j+l] x block 118 389.19 3.30

Total epistasis x block 120 390.21 3.25

ANOVA  for testing additive model (L1i + L2i ) 

Source DF SS MS F ratio

Replication 2 0.95 0.48 0.47

Lines (sums) 59 7024.43 119.06 ** 118.24

Error 118 118.82 1.01

Additive component (D)         = 157.40

ANOVA  for testing dominance model (L1i - L2i ) 

Source DF SS MS F ratio

Replication 2 4.06 2.03 2.76

Lines (differences) 59 6034.30 102.28 ** 138.72

Error 118 87.00 0.74

Dominance component (H)    = 135.39

Degree of dominance             = 0.93

Direction of dominance (r)     = -0.67**
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Table 24. Triple test cross analysis for grain size.

ANOVA  for testing epistatic model (L1i +L2i - 2L3i)

Source DF SS MS F ratio

[i] type  epistasis 1 5.21 5.21 2.59

[j+l] type  epistasis 59 1279.03 21.68 ** 10.80

Total epistasis 60 1284.24 21.40 ** 10.66

[i] x block 2 3.09 1.55 0.77

[j+l] x block 118 237.74 2.01

Total epistasis x block 120 240.83 2.01

ANOVA  for testing additive model (L1i + L2i ) 

Source DF SS MS F ratio

Replication 2 3.14 1.57 2.74

Lines (sums) 59 470.46 7.97 ** 13.96

Error 118 67.42 0.57

Additive component (D)         = 9.87

ANOVA  for testing dominance model (L1i - L2i ) 

Source DF SS MS F ratio

Replication 2 3.49 1.74 2.59

Lines (differences) 59 585.87 9.93 ** 14.77

Error 118 79.33 0.67

Dominance component (H)    = 12.34

Degree of dominance             = 1.12

Direction of dominance (r)     = -0.09
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Table 25. Components of variances and heritabilities estimated for panicle length, panicle diameter and grain size.

R 06 S 07 R 06 S 07 R 06 S 07 R 06 S 07 R 06 S 07 R 06 S 07

Genotypic variance 97.44 99.29 47.95 58.97 44.79 44.78 27.59 27.81 5.97 4.72 5.16 6.28

Additive variance 83.21 90.28 43.10 55.80 31.00 29.94 27.69 29.46 9.10 5.20 5.19 7.05

Dominance variance 14.23 9.02 4.85 3.18 13.79 14.84 -0.10 -1.65 -3.14 -0.49 -0.03 -0.77

Environmental variance 1.90 2.11 2.58 2.70 3.67 1.91 2.85 2.91 0.52 0.65 0.33 0.28

Dominance ratio 0.41 0.32 0.34 0.24 0.67 0.70 0.06 0.24 0.59 0.31 0.08 0.33

Broad-sense heritability 98.08 97.92 94.89 95.62 92.43 95.90 90.64 90.52 92.02 87.95 94.07 95.77

Narrow-sense heritability 83.76 89.03 85.29 90.47 63.97 64.12 90.67 91.00 94.62 88.95 94.11 96.13

R 06 - Rainy 2006        S 07 - Summer 2007

Panicle diameter

Parameters

Panicle length Grain  size

Cross 1 Cross 2 Cross 1 Cross 2 Cross 1 Cross 2
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 Table 26. Correlation coefficient (r) among the observed traits in F2 population of trait-specific crosses. 

PL PD GS DF PH PT PL PD GS DF PH PT

Panicle length (PL) 1.000 1.000

Panicle diameter (PD) 0.105 1.000 0.228 * 1.000

Grain size (GS) 0.167 * 0.202 * 1.000 0.118 0.258 ** 1.000

Days to 50% flowering (DF) 0.024 -0.089 0.003 1.000 0.360 ** -0.176 -0.065 1.000

Plant height (PH) 0.250 ** 0.084 -0.073 0.143 1.000 0.384 ** 0.267 ** 0.091 0.120 1.000

Productive tiller number (PT) 0.012 0.047 0.230 * -0.178 * -0.066 1.000 0.088 0.197 * 0.122 -0.239 ** 0.250 ** 1.000

Single plant yield (SPY) 0.224 * 0.313 ** 0.352 ** -0.157 0.131 0.744 ** 0.320 ** 0.335 ** 0.339 ** -0.091 0.421 ** 0.712 **

PD PL GS DF PH PT PD PL GS DF PH PT

Panicle diameter (PD) 1.000 1.000

Panicle length (PL) 0.194 * 1.000 0.480 ** 1.000

Grain size (GS) 0.281 ** -0.016 1.000 0.267 ** 0.298 ** 1.000

Days to 50% flowering (DF) -0.278 ** -0.197 * 0.000 1.000 0.200 * 0.123 0.147 1.000

Plant height (PH) 0.035 0.259 ** 0.015 0.109 1.000 0.220 * 0.360 ** 0.016 0.215 * 1.000

Productive tiller number (PT) 0.140 0.166 * 0.026 0.082 -0.010 1.000 0.079 0.055 -0.079 -0.103 0.188 * 1.000

Single plant yield (SPY) 0.428 ** 0.406 ** 0.325 ** -0.024 0.223 * 0.432 ** 0.352 ** 0.333 ** 0.115 -0.076 0.297 ** 0.824 **

GS PL PD DF PH PT GS PL PD DF PH PT

Grain size (GS) 1.000 1.000

Panicle length (PL) 0.048 1.000 0.052 1.000

Panicle diameter (PD) 0.488 ** -0.002 1.000 0.671 ** 0.155 1.000

Days to 50% flowering (DF) 0.094 0.249 ** 0.061 1.000 -0.158 0.002 -0.125 1.000

Plant height (PH) -0.007 0.448 ** 0.082 0.389 ** 1.000 -0.015 0.151 0.135 0.225 * 1.000

Productive tiller number (PT) -0.025 0.314 ** 0.158 0.205 * 0.152 1.000 -0.108 0.327 ** 0.021 0.079 0.081 1.000

Single plant yield (SPY) 0.323 ** 0.404 ** 0.531 ** 0.120 0.171 * 0.732 ** 0.313 ** 0.266 ** 0.311 ** 0.075 0.185 * 0.764 **

Cross 1  Cross 2

Panicle length crosses
Cross 1 Cross 2

Cross 1  Cross 2

Grain size crosses

Panicle diameter crosses
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Table 27. Descriptive statistics and heritability estimates for the observed traits in the F2 and F2:3 mapping populations.

Parameters

Mean

P1 28.59 18.35 5.41 101.21 2.70 15.08 21.15 63.25

P2 24.64 35.07 12.02 108.60 1.33 22.75 37.20 65.77

F2 27.78 26.38 8.08 114.21 2.39      -    -       -

F2:3 27.44 25.97 8.73 108.84 1.74 21.73 33.61 64.77

Standard error 

F2 1.27 1.33 1.14 1.99 1.08        -    -        -

F2:3 0.81 1.12 0.76 2.05 0.24 1.60 1.58 4.01

F ratio

F2:3 8.49 ** 11.20 ** 5.25 ** 20.89 ** 2.65 * 6.68 ** 12.71 ** 2.28

Heritability

F2 0.71 0.72 0.59 0.87 0.35       -    -       -

F2:3 0.88 0.91 0.81 0.95 0.62 0.85 0.92 0.56

Panicle length 

(cm)

Panicle 

diameter    

(mm)

Grain size      

(g)

Panicle grain 

weight (g)

Panicle    

weight (g) 

Panicle harvest  

index (%)

Plant height  

(cm)

Productive tiller 

number 



 
224 

 Table 28. Correlation coefficient (r) among the observed traits in F2:3 mapping population.

Traits
Panicle   

length (cm)

Panicle    

diameter (mm)

Grain size   

(g)

Panicle grain 

weight (g)

Panicle 

weight (g) 

Panicle harvest 

index (%)

Plant height  

(cm)

Productive 

tiller number

Panicle length   

(cm)
1.000

Panicle 

diameter (mm)
 (-0.300)** 1.000

Grain size (g) (-0.140)   0.553** 1.000

Panicle grain 

weight (g)
 0.221*   0.276**  0.200* 1.000

Panicle weight 

(g) 
 0.162*   0.438**   0.271**   0.867** 1.000

Panicle harvest 

index (%)
0.142 (-0.225)* (-0.114)   0.406** (-0.093) 1.000

Plant height  

(cm)
  0.427** (-0.226)* (-0.054) 0.119 0.143 (-0.043) 1.000

Productive 

tillers number
0.240* (-0.302)**   (-0.239)**   0.244** 0.096   0.267** 0.096 1.000

*, ** significance at 5% and 1% level, respectively
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Table 29. Polymorphic information in parental lines of mapping population for different marker types.

Markers type No. of markers survyed
No. of polymorphic 

markers
Per cent polymorphism

No. of selected 

polymorphic markers

SNP 96 40 41.7 24

SSR 96 36 37.5 10

EST-SSR 96 28 29.2  6

STS 43  5 11.6  4

Total 331 109 32.9 44
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Table 30. Linkage group-wise marker position and chi-square values.

Linkage 

group
Marker 

LG1 Xpsms80 0.0                – 4.90 0.10

Xpsms86 10.6 10.6 1.73 0.50

Xpsms39 20.6 10.0 4.94 0.10

Xpsmp2069 41.7 21.1 4.52 0.10

Xpsmp669 55.4 13.7 3.85 0.20

Xicmp3017 58.7 3.3 4.31 0.20

Xpsms58 65.9 7.2 5.47 0.10

Xpsms29 110.0 44.1 1.47 0.50

LG2 Xpsms92 0.0                – 5.44 0.10

Xicmp3063 17.6 17.6 12.84 ** 0.01

Xpsmp2237 45.9 28.3 4.92 0.10

Xpsms89 58.2 12.3 4.87 0.10

Xpsms78 73.4 15.2 4.02 0.10

Xpsmp592 84.8 11.4 4.10 0.10

Xpsms75 99.7 14.9 5.27 0.10

Xpsms73 195.0 95.3 5.16 0.10

LG3 Xpsmp37 0.0                – 4.73 0.10

Xicmp3073 15.9 15.9 0.06 0.95

Xpsms68 81.3 65.4 5.25 0.10

Xpsmp2222 109.1 27.8 4.58 0.10

Xpsms17 119.0 9.9 3.12 0.20

Xpsms32 128.6 9.6 3.47 0.20

Xpsms61 133.5 4.9 4.27 0.10

Xpsms31 148.9 15.4 6.96 * 0.05

Xpsmp2068 180.1 31.2 1.78 0.50

LG4 Xpsms77 0.0                – 2.10 0.50

Xpsmp2084 37.7 37.7 5.09 0.10

LG5 Xicmp3027 0.0                – 4.50 0.20

Xpsmp2064 44.5 44.5 3.42 0.20

Xpsms74 56.6 12.1 3.38 0.20

Xpsms2 63.5 6.9 2.81 0.50

Xpsmp345 97.1 33.6 4.30 0.20

Xpsms18 150.4 53.3 10.25 ** 0.01

Xpsmp2078 172.0 21.6 5.26 0.10

LG6 Xicmp3081 0.0                – 1.46 0.50

Xpsms88 98.7 98.7 4.29 0.05

Xpsmp2270 104.6 5.9 3.89 0.05

Xicmp3086 105.7 1.1 4.34 0.05

Xpsms59 107.3 1.6 6.40 0.05

Xpsms41 227.9 120.6 4.98 0.10

LG7 Xpsms76 0.0                – 4.62 0.10

Xpsms6 38.7 38.7 4.88 0.10

Xpsmp2203 52.8 14.1 3.76 0.20

Xpsmp2027 96.0 43.2 10.38 ** 0.01

*, ** significance at 5% and 1% level, respectively

Probablity
Marker interval 

(cM)

Chi square   

value 

Position                  

(cM)
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Table 31. Distribution and distance coverage of markers across seven linkage groups.

Linkage group No. of markers % of total markers Total distance (cM) Average distance   (cM)

LG1 8 18 110.0 13.8

LG2 8 18 195.1 24.4

LG3 9 20 180.1 20.0

LG4 2 5   37.7 18.9

LG5 7 16 172.0 24.6

LG6 6 14 227.8 38.0

LG7 4 9   96.0 24.0

Total 44 100 1018.7 23.4
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Table 32. QTLs identified for panicle length in the F2:3 progenies and F2 mapping population. 

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Additive 

F2:3 1 18 Xpsms86 - Xpsms39 4.1 9.4 -0.8 (8.9) - -

2 48 Xpsmp2237 - Xpsms89 5.9 13.5 -1.6 (25.9) - -

3 104 Xpsms68 - Xpsmp2222 4.9 11.3 1.0 (9.3) - -

4 26 Xpsms77 - Xpsmp2084 2.9 7.0 0.8 (6.8) - -

6 4 Xicmp3081 - Xpsms88 3.3 8.1 -0.1 (8.2) - -

6 104 Xpsms88 - Xpsmp2270 8.0 17.9 -1.3 (17.6) - -

7 42 Xpsms6 - Xpsmp2203 3.5 8.2 -0.8 (8.0) - - 40.7

F2 QTL not detected

F2:3 1 18 Xpsms86 - Xpsms39 4.6 10.7 -0.8 (8.7) 0.4 (1.4) - -

2 48 Xpsmp2237 - Xpsms89 6.1 13.9 -1.6 (26.9) -0.1 (0.1) - -

3 104 Xpsms68 - Xpsmp2222 5.6 12.8 1.9 (11.5) 0.0 (0) - -

3 130 Xpsms32 - Xpsms61 2.6 6.1 -1.0 (4.5) 0.7 (0.6) - -

4 28 Xpsms77 - Xpsmp2084 3.2 7.6 0.7 (5.4) -0.3 (0.4) - -

6 22 Xicmp3081 - Xpsms88 3.4 8.3 -1.1 (9.2) 0.4 (0.3) - -

6 104 Xpsms88 - Xpsmp2270 8.2 18.2 -1.1 (12.8) 0.2 (0.3) - -

7 44 Xpsms6 - Xpsmp2203 3.7 8.5 -0.7 (6.8) -0.3 (0.9) - - 42.7

F2 2 96 Xpsm592 - Xpsms75 3.3 7.8 -1.7 (0.5) 0.7 (0.7) - -

6 64 Xicmp3081 - Xpsms88 3.7 8.9 -2.0 (3.4) 4.9 (3.4) - - 13.1

   Contd..

Additive + 

Dominance 

Position 

(cM)
LOD  

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )

Epistatic 

effects    

( R
2

par )
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Table 32 (Contd..). QTLs identified for panicle length in the F2:3 progenies and F2 mapping population. 

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Epistatic 

F2:3 1 18 Xpsms86 - Xpsms39 4.6 10.7 -1.6 (1.4) -0.4 (0.0) D1*D6 -4.8 (6.8)

2 48 Xpsmp2237 - Xpsms89 6.1 13.9 -3.3 (4.3) 3.3 (1.8) A3*A7 6.6 (12.3)

3 104 Xpsms68 - Xpsmp2222 5.6 12.8 -9.1 (1.3) 8.0 (0.4) D3*D8 7.1 (6.5)

3 130 Xpsms32 - Xpsms61 2.6 6.1 8.9 (1.3) 16.5 (2.8) A4*A7 -4.7 (11.2)

4 28 Xpsms77 - Xpsmp2084 3.2 7.6 1.0 (0.2) -2.8 (1.4)

6 22 Xicmp3081 - Xpsms88 3.4 8.3 0.8 (0.2) 5.0 (1.0)

6 104 Xpsms88 - Xpsmp2270 8.2 18.2 2.8 (0.6) 6.2 (2.2)

7 44 Xpsms6 - Xpsmp2203 3.7 8.5 -1.8 (2.6) 0.1 (0.0) 40.1

F2 2 96 Xpsm592 - Xpsms75 3.3 7.8 -0.5 (0.0) 2.1 (0.4)

6 64 Xicmp3081 - Xpsms88 3.7 8.9 -0.4 (0.0) 6.3 (1.7) 12.5

Epistatic 

effects    

( R
2

par )

Position 

(cM)
LOD  

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )
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Table 33. QTLs identified for panicle diameter in the F2:3 progenies and F2 mapping population.

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Additive 

F2:3 2 80 Xpsms78 - Xpsmp592 14.7 30.2 1.9 (24.4) - -

3 116 Xpsmp2222 - Xpsms17 14.0 29.0 2.0 (28.6) - -

6 104 Xpsms88 - Xpsmp2270 5.4 12.4 1.0 (8.9) - -

7 50 Xpsms6 - Xpsmp2203 3.6 1.1 (10.2) - - 44.3

F2 QTL not detected

Additive + 

Dominance 

F2:3 2 80 Xpsms78 - Xpsmp592 14.7 30.2 1.9 (26.4) 0.1 (0.1) - -

3 116 Xpsmp2222 - Xpsms17 14.5 29.9 2.0 (29.1) 0.3 (0.5) - -

5 58  Xpsms74 - Xpsms2 2.6 6.3 0.6 (3.6) -0.6 (2.1) - -

6 104 Xpsms88 - Xpsmp2270 5.4 12.5 1.1 (9.7) 0.0 (0.0) - -

7 48 Xpsms6 - Xpsmp2203 4.0 9.2 1.1 (9.7) 0.4 (0.8) - - 45.8

F2 QTL not detected

Epistatic 

F2:3 2 80 Xpsms78 - Xpsmp592 14.7 30.2 1.1 (0.9) -0.1 (0.0) A1*D2 1.4 (2.8)

3 116 Xpsmp2222 - Xpsms17 14.5 29.9 0.8 (0.5) 1.0 (0.4)

5 58 Xpsms74 - Xpsms2 2.6 6.3 1.4 (1.7) -2.3 (2.8)

6 104 Xpsms88 - Xpsmp2270 5.4 12.5 2.5 (1.0) 0.0 (0.0)

7 48 Xpsms6 - Xpsmp2203 4.0 9.2 1.3 (1.3) 1.0 (0.4) 41.0

F2 QTL not detected

Position 

(cM)
LOD  

Epistatic 

effects    

( R
2

par )

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )
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Table 34. QTLs identified for grain size in the F2:3 progenies and F2 mapping population.

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Additive 

F2:3 1 28 Xpsms39 - Xpsmp2069 2.8 6.7 0.6 (6.4) - -

3 0 Xpsmp37 - Xicmp3073 3.1 7.5 0.6 (10.4) - - 13.3

- -

F2 3 6 Xpsmp37 - Xicmp3073 8.8 19.0 1.5 (22.9) - -

6 100 Xpsms88 - Xpsmp2270 4.8 11.0 0.9 (9.9) - - 32.2

Additive + 

Dominance 

F2:3 1 28 Xpsms39 - Xpsmp2069 2.8 6.7 0.5 (6.4) 0.1 (0.1) - -

3 2 Xpsmp37 - Xicmp3073 3.7 8.9 0.6 (9.7) 0.4 (2.6) - -

5 16 Xicmp3027 - Xpsmp2064 2.5 6.4 0.1 (0.3) -0.8 (4.2) - -

6 106 Xicmp3086 - Xpsms59 3.3 7.7 0.5 (6.4) 0.3 (1.7) - -

7 32 Xpsms76 - Xpsms6 2.6 6.1 0.4 (5.6) -0.2 (0.4) - - 23.6

F2 3 6 Xpsmp37 - Xicmp3073 9.4 21.2 1.5 (24) 0.6 (2.3) - -

6 102 Xpsms88 - Xpsmp2270 6.6 14.9 1.1 (13.2) 0.7 (3.9) - - 35.6

   Contd..

LOD  
Position 

(cM)

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )

Epistatic 

effects    

( R
2

par )
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Table 34 (Contd..). QTLs identified for grain size in the F2:3 progenies and F2 mapping population.

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Epistatic 

F2:3 1 28 Xpsms39 - Xpsmp2069 2.8 6.7 1.2 (2.2) -2.0 (4.4) D1*D4 1.3 (3.4)

3 2 Xpsmp37 - Xicmp3073 3.7 8.9 0.9 (0.6) 1.6 (1.6) D1*A5 1.0 (4.3)

5 16 Xicmp3027 - Xpsmp2064 2.5 6.4 -1.2 (0.5) -2.8 (1.5) A2*D3 -1.3 (3.1)

6 106 Xicmp3086 - Xpsms59 3.3 7.7 -1.4 (2.0) -2.3 (4.2) D2*D3 -1.7 (3.7)

7 32 Xpsms76 - Xpsms6 2.6 6.1 0.0 (0.0) 0.2 (0.0) D3*D4 3.8 (3.4) 29.6

F2 3 6 Xpsmp37 - Xicmp3073 9.4 21.2 2.1 (12.1) -1.1 (2.2) D1*D2 2.6 (7.9)

6 102 Xpsms88  - Xpsmp2270 6.6 14.9 0.6 (1.0) -0.8 (1.3) 41.1

Epistatic 

effects    

( R
2

par )

Position 

(cM)
LOD  

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )
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Table 35. QTLs identified for panicle weight and panicle harvest index in F2:3 mapping population.

Trait Model LG
Position 

(cM)
Flanking Markers LOD  

R
2  

(%)

R
2

adj 

(%)

Panicle weight (g)

Additive QTL not detected

Additive +  

Dominance 3 118 Xpsmp2222 -Xpsms17 2.6 6.1 1.6 (3.8) -0.6 (0.3) 2.8

Panicle harvest index (%)

Additive 3 50 Xicmp3073 - Xpsms68 3.0 7.2 1.6 (3.7) 2.7

Additive + 

Dominance 3 54 Xicmp3073 - Xpsms68 3.5 8.3 1.8 (4.7) -2.2 (1.6) 3.7

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )
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Table 36. QTLs identified for plant height in the F2:3 progenies and F2 mapping population.

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Additive 

F2:3 1 56 Xpsmp669 - Xicmp3017 8.3 18.3 -6.7 (26.7) - -

2 48 Xpsmp2237 - Xpsms89 3.4 8.0 -3.4 (7.4) - -

3 128 Xpsms17 - Xpsms32 8.1 18.1 -5.2 (17.2) - -

4 24 Xpsms77 - Xpsmp2084 3.1 7.3 2.7 (4.1) - -

5 46 Xpsmp2064 - Xpsms74 7.6 17.1 5.0 (17.4) - - 42.1

F2 1 52 Xpsmp2069 - Xpsmp669 6.5 14.7 -8.6 (13.6) - -

5 56 Xpsmp2064 - Xpsms74 4.9 11.3 6.0 (9.1) - - 18.2
Additive + 

Dominance 

F2:3 1 12 Xpsms86 - Xpsms39 4.1 9.6 -2.6 (5.1) 2.4 (2.6) - -

1 56 Xpsmp669 - Xicmp3017 11.0 23.6 -5.8 (18.8) 3.0 (4.4) - -

2 48 Xpsmp2237 - Xpsms89 3.4 8.0 -3.6 (9.1) 0.0 (0.0) - -

3 128 Xpsms17 - Xpsms32 9.6 21.0 -5.4 (21) 2.7 (4.0) - -

4 30 Xpsms77 - Xpsmp2084 3.3 7.8 2.5 (4.2) -1.4 (0.7) - -

5 46 Xpsmp2064 - Xpsms74 7.7 17.1 5.4 (22.3) 0.5 (0.1) - - 49.3

F2 1 56 Xpsmp669 - Xicmp3017 8.0 17.8 -8.0 (14.1) 5.1 (3.9) - -

5 48 Xpsmp2064 - Xpsms74 5.3 12.1 6.5 (9.9) 2.7 (0.9) - - 20.1

   Contd..

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )

Epistatic 

effects    

( R
2

par )

Position 

(cM)
LOD  
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Table 36 (Contd..). QTLs identified for plant height in the F2:3 progenies and F2 mapping population.

Model LG Flanking Markers 
R

2  

(%)

Interaction 

between 

loci 

R
2

adj 

(%)

Epistatic 

F2:3 1 12 Xpsms86 - Xpsms39 4.1 9.6 -2.4 (0.1) 14.7 (4.7) NIL

1 56 Xpsmp669 - Xicmp3017 11.0 23.6 -2.0 (0.1) -1.0 (0.0)

2 48 Xpsmp2237 - Xpsms89 3.4 8.0 4.1 (0.6) 1.3 (0.0)

3 128 Xpsms17 - Xpsms32 9.6 21.0 -9.3 (4.9) -3.8 (0.5)

4 30 Xpsms77 - Xpsmp2084 3.3 7.8 2.0 (0.1) 3.2 (0.1)

5 46 Xpsmp2064 - Xpsms74 7.7 17.1 5.8 (1.6) -1.1 (0.0) 45.4

F2 1 56 Xpsmp669 - Xicmp3017 8.0 17.8 -8.6 (5.8) 4.3 (1.0) NIL

5 48 Xpsmp2064 - Xpsms74 5.3 12.1 7.4 (4.3) 1.8 (0.2) 18.7

Additive 

effects        

( R
2

par )

Dominance 

effects              

( R
2

par )

Epistatic 

effects    

( R
2

par )

Position 

(cM)
LOD  
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Table 37. QTLs identified for productive tiller number  in the F2:3 progenies and F2 mapping population. 

Model LG Flanking Markers R
2  

(%)
R

2
adj 

(%)

Additive 

F2:3 QTL not detected

F2 QTL not detected

Additive + 

Dominance 

F2:3 7 44 Xpsms6 - Xpsmp2203 3.5 8.1 -0.1 (5.5) -0.1 (3.3) 6.5

F2 QTL not detected

Position 

(cM)
LOD  

Additive effects        

( R
2

par )

Dominance effects              

( R
2

par )
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Figure 1: Schematic representation of the development of F2:3 mapping progenies.  

 
� Two pearl millet inbred lines showing 

substantial variation for sink size traits 
as well for molecular markers as 
parental lines 

 
 

� Plant-to-plant cross was made to 
produce F1 seeds.  

 
 

� F1 panicles were selfed to generate F2 
seeds  

 
 

 
 
 

� Around 400 F2 seeds from a single F1 
panicle were sown to generate F2:3 

progenies. 
 
 
 
 
 
 
 

� A set of 188 F2:3 progenies were 
derived from a single F2 population by 
selfing individual plants.  

{(81B x 4025-3-2-B)-11-5-2-2-B-2} 
 
Medium long panicle (28 cm) 
Thin panicle (18 mm) 
Small grain size (5 g) 
 

  {(HHVBC II D2 HS-302)-3-1-6-8-2-6-2-B}  
 
Medium short panicle (24 cm) 
Thick panicle (35 mm) 
Large grain size (13 g) 
 

    P1                                  x                       P2 

F1 

F2 

F2:3 
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Figure 2. Mean performance of parents, F1, F2 and backcross generations for sink size traits during 2006 rainy  and 2007 summer seasons.
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Figure 3. Frequency distribution for the panicle length and panicle diameter in the F2 and F2:3 mappping populations.
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Figure  4.  Frequency distribution for the 1000-grain weight and productive tiller number in the F2 and F2:3 mappping populations.
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Figure  5. Frequency distribution for the plant height in the F2 and F2:3 mappping populations.
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Figure  6. Frequency distribution for the panicle grain weight, panicle weight and 

panicle harvest index in the F2:3 progenies.
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Figure 7.  Linkage map constructed using 44 markers in F2:3 pearl millet mapping population.
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Figure 8. QTL LOD peaks detected for panicle length, panicle diameter and grain size in the F2 and F2:3 mapping  populations.
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 Figure 9.  QTL LOD peaks detected for panicle weight, panicle grain weight and panicle harvest index in the F2:3 progenies.
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Figure  : QTL LOD peaks detected for sink size trait panicle length in F2:3 and F2 population.

Figure 10.  QTL LOD peaks detected for plant height and productive tiller number in the F2 and F2:3 mapping populations.
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Figure 11.  Linkage map showing the position of detected QTLs across the F2 and F2:3 mapping populations.
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a) EST-SSR (Xicmp 3081) marker screened using PAGE gel.

b) STS (Xpsmp 592) marker screened using PAGE gel.

c) SSCP- SNP (Xpsms 31) marker screened using MDE gel.

d) Genomic SSR (Xpsmp 2064) marker screened using ABI Prism 3700.

Plate 1 : Images of PCR products of EST-SSR (a) and STS (b), SSCP-SNP (a) and 

genomic SSR (d) markers screened on F2:3  mapping population.
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S.No. Chemicals / Reagents Chemical composition / Remark

1  3% CTAB (Cetyl Trimethyl 

Ammonium Bromide) buffer

10 mM Tris             1.21 g

1.4 M NaCl             8.18 g

20 mM EDTA          0.745 g

3% CTAB               3.0 g

Distilled water      100.0 ml

Adjust to pH 8.0 using HCl. Add 0.17 ml 

mercaptoethanol only at the time of keeping 

the buffer in boiling water.

2 Chloroform:Isoamyl Alcohol (24:1) Chloroform                  96 ml

Isoamyl alcohol (IAA)    4 ml

Store in dark at room temperature.

3 Isopropanol Keep isopropanol at –20°C. Use only ice cold 

isopropanol.

4 RNase A (10 mg/ml) Dissolve 100 mg of pancreatic RNase A in 

100 ml of 10 mM Tris (pH 7.5) and 15 mM 

NaCl. Heat in boiling water bath for 15 

minutes and allow to cool slowly to room 

temperature. Dispense into aliquots and 

store at –20°C. Working stocks may be 

stored at 4°C.      

5 Phenol:Chloroform:Isoamyl 

Alcohol (25:24:1)

Phenol (equilibrated)     50.0 ml                      

Chloroform:IAA (24:1)   50.0 ml

Store at 4°C.

6 Sodium Acetate (3 M, pH 5.2) Dissolve 40.824 g of sodium acetate in 60 ml 

distilled water and adjust to pH 5.2 using 

glacial acetic acid. Make the volume up to 

100 ml with distilled water and autoclave.

7 Absolute Ethanol Store at –20°C

8 70% Ethanol Absolute ethanol 70 ml

Distilled water     30 ml

9 T1E0.1 Buffer 10 mM Tris           121.0 g

1mM EDTA         0.0372 g

Distilled water       100.0 ml

10 T10E1 Buffer 0.5 M Tris            6.050 g

0.5 M EDTA         9.306 g

2 M NaCl            11.688 g

Distilled water       100.0 ml

Appendix 1. Reagents required  for DNA extraction.
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S.No. Chemicals / Reagents Chemical composition / Remark

1 0.8% agarose 0.8 g agarose was dissolved in 100 ml of 1X 

TBE buffer.

2 10X TBE buffer Dissolve 109 g of Tris and 55 g of boric acid 

one by one in 800 ml distilled water and add 

40 ml of 0.5 M EDTA (pH 8.0). Bring volume 

to 1 litre with distilled water. Sterilize by 

autoclaving and store at 4°C.

3 Ethidium bromide (10mg/ml) Dissolve 100 mg of ethidium bromide in 10 

ml distilled water. Wrap the tube in 

aluminium foil and store at 4°C.

4 Orange loading dye 0.5 M EDTA (pH-8.0) 10 ml

5 M NaCl                    1 ml

Glycerol                    50 ml

Distilled water            39 ml

Add orange dye powder till the colour 

becomes sufficiently dark.

Appendix 2. Reagents required for DNA quantification. 
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S.No. Chemicals / Reagents Chemical composition / Remark

1 0.5 M EDTA (pH 8.0) Dissolve 186.12 g of EDTA (MW 372.24) in 

750 ml of distilled water. Add NaOH pellets 

to raise the pH to 8.0. Make up the volume to 

1000 ml with distilled water and autoclave.

2 1 M NaOH Dissolve 40 g of NaOH (MW 40) in distilled 

water to a final volume of 1000 ml and 

autoclave.

3 Acrylamide/Bisacrylamide (29:1 

V/V)

40% Acrylamide                  145 ml

 2% bisacrylamide                   5 ml

Make up the volume to 200 ml with distilled 

water. Solution can be stored up to one 

month at 4°C.  

4 Ammonium persulphate (APS) 10% (w/v) APS in distilled water. Store at 

4°C.

5 Bind Silane buffer Bind Silane               1.5 ml

Acetic acid                5.0 ml

Ethanol                  993.5 ml

Store at 4°C.

6 Repel silane Commercially available (Amersham 

Biosciences AB Lippsata, Sweden).

7 10X TBE (Tris Borate EDTA 

buffer)

Dissolve 109 g of Tris and 55 g of boric acid 

one by one in 800 ml distilled water. Add 40 

ml of 0.5 M EDTA, adjust solution to pH 8.0, 

and make volume to 1000 ml with distilled 

water. Sterilize by autoclaving and store at 

4°C. 

8 Orange loading dye 0.5 M EDTA (pH 8.0) 10 ml

5 M NaCl                  1 ml

Glycerol                  50 ml

Distilled water          39 ml

Add orange dye powder until colour is 

sufficiently dark.

9 100 bp ladder Mix 50 µl 100 bp ladder (stock concentration 

is 1 µg/µl, Amersham), 165 µl Bromophenol 

blue dye (6X), and 785 µl T10E1 (marker 

concentration is 50 ng/µl, 2 µl is sufficient for 

loading on polyacrylamide gels and 3.5 µl on 

agarose gels)

10 6X Bromophenol blue Dye Bromophenol blue  200 mg

Xylene cyanol FF   200 mg

Glycerol                  24 ml

Distilled water          56 ml

Appendix 3. Reagents required  for polyacrylamide gel electrophoresis.
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S.No. Chemicals / Reagents Chemical composition / Remark

1 Distilled Water 2 litres de-ionized water

2 0.1% CTAB 2 g of CTAB in 2 litres of distilled water

3 0.3% Ammonia solution 26 ml of 25% ammonia solution in 2 litres of 

distilled water

4 0.1% Silver Nitrate solution Dissolve 2 g silver nitrate in 2 litres of 

distilled water and add 8 ml of 1 M NaOH. 

Stir well and add ammonia solution till the 

solution becomes colourless

5 Developer Dissolve 30 g of sodium carbonate and 400 

µl of formaldehyde in 2 litres of distilled water

6 Fixing solution 30 ml of glycerol in 2 litres of distilled water

Appendix 4. Reagents required for silver staining.


