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Abstract  

Managing climate risk in agriculture requires a proper understanding of climatic 

conditions, regional and global climatic drivers, as well as major agricultural activities 

at the particular location of interest. Critical analyses of variability and trends in the 

historical climatic conditions are crucial in designing and implementing action plans 

to improve resilience and reduce the risks of exposure to harsh climatic conditions. 

However, in Tanzania, less is known about the variability and trends in the recent 

climatological conditions. The current study examined variability and trends in 

rainfall of major agro-ecological zones in Tanzania (1o - 12oS, 21o - 41oE) using station 

data from seven locations i.e. Hombolo, Igeri, Ilonga, Naliendele, Mlingano, Tumbi, 

and Ukiliguru which had records from 1981 to 2020 and two locations i.e. Dodoma 

and Tanga having records from 1958 to 2020. The variability in annual rainfall was 

high in Hombolo and Tanga locations (CV ≥ 28%) and low in Igeri (CV = 16%). The 

OND season showed the highest variability in rainfall (34% to 61%) as compared to 

the MAM (26% to 36%) and DJFMA (20% to 31%) seasons. We found increasing and 

decreasing trends in the number of rainy days in Ukiliguru and Tanga respectively, 

and a decreasing trend in the MAM rainfall in Mlingano. The trends in other 

locations were statistically insignificant. We assessed the forecast skills of seasonal 

rainfall forecasts issued by the Tanzania Meteorological Authority (TMA) and IGAD 

(Intergovernmental Authority on Development) Climate Prediction and Application 

Center (ICPAC). We found TMA forecasts had higher skills compared to ICPAC 

forecasts, however, our assessment was limited to MAM and OND seasons due to 

the unavailability of seasonal forecasts of the DJFMA season issued by ICPAC. 

Moreover, we showed that Integration of SCF with SSTa increases the reliability of 

the SCF to 80% at many locations which present an opportunity for better utilization 

of the SCF in agricultural decision making and better management of climate risks. 

Keywords 

Climate risk, Climate variability, Sea Surface Temperature Anomalies, El Nino 

Southern Oscillation, Indian Ocean Dipole, Seasonal climate forecast. 
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1. Background 

The dynamics of the Earth’s physical climate system, i.e. the atmosphere, oceans, 

cryosphere, and land surface, are drivers of the Spatio-temporal variability of the 

global climate. Global atmospheric and oceanic circulations are among the factors 

that contribute to fluctuations in weather variables such as temperature, 

atmospheric pressure, and rainfall. For example, MacLeod, et al. (2019) used the 

atmospheric relaxation technique in coupled seasonal climate hindcast experiments 

to study seasonal rainfall variability in East Africa. They found the northwest Indian 

Ocean lower troposphere to be among the key drivers of inter-annual variability of 

March and April rainfall in East Africa. Endris et al. (2018) found the projected 

changes in the intensity and frequency of El Niño Southern Oscillation (ENSO) and 

Indian Ocean Dipole (IOD) will significantly impact both the amount and distribution 

of seasonal rainfall in East Africa.  

Increased variability in the hydrological cycles and extreme events in many parts of 

the globe are vivid examples of global climate change and climate variability 

(Merabtene et al., 2016). At a country level, a proper understanding of such kind of 

variability is crucial for better climate risk management in various sectors such as 

agriculture, transport, and energy. Similar to other sectors, climate risk management 

in agriculture is impossible without adequate knowledge of climatic conditions—

acquired through critical analyses of variability and trends in the historical climatic 

conditions—, regional and global climatic drivers, as well as major agricultural 

activities at the particular location of interest. This is among the reason why the 

provision of climate information services is crucial in agricultural risk management. 

Evidence from previous studies (Dayamba et al., 2018; Meybeck et al., 2012; Mittal & 

Hariharan, 2018; van Huysen et al., 2018) highlights the importance of climate 

information services in agricultural risk management to minimize the impacts of 

climate variability, improve the sustainability of agricultural systems, and 

productivity of agricultural activities.  

In Tanzania, several studies have been conducted to analyze the variability and 

trends in rainfall and temperature patterns over the country. Insights from recent 

studies show increasing trends in maximum and minimum temperature and 
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insignificant trends in annual and seasonal rainfall. Moreover, the evidence of high 

intra-seasonal and inter-seasonal variability in rainfall, increase in extreme weather 

events such as drought and flood were presented in those studies (Borhara et al., 

2020; Gebrechorkos et al., 2018, 2020; Nicholson, 2017; Nyembo et al., 2020). The 

aforementioned anomalies were associated with reduced livestock production; 

higher livestock morbidity and mortality; crop damage due to heavy rainfall, 

flooding, and waterlogging; increased pest and disease which all increase agricultural 

production risk in Tanzania (Kangalawe et al., 2016; Lugendo et al., 2017; Mkonda & 

He, 2018).  

Existing studies are limited to climate change and variability analyses rather than 

providing detailed analyses on the magnitude of the risks associated with such 

variabilities and the possible ways to minimize such risks. The present study used 

historical rainfall records from major agro-ecological zones in Tanzania to provide 

comprehensive analyses, oriented to crop production requirements, to quantify the 

production risks, and identify ways in which the risks can be minimized. A practical 

example of climate risk reduction is provided using the seasonal climate forecast. We 

investigated the level to which sea surface temperature anomalies in Indian and 

Pacific Oceans can explain the variability in seasonal rainfall. Moreover, we 

suggested further areas to explore which can be integrated into agricultural activities 

by small-holder farmers in Tanzania to minimize production risks associated with 

climate change and climate variability.  

 

2. Methodology 

2.1 Study location and dataset 

The present study selected 9 locations distributed across major agro-ecological zones 

in Tanzania located between latitude 1o to 12o S and longitude 21o to 41o E (Figure 

1). The elevation of the study locations ranges from 120m (Naliendele) to 2249m 

(Igeri).  Ilonga, Dodoma, and Hombolo represent the agro-ecological zone of central 
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Tanzania while Tumbi and Ukiliguru represent the western and lake zone agro-

ecologies respectively. Tanga and Mlingano represent the north-coast agro-ecology. 

Naliendele and Igeri represent the south-western highland and southern coast agro-

ecological zones respectively. 

The study used a combination of station data from Tanzania Meteorological 

Authority (TMA) and gridded data from the Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS). Rainfall data from 1958 to 2016 for Dodoma 

and Tanga locations were obtained from station data with CHIRPS rainfall data used 

for the period 2017 to 2020  which was unavailable. For the other locations—

Hombolo, Igeri, Ilonga, Mlingano, Naliendele, and Ukiliguru, observed rainfall data 

from 1981 to 2020 was available. The sea surface temperature anomalies data over 

the Pacific Ocean—the NINO3.4 regions (5oN - 5oS, 170oW-120oW)—were obtained 

from the National Oceanic and Atmospheric Administration (NOAA). The SSTa from 

the Indian Ocean i.e 90°E-100°E, 28°S-18°S and 90°E-110°E, 10°S- 0°S  regions were 

obtained from ECMWF SEAS5. Except for Ilonga, Dodoma, and Tanga, other locations 

had 1 to 4 months in different years with missing records which were substituted by 

the climatological daily mean.  

We obtained historical seasonal forecast data from TMA and IGAD Climate 

Prediction and Applications Centre (ICPAC is a regional climate center accredited by 

the WMO that provides climate services to 11 East African Countries). For the long 

rainy season (March-May (MAM)) season the forecasts were from 2009 to 2019 

except 2014 which was missing and for the short rainy season (October – December 

(OND)) the forecast was from 2007 to 2018 except 2009 which was missing.   
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Figure 1: The map of the study area showing locations in different rainfall zones and their 

respective elevation in meters. 

2.2 Seasonal rainfall trends and variability 

Statistical analyses were conducted to understand the distribution and variability of 

annual, seasonal, and monthly rainfall in the study locations. We used average to 

characterize temporal variability and coefficient of variation (CV) to measure the 

amount of dispersion in the annual and seasonal rainfall amounts. Analysis of 

variance (ANOVA) was used to test for significant differences in means of various 

groups of seasonal rainfall, and rainfall predictors such as sea surface temperature 

anomalies. Trends in seasonal and annual rainfall were computed using the Mann-

Kendall test. The Mann-Kendall test is a non-parametric test that determines 

whether a monotonic time series data has an increasing or decreasing trend. It does 

not require a series to be normally distributed or linear. It tests the hypotheses (i) 
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Null hypothesis: there is no trend in the time series (ii) Alternative hypothesis: there 

is either a decreasing or increasing trend in the time series (Gocic & Trajkovic, 2013). 

The Mann-Kendall test has been proven for its suitability to detect increasing and 

decreasing trends in climate and environmental data (Alemu & Dioha, 2020). The 

same test was also used to determine trends in the number of rainy days—a rainy 

day defined as a day that receives at least 1 mm rain-(WMO, 2010).  

The seasons were classified to below-normal, and above-normal according to the 

amount of rainfall they received relative to maize and sorghum crop water 

requirement (CWR). Maize and sorghum water requirements for the locations in the 

current study were calculated using a novel empirical method proposed by FAO 

(Crop water needs, n.d.). We found an average of 450 and 350 mm to be the 

minimum water requirement for maize and sorghum respectively in the study 

locations.  We used the computed values as thresholds to get two definitions of 

above-normal and below-normal season i.e. a value greater than the calculated CWR 

was classified as above-normal and less than the calculated CWR was classified as 

below-normal.  

2.3 Predicting seasonal rainfall variability in the MAM, OND, and 

DJFMA seasons 

Variations in seasonal rainfall intensity and frequency are largely associated with sea 

surface temperature patterns around the globe.  The impact of sea surface 

temperature anomalies on the atmosphere persists throughout the season due to 

their slow evolution. This makes the SSTa a good predictor of seasonal rainfall 

variabilities. Various statistical methods such as linear regression, canonical 

correlation analysis, and principal component analysis are used to predict seasonal 

rainfall variability (Parker and Diop-Kane, 2017). The current study used SSTa as 

predictors in the following multiple regression equation to estimate the amount of 

rainfall in the MAM, OND, and DJFMA seasons:  

𝑅𝐹 = 	𝛽! + 𝛽"𝑋" +	𝛽#𝑋#+. . . +𝛽$𝑋$ + 𝜀 
Whereby 

𝑅𝐹 =  Seasonal rainfall of a particular season i.e MAM, OND, or DJFMA 
     𝛽	 =  Regression coefficients 
              𝑋	 =  SSTa of a particular month (January to November) 
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               𝜀 = Model error 
 
The month 𝑋	$ is the value of SSTa a month before the start of the season for 
instance for MAM, OND, and DJFMA seasons 𝑋	$ were the SSTa in January, August, 
and October respectively. We computed the differences between SSTa in the 90°E-
100°E, 28°S-18°S and 90°E-110°E, 10°S- 0°S regions and used the values in the linear 
regression model to predict seasonal rainfall variabilities.  The choice of the 
aforementioned regions is due to the observed correlation between SSTa over the 
regions and coupled convectively equatorial waves such as Equatorial Rossby wave, 
Kelvin wave, and Mixed Rossby-gravity wave (Keshav and Landu, 2020; Subudhi and 
Landu, 2019) which all influence the variability in seasonal rainfall, especially in a 
local scale.  
The predicted rainfall amounts were then compared with the observed rainfall to 

determine the level to which the model characterizes the seasonal rainfall i.e. the 

accuracy of the predicted rainfall to capture the above-normal and below-normal 

seasons. The performance is presented in the results section. 

 

2.4 Reliability of Seasonal Climate Forecast (SCF)  

To understand the predictability of seasonal rainfall amounts and assess the 

potential role they can play in managing climate risks, we examined the reliability of 

the seasonal forecasts issued by TMA and ICPAC as well as the predicted seasonal 

rainfall using the SSTa of the above described Indian Ocean region in the linear 

regression model. The observed rainfall amounts were classified as below-normal 

(BN) and above-normal (AN) as described in the previous section. A hit was defined 

as an AN or BN forecast which matched the observed rainfall group (AN or BN) 

among the forecasts which were AN or BN respectively. Otherwise, a forecast was 

termed as a miss.  We computed the number of hits and misses forecasts and 

calculated the accuracy (hit rate) of the forecast using the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑜𝑓	𝐴𝑁(𝐵𝑁)𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡	 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐻𝑖𝑡𝑠	𝑖𝑛	𝐴𝑁(𝐵𝑁)𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐴𝑁(𝐵𝑁)𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠
× 100% 

Based on the accuracy of the forecast calculated using the above equation, the skills 

of the seasonal rainfall forecasts were evaluated. 
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3. Results 

3.1 Rainfall distribution, trends, and variability 

Annual and seasonal rainfall variability  

The average annual and seasonal rainfall amounts show significant variation among 

the locations (Table 1). The western highlands, and western agro-ecological zones 

represented by Igeri, and Tumbi respectively received the highest amount of annual 

rainfall—above 1500 mm—followed by the coastal areas (both north and south 

coastal zones) represented by Mlingano, Tanga, and Naliendele which received over 

1100 mm per year. In the lake zone and the central part of the country, the average 

annual rainfall was less than 1100 mm. The variability in annual rainfall was highest 

in Hombolo, Ilonga, and Tanga locations—both CV > 25%—, and lowest in Igeri (CV = 

16%). Other locations have CV values ranging from 17% to 23%.  The number of rainy 

days was at least 100 annually in Igeri, Mlingano, Tanga, and Ukiliguru (Table 1). 

However, the variability in the number of rainy days was very high in Mlingano (CV = 

50%) and Ukiliguru (CV=36%) and a bit lower (CV < 20%) in Igeri and Tanga. 

Table 1: Annual and seasonal rainfall amounts and associated coefficient of 

variation (CV) in the study locations. Figures in parenthesis indicate the number of 

rainy days and their CV.  

Location Annual Rainfall (mm) MAM Rainfall (mm) OND Rainfall (mm) DJFMA Rainfall (mm) 
Mean CV% Mean CV% Mean CV% Mean CV% 

Dodoma 598 (43) 20(21) - - - - 563(40) 31(20) 
Hombolo 623(54) 29(43) - - - - 571(48) 30(48) 
Igeri 2681(142) 16(18) - - - - 2343(110) 14(13) 
Ilonga 1067(82) 26(21) - - - - 796(54) 29(22) 
Naliendele 1118(82) 23(20) - - - - 934(61) 22(16) 
Tumbi 1880(92) 18(35) - - - - 1521(68) 20(31) 
Mlingano 1129(125) 21(50) 473(43) 29(42) 391(37) 53(62) - - 
Tanga 1332(101) 28(17) 641(35) 36(20) 363(26) 61(31) - - 
Ukiliguru 858(110) 17(36) 323(37) 26(38) 315(40) 34(45) - - 

 

Similar to annual rainfall, Igeri and Tumbi received the highest amount of rainfall (> 

1500 mm) in the DJFMA season. The aforementioned locations received over 1000 

mm in 80% of the seasons in the study period (1981 to 2020). Three locations in the 

central zone i.e. Dodoma, Hombolo, and Ilonga, and one in the southern coast part 
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of Tanzania received less than 1000 mm per season on average. Compared to 

Dodoma which receives at least 400 mm in only 2 out of 5 seasons, Hombolo, Ilonga, 

and Naliendele receive the same in almost all seasons during the DJFMA rainy season 

(Figure 2). The central zone locations showed the highest variability (CV >25% (Table 

1) as compared to other locations with a similar rainfall regime in the study areas. 

Igeri had the highest number of rainy days (110) on average compared to other 

locations. Except in Dodoma and Hombolo, other locations had at least 50 rainy days 

per season. Variability in the number of rainy days was higher in Hombolo (CV = 48%) 

compared to other locations (Table 1).  

Figure 2: The seasonal rainfall probability of exceedance chart for the locations 

with unimodal rainfall regime i.e. Msimu (DJFMA) season 

In the locations with bimodal rainfall regime i.e. long rain season (Masika: MAM 

season) and short rain season, the amount of rainfall and the number of rainy days 

were slightly higher with less variability in the MAM season compared to OND 

season. Tanga and Mlingano received 350 mm in 80% of the MAM seasons in the 

study period (1981 – 2020) while Ukiliguru received at least 350  mm in only 30% of 

the MAM seasons.  In the OND season, the same locations received at least 350 mm 

of rainfall in less than 60% of the seasons (Figure 3). The overall variability in 

seasonal rainfall was significantly high during the short rain season (Vuli –OND 
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season) and varied from 31% to 62% compared to that during the long rain season 

(Masika-MAM)—varied from 20% to 42%.  

Figure 3: The seasonal rainfall probability of exceedance chart for the locations 

with bimodal rainfall regime i.e. long rain (MAM) and short rain (OND) seasons 

 

Annual and seasonal rainfall trends 

The long-term trends in the annual and seasonal rainfall were examined using the 

Mann-Kendall statistical test. We found insignificant increasing and decreasing 

trends in annual rainfall amount in all locations. However,  increasing and decreasing 

trends in the number of rainy days in Ukiliguru and Tanga respectively, and a 
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decreasing trend in the amount of rainfall in the MAM season in Mlingano were 

found to be significant  (Table 2).  

Table 2: Mann-Kendall statistic for annual and seasonal rainfall and annual rainy 

days in the study locations. (* and + are significant trends at 99% and 90% 

confidence intervals respectively). 

Location 
Annual Seasonal rainfall 

RF Amount Rainy days MAM OND DJFMA 
Dodoma 0.45 0.04 0.13 0.99 0.71 
Hombolo 0.50 0.45 0.45 0.48 0.15 
Igeri 0.34 -1.09 -0.56 -0.41 -0.27 
Ilonga -0.43 -0.97 0.52 -0.55 -0.29 
Naliendele -0.19 -0.84 0.17 -0.99 -0.10 
Tumbi -0.56 -0.87 -0.47 -0.38 -1.03 
Mlingano -0.96 0.68 -1.86+ 0.58 -1.07 
Tanga -0.15 -3.97* -0.19 0.59 -0.92 
Ukiliguru -0.50 1.91+ -1.37 0.12 -0.93 

 

Monthly rainfall variability and distribution  

The average monthly rainfall and number of rainy days per month showed both 

spatial and temporal variation. In the central, south-western highland, and the 

south-coast agro-ecologies, the wettest months were December, March, and April 

except for Dodoma and Hombolo for which January was the wettest month in the 

year (Figure C1 (a – f) in Appendices). The highest monthly rainfall of 575 mm was 

recorded in Igeri in March and the minimum monthly rainfall was observed in 

Dodoma (50 mm) in April. The variation in the amount of rainfall and the number of 

rainy days during the non-growing period months was very high with a CV>100% in 

all locations. During the growing season, December (CV≥42%) and April (CV≥37%) 

showed higher variation compared to January, February, and March. The central 

zone and the south-coast zone locations showed higher variability in both rainfall 

and number of rainy days (CV > 37%) as compared to the south-western highland 

and the western zone locations (Figure C1 (a – f) in the Appendices).  
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Figure 4 represents the probabilities of dry <100 mm), wet (100-200 mm), and very 

wet (>200 mm) months in the study locations with DJFMA rainy season. As expected, 

the chance of getting less than 100 mm per month is very high in the months outside 

the rainy season or non-crop growing period in all locations. The same decreased 

during the growing period from December to April. Within the growing period, the 

central and south-coast locations (Dodoma, Hombolo, Ilonga, and Naliendele) have a 

higher chance (≥ 40% in most months) of getting less than 100 mm per month 

compared to Igeri and Tumbi. Igeri and Tumbi locations showed a very low 

probability (< 10%) of getting less than 100 mm per month and a high probability of 

getting > 200 mm per month during the growing period. Thus, In the DJFMA season, 

our analysis revealed the central and southern coast locations receive less rainfall 

with high variation during the growing period as compared to the western and 

south-west highland locations which receive a higher amount of rainfall and showed 

less variability in monthly rainfall during the growing period.  

In the locations with bimodal rainfall regimes (Figure C1 (g – i) in the Appendices), 

the wettest months were April and May in the MAM season and November and 

December in the OND season. Ukiliguru (lake zone) received a low amount of rainfall 

ranging from 4 mm in July to 141 mm in April with higher variation ranging from 39% 

in the wettest month to 175% in the driest month.  January and February were the 

driest months with fewer rainy days (< 6 per month) and the highest variability (CV ≥ 

105%) in both Mlingano and Tanga locations.  

Except in Ukiliguru, the probability of getting at least 100 mm per month is ≥ 80% in 

April and May, the wettest months of the MAM season. The probabilities are lower, 

about 70% in November and 40% in December, the wettest months of the OND 

season in Mlingano and Tanga (Figure 5). The probability of getting at least 100 mm 

per month in Ukiliguru is about 80% in April, 70% in May and December, and is 60% 

in November. The probability of getting a very wet month with more than 200 mm 

rainfall is about 60% in April and May in Tanga while the same is less than 30% in 

Mlingano and Ukiliguru.   
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Figure 4: The probabilities of getting dry (< 100 mm), wet (100 - 200 mm), and very 

wet (> 200 mm) months in the location with a unimodal rainfall regime.  
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Figure 5: The probabilities of getting dry (< 100 mm), wet (100 - 200 mm), and very 

wet (≥ 200 mm) months in the locations with a bimodal rainfall regime 

  

3.2 Reliability and skills of the Seasonal Climate Forecast (SCF) in 

the study area 

Seasonal Climate Forecast in the MAM (long rain) and OND (short rain) Season. 

We examined the reliability of seasonal rainfall forecasts provided by TMA (local 

seasonal forecast) and ICPAC (regional seasonal forecast). ICPAC seasonal forecast is 

a consensus forecast that is negotiated by participating national meteorological 

agencies and is presented as a coarse-scale map showing the probability as “below-

normal,” “normal” or “above-normal” categories. The TMA forecast is a downscaled 

version of the same. The predictions from the two forecast sources i.e. TMA and 

ICPAC matched in some years and mismatched in the others. Figures A1 and A2 

(Appendix A) show how the matching and mismatching were distributed among the 

years in the MAM and OND seasons. The mismatch was higher in Tanga (73%) and 

lower in Mlingano (19%) both in the OND season. It is interesting to note that both 

locations fall in the same agro-ecological zone and are spatially very close. The 

mismatch in all three locations i.e. Ukiliguru, Mlingano, and Tanga is about 60% of 

the seasons. Adding SSTa phases as an additional criterion to the seasonal forecasts 

(SFC) tends to reduce the mismatch in the two datasets from 30 – 50 % (Figure A2).  

The available skill in the forecasts from the two sources for the MAM season was 

further evaluated for its usefulness in farm-level decision-making. Forecasts for 10 

years from 2009 to 2019, except 2014 which was missing, and for 11 years from 2007 

to 2018, except 2009 which was missing in the case of the OND season were used. 

The seasons were classified as below-normal or above-normal by using two 

threshold values that are based on crop water requirements as described in the 
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methodology section. The two thresholds were used for performance comparison 

and to establish the usefulness of the forecast skills in selecting crops with different 

water requirements as a way to minimize the risks of exposure to uncertainties 

created by climate variability. Table 3 provides the details of the performance of the 

two sources of forecast used in the present study.  

An unpaired t-test revealed a statistically insignificant difference (t(10) =0.4622, p= 
0.6538) in the prediction of AN seasons between TMA and ICPAC forecasts. 
However, there are differences in the forecast reliability across the seasons and the 
locations. ICPAC had higher accuracy in predicting the MAM above-normal seasons 
in Tanga while TMA predicted with higher accuracy the MAM above-normal seasons 
in Mlingano (Table 3). The performance of TMA and ICPAC in Ukiliguru for the MAM 
season slightly differed. In the OND seasons, ICPAC predicted with higher accuracy 
the BN seasons in all locations as compared to TMA. The accuracy has not improved 
when the threshold was reduced to 350 mm. 
 

Table 3: Skill assessment of seasonal rainfall forecasts issued by TMA and ICPAC 

(values in parenthesis) for MAM and OND seasons using two different thresholds 

that are based on the seasonal crop water requirements of maize and sorghum 

crops.  

Note: *The average rainfall for Ukiliguru is less than 350 mm for both MAM and OND 

seasons. The threshold was reduced to 300 mm instead of 350 mm.  

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

MAM 

Ukiliguru* 
AN 7 8(4) 6(3) 75(75)      

BN 3 2(6) 1(2) 50(33)      

Mlingano 
AN 4 5(4) 3(2) 60(50)  5 5(4) 4(3) 80(75) 

BN 6 5(6) 4(4) 80(67)  5 5(6) 4(4) 80(67) 

Tanga 
AN 7 5(4) 3(4) 60(100)  8 5(4) 3(4) 60(100) 

BN 3 5(6) 1(3) 20(50)  2 5(6) 0(2) 0(33) 

OND 

Ukiliguru* 
AN 6 6(7) 5(6) 83(86)      

BN 5 5(4) 4(4) 80(100)      

Mlingano 
AN 2 6(7) 2(2) 33(29)  8 6(7) 4(5) 67(71) 

BN 9 5(4) 5(4) 100(100)  3 5(4) 1(1) 20(25) 

Tanga 
AN 3 6(7) 2(3) 33(43)  5 6(7) 3(4) 50(57) 

BN 8 5(4) 4(4) 80(100)  6 5(4) 3(3) 60(75) 
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The warm and cold phases of the IOD and NINO3.4 regions were added to make an 

additional criterion to predict a seasonal type i.e. AN/BN seasons. In both regions i.e. 

IOD and NINO3.4,  the warm phases were associated with increased and the cold 

phases with decreased rainfall intensity and frequency. The phases were computed 

one month before the start of the rainy season using the previous three-month 

average SSTAa. Accordingly, November to January average SSTa for MAM season, 

June to August SSTa for OND season, and August to October SSTa for DJFMA season 

were used. The phases were identified as warm if 3 months’ average SSTa>0oC and 

cold if 3 months’ average SSTa<0oC. The season was classified as AN only when it was 

forecasted either by TMA or ICPAC to be AN and the SSTa phase was warm otherwise 

it was classified as BN.  The Tables below show the performance of the forecasts 

after additional of SSTa criteria.  

The addition of warm and cold phases of the SSTa in the IOD and NINO3.4 regions 

significantly changed the skills of both the TMA and ICPAC seasonal forecast. IOD 

SSTa phases increased the accuracy of predicting the AN seasons by 10%  in both 

TMA and ICPAC seasonal forecasts, however, the prediction of BN seasons in both 

forecasts insignificantly changed (Table 4). 

Table 4:  Assessment of skill of seasonal rainfall forecasts issued by TMA and 

ICPAC—in parenthesis—in the MAM and OND seasons using seasonal crop water 

requirements of maize and sorghum during warm and cold phases in the IOD. 

 

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

MAM 

Ukiliguru* 
AN 7 5(3) 3(2) 60(67)      

BN 3 5(7) 1(2) 20(29)      

Mlingano 
AN 4 4(3) 3(2) 75(67)  5 4(3) 4(3) 100(100) 

BN 6 6(7) 5(5) 83(71)  5 6(7) 5(5) 83(71) 

Tanga 
AN 7 4(3) 3(3) 75(100)  8 4(3) 3(3) 75(100) 

BN 3 6(7) 2(3) 33(43)  2 6(7) 1(2) 17(29) 

OND 

Ukiliguru* 
AN 6 4(5) 4(5) 100(100)      

BN 5 6(5) 5(5) 83(100)      

Mlingano 
AN 2 4(5) 2(2) 50(40)  8 4(5) 3(4) 75(80) 

BN 9 6(5) 6(5) 100(100)  3 6(5) 2(2) 33(40) 

Tanga 
AN 3 4(5) 2(3) 50(60)  5 4(5) 2(3) 50(60) 

BN 8 6(5) 5(5) 83(100)  6 6(5) 4(4) 67(80) 
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The NINO3.4 SSTa phases increased significantly the prediction accuracy of the MAM 

above-normal seasons in Mlingano and Tanga and decreased the accuracy of 

predicting the below-normal seasons in TMA (8% decrease) and ICPAC (13% 

decrease) seasonal forecasts (Table 5). The change of a threshold from 450 mm to 

350 mm improved slightly the accuracy of the forecasts before and after the addition 

of the SSTa phases. The prediction of both AN and BN seasons slightly increase in 

Mlingano by changing the threshold from 450 mm to 350 mm especially in the OND 

seasons while in Tanga the accuracy of predicting OND below-normal seasons 

significantly decrease with the change of threshold from 450 mm to 350 mm.  

Table 5:  Seasonal forecast skills assessment of seasonal rainfall forecasts issued by 

TMA and ICPAC—in parenthesis—in the MAM and OND seasons using seasonal 

crop water requirements of maize and sorghum during warm and cold phases in 

the NINO3.4 regions.  

 

Seasonal Climate Forecast in the DJFMA (Msimu) Season 

The central, western, and southern part of Tanzania's seasonal rainfall starts in 

December and continues to April the following year—DJFMA(Msimu) season. Six 

locations in the current study i.e. Dodoma, Hombolo, Igeri, Ilonga, Tumbi, and 

Naliendele, belong to the aforementioned categories. We assessed the reliability of 

the seasonal forecast issued by TMA in the aforementioned locations from the 

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

MAM 

Ukiliguru* 
AN 7 4(3) 3(2) 75(67)      

BN 3 6(7) 2(2) 33(29)      

Mlingano 
AN 4 2(3) 2(2) 100(67)  5 2(3) 2(2) 100(67) 

BN 6 8(7) 6(5) 75(71)  5 8(7) 5(4) 63(57) 

Tanga 
AN 7 2(3) 2(3) 100(100)  8 2(3) 2(3) 100(100) 

BN 3 8(7) 3(3) 38(43)  2 8(7) 2(2) 25(29) 

OND 

Ukiliguru* 
AN 6 3(4) 2(3) 67(75)      

BN 5 7(6) 4(4) 57(67)      

Mlingano 
AN 2 3(4) 1(1) 33(25)  8 3(4) 1(2) 33(50) 

BN 9 7(6) 6(5) 86(83)  3 7(6) 1(1) 14(17) 

Tanga 
AN 3 3(4) 1(2) 33(50)  5 3(4) 1(2) 33(50) 

BN 8 7(6) 5(5) 71(83)  6 7(6) 4(4) 57(67) 
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2007/2008 season to the 2019/2020 season (the 2018/2019 season was missing). 

However, we could not compare the forecast skills with ICPAC seasonal forecasts as 

in the previous section due to the unavailability of data—ICPAC issues their seasonal 

forecasts in MAM, JJAS, and OND seasons only. Moreover, Igeri and Tumbi were 

excluded from the analysis because their minimum seasonal rainfall was above the 

thresholds used in the present study. Table 6 shows the details of the performance.  

The DJFMA forecast showed very low accuracy except in Naliendeli in which the 

prediction skills of the AN seasons were good. The change of the threshold from 450 

mm to 350 mm improved the prediction of the AN seasons in Hombolo, Ilonga, and 

Naliendeli and insignificantly affected the prediction accuracy of BN seasons in all 

locations (Table 6). 

Table 6:  Skill assessment of seasonal rainfall forecasts issued by TMA for the DJFMA 

season using two different thresholds that are based on the seasonal crop water 

requirements of maize and sorghum crops.  

 

 

The forecast skills of the BN seasons were increased during the SSTa warm and cold 

phases of the IOD and NINO3.4 regions when 450 mm was used as a threshold while 

the same decreased when the threshold was changed to 350 mm. The AN prediction 

skills during the warm and cold phases of SSTa increased in 350 mm threshold and 

slightly increased in 450 mm threshold (Table 7).   

 

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

DJFMA 

Dodoma 
AN 5 8 2 25  5 8 2 25 

BN 7 4 1 25  7 4 1 25 

Hombolo 
AN 3 8 0 0  8 8 4 50 

BN 9 4 1 25  4 4 0 0 

Ilonga 
AN 3 8 0 0  7 8 4 50 

BN 9 4 1 25  5 4 1 25 

Naliendele 
AN 11 8 7 88  12 8 8 100 

BN 1 4 0 0  0 4 0 0 
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Table 7:  Assessment of seasonal rainfall forecast skills issued by TMA in the DJFMA 
seasons during warm and cold phases in the IOD and NINO3.4(in parenthesis) 
regions.  

 

 Seasonal rainfall prediction using Sea Surface Temperature anomalies in a 

regression model 

Using the SSTa in the 90°E-100°E, 28°S-18°S, and 90°E-110°E, 10°S- 0°S regions as 
predictors of the MAM, OND, and DJFMA rainfall we created a linear regression 
model to predict seasonal rainfall in the study area. The details of the model are 
described in the methodology section. The accuracy of the model in different 
locations is presented below using the R2 values in Figure 6. The model had higher 
accuracy in all seasons in the central zone i.e. Dodoma, Hombolo, and Ilonga, and the 
lowest accuracy(less than 40%)  was observed in Mlingano in MAM and OND. Other 
locations showed fair good accuracy (> 40%) in their growing period.  
 

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

DJFMA 

Dodoma 
AN 5 5(5) 2(2) 40(40)  5 5(5) 2(2) 40(40) 

BN 7 7(7) 4(2) 57(57)  7 7(7) 4(2) 57(57) 

Hombolo 
AN 3 5(5) 0(0) 0(0)  8 5(5) 3(3) 60(60) 

BN 9 7(7) 4(4) 57(57)  4 7(7) 2(2) 29(29) 

Ilonga 
AN 3 5(5) 0(1) 0(0)  7 5(5) 3(2) 60(40) 

BN 9 7(7) 4(4) 57(57)  5 7(7) 3(2) 43(29) 

Naliendele 
AN 11 5(5) 4(4) 80(80)  12 5(5) 5(5) 100(100) 

BN 1 7(7) 0(0) 0(0)  0 7(7) 0(0) 0(0) 
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Figure 6: Model accuracy (R2) in predicting the DJFMA, MAM, and OND rainfall in 

different locations 

 

Performance of the model in predicting the MAM (long rain) and OND (short rain) 

rainfall 

Table 8 represents the performance of the regression model in predicting the MAM 

and OND rainfall. On average the accuracy of predicting the AN seasons is 76% and 

84% when the first and the second thresholds were used respectively. Similarly, the 

model predicted the BN seasons with accuracies of 75% and 63% when the first and 

the second thresholds were used respectively.  

In the MAM season, the accuracy was at least 70% in both AN and BN seasons (7 out 

of 10 predicted seasons were correct) except in Mlingano in which the accuracy of 

predicting the BN seasons was 63%. Moreover, the model predicted the below-

normal OND seasons with fairly good accuracy(67%) in Mlingano and the above-

normal MAM seasons in Tanga (60%). Changing the threshold from 450 mm to 350 

mm slightly improved the accuracy in AN seasons but decreased the accuracy in BN 

seasons prediction(Table 8).  

 

 

 

 

:

 



 

25 
 

Table 8:  Performance of Indian Ocean SSTa in predicting the MAM (1982 -2020, 

except 2017 and 2018) and OND (1982 – 2020, except 2017) seasonal rainfall  

 

Performance of the model in predicting the DJFMA rainfall 

The overall performance of the model in predicting the DJFMA rainfall is good in 

both AN and BN seasons. The average accuracy in predicting the AN seasons is 72% 

and 79% when the first and the second threshold values were used respectively 

whereas the BN seasons were predicted with an average accuracy of 79% and 85% 

when the first and the second threshold values were used respectively. Therefore, in 

7 out of 10 years the model predicted accurately the AN seasons while in 8 out of 10 

years the model predicted accurately the BN seasons.  

The model performed poorly in predicting AN  and BN seasons (less than 70% 

accuracy) in Dodoma and Naliendele respectively as compared to other locations.  

 

 

 

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

MAM 

Ukiliguru* 
AN 22 27 20 74      

BN 15 10 8 80      

Mlingano 
AN 22 21 16 76  31 36 30 83 

BN 15 16 10 63  6 1 0 0 

Tanga 
AN 29 34 28 82  31 34 31 91 

BN 8 3 2 67  4 1 1 100 

OND 

Ukiliguru* 
AN 22 22 18 82      

BN 16 16 12 75      

Mlingano 
AN 23 24 20 83  32 35 31 89 

BN 15 14 11 79  6 3 2 67 

Tanga 
AN 10 10 6 60  17 19 14 74 

BN 28 28 24 86  21 19 16 84 
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Table 9:  Performance of Indian Ocean SSTa in predicting the DJFMA seasonal 

rainfall from 1982/83 to 2019/20 (2017/18 season was missing)   

 
 
Comparison of the performance of the regression model, TMA, and ICPAC forecast 

skills  

On average the regression model created in this study to predict seasonal rainfall 

using the SSTa in the Indian Ocean as predictors performed well in both AN and BN 

predictions compared to TMA and ICPAC forecasts especially in the DJFMA season 

(Figure 7). The probability of detecting the AN and BN seasons by the model was at 

least 70% and 50% respectively while TMA and ICPAC had lower probabilities (< 50%) 

in some locations (Figure 7). Moreover, using the SSTa as predictors enabled the 

model to cover a bigger number of years than the TMA and ICPAC seasonal forecast 

which had a lot of missing years.   

Season Location 

AN>450 mm, BN<450 mm  AN>350 mm, BN<350 mm 

RF OBS FC Hits Rate(%)  OBS FC Hits Rate(%) 

DJFMA 

Dodoma 
AN 13 12 8 67  20 25 17 68 

BN 24 25 20 80  17 12 9 79 

Hombolo 
AN 9 10 7 70  20 24 18 75 

BN 28 27 25 93  17 13 11 85 

Ilonga 
AN 10 11 8 73  21 21 17 81 

BN 27 26 24 92  16 16 12 75 

Naliendele 
AN 28 33 26 79  33 36 33 92 

BN 9 4 2 50  4 1 1 100 
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Figure 7: Comparison of performance of the regression model, ICPAC, and TMA 

forecasts in predicting the AN and BN seasons. a, c and e are MAM, OND, and 

DJFMA seasons when 450 mm threshold was used, and b, d, and f are MAM, OND, 

and DJFMA seasons when 350 mm threshold was used. 
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4. Discussion 

Rainfall trends and variability 

Analysis of trends and variability in annual, seasonal, and monthly rainfall in the 

study locations revealed significant Spatio-temporal variation of Tanzania rainfall 

patterns in both amount and frequency (Borhara et al., 2020). The difference 

between the amount and frequency of rainfall in dry and wet areas is large. For 

example, the northeast locations i.e. Tanga and Mlingano received about 1000 mm 

higher than the central zone locations i.e. Dodoma, Hombolo, and Ilonga annually. 

Likewise, the number of rainy days at Tanga and Mlingano were at least 20 days 

more than in central zones locations (Table 1). Such differences in rainfall 

distribution among the locations are associated with distance from water bodies, 

topographical differences, and other factors such as vegetation which influence the 

magnitude of coast influence and other atmospheric circulation effects (Borhara et 

al., 2020). Similar to annual rainfall, seasonal rainfall has also shown high variation 

among the locations and between the seasons at the same location. The short rain 

season (OND) received lower rainfall and showed higher variation with CVs ranging 

from 34% to 61% compared to the long rain season(MAM) during which the CV 

ranged between 26% and  36%.  In the unimodal rainfall regions, the CV of seasonal 

rainfall (DJFMA) varied from 20% to 31% which is lower as compared to that 

observed in the bimodal rainfall regions. In general, variability has increased with 

decreasing seasonal rainfall.   

The probability of receiving 450 mm or higher amount of rainfall as required for 

growing water-sensitive crops such as maize has also shown high variability from one 

location to another depending on the rainfall regime of the location. For example, in 

the DJFMA season, Dodoma had the lowest probability (40%) of receiving at least 

450 mm of rain per season as compared to other locations with similar rainfall 

regimes (Figure 2).  Moreover, there is a relatively higher probability (20-40%) of 

getting less than 100 mm rain per month during the five-month crop growing period 

from December to April in Dodoma and Hombolo as compared to other locations 

with similar rainfall regimes (Figure 4). Locations with a bimodal rainfall regime also 

showed variation in the amount of rainfall received per season and monthly during 
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the growing period. The MAM season was wetter compared to the OND season. 

Tanga and Mlingano had an 80% probability of receiving at least 350 mm in the MAM 

season whereas the probability significantly decreased in the OND season for the 

same locations and in both MAM and OND seasons in Ukiliguru. This kind of variation 

in the environment leads to production uncertainties and constrains agricultural 

production under rainfed conditions (Leweri et al., 2021; Silungwe et al., 2019). 

Hence, adaptation to variable climatic conditions is an important first step in making 

rainfed agriculture more productive and profitable. Adaptation measures are 

required both in pre-season planning and in tactical management during the season 

to minimize risks, optimize crop productivity and improve the sustainably of resource 

base in these areas. The analysis has indicated that the risk of growing crops with 

water requirements having greater than 450 mm is very high at Dodoma, Hombolo, 

Ilonga, and Naliendele compared to Igeri and Tumbi among the locations having 

unimodal rainfall regimes and at all locations during both MAM and OND seasons in 

the environment characterized by bimodal rainfall regimes.  

Climate risk reduction using seasonal climate forecast. 

Several studies have indicated that a significant reduction in the risk of exposure to 

climate uncertainties can be achieved with the integration of seasonal climate 

forecast (SCF) information in farm-level decision-making (Hansen et al., 2011). SCF, 

though less reliable than the short and medium-range weather forecasts, are 

reported to have sufficient skill to indicate the probability of getting or not getting 

average rainfall during the forthcoming season. This is an important piece of 

information with the potential to help in planning pre-season farm operations such 

as selection of crops to be grown, allocation of land to various crops, and the 

estimation of the potential level of crop performance or profitability based on the 

amount of rainfall that is required to meet the minimum water requirement of 

various crops in a season (Meybeck et al., 2012).  

We evaluated the skills of the regional and local SCF issued by ICPAC and TMA 

respectively in different rainfall seasons for their potential usefulness to serve as a 

basis in pre-season planning activities. In addition, a linear regression model to 

predict seasonal rainfall in the study area using sea surface temperature anomalies 

(SSTa) over the Indian Ocean as predictors was also developed and evaluated for its 
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potential application in planning operations. Our analysis has shown higher forecast 

skills in SCF issued by TMA than those issued by ICPAC but there are differences 

between the locations and seasons. For example, in the MAM season, TMA 

prediction’s accuracy of AN and BN seasons is higher(Table 6)  in Ukiliguru and 

Mlingano as compared to that by ICPAC. However, ICPAC seasonal forecast had 

better skills than TMA in predicting the BN seasons in Tanga. In the OND season, the 

BN seasons were predicted more accurately as compared to AN seasons by both 

ICPAC and TMA. The SSTa predictors in the created linear regression model showed 

higher accuracy—in most locations the accuracy was found to be ≥70%—in 

characterizing the AN and BN seasons (Table 9 and 10). This brings the reliability of 

SCF to the level that farmers expect them to be. In general, farmers expect the SCFs 

to have 80% or higher reliability for use in farm-level decision-making (Rao et al., 

2011). The overall performance of the regression model is higher compared to ICPAC 

and TMA forecasts because the SSTa predictors cover a large number of seasons 

compared to ICPAC and TMA. Moreover, the SSTa have proved to be more reliable 

predictors of seasonal rainfall variabilities due to their slow evolution and 

persistence for longer periods and because of their high predictability with greater 

accuracy (Parker & Diop-Kane, 2017).  

In rain-fed systems farmers make climate-sensitive decisions such as selection of 

crops and varieties, planting dates, planting density, and input use to adopt during 

the growing period. In the absence of reliable information about the forthcoming 

season, such decisions are mainly driven by farmers’ expectations or perceptions of 

how the season is going to be (Guido et al., 2020; Nyasimi et al., 2017), the fact that 

makes seasonal climate forecast with the good skill to be critical input in planning 

farm operations. The uncertainties or lower skill in seasonal climate forecast 

provided by various institutions leads to a lack of trust in the information provided 

and makes farmers rely on the indigenous knowledge—whose skill and usefulness in 

planning and managing farm activities are unknown (Tsounis & Vlachvei, 2018). 

Under these conditions, assessing the potentials and limitations of seasonal climate 

forecasts is extremely important. Past studies on evaluating the SCF were focused on 

either ex-ante assessment of potential benefits (Thornton, 2006) or ex-post impact 

assessment (Msangi et al., 2006) to establish the potential role SCF play in improving 

the management of agricultural systems. Here, we used a different approach to 
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evaluate the SCF. The method is based on the end-user requirements for making 

decisions. Farmers are more interested to know to what extent they can base their 

decisions on SCF. The present study revealed the level to which the seasonal climate 

forecasts can be reliable. In general, the skills of available forecasts from ICPAC and 

TMA are falling short of the end-user requirement. The end-user expects a positive 

outcome from forecast-based decisions 80% of the time or four out of five times. 

This condition was met only with a certain type of season and in some locations. 

However, the study revealed that there are opportunities to improve the forecast 

skill by taking into consideration the SSTa conditions in IOD and NINO3.4 regions. 

Such improvement in the skill presents an opportunity for better integration of the 

SCF in agricultural decision-making and better management of climate risks. Further 

improvement of the SCF in their reliability and enhancement of communication of 

climate information to smallholder farmers will help the farmers make informed 

decisions and use the available resources more efficiently. We have also revealed the 

usefulness of simple techniques of seasonal forecasts such as linear regression in 

predicting the seasonal climate variabilities in a month lead time. The insights 

emerging from this analysis will inform efforts to promote the use of probabilistic 

climate information with the right level of confidence and caution.  

5. Conclusions 

Our study establishes that the complex dynamics of rainfall patterns in Tanzania are 

difficult to predict at a seasonal scale with high levels of reliability that meet the 

expectations of farmers and other end users. However, it is possible to improve the 

reliability of the seasonal climate forecasts by taking into consideration the SSTa and 

other phenomena and also by using better downscaling techniques. Integration of 

SCF with SSTa has increased the reliability of SCF to 80% at many locations which is 

also the level of reliability that farmers expect. Therefore, further improvement of 

the forecast skills,  meaningful communication of climate information to smallholder 

farmers, and skillful integration of seasonal climate forecast with farm-level decision 

making could be among the effective strategies for climate risk management in 

Tanzania.  
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Appendices 

Appendix A: TMA and ICPAC Seasonal Climate Forecast 

 

 
 

Figure A1: A comparison of seasonal rainfall forecasts issued by TMA (    ) and 
ICPAC(    ) for the MAM and OND seasons in the study area.  
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Figure A2: A comparison of seasonal rainfall forecasts issued by TMA (    ) and 
ICPAC (    ) for the MAM and OND seasons including ENSO signals/SSTa phases as 
additional criteria in the study area.  
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Appendix B: Monthly rainfall distribution 
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i) 

 
Figure C1: Monthly rainfall (bars) and the number of rainy days’ (stars) distribution 
in the locations in the study area. The red curve represents the monthly coefficient 
of variation 
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