
Field Crops Research 267 (2021) 108160

Available online 28 April 2021
0378-4290/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Environmental characterization and yield gap analysis to tackle 
genotype-by-environment-by-management interactions and map 
region-specific agronomic and breeding targets in groundnut 
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A B S T R A C T   

The high degree of Genotype by Environment by Management (GxExM) interactions is a serious challenge for 
production and crop improvement efforts. This challenge is especially true for a crop like groundnut that is often 
grown as a rainfed crop in diverse environments and management, leading to considerable production fluctu-
ations among regions and seasons. Developing a means to characterize the drivers of variable yield and to 
identify region specific breeding objectives were the main motivations for this research, using groundnut pro-
duction in India, as a case study for rainfed crops. Historically, five groundnut production areas have been 
considered by Indian crop improvement programs. Our objectives were to assess the relevance of this zonation 
system and possibly to re-define production areas with a higher degree of similarities into homogeneous pro-
duction units (HPUs). Towards this, we used yield gap analysis and the geo-biophysical characters of the pro-
duction region to understand and deal with GxExM interactions. Weather and soil data, crop parameters, and 
management information data were collected and groundnut production was simulated at the district scale over 
30 consecutive years. Consequently, the geographic distribution of the potential yields and the yield gaps were 
first estimated to understand the main production limitations in a given region. Large and variable yield gaps 
(with a mean of ~70 %) were observed and results revealed a readily exploitable production gap (~ 8 M tons), 
which might be bridged by following recommended agronomic practices. Water deficit limited the yield potential 
by an average of 40 %, although with large variability among districts. However, large and variable yield gaps 
remained. To resolve the unexplained variation, principal component and cluster analysis of agronomic model 
output together with geo-biophysical indicators for each district were carried out. This resulted in seven HPUs, 
having well-defined production-limiting constraints. Grouping by HPU greatly reduced variance in actual and 
simulated yields, as compared to grouping across all groundnut production zones in India. The HPU based 
approach delimited precise geographic regions within which HPU-specific GxM products could be designed by 
crop improvement programs to boost productivity.   

1. Introduction 

Sustainable food production for a rising population of ca. 9.7 billion 
people by 2050 (UN, 2019, medium variant), is a major concern directly 
involved in several globally defined sustainable development goals (#1, 
#2, #12). However, yield trends are far below what is needed to meet 

the projected demands (Fischer et al., 2014; Ray et al., 2013) and 
resource constraints for agricultural production have become more 
stringent than in the past while the growth of yields is slowing down 
(Alexandratos and Bruinsma, 2012) or almost ceased in some environ-
ments (Brisson et al., 2010; Lin and Huybers, 2012). Then, achieving 
sustainable food security needs both to accelerate rates of yield 
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improvement (Voss-Fels et al., 2019) and to reduce on-farm yield gaps 
(Fischer et al., 2014). 

While presence of Genotype by Environment by Management 
(GxExM) interactions complicates the identification of desirable crop 
design (GxM combinations) (Hammer et al., 2014), it creates opportu-
nities for new crop improvement strategies (Cooper et al., 2020). 
Breeders focus mostly on high yield heritability (Chenu, 2015), but 
heritability declines as interactions of GxExM increase, and this con-
strains the selection of germplasm with consistent performance across 
environments (Hammer et al., 2014). Understanding and quantifying 
the causes of such interactions are critical to develop GxM packages that 
maximize production in specific environmental circumstance (Chauhan 
and Rachaputi, 2014; George, 2014). Yet, this remains a major knowl-
edge gap in most breeding programs (Cooper et al., 2020), where sig-
nificant GxExM interactions hamper the crop improvement progress 
(Chenu et al., 2011). Such interactions have been reported for 
groundnut in situations varying in water regimes (Hamidou et al., 2012) 
or combination of water regimes and heat stress (Hamidou et al., 2013). 
A GxExM analysis permits a nuanced understanding of the factor(s) that 
lie behind regional differences in the yield gaps (Porter et al., 2010), and 
this is done regularly with multi-environment trials (METs). However, 
METs are generally restricted by the number and the location of trial 
sites (Ramirez-Villegas et al., 2020; Witcombe et al., 1998) and number 
of seasons (Chenu, 2015), which limits the spatio-temporal reach of the 
GxExM analysis (Kholová et al., 2020). In contrast, an in-silico analysis 
via crop simulation modeling can help us overcome these spatial and 
temporal limitations (Cooper et al., 2020; Heinemann et al., 2015; 
Ramirez-Villegas et al., 2020). 

Various approaches allow to classify the crop production regions for 
breeding purposes within the concept of target populations of environ-
ments (TPE; Comstock, 1977). Yield-based methods have been in use for 
decades to reduce GxE interaction (Cooper and Woodruff, 1993). The 
concept of mega-environments (MEs, Rajaram et al., 1994) developed by 
CIMMYT to target wheat germplasm development has used similarities 
in environmental variables and cropping system requirements to cluster 
regions. Crop simulations have also been used to successfully charac-
terize TPEs as they can classify stress patterns with regards to frequency 
or intensity within a geographical space (e.g. Battisti and Sentelhas, 
2019; Chapman et al., 2000; Chauhan and Rachaputi, 2014; Chenu 
et al., 2011; Cooper et al., 1997; Hajjarpoor et al., 2018b; Heinemann 
et al., 2015; Kholová et al., 2013; Sciarresi et al., 2019). Here, we hy-
pothesize that a yield gap analysis using crop simulation (including the 
estimation of non-water limited potential yield, water-limited potential 
yield, and the gap between actual and potential yield), combined with 
the analysis of soil and environmental factors, could help divide the 
entire production area into sub-units reflecting potential production and 
environmental constraint, within which the degree of GxExM in-
teractions would be smaller. This approach would also provide a 
quantitative estimate to compare the food production capacity for a 
given area with the actual production (van Wart et al., 2013a). It would 
then offers a critical basis for crop improvement programs at regional, 
national and global scale (Chauhan and Rachaputi, 2014; George, 2014; 
Hajjarpoor et al., 2018a, 2018b; Pradhan et al., 2015; Soltani et al., 
2016; Vadez et al., 2017). 

Groundnut cultivation in India primarily relies on rainfed agricul-
tural practices and yields fluctuate vastly by season and region (Rath-
nakumar et al., 2013). Since the establishment of All India Coordinated 
Research Project (AICRP) in 1967 and subsequently, with the estab-
lishment of a separate project for groundnut (AICRP-Groundnut) in 
1992, groundnut growing areas in India have been divided into five 
production zones. This zonation was based on a few criteria (Rathna-
kumar et al., 2013), like the length of the growing period across all lo-
cations, which has changed by now in many locations (Mausch and 
Bantilan, 2012). In relation to this, Witcombe et al. (1998) discussed the 
problem that experimental stations (AICRP centers) were not located in 
the main production areas and argued for an increasing the number of 

zones in pearl millet, sorghum, chickpea, and groundnut. Some work has 
characterized Indian crop production systems for post-rainy sorghum 
(Kholová et al., 2013 and Ronaki et al. under review) and post-rainy 
chickpea (Hajjarpoor et al., 2018b) and showed the need for an up-
date on traditional zonation. This is our hypothesis regarding the clas-
sical zonation of groundnut production in India. 

Therefore, the overall objective was to study the groundnut pro-
duction areas in India to assess the validity of the classical zonation and 
possibly to re-define these production environments into homogeneous 
production units (HPUs) with a higher degree of similarities in order to 
guide crop improvement programs through GxExM complexities. Spe-
cifically, we intended to i) analyze the main production limitations using 
yield gap approach to map and dissect the reasons for groundnut yield 
variability in India, ii) classify the major production districts into HPUs 
based on similarities found in the yield gap analysis together with geo- 
biophysical indicators, and iii) test whether the variation in GxExM in-
teractions, proxied by a coefficient of variation among districts of a 
given HPU, is reduced by comparing across years and districts within 
each HPU rather than in the entire groundnut production area. 

2. Materials and methods 

2.1. Overview 

A modeling approach was used to quantify region-specific con-
straints and the yield gaps limiting groundnut productivity in India. The 
main production areas were identified utilizing official source of district- 
level information on agricultural production and satellite imagery. The 
basic information on district variability in soil properties, local agro-
nomic practices and preferred cultivars were gathered by personal 
communication with national centers dealing with groundnut crop 
improvement. To compensate for erratic coverage and low quality of 
observed weather information across the focus area, we utilized 30 years 
of gridded weather data as a substitute. The SSM-iLegume model was 
used to simulate groundnut productivity across the major groundnut 
producing districts. The outputs of the model have been used to calcu-
late the district-wise production potential, water-deficit index and the 
associated yield gap. Finally, the observed geo-biophysical properties of 
the districts and the simulation results of yield gap analysis were used in 
a combined analysis to cluster groundnut-growing districts into units 
with higher degrees of similarities; i.e. homogeneous production units 
(HPUs). 

2.2. Definition of target groundnut production area 

Time-series of district-level groundnut cultivated area (ha/district), 
production (kg/district), yield (kg ha− 1) across the three cultivation 
seasons (rainy, post-rainy, summer season) were obtained from the 
District Level Database (DLD) web tool (http://data.icrisat.org/dld/i 
ndex.html) developed for Indian agriculture and allied sectors. Fifteen 
years of data from 2001 to 2015 were considered to capture the seasonal 
variability in groundnut production. This time frame data was consid-
ered sufficient to account for year-to-year variability in actual yield due 
to weather, especially in harsh rainfed environments (Grassini et al., 
2015) while avoiding the bias due to the previous technological 
time-trend (van Ittersum et al., 2013). As 82 % of groundnut was found 
to be cultivated in the rainy season ("Kharif"), that season was the focus 
of the simulation study. A selection of the districts encompassing 80 % of 
the production area was used to define the main groundnut production 
tract in India. In addition, the districts identified by satellite imagery 
during the rainy season of 2013–2014 (http://maps.icrisat.org 
/rs/maps/index.html) as well as districts showing an increasing trend 
in groundnut cultivation area (i.e., minimum 1000 ha of cultivated area 
increase between 2011–2015) were added to the main groundnut pro-
duction tract to be analyzed in the study. The information on the pro-
portion and mode of the irrigated area during the rainy season was 
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obtained from ICAR-Central Research Institute for Dryland Agriculture 
(Raju et al., 2018). 

2.3. Model set-up and simulations 

2.3.1. Model description and evaluation 
To simulate groundnut growth, development and yield formation, 

the SSM-iLegume model of Soltani and Sinclair, 2012, 2011) was used. 
This model is a simple mechanistic model that is suited for geospatial 
assessment according to specific requirements (see Sinclair et al., 2020; 
van Ittersum et al., 2013). It has also been shown to be highly reliable in 
studies encompassing the wide range of environments for various 
legume species including chickpea (Hajjarpoor et al., 2018b; Soltani and 
Sinclair, 2011; Vadez et al., 2013, 2012), soybean (Sinclair et al., 2014), 
bean (Marrou et al., 2014), lentil (Ghanem et al., 2015) and groundnut 
(Vadez et al., 2016, 2017). The model uses daily time steps to arbitrate 
crop, weather and soil information and has the flexibility to simulate 
management practices like sowing date and planting density. 

All the genotype-specific coefficients required by the model were 
calculated from published results describing the development, growth, 
and yield of groundnut (Halilou et al., 2016; Singh et al., 2012; Vadez 
et al., 2017, 2016). The parameters required to define the crop were 
those of standard Spanish-type and Virginia-type cultivars. To check the 
robustness of the model under typical cultivation conditions in India, 
linear regression function was fitted on pod yield data predicted by 
model vs measured in 25 trials across India (Table 1). 

2.3.2. Soil data 
Gridded soil data at a spatial resolution of 250 m are available for 

India (www.isric.org) included only generic soil profiles that did not 
sufficiently represent the district-wise groundnut. Rather than using 
gridded soil data, we chose to collect information on common soil types 
and effective rooting depths typical for groundnut production of each 
district by consulting the local experts (details in Table 2). We ran the 
model for all types of soil if we received different information from 
expert consultation. 

2.3.3. Weather data 
A major limitation in attempting relevant simulations across a wide 

geographical area was assembling a weather database of sufficient 
geographical resolution (Mourtzinis et al., 2017; Vadez et al., 2017; Van 
Wart et al., 2015). This is also the case of India as there is a general lack 
of quality weather information (Hajjarpoor et al., 2018b), further 
complicated by the fact that the databases are not open-source (http:// 
dsp.imdpune.gov.in/). A possible surrogate for regions where weather 
station network is irregular is the use of gridded weather data (GWD). 
For that purpose, several sets of GWD were tested for its suitability for 
this research exercise (i.e., IMD (Indian meteorological department), 
AgMERRA (both 0.5◦x0.5◦ and 1◦x1◦ resolution, Ruane et al. (2015)), 
NASAPOWER (https://power.larc.nasa.gov/) and MarkSim (Jones 
et al., 2002; Jones and Thornton, 2000) by comparing them to available 
observed weather data (24 weather stations; Tmin, Tmax, rainfall 
quantity and distribution). This is crucial because, when generating 
long-term weather data with global spatial coverage, sources of error 
can be incorporated into synthetic data that can result in a degree of 
uncertainty when estimating crop yield and its variability over time 
(Mourtzinis et al., 2017; Van Wart et al., 2015). The correlation coeffi-
cient and normalized root mean square of error (RMSEn) were computed 
to evaluate the degree of agreement between these weather data sour-
ces. As each GWD predicted some parameters better than others, final 
test of met-data suitability was done by comparison of groundnut yield 
and biomass simulated using GWD sources against observed weather 

Table 1 
Experimental trials used for model evaluation.  

Location Latitude Year Sowing date Season Treatmenta Ref 

ICRISAT 17.8 2008− 09 10-December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2008− 09 10- December Post-rainy ww Vadez et al. (2016) 
ICRISAT 17.8 2009− 10 12- December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2009− 10 12- December Post-rainy ww Vadez et al. (2016) 
ICRISAT 17.8 2010− 11 8- December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2010− 11 8- December Post-rainy ww Vadez et al. (2016) 
ICRISAT 17.5 2011 28-July Rainy ww HLOGVT trial 
ICRISAT 17.8 2011− 12 16- December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2011− 12 16- December Post-rainy ww Vadez et al. (2016) 
ICRISAT 17.5 2012 4- July Rainy ww HLOGVT trial 
Junagadh Univ. 21.5 2012 7-June Rainy ws HLOGVT trial 
DGR, Junagadh 21.4 2012 30-June Rainy ws HLOGVT trial 
ICRISAT 17.5 2012 4- July Rainy ws HLOGVT trial 
ICRISAT 17.5 2012− 13 12- December Post-rainy ws HLOGVT trial 
ICRISAT 17.5 2012− 13 12- December Post-rainy ww HLOGVT trial 
ICRISAT 17.8 2012− 13 12- December Post-rainy ws Unpublished data 
ICRISAT 17.8 2012− 13 13- December Post-rainy ww Unpublished data 
ICRISAT 17.8 2012− 13 13- December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2012− 13 13- December Post-rainy ww Vadez et al. (2016) 
DGR, Junagadh 21.4 2013 29-January Post-rainy ww HLOGVT trial 
DGR, Junagadh 21.4 2013 28- January Post-rainy ws HLOGVT trial 
ICRISAT 17.8 2013− 14 15- December Post-rainy ws Vadez et al. (2016) 
ICRISAT 17.8 2013− 14 15- December Post-rainy ww Vadez et al. (2016) 
ICRISAT 17.8 2014 20-August Rainy ws Unpublished data 
ICRISAT 17.8 2014 21-August Rainy ww Unpublished data  

a ws, water stress; ww, well-watered. 

Table 2 
The range of soil characteristics used for simulations.  

Character Condition 

Volumetric extractable Water Content (VWC) 0.09 to 0.13 cm cm− 1 

Soil lower limit (LL) 0.16 to 0.25 cm cm− 1 

Soil saturation limit (SAT) 0.40 to 0.45 cm cm− 1 

Soil drained upper limit (DUL) 0.25 to 0.38 cm cm− 1 

Soil albedo 0.13 to 0.14 
Curve number* 73 to 82 
Soil depth 60 to 120 cm 
Initial soil nitrogen 2 g N m− 2  

* Daily runoff (RUNOF, mm) is calculated using a simplified curve number 
procedure developed by scientists at USDA-Soil Conservation Service (SCS). In 
the curve number method, daily surface runoff is calculated as a function of daily 
rainfall (RAIN, mm) and a soil retention parameter (From Soltani and Sinclair, 
2012). 
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information (Suppl. Fig. S1). Hajjarpoor et al. (2018b) used the same 
approach to avoid restrictions imposed by limited weather data in a 
simulation study of chickpea across India. However, each data source 
has some advantages and disadvantages according to the area and pa-
rameters (Van Wart et al., 2015). As the yield predictions based on 
observed weather information were the most correlated to the simula-
tion that used AgMERRA 0.5◦x0.5◦ data (RMSE = 55 g m− 2, RMSEn = 17 
%), the modeling analysis of this study was conducted with this GWD. 

2.3.4. Management 
In the simulations, a sowing density of 33 plants m− 2 was used, as per 

the recommended practices for groundnut cultivation in India (Annual 
Report, 2015-16). Being capable of fixing atmospheric nitrogen through 
rhizobial symbiosis, groundnut crop requires only a small amount of 
basal N application for establishment prior to the formation of nodules. 
This requirement was accounted for in simulations by reflecting the 
recommended basal fertilizer dose of 2 g N m− 2 (Trivedi, 2009) as the 
initial soil nitrogen content. A district-specific sowing date was set for 
the first date in the rainy season determined sowing window. The 
sowing windows, which were taken from expert consultation, varied 
between 10–80 days. The earliest sowing window starts on 1st May in the 
North (in Rajasthan) and the latest 1st July in the South (in Andhra 
Pradesh). The criteria for sowing was met when a minimum of 20 mm 
water in the soil profile had accumulated since the beginning of sowing 
window. As the dry season precedes groundnut sowing, it was also 
assumed that there was little or no transpirable water in the soil profile 
at the time the model was set to search for the sowing date. This is a valid 
assumption since around 80 % of annual rainfall is received over the 
Indian land grid points (India taken as one unit) during Kharif months 
from June to September (Parthasarathy et al., 1995), and the groundnut 
crop remains after the end of the rain, using remaining soil water. In 
irrigation and rainfed conditions, respectively, the model could not have 
sown in about 3.5 and 12 percent of the simulation’s year-soil-cultivar 
combinations in the typical sowing window. 

2.3.5. Simulation setup 
Simulations were run using 30 years of gridded weather data to cover 

the major groundnut cropping areas. The simulations provided an esti-
mate of growth and development parameters as well as pod yields. To 
assess the yield losses due to water deficit, two sets of simulations were 
run:  

1) Potential yield (Yp); the maximum yield of a crop cultivar grown in 
optimal water and nutrient supply without biotic stress (Lobell et al., 
2009; van Ittersum et al., 2013).  

2) Water-limited potential yield (Yw); reflects yield under rainfed 
cropping conditions without any supplementary irrigation (van 
Ittersum et al., 2013). 

Both scenarios assumed identical agronomic practices and weather 
input. However, in the first scenario, the model was set to irrigate the 
simulated crop whenever the soil dried to a specified level, therefore 
providing yield predictions of a fully irrigated crop. The model used the 
fraction of transpirable soil water (FTSW) threshold of 0.50 to trigger 
irrigation. The same approach was used by Vadez et al. (2017). 

2.4. Model outputs and analysis 

2.4.1. Drought and yield gaps 
Observed and simulated geo-biophysical properties of each district 

described above were then analyzed in different steps: 
The water deficit index (WDI), defined as the probable yield loss 

percentage due to water deficit for each district, were computed as 
follow:  

WDI (%) = (Yp–Yw) / Yp × 100                                                        (1) 

The yield gap (Yg) was estimated using the weighted potential yield 
(Ywp), calculated according to the information on the proportion of the 
irrigated and rainfed area of each district.  

Ywp,i = [(Yw,i × Arainfed, i) + (Ypi, i × Airrigated, i)] / (Arainfed, i + Airrigated, i)(2) 

Where, Ywp,i is the weighted potential yield, Yw,i is the water-limited 
potential yield, Yp is potential yield, Arainfed, i is the total rainfed culti-
vated area of groundnut and Airrigated, i is the total irrigated cultivated 
area of groundnut, all in district i. 

Consequently, Yg in district i was the difference between the 
weighted potential yield (Ywp, Eq. 2) and average farmers yield (actual 
yield; Ya):  

Yg, i = Ywp, i – Ya, i                                                                         (3) 

Here it should be noted that there was no year-to-year calculation of 
the yield gap within each district. While we had yearly production data, 
we had only gridded weather data, which represent the weather in any 
given site in a stochastic manner, not the exact weather of each year. 
Therefore, only an average value of yield gap could be produced for each 
district. This is also consistent with the literature (van Ittersum et al., 
2013; Van Wart et al., 2013b; Lobell et al., 2009), where the concept of 
yield gap is usually expressed as average and year-to-year variation is 
often considered less useful. In GYGA protocol (www.yieldgap.org), a 
median yield is considered more representative than an arithmetic 
average. 

2.4.2. Principal component analysis (PCA) and clustering 
Agronomic outputs from the model, together with observed geo- 

biophysical indicators and estimates of the yield potentials and gaps 
gave a total of approximately 60 indicators to characterize each district. 
This was the raw information that served as a basis for principal 
component analysis (PCA) and clustering. However, a number of these 
indicators were tightly correlated to one another, and doing clustering 
among them would have run the risk of over-representing some vari-
ables. Therefore, a correlation analysis was carried out to select only 
those that were not correlated. After the cutoff, 17 non-correlated in-
dicators remained, including the geography, climate variables, man-
agement and crop characteristics in both irrigated and rainfed 
conditions, in addition to Ywp and Ya (Table 3). These were analyzed by 
PCA (R software v.3.6.1). Loadings of six components (explaining >85 
% of dataset variability) for each simulation unit were used to define the 
homogeneous production units (similarly in Chauhan and Rachaputi, 
2014 and Hajjarpoor et al., 2018b). 

The NbClust Package (Pašiaková et al., 2013) was used to determine 
the most appropriate number of clusters for the data set. According to 

Table 3 
List of non-correlated variablesa used in the PCA.  

Latitude (degrees) 
Longitude (degrees) 
Sowing date day of the year (DOY) in rainfed condition 
Weighted minimum temperature (◦C) of rainfed and irrigated conditions 
Sum of radiation (MJ m− 2) during the growing season in irrigated condition 
Sum of radiation (MJ m− 2) during the growing season in rainfed condition 
Cumulative seasonal rainfall (mm) in irrigated condition 
Evapotranspiration (ET, mm) during the growing season in rainfed condition 
Evaporation (E, mm) during the growing season in irrigated condition 
Evaporation (E, mm) during the growing season in rainfed condition 
Transpiration (Tr, mm) during the growing season in irrigated condition 
E/ET ratio during the growing season in irrigated condition 
Weighted E/ET ratio of rainfed and irrigated conditions 
Growing season period (d) in irrigated condition 
Total biomass (kg ha− 1) in irrigated condition 
Weighted potential yield (Ywp, kg ha− 1) 
Actual yield (Ya, kg ha− 1)  

a Not being among non-correlated variables does not indicate less importance 
of an indicator. 
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the majority rule, out of the 30 indices considered by NbClust, the op-
timum number of clusters was seven (distance = ’euclidean’, min.nc =
3, max.nc = 9, method = ’centroid’). Each of these seven clusters, 
therefore, encompasses the districts with comparatively higher simi-
larities in the loaded geo-biophysical properties (HPUs). 

We have also confirmed significant differences in variables of in-
terest between separate clusters using one-way ANOVA (showed in 
Suppl. Table S1). In this case, HPUs were defined as treatment and 
districts as replication in an unbalanced completely randomized design. 

2.4.3. GxExM interactions 
Actual and simulated pod yield data across years and districts, as 

well as water deficit and yield gap percentages in each district, were 
used to construct boxplots to visualize the distributions within each HPU 
and within the entire groundnut production area. For those with year-to- 
year variation, including potential yield (Yp), water-limited potential 
yield (Yw), and actual yield (Ya), the coefficient of variation (CV) was 
measured to permit comparisons of variance among each HPU and with 
the whole groundnut production area. In other words, the CV% were 
used as an estimate of the degree of GxExM interactions and then to 
compare Yp, Yw, and Ya. Later these comparisons were used as a way to 

pinpoint where GxExM interactions remained or where these had been 
reduced in comparison to the entire area. The inverse distance weighted 
(IDW) technique was used to interpolate variation (CV%) of actual and 
simulated pod yield across India. The results were visualized using 
ArcMap software v.10.7, and discussed further. Variations for yield gap 
(Yg) and water deficit Index (WDI) among districts within each HPU 
were also shown via boxplot, however, as they were estimated based on 
averages, there was no year-to-year variation (CV%). The complete 
simulated dataset is presented as Suppl. Table S1, where range of vari-
ation for the different traits in each HPU and across the whole India are 
shown, including analysis of variance among HPU’s for each trait, as a 
qualitative estimate of GxExM interactions and their differences among 
HPUs. 

3. Results 

3.1. Focal season and area of study, AICRP centers distribution and 
actual yield (Ya) 

Groundnut is cultivated in around 6 M ha in about 400 districts 
throughout India. While according to the official data, a decreasing 

Fig. 1. Location of groundnut AICRP centers across India. Green-highlighted districts account for 80 % of groundnut production area in India according to official 
data and orange dots showing the location of groundnut fields according to satellite imagery data of 2013-14. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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trend in cultivated area has been seen in the recent decade, national 
groundnut production has stayed around 6− 7 M tons due to slight yield 
increases. Among all districts, 40 districts accounted for 80 % of the total 
groundnut cropping area within the 2001–2015 timeframe. However, 
19 out of 31 testing sites (5 main and 26 collaborative and voluntary, 
AICRP centers) were not located within the identified major groundnut 
production areas (Fig. 1). The current analysis was focused on the rainy 
season of these 40 districts plus 28 adjacent districts, whose inclusion 
was motivated by satellite imagery data and observed increasing trends 
in districts. Therefore, our analysis finally encompassed 68 districts 
covering ~85 % of the total groundnut cropping area (~5.1 M ha pro-
ducing ~5.2 M tons, which means an actual yield of ~1 tons of pod 
ha− 1) in the base timeframe (2001–2015). Considering district levels 
means in the timeframe, the highest actual yields (Ya) in the rainy season 
were recorded in Tamilnadu (Villupuram with 2080 kg ha− 1) and 
Rajasthan (Bikaner with 2060 kg ha-1 and Churu with 1950 kg ha− 1) and 
the lowest yields were associated with Karnataka (Bijapur with 435 kg 
ha− 1) and Andhra Pradesh (Anantapur with 440 kg ha− 1). 

3.2. Model evaluation 

The statistical indices for evaluation of simulated and observed 
values showed high accuracy for pod yield with the estimated RMSE of 
53 g m− 2 (16 % as normalized RMSE). The model also showed high 
sensitivity to a wide range of pod yields between 174 and 576 g m− 2 of 
Ya (Fig. 2), and particular sensitivity to water availability, that is one of 
the important factors affecting yield in groundnut. For further evalua-
tion of the model, check Vadez et al. (2017). 

3.3. Potential production and probable effect of water deficit 

Across India, groundnut fields received variable amounts of irriga-
tion and with a variable frequency depending on the topography and 
rainfall pattern of the region, access to water, financial capacity and 
infrastructure. The output of the model in optimal water and nutrient 
supply condition without any biotic stress showed an average potential 
yield (Yp) of 4750 kg ha− 1 (maximum of 5085 kg ha− 1 in Namakkal, 
Tamilnadu, and minimum of 4330 kg ha− 1 in Bharuch, Gujarat) with 
commonly used agronomic practices in each district. Model output 
under rainfed conditions gave an average water-limited potential yield 
(Yw) of 2820 kg ha− 1 (maximum of 4620 kg ha− 1 in Haveri, Karnataka, 

and minimum of 300 kg ha− 1 in Jaisalmer and Bikaner, Rajasthan, 
although there may be no rainfed cultivation in Rajasthan). 

Across India, the simulated yield loss caused by water deficit was 
around 2000 kg ha− 1 on average (giving a water-deficit index WDI≈40 
%, Fig. 3). The lowest risk of water deficit occurred in coastal areas like 
Haveri and Dharwad in Karnataka, which receive adequate rainfall and 
proper seasonal distribution. Furthermore, these areas are characteristic 
with deep soils with relatively high water holding capacity. Neverthe-
less, WDI was more than 90 % in some districts of Rajasthan (e.g., Jai-
salmer, Bikaner). Simply, North regions showed higher WDI indicating a 
severe potential effect of drought (Rajasthan and some part of Haryana), 
while WDI was medium in West and South of India (Gujarat, AP, 
Telangana, Karnataka, and Tamilnadu) and mild in coastal and central 
areas (Maharashtra and some part of Karnataka and AP) (Fig. 3). WDI is 
presented here as a simple indicator of the potential effect of water 
deficit during the season, assuming no irrigation, and without simu-
lating its timing. 

3.4. Yield gap (Yg) and production limitations 

According to the irrigation portion in each district, weighted po-
tential yield (Ywp) was estimated to be 3610 kg ha− 1 on average across 
all districts with a range among districts of 2080 - 4990 kg ha− 1. The 
yield gap (Yg) was calculated as the difference between Ywp and Ya in 
each district. The Yg across all districts averaged ~2535 kg ha− 1 and 
varied between 890 and 3875 kg ha− 1 (i.e. 36–88% of Ywp with a mean 
Yg of ~70 %). It should mention that, while potential yields and Ya were 
respectively simulated and observed from 30 years and 15 years of data, 
Yg values were just one per district. 

The spatial distribution of Ywp and Yg is shown in Fig. 4. This map 
shows that only a few districts had a small Yg, indicative that recom-
mended management practices were used by farmers in these districts, 
like in Gujarat, a state famed for groundnut production. The lowest Yg 
was observed in its districts Banas Kantha and Kachchh with 890 and 
925 kg ha− 1, respectively (equal to 36 and 39 % of Ywp, respectively). 
However, the lowest Ywp was obtained in the same state in Rajkot with 
2085 kg ha− 1. Some of Tamilnadu’s districts in the South also showed 
low Yg, such as Salem and Namakkal, with 945 and 960 kg ha− 1, 
respectively (equal to 36 and 37 % of Ywp, respectively). 

Comparing Figs. 3 and 4 highlights districts in northern regions with 
a high Yg, where severe water deficit is possible, whereas the highest Ywp 
was also obtained in this area in Sikar and Jodhpur, with respectively 
4990 and 4965 kg ha− 1, as around 90 % of groundnut production in this 
area is under irrigation. Even with irrigation, part of the specific dif-
ference between actual and attainable yield (Fig. 4) can be explained by 
the effect of water deficit (compare with Fig. 3), possibly due to the 
mismanagement of available water. On the contrary, some coastal and 
central regions also showed high Yg (Fig. 4), although these gaps were 
not drought-related (Fig. 3), suggesting a role for constraints like biotic 
stress and/or poor agronomy. Accordingly, the highest Yg was visible in 
Haveri and Bagalkot in Karnataka, respectively, with 3875 and 3750 kg 
ha− 1 (equal to 83 and 84 % as a percentage of Ywp) and the highest Yg in 
percentage occurred in Mahoba, UP and Bijapur, Karnataka (both 88 %, 
equal to 3315 and 3135 kg ha− 1, respectively). 

3.5. Homogeneous production units (HPUs) and their characteristics 

The loadings of main PCs specific for each district were clustered into 
seven bio-geophysical units, termed homogeneous groundnut produc-
tion units (HPUs, Fig. 5). The number of clusters was optimized ac-
cording to the majority rule of 30 indices, provided in NbClust Package 
(Pašiaková et al., 2013), along with qualitative interaction with 
breeders. The details of each HPU are summarized in Suppl. Table S1, 
visualized in Fig. 5 and the projected production of these units is 
captured in Fig. 6. PCA biplot and dendogram graphs were added as 
Supplementary material (Suppl. Fig. S2 and S3). 

Fig. 2. Relationship between simulated and observed pod yield of 25 experi-
mental trials in three different sites, different water regimes and different 
seasons across India. Black lines show 25 % upper and lower of red 1:1 line. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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HPU1 - visualized in red, included eight districts of Rajasthan as 
well as two districts of Haryana, northern India (~5 % of investigated 
area and ~8 % of production share - ~90 % irrigated - ~63 % Yg). The 
rainfed groundnut cultivation of this HPU could be mostly affected by 
drought (73 % potential yield reduction). The yield potential was the 
highest of all HPUs, as a result of the long growing season and high 
cumulative radiation. Also, a low ratio of evaporation by evapotrans-
piration (E/ET ratio) was observed, suggestive of higher water use ef-
ficiency in this HPU. Weather data indicated a frequent occurrence of 
high temperatures during the growing season (higher than 40 ◦C). 

HPU2 - visualized in green, included 13 districts of Gujarat, west-
ern India and three districts in the central part of India (~38 % of 
investigated area and ~46 % of production share - ~11 % irrigated - 
~56 % Yg). The low yield gap in this HPU indicated appropriate 

management practices although the yield potential appeared to be 
limited by low-radiation (Suppl. Table S1). Optimum temperatures 
during the growing season lead to a short growing season. 

HPU3 - visualized in light green, included 16 districts in a large 
area of central India from Maharastra, AP, UP, Karnataka, MP and 
Gujarat (~7% of investigated area and ~8% of production share - ~38 
% irrigated - ~80 % Yg) also experienced radiation-limitation produc-
tion like HPU2 but had a relatively high yield gap, which indicated 
mismanagement and the likely effect of biotic stresses in general 
(possible associated with high rainfall). 

HPU4 - visualized in blue, included two coastal districts of Maha-
rashtra and two of Karnataka (~3% of investigated area and ~4% of 
production share - ~12 % irrigated - ~78 % Yg). It was characterized by 
the highest rainfall and a high yield gap. Production could be 

Fig. 3. Distribution of water deficit effects on 
groundnut production in India. The diameter of 
the red and blue pie charts indicates the simu-
lated yield potential (Yp). The blue proportion 
reflects the water-limited yield potential (Yw) 
and the red segment reflects potential yield loss 
due to water deficit. Green-highlighted districts 
encompass 80 % of the groundnut production 
area in India. (For interpretation of the refer-
ences to colour in this figure legend, the reader 
is referred to the web version of this article.)   
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constrained by biotic stresses, poor input usage and agronomy. 
HPU5 - visualized in yellow, included six coastal districts of 

Maharashtra and three of Karnataka (~10 % of investigated area and 7 
% of production share - ~24 % irrigated - ~81 % Yg). It had the highest 
yield gap. The occurrence of low temperatures likely contributed to 
delayed phenological development in this HPU. 

HPU6 - visualized in light orange, included four districts of Andhra 
Pradesh, South of India and one of Karnataka (~30 % of investigated 
area and 18 % of production share - ~9% irrigated - ~78 % Yg) is ranked 
second by cultivated area after HPU2. It was characterized by the lowest 
actual yield and the lowest potential comparing to other HPUs. Drought 
was an issue in this HPU. Radiation constrained yield in this HPU but 
potential yield also could be, at least partially, limited by the cultivar 
production potential. 

HPU7 - visualized in orange, included five districts of Tamilnadu, 
southern India and two of Karnataka (~7% of investigated area and 10 
% of production share - ~33 % irrigated - ~55 % Yg). Its characteristics 
were the lowest yield gap among other HPUs and high water use effi-
ciency (lowest E/ET ratio), suggesting adequate management practices. 

3.6. Exploitable production gap 

While proper estimations are needed to determine economic yield 
based on input and output prices (Fischer, 2015; van Dijk et al., 2017), 
approaching 70–85 % of potential yield is typically considered possible 
under good farm management (Fischer et al., 2014; Lobell et al., 2009; 
Timsina et al., 2018; van Ittersum et al., 2013). In major groundnut 
production regions of India, closing yield gaps to 80 % of Ywp would 

Fig. 4. Yield gap distribution across the main 
groundnut production tract in India. Pie chart 
diameter indicates weighted potential yield ac-
cording to the irrigation proportion (Ywp), 
which takes into account common irrigation 
practices at the district level. The green 
segment of each pie chart indicates actual yield 
(Ya) and the yellow portion indicates the yield 
gap (Yg). Green-highlighted districts encompass 
80 % of the groundnut production area in India. 
(For interpretation of the references to colour in 
this figure legend, the reader is referred to the 
web version of this article.)   
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mean a production increase of ~8 M tons across seven major HPUs, 
which is called exploitable production gap (Fig. 6). The production ratio 
in Fig. 6 is a ratio of projected and current production in each HPU, 
which take into account both the magnitude of the yield gap, and the 
area under cultivation in the same HPU. In that way, result showed a low 
production ratio in HPU2, but a high exploitable production gap, 
indicative of low Yg but a large area under groundnut cultivation. On the 
contrary, a high production ratio and a high exploitable production gap 
in HPU6 indicated a high Yg combined to a large area. 

3.7. GxExM interactions 

Interpolating the coefficient of simulated yield variations across 
years within India showed that Yp was very homogenous (Fig. 7a) 

whereas temporal variation in Yw was high (Fig. 7b) in some areas with 
medium to low average seasonal rainfall. The stark contrast between Yp 
and Yw was explained by irrigation practices, which is plotted as an 
interpolated Ywp coefficient of variation map (Fig. 7c). The latter 
revealed that production potential could fluctuate year to year espe-
cially in areas with less irrigation water availability and a medium 
amount of rainfall during the season, such as Gujarat in the West (HPU2) 
and Andhra Pradesh in the South (HPU6) where the distribution of 
rainfall is also a determinant. Large year-to-year variations were visible 
for Ya (Fig. 7d), except in the North where groundnut was mostly irri-
gated or coastal areas of Karnataka with high rainfall, and then where 
the variation in Ya data looked like the variation in the Yp data. 

Spatio-temporal variations in pod yield across years and districts 
within each HPUs, and the entire groundnut production area was 

Fig. 5. Results of the cluster analysis grouping 
primary groundnut producing districts into 
seven Homogenous Production Units (HPUs) 
(denoted by color), according to similarities in 
geo-biophysical characteristics, observed yield 
productions, and model output. Highlighted 
districts encompass more than 85 % of the 
groundnut production area in India. Inset shows 
the traditional groundnut zonation visualiza-
tion, cited in Witcombe et al. (1998). Colors 
have no meaning other than to distinguish 
HPUs.   
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visualized using boxplots (Fig. 8). Under irrigation, the simulated yield 
for India during years and districts varied from 2655 to 5780 kg ha− 1, 
and as expected, the variation was low (CV = 7.5 %). On the contrary, 
under rainfed conditions, the simulated yield during years and districts 
for India varied from 10 to 5550 kg ha− 1 with high variance (CV = 40 
%). Despite the fact that a smaller number of districts were used to 
calculate these CVs in each HPU, the variation in water-limited potential 
yield within HPU was less than or close to values for the whole of India 
(13 %<CV < 45 %). The exception was HPU 1 with high variation in 
water-limited potential yield (CV = 83 %), which is consistent with the 
strong negative effect of drought in this HPU (Fig. 8). By contrast, actual 
yield ranged between 70 and 3180 kg ha− 1 during years and districts 
with a larger CV range of 30–56% within HPUs. The CV of actual yield 
for India was 56 % and while without mentioning the outliers (Fig. 8, 
boxplots), variation within HPU was reduced considerably with the 
exception of HPU 7 (CV = 51 %). As the estimations of the yield gap and 
WDI were based on averages, there was no year-to-year variation (CV%) 
for them; however, variation for the yield gap and WDI among districts 
within each HPU are shown in Fig. 8. 

4. Discussion 

Large yield gaps in groundnut production across India were shown, 
with large variations by district. Drought had a major yield-reducing 
effect, which varied extensively among districts. These results high-
lighted the need to subdivide large production environments into 
smaller subdomains. Clustering of agronomic modeling output together 
with geo-biophysical variables led to the identification of seven HPUs, 
which generally showed reduced GxExM interactions and well-defined 
production-limiting constraints. Following proper agronomy practices, 
India could almost triple groundnut production by reaching attainable 
yield (80 % of Ywp) and filling the exploitable production gap. These 
results emphasized the importance of identifying the nature of the target 
population of environments (TPEs) in improving breeding programs. A 
summary of findings is provided in Table 4 and Suppl. Table S2. 

4.1. Definition of HPUs and its implications 

Yield suffered large spatial variability under water deficit (Figs. 3 
and 4). In addition, temporal variation in yield was high (Fig. 7) and 
depended on rainfall pattern and amount. These high spatio-temporal 

variations highlighted the need for subdividing large production envi-
ronments, spanning large temperature or precipitation gradients, into 
smaller subdomains (Sciarresi et al., 2019) that offer a better resolution 
of factors affecting yield. Varying patterns of water deficit led indeed to 
varying degrees of yield reductions, as also found in different crops and 
regions (Battisti and Sentelhas, 2019; Chenu et al., 2011; Heinemann 
et al., 2015; Kholová et al., 2013). The stress patterns, as classified by the 
model outputs, also differed in frequency across the HPUs, suggesting 
that there may be a need for different breeding/agronomic packages in 
each target population of environment (Sinclair et al., 2020) (Table 4). 
This improved our understanding of the nature of the TPEs, and this is a 
critical component of improving the efficiency of a multi-environment 
testing program (Cooper and Byth, 1996). Besides, it allows optimiza-
tion of multi-environment testing sites distribution, to avoids re-
dundancies or over-representation (See section 4.4). In short, the 
analysis that was done in this work helps to avoid testing the genotypes 
in less relevant sites and selection of genotypes in abnormal years which 
do not sufficiently represent the most frequent environmental scenarios 
occurring at the particular TPE (Kholová et al., 2020). While finding the 
required number of HPUs can be made to vary according to the user and 
the index used, a wide variety of indices have been proposed to find the 
optimal number of clusters (Pašiaková et al., 2013). However, selection 
of the seven HPUs (Fig. 5) was found optimal, although it was not the 
only possible number. The choice of seven HPUs in this study was both 
the result of unbiased quantitative analysis, and interaction and 
consensus with the breeding community of Groundnut Network 
Group-Asia (GNG-A). 

Overall there were major changes in our proposed zonation, con-
firming our initial hypothesis. According to the defined HPUs, the 
border between the classical zone I and II shifted to lower latitude, so 
that no more districts of Rajasthan is in zone II. It can be due to 
increasing water deficit in the North as HPU1 is characterized by it. 
Classical zone III expanded in the center of India and formed HPU3 with 
a high yield gap and likely effect of biotic stresses. While there was not 
enough groundnut production area in classical Zone IV to reach the 
threshold for this kind of analysis but several HPUs (HPUs 4, 5, 6, 7, and 
one part of HPU3) were observed in classical zone V with different 
constraints, e.g. drought effects, rainfall amount, radiation and defi-
nitely different yield gaps because of different agronomy practices and 
lack of a proper genotype in some part of this zone (see Suppl. Fig. S4). 
As more than half of the groundnut area in India was located in this 
heterogeneous area, it could also be a good objective for targeted 
breeding programs. 

4.2. The particular case of drought/heat in HPU1, 2 and 6 

Drought stress is often associated with high temperatures in semi- 
arid production environments that together may have compounding 
adverse effects on groundnut productivity (Janila et al., 2016). Though 
groundnut vegetative growth is well adapted to high temperatures (Vara 
Prasad et al., 2000a, 2000b), reproductive processes are sensitive 
(Craufurd et al., 2003; Hamidou et al., 2013; Vara Prasad et al., 2000a, 
2000b). In that sense, HPU1 was different from HPU2, 6 and 7, in that in 
HPU1 the potential effect of water deficit was significantly higher than 
other HPUs and the average maximum temperature was ~37 ◦C (during 
groundnut growing seasons in simulation years). We suspected both 
drought and heat stress could occur in HPU1. Therefore, daily w ather 
data were investigated. Although earlier findings showed that heat stress 
is not a major determinant for groundnut yields in the current climate of 
India (Challinor et al., 2007), we found frequent occurrence of high 
temperature with many days having a high temperature between 40–50 
◦C. Ntare et al. (2001) showed that the pod yield of groundnut genotypes 
declined by more than 50 % when flowering and pod formation occurred 
at maximum temperatures averaged 40 ◦C. Vara Prasad et al. (2000a, 
2000b) also found a reduction of 6.9 % in fruit-set of groundnut per each 
degree higher than 36 ◦C. These are similar results that were found in 

Fig. 6. Relationship between the exploitable production gap and the produc-
tion ratio for each of the seven Homogeneous Production Units (HPU). Circle 
diameter indicates relative projected production, and printed numbers are 
projected groundnut production, in M tons. The exploitable production gap is 
the difference between current production and projected production if the yield 
gap was bridged to reach 80 % of potential yield. The production ratio is the 
ratio of projected and current production in each HPU. Refer to the discussion 
section for more explanation. 
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Fig. 7. Interpolated coefficient of variation of potential yield (Yp, a), water-limited potential yield (Yw, b), weighted potential yield (Ywp, c), and actual yield (Ya, d). 
HPU borders are shown only in panel c. 
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Fig. 8. Boxplots showing the variation in potential yield (Yp), water-limited potential yield (Yw) and actual yield (Ya) in kg ha− 1 across years and districts within each 
HPU’s and within the entire groundnut production area, in addition to the yield gap (Yg) and water deficit Index (WDI) in percentage across districts. Edges of box 
show 25 and 75 percentiles, horizontal line inside the box shows the median and the continuous lines show minimum and maximum. Averages are marked with 
crosses and outliers with circles. The coefficient of variation (CV) percentage is also shown in bar charts as an indicator to compare the range of variation in simulated 
and actual yields. 

Table 4 
Summary of HPU characteristics, agronomy recommendations, breeding solutions, and groundnut production potential gaps. An extended version of this table is 
provided as Suppl. Table S2.  
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Niger (Hamidou et al., 2013), where yield in irrigated summer trials was 
reduced, whereas vegetative biomass was not. Hence, high-temperature 
tolerance would be an important breeding target in the mostly irrigated 
cultivation area of HPU1. Breeding for short duration groundnut as an 
escape mechanism to avoid end-of-season moisture stress and develop-
ment of water use efficient cultivars, which is currently happening in 
HPU1 (Janila et al., 2016), would be suitable only for the relatively 
small rainfed part of HPU1. In other HPU’s facing drought issues, i.e. 
HPU2, 6 and 7, temperatures were checked and are currently not high 
enough to directly cause heat stress (as already reported by Challinor 
et al., 2007). Therefore, the breeding target in these HPUs (2, 6 and 7) 
would be drought adaptation (Table 4). Identifying HPUs with high 
prevalence of drought is also useful to better target and anticipate 
aflatoxin contamination issues. Aflatoxins are a major constraint 
affecting groundnut quality globally and their incidence is favored by 
drought and high soil temperature. More care should be given in these 
environments, especially concerning post-harvest management, re-
ported as the leading way to avoid aflatoxin contamination (Kumar 
et al., 2017; Waliyar et al., 2015). 

4.3. Growing cycle duration and radiation limitation in HPU 2 and 6 

Cumulative radiation limited yield in HPUs 2 and 6, and to a certain 
extent in HPU 3 and 7, likely from a combination of greater cloud cover 
and sub-optimal growth cycle duration. Temperatures in these HPUs 
were within the optimal range (28− 30 ◦C) for groundnut development 
(Suppl. Table S1; Table 4). Then, in these HPUs (2, 3, 6, and 7), a longer 
duration cultivar would have higher potential yield (especially true in 
HPU3 with higher seasonal rainfall), provided water did not become 
limiting and the field was not used by another crop after groundnut 
harvest. Sub-optimal temperatures delayed phenological development 
in HPU4 and HPU5. Shorter duration cultivars would then be beneficial 
in some parts of HPU5, where water deficit is an issue. Maximizing ra-
diation capture while matching growth to water availability will opti-
mize yield in all HPUs. 

4.4. GxExM interaction aspects 

The benefit of grouping the groundnut production region in India 
into HPUs is evident with the boxplots and CV% variation in Fig. 8. In 
most cases, variations of actual and simulated yields across years and 
districts within HPUs were less than values reflecting all groundnut 
production areas. These results showed that the degree of GxExM in-
teractions then decreased within HPU, and therefore that there is an 
opportunity for breeding program to undertake these TPE analyses to 
reduce the degree of GxExM interaction that traditionally hampers 
progress in the rate of genetic gain. However, in some HPUs and vari-
ables, the GxExM variance was as large as the variance for the entire 
groundnut production area, for example the variation of Yw remained 
high in HPU1 (CV = 83 %). However, groundnut cultivation was mostly 
under irrigation conditions in this HPU (90 %), so that variations of Ya 
were limited (CV = 30 %) and the consequence on Yg was low (Fig. 8). 
Here is a situation where GxExM interactions have been mostly solved 
by an ‘M’ intervention in the form of irrigation. 

Another example was HPU7, where even though high heterogeneity 
in Yg was observed, similarities in other variables, and modeling outputs 
categorize those districts within the same HPU. In this case, two districts 
of Karnataka with low Ya were grouped with five districts of Tamilnadu 
with high Ya due to similar yield potentials and production limitations 
like drought constraints (Fig. 8). These results also suggest that it is not 
reasonable to expect uniform minimization of all variables in each HPU. 
Hamidou et al. (2013) studied a wide genotypic variation for pod yield, 
haulm yield and harvest index of groundnut. They found significant 
genotypic and interaction of genotype-by-environment, including water 
and temperature regimes. The magnitude of GxE, therefore, suggests 
that the selection for superior genotypes is specific to the screening 

environment. They concluded that according to the target environment, 
the water treatment and the yield and stability, different genotypes 
could be recommended. 

Plant breeders and agronomists have developed different methods to 
deal with GxExM interactions within their respective domains (Cooper 
et al., 2020). Nonetheless, the potential importance of GxExM in-
teractions for improving on-farm crop productivity has been recognized 
in various studies (e.g. Cooper et al., 2020; Fischer et al., 2014; Ram-
irez-Villegas et al., 2020). The outcomes of this study can accelerate 
groundnut improvements and guide targeted breeding programs. In this 
regard, number and location of testing sites should be optimized ac-
cording to homogeneity and heterogeneity of a given area. Year to year 
variation at a particular site (Fig. 7) should be balanced with 
spatio-temporal variation among sites (Fig. 8) to find the optimum 
number and locations of sites in an HPU. Larger exploitable production 
gaps (Fig. 6) justify more testing sites. 

4.5. Bridging the exploitable production gap 

Across most crop-region combinations in the last two to three de-
cades, actual yield progress has been associated with both yield gap 
closing via optimal management (George, 2014) and genetic gains for 
yield (Fischer, 2015). Even though the potential of new cultivars has not 
been addressed in this study, a large yield gap (Fig. 6) was found, which 
could be filled by proper agronomy practices (Fischer et al., 2014) and 
by efficiently exploiting the yield potential of existing germplasm 
(George, 2014). Undoubtedly, genetic improvement (Hall and Richards, 
2013) can help lift the actual yield simultaneously. 

Reasons for the Yg variations are different across HPU’s, although 
there are two significant groups based on the magnitude of Yg (Suppl. 
Table S1); HPUs 3, 4, 5, 6 with 77.5–80.5 % Yg versus HPUs 1, 2, 7 with 
55–63 % Yg. Biotic stresses were a likely constrain for production in 
HPU4 and likely HPU3 because of conditions favoring disease (high 
rainfall and humidity, Suppl. Table S1; Table 4), indicating the need for 
proper integrated biotic stress management (Ghewande and Nandago-
pal, 1997; Pandya and Saraf, 2013). Here, breeding could also partici-
pate in bridging the gap by introducing greater resistance to pests and 
diseases (Janila et al., 2016), while the growers are now adopting 
improved disease and pest management practices. Independently of 
disease, poor agronomy may have constrained production in HPUs 5 and 
6. On the contrary, better agronomy practices in the remaining HPUs 
resulted in lower Yg. Unavoidably, part of the yield gap remained un-
explained, which could be due to different reasons like the issue of 
salinity in part of groundnut production areas, which had not taken into 
account by the model. 

Nevertheless, even within a unit with a low yield gap like HPU2, it is 
worth working on bridging the gap where cultivation areas are large 
(Fig. 6, Suppl. Table S1; Table 4). The exploitable production gap in 
Fig. 6 represents the difference between current production and pro-
jected production if the yield gap was bridged to attainable yield (i.e. 80 
% of Ywp). The “exploitable production gap” is a more useful term than 
“yield gap” because attainable yield, as well as the area under cultiva-
tion, are embedded in it. Hence, even if the lowest production ratio 
occurred in HPU2, narrowing the yield gap in Gujarat (HPU2, green 
circle) could have a big effect on the groundnut production of India 
because of the high exploitable production gap (Table 4). Accordingly, 
when a high exploitable production gap coincides in a region with a high 
production ratio like Andhra Pradesh (HPU6, orange circle), then 
bridging the gap would be strategic. 

4.6. Potential drawbacks and future directions 

The presented work engaged the groundnut experts since the 
beginning and the results appeared well-aligned with the reality on-the- 
ground, although potential drawbacks remain. Despite the advances in 
crop modeling, the development and use of pest and disease sub-models 
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are not holistic and powerful enough (Donatelli et al., 2017; Ramir-
ez-Villegas et al., 2020). As such, the SSM model could not simulate pest 
and disease outbreaks. We took into account the impact of pests and 
disease in a qualitative manner as possible yield-reducing factors (i.e., 
causing Yg). A remedy to current approaches and methods could be 
overlaying quantitative biotic stress data on top of the HPUs map which 
would help interpreting the causes for the yield gap. Our data set and 
HPU clustering approaches are amenable to inclusion of biotic stress 
data. Modelers face the perennial challenge of incomplete reference 
data. Increasing data availability would improve the robustness and 
applicability of simulation models (Donatelli et al., 2017). 

5. Conclusions 

The framework presented here extends from previous works (Haj-
jarpoor et al., 2018b; Kholová et al., 2013) focused on characterizing the 
main production limitations and could be applied to other major crops to 
help accelerate breeding gains. This study demonstrated that in-silico 
geospatial assessment could be used to guide breeding programs and 
accelerate crop improvement efficiently. Key production-limiting con-
straints were identified for each homogenous production unit (HPU). 
Weaker GxExM interaction within HPUs was a major contribution of this 
study, which would help breeding programs to choose better testing 
sites that better represent production variation. We posit that the clus-
tering of groundnut production area into seven HPUs is more appro-
priate and useful than the classical groundnut zonation. This 
classification can be used to target novel crop improvement strategies 
beyond traditional serial research approaches. The production ratio and 
exploitable production gap terms (Fig. 6) can be used as a way to pri-
oritize breeding and agronomic intervention decisions and objectives. 
HPU 2 (Gujarat) and 6 (Andrea Pradesh) were identified as strategically 
important hotspots for targeted breeding because of the high area under 
cultivation and high production ratio. Besides, large exploitable yield 
gaps could be narrowed by adopting sound agronomic practices to 
produce 8 M ton more groundnuts in India with the same genotypes and 
area under cultivation. 
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Kholová, J., McLean, G., Vadez, V., Craufurd, P., Hammer, G.L., 2013. Drought stress 
characterization of post-rainy season (rabi) sorghum in India. F. Crop. Res. 141, 
38–46. https://doi.org/10.1016/j.fcr.2012.10.020. 
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