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Highlights
Availability of reference genomes and
genome-wide surveys on comprehensive
diversity panels pave theway to associate
the allelic variation with phenotypes.

Methods are now available to evaluate
the genetic worth of the vast genetic
resources archived in gene banks and
streamline application of these resources
in crop improvement programs.

Precise genome editing technologies in
concert with enhanced trait architectures
Over the past decade, genomics-assisted breeding (GAB) has been instrumental
in harnessing the potential of modern genome resources and characterizing and
exploiting allelic variation for germplasm enhancement and cultivar development.
Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches
that fast-track targeted manipulation of allelic variation for creating novel diversity
and facilitate their rapid and efficient incorporation in crop improvement programs.
Genomic breeding strategies that optimize crop genomes with accumulation of
beneficial alleles and purging of deleterious alleles will be indispensable for
designing future crops. In coming decades, GAB 2.0 is expected to play a crucial
role in breeding more climate-smart crop cultivars with higher nutritional value in
a cost-effective and timely manner.
enable innovative solutions to engineer
complex trait variation.

High-throughput phenotyping methods
are beginning to alleviate the challenge
of accurate, precise, and large-scale
measurements of plant performance.

Optimized speed breeding protocols
remain crucial to accelerating breeding
advance when applied with genomic
breeding approaches.

Sustaining gains from genomic breeding
seeks fast-tracking exploitation of the
minor effect alleles, accumulation of
favorable alleles, and purging of deleteri-
ous alleles.
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Fifteen Years of Genomics-Assisted Breeding (GAB): Concept to
Product Delivery
Ensuring a sustainable increase in global food production with finite resources for an increasing
human population is a great challenge. In the wake of the enormous genomic advances,
15 years back we proposed the concept of GAB for accelerating crop improvement [1].
Interestingly, the proposition coincided with the release of a high-quality genome sequence
assembly of rice (Oryza sativa), representing the first genome sequence of any crop plant [2].
Subsequently, a vast array of genomic tools and technologies have now become available for
applications in crop breeding (Table 1). Parallel to the advancements in genomic technologies,
innovative genetic designs based on multi-parent synthetic populations were implemented for
trait discovery that impart benefits of both association mapping and linkage analysis, such as
higher genetic diversity, controlled structure, greater power for quantitative trait locus (QTL)
detection and improved mapping accuracy [3,4].

GAB approaches have contributed to comprehensive characterization of allelic variation underlying
important agronomic traits and their efficient incorporation in the germplasm enhancement and
cultivar development processes. In this article, we discuss the improved crop products delivered
through GAB and the potential opportunities that the latest genomics and breeding innovations
offer to sustain recent gains in the coming decades [i.e., GAB 2.0 or genomic breeding (GB)].
We highlight approaches that fast-track targeted manipulation of broad allelic variation to create
novel diversity for breeding and selection.

Breakthrough Success Stories
Over the past 15 years, GAB has expedited timelines of breeding progress across a broad range
of crop species, with the development of more than 130 publicly bred cultivars of different crops
[5]. The majority of the noteworthy crop products delivered by GAB applied in a variety of
breeding programs include improved cultivars having elevated resistance levels against important
diseases such as bacterial blight and blast in rice and rust in wheat (Triticum aestivum). Among
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biotic stresses, tolerance to submergence, salinity, and drought remained the key target traits
for improvement using GAB. A similar impact of GAB approaches has been witnessed in
improvement of quality traits in several crop species (Box 1).

Major Technological Advances Leveraging Genomics-Assisted Breeding and Key
Lessons Learnt
The past decade has seen a remarkable rise in throughput and accuracy of genome sequencing
technologies. Third generation sequencing technologies (see Glossary) facilitated
development of contiguous, chromosome-scale genome assemblies in many crops. The
increased genome sequence information in crops has improved gene mapping strategies
used to discover and map genome-wide allelic variation. This, in combination with adoption
of more efficient family-based linkage designs/large diversity panels, multi-omics assays, and
high-throughput phenotyping (HTP) platforms, has contributed to bridging gaps in genome–
phenome maps. Resultant acceleration of gene and trait discovery has in turn imparted
precision and efficiency to crop breeding programs. As mentioned in the preceding section,
a variety of improved crop products are now available for cultivation in farmers’ fields. At
the same time, limitations and challenges began to surface with the acquisition of high-
throughput and high-dimensional datasets. The caveats associated with fragmented genome
assemblies came to the fore and a pressing need was to construct more genome sequences
representative of species (pangenome) or even the entire genus (super-pangenome) in order
to capture a comprehensive view of genetic diversity that spans the entire crop gene pool.
Genetic improvement of complex traits demanded efficient breeding methods to facilitate
identification and subsequent exploitation of hitherto unexplained trait variation attributable to
a vast number of small-effect QTLs. Consequently, breeding methods like genomic selection
(GS), that exploit genome-wide marker information, became more relevant to continuous
population improvement and improving the rate of genetic gain [6]. Likewise, optimization
and adoption of techniques fast-tracking the generation turnover by manipulating the plant
growth environment is noteworthy. Advances in genome editing have greatly enhanced our
capacity to perform accurate and rapid alterations in plant genomes.

Linking Genome Diversity and Complex Trait Phenotypes
Acquisition of End-to-End Crop Genomes
As mentioned in the preceding section, the increased throughput and declining cost of next-
generation sequencing (NGS) platforms have caused a surge in whole-genome sequence
information in various crops (Figure 1). Following the establishment of the first high-quality refer-
ence genome sequence of rice (O. sativa v. g. japonica cv. Nipponbare) in 2005 (IRGSP RefSeq),
Wing et al. [7] estimated that nearly 10 000 rice accessions have been sequenced so far. Besides
decoding new genome sequences, crop communities strove hard to improve the contiguity
and completeness of the fragmented genome assemblies based on short NGS reads. Even
the gold standard genome assemblies could resolve haplotypes only at critical regions
(https://phasegenomics.com/the-era-of-platinum-genomes-has-arrived/). In this context,
recently invented long-read sequencers have helped to acquire end-to-end information for
all chromosomes in combination with improved haplotype resolution for complete genome
assemblies, referred to as platinum standard reference genome sequences (psRfs). More
recently, Zhou et al. [8] constructed psRfs for 12 rice genomes by sequencing them at
100X depth followed by validation with Bionano optical maps. With an average number of
30 contigs and 12 gaps, 12 genome assemblies had an average N50 value of 23.10 Mb
and an average 97.9% match with the Benchmarking Universal Single-Copy Orthologs
(BUSCO) reference gene set. Using BUSCO sets to assess the completeness of a genome
sequence was deemed robust in comparison with conventional parameters, including k-mer
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Table 1. Genome Resources in Ten Topmost Food Cropsa

Crop Area
(mha)b

Production
(mmt)b

Assembled
genomes
(Mb)

SNP array Genomic variation databases Gene
expression
atlas

Pan-genome

Wheat
(Triticum
aestivum)

215.9 765.7 14 500
[61]

Wheat 9K iSelect [62]
Wheat 90K iSelect [63]
Wheat 660K Axiom Wheat HD
genotyping array [64]
Wheat breeder’s genotyping
array (Affymetrix Axiom 35K) [65]

Wheat Genome Variation
Database (WGVD) [66]

WheatExp
[67]

18 Cultivars
[68]

Maize
(Zea mays)

197.2 1148.4 2048
[69]

MaizeSNP50 BeadChip
(llumina Infinium 50K) [70]
Subset of MaizeSNP50
(Illumina Infinium 3K) [71]
Axiom 600K [72]
Axiom 55K [73]

MaizeSNPDB [74] 36 207
Genes [75]

503 Inbred
lines [76]

Rice
(Oryza sativa)

162 755.4 371
[2]

Affymetrix (1M) [77]

RiceSNP50
(Illumina Infinium 50K) [78]

RICE6K (Illumina Infinium 6K) [79]
OsSNPnks
(Affymetrix Axiom 50K) [80]
Affymetrix GeneChip (44K) [81]

SNP-Seek [82] [83,84] 66
Accessions
[85]

Soybean
(Glycine max)

120.5 333.7 973
[86]

SoySNP50K [87]
SoyaSNP180K Axiom [88]

SoyKB [89] 55 616
Genes [90]

26
Accessions
[91]

Barley
(Hordeum
vulgare)

51.1 158.9 4980 [92];
4790 [93]

9K Illumina Infinium iSelect
Custom Genotyping BeadChip [94]
50K Illumina Infinium iSelect [95]

BarleyVarDB [96] 21 439
Genes [97]

20
Accessions
[98]

Sorghum
(Sorghum
bicolor)

40 57.9 739 [99] 3K SNP Infinium array [100] SorGSD [101] 27 577
Genes
[102]

n.d.

Rapeseed
(Brassica
napus)

34 70.5 849.7 [103] International Brassica SNP
Consortium (60K) [104]

BnaGVD [105] 101 040
Genes
[106]

8
Accessions
[107]

Dry beans
(Phaseolus
vulgaris)

33 28.9 473 [108] BARCBean6K_1,
BARCBean6K_2,
BARCBean6K_3 [109]

PhaseolusGenes
(http://phaseolusgenes.
bioinformatics.ucdavis.edu/)

[110] n.d.

Groundnut
(Arachis
hypogaea)

29.6 48.8 2540 [111];
2540 [112]

‘Axiom_Arachis’ SNP array with
58K SNP [113]

n.d. 57 344
Transcripts
[114]

n.d.

Sugarcane
(Saccharum
officinarum)

26.7 1949.3 800–900
(Monoploid)

76K SNPs [115]
84K SNPs [116]

Axiom Sugarcane100K SNP
array [117]

n.d. n.d. n.d.

aAbbreviation: n.d., no data.
bSource: http://www.fao.org/faostat/en/#data/QC.
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distributions and contig N50 [9]. The psRfs data acquisition is an essential step toward devel-
oping a comprehensive view of genetic diversity available in any crop at the genus level, re-
ferred to as genus-level pangenome or the super-pangenome [10]. Availability of psRfs
facilitate cataloguing of structural variations (SVs), including insertion/deletion (InDEL), copy
number variation (CNV), and presence-absence variation. A growing body of literature on
sequencingmultiple genomes suggests a greater role for these SVs in crop evolution, domestication,
and breeding.
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Box 1. Key Products Delivered by Genomics-Assisted Breeding in Some Crops

GAB for Biotic Stress Resistance

Simply inherited traits under the influence of strong-effect QTL, such as disease resistance, remained most preferred for
introgression through GAB approaches. The GAB products in rice include ‘Improved SambaMahsuri’ (ISM) carrying three
bacterial blight (BB) disease (Xanthomonas oryzae pv. oryzae) genes (Xa21, xa13, and xa5) [132]. Two major blast disease
(Magnaporthe oryzae) resistance genes (Pi-2 and Pi-54) and a BB gene (Xa38) were further stacked into ‘ISM’ [133,134].
‘Pusa Basmati 1’ pyramided with two (Pi2+Pi5) and three (Pi54+Pi1+Pita) blast genes [135] and improved version of ‘Pusa
Basmati 1121’ and ‘Pusa Basmati 6’ carrying blast (Pi2 and Pi54) and BB resistance genes (xa13 and Xa21) are among
others [136].

A variety of DNA markers were applied in wheat breeding for improving stress response and other agronomic and quality-
related traits (http://maswheat.ucdavis.edu/protocols/index.htm). Examples include improved versions of hard red winter
wheat (HRWW) cultivars ‘Jagger’ and ‘Overley’ carrying genes Yr40/Lr57 and Lr58, respectively [137] and spring wheat
cultivar ‘HUW510’ carrying Lr34 [138]. In pearl millet, ‘HHB 67-improved’ represented a downy mildew resistant version
of ‘HHB 67’, which was released for commercial cultivation in India in 2005 (see Rai et al. [139]). Other success stories
demonstrating potential of GAB in cereal breeding included transfer of eyespot (Rhizoctonia cerealis) resistance gene
Pch1, the recessive resistance genes rym4/ rym5 against barley yellowmosaic viruses, andmlo for barley powderymildew
(Blumeria graminis f. sp. hordei).

Unlike cereals, GAB in grain legume crops has lagged behind in terms of product delivery; however, genotyping-based
selections are now increasingly embraced in breeding programs. For instance, pyramiding resistance against multiple soybean
cyst nematode (Heterodera glycines) races (2, 3, 5, and 14) in soybean at USDA-ARS has led to the development and registra-
tion of high-yielding and multiple disease resistant genotypes ‘JTN 5503’, ‘JTN 5303’, ‘DS 880’, and ‘JTN 5109’ [140–143].
Similarly, Varshney et al. [144] obtained a set of 20 introgression lines in groundnut (Arachis hypogaea) showing higher yield
and increased rust (Puccinia arachidis) resistance through transferring amajor effect QTL for rust resistance into the background
of three susceptible cultivars (‘ICGV 91114’, ‘JL 24’, and ‘TAG 24’). In chickpea, simultaneous improvement of resistance to
both wilt (Fusarium oxysporum f. sp. ciceris) and blight (Ascochyta rabiei) was shown for a popular chickpea cultivar C 214 [145].

GAB for Abiotic Stress Tolerance

The immense utility of GAB for improving abiotic stress response of crop genotypes is exemplified by the recent release of
improved rice cultivars with QTL controlling submergence tolerance (sub1), salt tolerance (Saltol), and drought tolerance
introgressed into them. Sub1QTL was introgressed into ‘Swarna’, a popular high-yielding variety from India, within a short
span of 2 years [146]. In Vietnam, nearly ten improved lines were obtained from the cross OM1490/IR64-Sub1 showing
90–99% revival under field conditions [147]. Higher survival rates of improved versions of several mega-varieties, including
‘Samba Mahsuri’ (BPT 5204), ‘CR 1009’ from India, ‘Thadokkham 1’ (TDK1) from Laos, and ‘BR 11’ from Bangladesh
were also evident following the QTL-introgression (see Hasan et al. [148]).

The Saltol QTL was introgressed into various rice genotypes in different countries, and the candidate varieties targeted for
QTL-introgression were ‘Pusa Basmati 1121’, ‘Pusa Basmati 6’, ‘AS 996’, ‘BT 7’, ‘Bacthom 7’, ‘Q5DB’, and ‘BRRI-Dhan
49’ (see Waziri et al. [149]). Successful pyramiding of Sub1, Saltol, blast (Pi2, Pi9), and gall midge (Orseolia oryzae) genes
(Gm1, Gm4) into ‘Improved Tapaswini’, which is a gene pyramid (Xa 4, xa5, xa13, Xa21) of highly popular indica cultivar
‘Tapaswini’, was demonstrated [150].

Similar to the above-mentioned examples of breeding for submergence and salinity tolerance, pyramiding of twomajor-effect
QTLs controlling drought tolerance into ‘Sabitri’ (a popular high-yielding yet drought-susceptible indica variety of Nepal)
yielded improved variants with good grain type that are suitable for cultivation in rain-fed areas in Nepal and other countries
of South Asia [151]. The availability of stable QTLs having large effects on drought tolerance traits has facilitated development
and release of GAB products in other crops as well. For instance, introgression of the ‘QTL hotspot’ region controlling
drought tolerance traits into the ‘Pusa 372’ led to the development of the first pulse molecular breeding product in India,
‘Pusa 10216’ (https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding).

GAB for Quality Traits

One of the major breakthroughs in quality improvement in crop plants using GAB involves introduction of the Gpc-B1
(grain protein content) gene into tetra and hexaploid wheat that has caused creation of high GPC cultivars in different coun-
tries viz. USA (‘Farnum’, ‘Lassik’, ‘Westmore’, and ‘Desert King-High Protein’), Canada (‘Lillian’, ‘Somerset’, ‘Burnside’),
and Australia (improved introgression lines of ‘Wyalkatchem’, ‘Gladius’, ‘VR 1128’) (see Mitrofanova and Khakimova
[152] and references therein). The transfer of variant alleles of badh2 and Wx from basmati into ‘Manawthukha’ (an elite
rice cultivar of Myanmar) resulted in improved fragrance and intermediate amylose content [153]. By reducing the breeding
cycles up to 3 years, Chu et al. [154] developed ‘Tifguard High O/L’ groundnut with high oleic acid content and nematode
resistance. More recently, GAB varieties of groundnut having improved oil quality combined with resistance to rust and late
leaf spot (Phaeoisariopsis personata Berk. & Curtis) have been released for commercial cultivation [155,156].
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Glossary
AB-QTL: an approach that identifies
and transfers QTL in a backcross
population derived from a cross
between an elite line and an unadapted
germplasm. During population
development, selection is practiced
against unadapted traits in early
generations and QTLs are mapped in
the advanced stage.
AgRenSeq: R-gene enrichment
sequencing; a technique for the
identification of polymorphisms co-
segregating with functional resistance
(R)-gene alleles. It represents a
robust and reproducible technique
for the hybridization-based specific
capture of fragments up to 7 kb in
any genomic context and it could be
used for gap filling, other types of
genome finishing, or structural
variation verification.
Chromosome segment substitution
lines: a series of near isogenic lines
having homozygous and stable segment
(s) of the chromosome from the donor
parent in the background of recipient
parent and which can be used for fine
mapping of the QTL under study.
CRISPR-Cas9 technology: a genome
editing technology that introduces
mutations in the form of insertions and/
or deletions (InDels) or substitutions in
the target sequences in the genome.
De novo domestication: a novel
strategy for crop breeding that refers to
the introduction of domestication alleles
into non-domesticated plants.
Deleterious allele: a version of a gene
that, on average, decreases the fitness
of the organism carrying it.
ExpressEdit: a system that
incorporates gene editing directly in the
speed breeding system. It holds the
potential to bypass the bottlenecks of
in vitro manipulation of plant materials.
Genetic gain: the improvement in
average genetic value in a population or
the improvement in average phenotypic
value due to selection within a
population over cycles of breeding.
Genetic hitchhiking: a process
whereby a gene possessing a neutral
value achieves a high value, or even
fixation, within a population because it is
closely linked to a gene that is being
selected for.
Genetic drift: the random change in
the genetic composition of a population
due to chance events causing unequal
participation of individuals in producing
succeeding generations. Along with
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Figure 1. Recent Trend in Whole-Genome Assemblies of Land Plants in Public Domain. Construction of plant
genome assemblies has witnessed a surge since the publication of the rice genome in 2005. Whole-genome assemblies
of chromosome- or pseudomolecule-level are becoming increasingly available in the public domain owing to the advances
in the sequencing technologies and computational tools. The data depicted in the figure was downloaded from the NCBI
GENOME REPORTS (https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS) and the entries in the ‘Land Plants’
subgroup with release year between 2005 and 2020 were selected. The entries for mitochondria, chloroplasts, and
plastids were removed. We also removed entries with size <100 Mb, which primarily consisted of partial or targeted
regions of genome sequenced.
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natural selection, genetic drift is a
principal force in evolution.
Genotype–environment interaction
(G × E): refers to the positive or negative
influence of the environment on the
performance of genotypes with respect
to quantitative traits.
Genomic selection (GS): a GAB
approach in which genome-wide
markers are used to estimate the effects
of all loci and thereby compute a
genomic estimated breeding value
(GEBV), so as to achieve more
comprehensive and reliable selection.
GWAS: evaluates genetic variants
across the genomes of diverse
individuals to identify genotype–
phenotype associations.
Haplotype: refers to a set of alleles in an
organism that are usually inherited
together from a single parent.
Haplotype-based breeding (HBB): a
promising breeding approach to
develop custom-made crop varieties,
which deals with identification of
superior haplotypes and their
deployment in breeding programs.
Identical-by-descent: refers to similar
nucleotide sequences present in two or
more than two individuals through
replication of same ancestral copy of
respective sequences.
Intermediate phenotypes: refer to
traits positioned somewhere between
genetic variation and the terminal
phenotype such as yield, disease. They
represent a target for attempts to find
causal genetic variants and elucidation
of mechanisms.
Landrace: a cultivated, and genetically
heterogenous line of a plant that has
evolved in a particular eco-geographical
region and is therefore adapted to the
edaphic and environmental conditions
and to its traditional management
practices and uses.
Linkage disequilibrium (LD): the non-
random association of alleles at different
loci in a given population. Genetic loci
are said to be in linkage disequilibrium
when the frequency of association of
their different alleles is higher or lower
than what would be expected if the
genetic loci were independent and
associated randomly.
Linkage drag: the random association
of undesired region(s) with target genes
during introgression. It is more frequently
observed during the transfer of target
genes from wild species to modern
cultivars.
Large structural variations: represent
a significant amount of the genetic
Whole-Genome Surveys and Phenotyping to Access Natural Allelic Variation
High-density genotyping systems enable the survey of comprehensive diversity panels available
in many crops to associate the genome information with variations in important phenotypes.
Though dependent on the length of the linkage disequilibrium (LD) blocks/decay in the
genome, the historical recombination events accessible through the diverse collections greatly
enhance the resolution of gene mapping. In parallel, multi-parental populations with controlled
genetic structures have also emerged as a valuable tool for conducting genome-wide association
studies (GWAS) [11]. Some recent examples of comprehensive GWAS in crops include GWAS of
10 000 soybean (Glycine max), accessions for protein and oil content [12], 3010 rice accessions
for grain width and grain length [13], 7887 wheat lines for 50 traits [14], and 4471maize (Zeamays)
landraces for flowering time adaptation [15].

A considerable outcome of all these genetic mapping experiments is acquisition of genotypic
and phenotypic information on large germplasm collections or populations [16]. As in human
genetics (https://atlas.ctglab.nl/), the increasing volume of data, resources, and knowledge on
gene-trait associations in plants have fostered community web resources such as AraGWAS
(https://aragwas.1001genomes.org/#/) and GWASAtlas (https://bigd.big.ac.cn/gwas/) that
make GWAS results accessible for thousands of gene-trait associations underlying hundreds
of traits across different plant species. The sequence-based GWAS in many crops and the
high level of mapping resolution that these studies achieve has been reviewed elsewhere [17].
Recently, proposed quantitative genetic frameworks integrating GWAS revealed the contribution
of high-order interactions, including epistasis and pleiotropy [18]. In parallel, targeted
approaches that integrate association genetics with enrichment sequencing to better investigate
broad germplasm collections were proposed, such as AgRenSeq for rapid cloning of the
disease resistance genes [19].
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diversity within a population. They often
involve rearrangements of a large region
of a chromosome and are known to
cause a number of genetic conditions.
Long-day plants: flower only when the
amount of daylight lasts longer than the
critical threshold (about 12 hours).
Nested associationmapping (NAM):
a popular multi-parent design
comprising various interconnected bi-
parental families obtained by crossing
diverse parents with a common founder.
Optimal contribution selection
(OCS): a selection method that is
effective at achieving a balance between
rate of inbreeding and genetic gain. This
selection process maximizes genetic
gain in the next generation while
constraining the rate of inbreeding via
restriction of relatedness among
offspring.
Pangenome: in molecular biology and
genetics, a pangenome refers to the
entire set of genes and genetic variations
present within a species.
Platinum standard: a reference-quality
genome that is distinguished from
remaining draft assemblies by
completeness, low error rates, and a
high percentage of the sequences
assembled into chromosome-length
scaffolds.
Pleiotropy: refers to a single genetic
variant that affects two or more
seemingly unrelated phenotypic traits.
PAGE: promotion of allele through
genome editing; a strategy to enable
rapid increases in the frequency of
favorable alleles, for improving
quantitative traits that are controlled by
multiple quantitative trait loci (QTLs).
Quantitative trait nucleotide (QTN):
polymorphism that is responsible for the
QTL effect (the proportion of the genetic
variance, as observed in a segregating
population, which is explained by the
QTL) and provides useful information
about gene function and QTL
architecture. Predicting the effects and
estimating the accuracy of QTN
enhances the rate of genetic gain.
RAGE: removal of allele through
genome editing; a strategy for the
removal of deleterious variants in the
genome that offspring accumulate
through inheritance or de novo
mutagenesis.
See-through phenotyping
technology: refers to imaging or
phenotyping plant components within
tissues or soils.
Short-day plants: bloom when the
length of daylight (the photoperiod)
Accounting for environmental variation has been a long-standing challenge in complex trait
dissection and prediction. Similar to the proposition of ‘landscape genomics’ in ecology, environ-
mental GWAS in crops uses the climatic conditions as phenotype to identify single nucleotide
polymorphisms (SNPs) associated with the accession’s environment of origin. To this end, a
more recent study by Li et al. [20] provided an integrated framework to conduct GWAS and
GS in crops with an environmental dimension. Finding patterns in environmental index and
associating these patterns with changes in underlying genomic determinants have great implica-
tions for understanding complex traits in plants and their prediction for future climates.

Renewed Focus to Identify and Exploit Genomic Loci with Smaller Effects
Many plant traits of agronomic significance are controlled by a large number of QTLs, with
variable effects on the corresponding phenotypes. Domestication and early breeding of crops
inadvertently targeting alleles with large effect have caused their fixation in elite germplasm.
Beneficial alleles with strong effects, such as teosinte glume architecture1 (tga1) and teosinte
branched1 (tb1), were brought to fixation during domestication or early breeding in maize, a
cross-pollinated crop, whereas in self-pollinating species, the large-effect loci are still evolving
[21]. Genetic mapping experiments in different crops also highlight notable contributions of
minor-effect QTL to genetic architecture of a variety of traits, such as flowering time, leaf architecture,
inflorescence architecture in maize, grain size in rice, and fruit weight in tomato (Lycopersicon
esculentum). To this end, high-density genotyping systems, in combination with large experimental
populations, provide enhanced opportunity to detect QTL that explain relatively small proportions of
the phenotypic variation (PV). For instance, genotyping-by-sequencing (GBS) analysis of 1021maize
recombinant inbreds capturing more than 50 000 recombination events revealed 51 QTL explaining
an average of 2% of the PV for six plant architecture-related traits [21].

DNA marker-based solutions like marker-assisted backcrossing (MABC) have improved plant
traits by facilitating transfer of QTL with strong effects. However, the potential of MABC for
improving genetic gain is limited by the number of loci that can be addressed. Wallace et al.
[16] consider that the extensive presence of minor-effect QTL is the possible reason explaining
‘diminishing returns’ of current crop breeding practices. Therefore, success of future crop
improvement would rely on harnessing the variation attributable to minor-effect loci given that
experimental populations with these loci segregating could be created when the majority of
major-effect loci have been fixed [21]. In this context, simultaneous improvement of hundreds
of minor-effect loci could be achieved by genome-wide prediction and GS that exploit
genome-wide marker information instead of only QTL markers.

Molecular Cataloguing of Germplasm Repositories
Crop germplasm repositories are crucial to maintaining genetic diversity that has otherwise been
lost as a result of past domestication and current breeding activities intended to develop crops
with homogeneity or uniformity [22]. The importance of germplasm is highlighted by the fact
that the wild rice (Oryza nivara) served as the single source for developing rice varieties resistant
to grassy stunt virus (RSGV 1) for more than 30 years, until the emergence of RGSV 2 [23].
Similarly, other important traits sourced from wild relatives and landraces include salinity and
submergence tolerance in rice, powdery mildew resistance in barley (Hordeum vulgare), and
resistance to late blight in potato (Solanum tuberosum). Consequently, gene banks conserving
useful genetic variation as landraces and wild relatives remain vital to secure future food supply.
Worldwide, a total of 7.4 million accessions are stored across 1750 gene banks [24]. However,
management of huge collections of crop genetic resources archived in global germplasm
repositories is becoming challenging. Despite investing tremendous resources, these gene
banks are still plagued by redundancy within and between collections. Identification of these
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drops below a certain critical threshold
(about 12 hours).
Systems biology: a holistic approach
for deciphering the complexity of
biological systems that starts from the
understanding that the networks that
form the whole of living organisms are
more than the sum of their parts. It aims
to understand the original behavioral
properties of the system as a whole,
usually through the extensive
characterization of the components of
the system coupled to mathematical
modeling.
Third generation sequencing
technologies: a class of DNA
sequencing technologies that possess
the capability to produce substantially
longer reads than second generation
sequencing and to produce genome
duplicate accessions has always been resource intensive. The marked redundancy within and
between germplasm collections has been highlighted by high-density genotyping (GBS and
DarTSeq) of 1143 Aegilops tauschii accessions from Wheat Genetics Resource Center
(WGRC, USA), CIMMYT (Mexico), and Punjab Agricultural University (PAU, India) [25]. In this
context, the growing numbers of reference sequences in concert with resequencing facilitate
acquisition of molecular data on large germplasm collections (Table 2). Besides supplementing
the traditional passport records, the bio-digitalization of gene banks would help to devise better
germplasm management strategies and realize the ‘evolutionary potential’ of gene banks [26].
According to Mascher et al. [27], developing molecular profiles of germplasms will help preserve
genetic diversity that is lost to spontaneous mutations, genetic drift resulting from small
population size, and new selection pressure occurring during storage/evaluation in these
gene banks.

In parallel, the high-density genetic profiles and readily available passport data and/or historical
phenotypic records of these genetic resources facilitate linking of genotype to phenotype, thus
revealing the novel haplotypes for downstream applications in breeding programs. For instance,
Table 2. Examples of Resequencing-Based Investigations on Diverse Germplasm Collections in Plantsa

Crop Number of
accessions

Average
sequencing
depth

Genetic variants detected Refs

Rice
(Oryza sativa)

3010 n.d. 29 million SNPs, 2.4 million InDels and
90 000 SVs

[13]

Rice 529 n.d. 6.4 million SNPs [78]

Rice 616 3X to 30X 16.4 million SNPs and 4.8 million InDels [118]

Rice 176 5.8X 426 337 SNPs and 67 544 InDels [119]

Soybean
(Glycine max)

1007 14X 12 197 920 SNPs and 1 873 299 InDels [120]

Soybean 809 8.3X 10 415 168 SNPs and 1 033 071 small
InDels

[121]

Soybean 302 >11X 9 790 744 SNPs and 876 799 InDels [122]

Brassica napus 991 6.6X 5.56 million SNPs and 1.86 million InDels [123]

Cotton
(Gossypium L.)

419 6.55X 3.66 million SNPs [124]

Cotton 318 5X 8 621 073 SNPs [125]

Sunflower
(Helianthus annuus)

287 5X to 25X 5 830 734 SNPs [126]

Tomato
(Solanum lycopersicum)

360 5.7X 11 620 517 SNPs and 1 303 213 small InDels [127]

Grape
(Vitis vinifera)

472 15.5X 77 726 929 SNPs, 10 278 017 InDels, and
25 000 CNVs

[128]

Citrus
(Citrus sp.)

100 30X n.d. [129]

Cassava
(Manihot esculenta)

241 30X 25.9 million SNPs and 1.9 million InDels [51]

Chickpea
(Cicer arietinum L.)

429 6.84X 4.97 million SNPs [130]

Pigeonpea
(Cajanus cajan)

292 5X to 12X 15.1 million SNPs and 2.1 million InDels [131]

aAbbreviation: CNVs, Copy number variations; InDels, Insertion-deletions; SNPs, Single nucleotide polymorphisms; SVs,
Structural variations; n.d., no data.
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Milner et al. [26] performed GBS analysis of 22 626 barley accessions and combined the
molecular profiles with legacy passport data of informed subsets to identify GWAS signals for
important traits such as spikelet fertility, flowering time, and resistance to bymoviruses. The
causative genes thus delineated may be further subjected to allele mining strategies to elucidate
other valuable alleles existing at the causative loci. With the help of accurate phenotyping, the pheno-
typic effects of the allelic variation can be identified and, subsequently, targeted breeding can effi-
ciently recover the superior genotypes having desirable chromosome haplotypes or allelic variation.

Enormous resources required for phenotyping and genotyping of large germplasm collections
present an obstacle to identification and utilization of the useful genetic variation locked in gene
banks. The challenge is exacerbated by the unpredicted outcomes that are often encountered
in the crosses involving exotic germplasms. Methods like GS facilitate not only assessment of
the genetic worth of the vast genetic resources archived in the gene banks but also ease genetic
exchange in crop germplasm enhancement programs (Box 2). In this context, introgression
populations such as chromosome segment substitution lines allow examination of the
interaction of wild type or exotic QTL with the genome of the cultivated (recipient) parent, thus
enabling validation of the phenotypic effects of QTL from wild relatives [28]. Innovative designs
combining advanced backcross (AB) with nested association mapping (NAM) offer unique
opportunities to discover novel variation from exotic germplasm while addressing the problem
of population structure and rare allele in association studies. AB-NAM approach in barley
based on one cultivar crossed with 25 wild parents facilitated high-resolution mapping of three
important quantitative traits [29]. These immortal genetic resources are extremely useful for
prebreeding and breeding purposes as these can be shared among research communities.

Genomic Breeding (GB) for Designing Future Crops
For designing future crops, we believe that one or more of the following GB approaches,
namely marker-assisted selection (MAS), MABC, marker-assisted recurrent selection (MARS),
Box 2. Genome-wide Prediction and Genomic Selection for Prebreeding

Both genotyping and phenotyping can be performed on the representative sets or the training sets and prediction
accuracy may be assessed with validation sets. The resulting genome-wide prediction models in combination with
genotypic data of untested germplasm will generate predicted phenotypes of these accessions [27].

Recent simulation and empirical evidence on the application of genomic prediction to gene bank accessions is encouraging.
For instance, Yu et al. [24] created a 299-accession training set covering 75% diversity of the 962 accessions of reference
collection of sorghum. Besides recording high prediction accuracies (0.35–0.78) of the predicted genetic effects (PGE) using
validation sets, the potential of PGEs was demonstrated in a broader germplasm context by using 580 exotic germplasm
accessions. Expanding genomic predictions to microscopic phenotypes, a follow-up study in maize advocated for
implementing double selection based on ‘prediction’ and ‘reliability’ to inform decisions while choosing candidates for phe-
notyping from large gene bank collections [35]. Similarly, Crossa et al. [157] assayed 40000 SNPs on 8416Mexican landrace
accessions and 2403 Iranian landrace accessions of CIMMYT’s wheat gene bank to compute prediction accuracies for dif-
ferent traits. The genetic resources with high PGEs can be crossed with each other (conversion) or with an elite line
(introgression) for germplasm enhancement.

In GAB 1.0 [1], we anticipated success forAB-QTL approach given its ability for simultaneous discovery and introgression
of exotic QTL; however, the scheme only registered modest success with few examples in tomato and beans because of
limited population sizes and cost. Generating these PGEs for germplasm accessions serves as an excellent tool in the case
of landraces since their maladaption to current climates might plague their phenotypic evaluations. Genomic predictions
could also underpin the optimal contribution selection (OCS) in ‘evolving gene banks’ of self-pollinating crops by
addressing the problems of linkage drag and rapid reconstruction of elite genomes that hampers migration of favorable
alleles in exotic × elite populations [158]. Also, GS imparts greater accuracy and rapidity to selection procedures in
‘evolving gene banks’ even in the absence of pedigree records. When applied with GS, OCS and truncation selection
(TS) have shown comparable gains for grain fructan content in wheat, however, OCS retained higher genetic variance
and lower inbreeding levels in comparison with TS [159].
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haplotype-based breeding, promotion/removal of allele through genome editing (PAGE/
RAGE), and GS can be used in combination with speed breeding. We present GAB 2.0 or
GB as an extension of GAB that includes previously discussed approaches as well new ap-
proaches that have emerged. Some approaches, like MAS, MABC, and MARS approaches,
have been discussed earlier [30]; here we discuss HBB, genomic designing and optimization,
PAGE/RAGE, GS, and speed breeding approaches.

Haplotype-based Breeding (HBB)
Advances in plant genome biology have inspired innovative approaches to expedite the progress
of assembling desirable phenotypes in crop breeding programs (Figure 2). The haplotype
TrendsTrends inin PlantPlant ScienceScience

Figure 2. An Overview of Genomics-Assisted Breeding v 2.0 (GAB 2.0) to Deliver Future Crops. The figure
illustrates a holistic approach that aims to accumulate favorable alleles or purge deleterious alleles in the plant genomes fo
designing future crops. (A) Germplasm collections archived in gene banks provide both superior (beneficial) and
deleterious effect (harmful) alleles. (B) High-throughput sequencing in combination with multi-omics assays and field
phenotyping provides a powerful means to connect genomic variations with the important phenotypes. (C) Once a gene-
trait association is identified, functional validation leads to a causative gene. (D) Information about the causative genes
affecting key plant traits paves the way for haplotype-based breeding/genomic breeding or de novo domestication. (E) In
parallel, genomic prediction approach based on genome-wide genotyping information can also be used to make informed
decisions in breeding programs. (F) Methods like optimal contribution selection (OCS) that maintain a balance between the
rate of genetic gain and genetic diversity/inbreeding will be crucial for prebreeding and breeding purposes. (G) Speed
breeding will help expedite crop breeding progress. (H) Implementation of these new breeding tools and approaches wil
help in accumulating beneficial alleles or purging harmful alleles in breeding population and improving genetic gains o
breeding program. This breeding strategy will pave the way for designing future crops. The image was created using
BioRender (https://biorender.com/).
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assembly approach of Bevan et al. [31] from germplasm sequencing data commences with
identification and validation of phenotypic effects of the ‘component’ haplotypes. The development
of haplotype-informed DNA markers enables selection of new haplotype combinations. In other
words, a set of such haplotype-definingmarkers provides crop breeders with increased opportunity
to attain optimized genetic combinations for improved performance and disrupt linkage drag.
Large-scale whole-genome resequencing (WGRS) datasets, in combination with haplo-pheno
analysis, have uncovered useful haplotypes for future breeding in rice [32] and pigeonpea
(Cajanus cajan) [33]. There is a need to track the inheritance patterns of haplotypes in breeding
pedigrees. This is important for assembling new genomic combinations as it helps identify
optimal parents for crosses that contain desired combinations of features.

A HBB approach becomes particularly relevant in case of crops having genomes with extended
LD blocks. A recent analysis of haplotype blocks in wheat highlighted the inability of SNPmarkers
to distinguish seven haplotypes (H1–H7) predicted for the highly conserved genome region on
chromosome 6A that contains the gene TaGW2-A controlling various yield-related traits [34].
The study provides evidence for the need to develop haplotype-informed genetic markers for
crop improvement instead of relying on SNP markers that are often not causative. We expect
HBB approach to be used extensively in coming years with the availability of whole-genome
sequence data of germplasm collections in several crops.

Genomic Designing and Optimization
Based on haplotypes, the ‘genomic design’ concept was given by Yu et al. [35] in the case of
‘green super rice’. The genome design concept involves enlisting target genes controlling the
phenotypes of interest and the germplasm resources where these genes can be sourced.
Technically, the ‘selection system’ comprises a target gene-specific functional marker (R) and
the DNA markers (M1 and M2) flanking the target gene, and selection for recurrent parent
background (A). Functional selection for R and selection for M1 or M2 and A-background in initial
backcross generations, followed by the selections against M1 and M2 (while retaining R gene) in
later generations, facilitate speedy recovery of homozygous lines with the precisely incorporated
R gene [7]. The selection system facilitated by gene-specific genotyping systems and low-density
SNP chips (such as 5–6K) could yield a series of near isogenic lines carrying different target genes
within a span of 2–3 years. A series of near-isogenic lines (NILs) in the background of a popular
cultivar Kongyu131 carrying four blast resistance genes (Pi1, Pi2, Pi9, and Pigm) have been de-
veloped in rice.

Concerning hybrid breeding, Jiang et al. [36] suggested in silico construction of an optimized
genome representing a virtual assembly of all superior haplotypes. Analysis of the sequence
data of parental lines offers recombination maps having identical-by-descent bins. These
bins are then used for GWAS and bins associated with the desirable phenotype are identified.
The superior haplotypes within these bins are accumulated to synthesize a virtual optimized ge-
nome. The parental lines are then ranked according to their contribution of bins to the optimized
genome. The high-ranking parental lines thus identified are mated to develop hybrids that are
likely to show higher yield than the check variety. In this way, the optimized genome presents a
virtual target for heterosis exploitation in any breeding program.

More Predictions and Selective Measurement to Inform Breeding Decisions
Advances in sequencing and phenotyping represent two remarkable breakthroughs of the past
decade that are being leveraged in plant science [37]. Both genotyping and phenotyping plat-
forms continue to evolve. Though cost of genotyping has plummeted drastically in recent
times, high-density genotyping of entire collections will take some time to become a reality. At
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the same time, phenotyping still remains a major stumbling block in breeding progress, although
HTP methods are beginning to alleviate this bottleneck (Box 3). Intermediate phenotypes are
more amenable to HTP analysis than terminal phenotypes (Box 4). In this context, genomic
prediction based on the genome-wide marker data and phenotyping will inform breeding
decisions (Figure 2). We cite the example of hybrid breeding owing to its reliance on extensive
field trials of large-scale testcrosses, a process that is resource-intensive and constrained by
the technical problems faced in generating large quantities of hybrid seeds, such as pollen
availability from cleistogamous flowers in crops like wheat, pigeonpea, etc. Also, genomic profiles
of the hybrids can be easily deduced from that of corresponding parents and a subset of the
hybrids may be genotyped to validate the deduced fingerprinting. In wheat, genomic profiles of
1604 single cross hybrids deduced from 135 parental lines, in combination with the extensive
phenotyping data (hybrids + parents), allowed prediction of performance of a total of 7441
nonphenotyped hybrids with a high prediction accuracy of 0.89 [38]. In maize, predictions for
seven heterotic traits were made with high accuracy (up to 0.80) using genome-wide SNPs
and metabolite data of 570 testcrosses that were phenotyped over seven environments [39]. A
more recent analysis in pigeonpea predicted performance of a huge set of 78 210 possible
single-cross hybrids based on the genomic prediction models trained using WGRS dataset
and field phenotyping data of 396 parental lines and 435 single-cross hybrids (R.K. Saxena
et al. unpublished). Genomic predictions for hybrid performance have been applied in several
other crops, including rice [40], pearl millet (Pennisetum glaucum) [41], sunflower (Helianthus
annuus) [42], sorghum (Sorghum bicolor) [43], and sugar beet (Beta vulgaris) [44].

These genome-wide predictions thus obtained laid the foundation for developing heterotic
groups and identification of heterotic patterns to sustain gains in crops from hybrid breeding in
Box 3. Integrating High-Throughput Phenotyping with Genomics-Assisted Breeding to Accelerate Crop
Breeding Progress

In the post-NGS era, the phenotyping challenges present the key bottleneck hindering the breeding progress. Manual
measurements/visual scoring of plant traits, despite being labor-intensive and error-prone, still play a dominant role to
influence key decisions in breeding programs, especially in public sector programs of less-developed countries. The
inaccuracies of manual measurements became evident from recent studies on maize streak virus and stay green trait
following adoption of HTP technologies (see Araus et al. [160]). Growing reliance of modern breeding strategies, including
GS models on phenotyping, calls for improvements in accuracy, precision, and throughput of the phenotyping platforms.
In other words, enhanced phenotyping capabilities will be crucial to realize the full potential of GAB approaches
summarized here. Implications of HTP on various components of a breeder’s equation [selection intensity (i), selection
accuracy (r), genetic variation (σa), and breeding cycle time (L)] reflect its relevance in context to improving genetic gains
in a breeding program [160].

Advances in HTP technologies, particularly imaging and sensor technologies, facilitate high-resolution measurements of
plant traits at temporal and spatial scales. A variety of active and passive sensors (photosynthesis, fluorescence, stereo,
LiDAR, RGB, multispectral, hyperspectral, and thermal) have been deployed at different levels (leaf, canopy, and air-borne)
to monitor the expression of a variety of plant traits in both controlled-environment and field conditions. The technical
details, applications, and limitations of these sensor technologies have been thoroughly reviewed by Jin et al. [161]. The
availability of noninvasive methods for below-ground phenotyping (X-ray microcomputed tomography) and ‘see-through
phenotyping technologies’ (Terahertz andWiFi holography) [162] creates new avenues for gene discovery. Emphasis is
given to field-based phenotyping of a large population to obtain phenotypic information closer to real world settings.

Several national and international initiatives and facilities, including EMPHASIS (https://emphasis.plant-phenotyping.eu/),
EPPN (https://eppn2020.plant-phenotyping.eu/), NPPN (https://nordicphenotyping.org/), PhenomUK
(https://www.phenomuk.net/), North American HTP facilities (http://nappn.plant-phenotyping.org/high-
throughput-phenotyping-facilities/), and Australian plant phenomics facility (https://www.plantphenomics.
org.au/about-us/#about-the-appf), have been lunched recently to facilitate acquisition, integration, management, and
sharing of the phenomic information. Addressing the current phenotyping challenges will require strong collaborations
among diverse fields of science, including engineers, breeders, physiologists, phenotypers, and manufacturers. Also, ad-
vancements in machine learning such as neural network have shown promising results in extracting meaningful information
from the image data.
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Box 4. Multi-omics/Systems Biology Platforms and Mapping of Intermediate Phenotypes

Understanding the genetic make-up of ‘terminal phenotypes’ such as yield has dominated the genetic mapping
experiments in crop plants [163]. Though identification of a few key QTL controlling a trait may be useful to fast-track
selection and breeding for yield, such complex traits are seldom resolved to a single gene level. Intermediate phenotypes
or endophenotypes serve as bridges to link the genomic variation and terminal phenotypes. For example, transcript-wide
association studies in combination with GWAS have shown great potential for prioritization of candidate genes for their
association with plant traits [164]. A variety of omics platforms are available that enable accurate and high-throughput
measurements of such intermediate phenotypes, including transcripts (RNA-Seq), metabolites (GC-MS, LC-MS,
FTICR-MS, NMR) and proteins (MALDI-TOF-MS, iTRAQ). Integration of the multi-omics data with the genetic mapping
strategies could greatly accelerate discovery of functional allelic variation [165,166]. In human genetics, intermediate
phenotypes have played a pivotal role for genetic mapping of psychiatric disease. Lesser vulnerability of intermediate
phenotypes to measurement errors, genotype–environment interaction (G × E), LD, and multiple pathway effects make
them more amenable for trait mapping, even with the small sample sizes [164,167]. One should focus on ‘intermediate
phenotypes’ to reach a high-resolution level of genetic mapping [16]. Likewise, ‘trait decomposition’ allows complex traits
to be divided into several subtraits or component traits (such as number of panicles per plant, number of grains per panicle,
and grain weight in case of grain yield per plant in rice) for scoring in a high-throughput and accurate manner [163].
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the long term. Approaches relying on datamining and design thinking would play a significant role
in streamlining GS for hybrid breeding through facilitating an optimal training set design for
predicting performance of untested hybrids from a ‘large search space’ [45]. Design thinking is
the iteration process so that we keep improving the solutions based on earlier attempts. Recent
improvements in our capacity in genomics, biotechnologies, and phenomicsmake the process of
rethinking and redesigning of the selection and breeding more relevant.

Similarly, deployment of genomic prediction models in variety development pipelines to facilitate
evaluation and selection of superior lines for the next cycle in early generations instead of the
inbred lines will make breeding programs more efficient and more responsive to current needs.
A holistic approach applicable to a broad array of crops was proposed recently by Varshney
et al. [46] that aims to improve the rate of genetic gains in crop breeding programs, relying
more on predictions and less phenotyping.

Male sterility defined by production of nonfunctional pollen represents a promising system to
exploit hybrid vigor for improving plant productivity. Among different male sterility systems,
cytoplasmic male sterility (CMS) is extensively used for heterosis breeding across different
crops. Advances in plant molecular biology have contributed to refine our understanding of
CMS and fertility restoration (Rf) in crop plants. Map-based approaches have facilitated cloning
of a variety of Rf genes in different plant species, including rice, sorghum, radish (Raphanus
sativus), and sugar beet [47]. A more recent study in wheat has demonstrated restoration of
Triticum timopheevii-type CMS through cleavage of the mitochondrial orf279 transcript by two
nuclear genes, Rf1 and Rf3, that code for pentatricopeptide repeat proteins [48]. Deeper insights
into plant CMS-Rf system will be crucial to make hybrid breeding more accurate and productive.
For instance, diagnostic DNAmarkers based on the causative Rf locus could help avoid extensive
field testing of the large germplasm collections for testing their potential for pollen fertility
restoration.

Managing Quantitative Trait Alleles for Greater Response and More Fitness
Enhanced resolution of trait discovery in concert with growing accuracy of GS and precise
genome editing technologies [49] paves the way for innovative methods to accumulate favorable
alleles in genotypes. Agronomic traits are controlled by a number of quantitative trait
nucleotides (QTNs) having variable effects on the phenotype. Accumulating these QTNs with
conventional breeding may not be efficient due to the loss of favorable alleles driven by genetic
hitchhiking or drift and reduced selection pressures on the rest of the QTNs [50]. Of the vast
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number of QTNs, those having large effects on the phenotypes can be better addressed using
genome editing technologies, referred to as promotion of alleles by genome editing (PAGE). A
simulation study in livestock comparing different scenarios, including genome selection alone
and genome selection supplemented by PAGE (GS+PAGE) elucidated the potential of PAGE in
shifting frequency of favorable alleles in both short and long terms [50]. Schemes implementing
GS+PAGE had 4.2 times higher response to selection as compared with the GS alone scheme.
The authors proposed drift-driven loss of favorable alleles before their fixation in the population as
the possible reason underlying this difference. The most dramatic change in allele frequencies
occurred in a case where a subset of 20 major-effect QTN were considered for gene editing.
No change in allele frequencies was observed when all QTNs having edits were considered for
the simulation. The application of PAGE for improving response to selection will require QTNs,
especially those having strong effect to be identified with extremely high precision. Toward this
end, increased sequence and phenotypic information on comprehensive collections will facilitate
GWAS. Besides effect and size, the other features that could be factored while prioritizing
alleles for PAGE include their frequencies in the current generation and their vulnerability to
recombination [50].

The inefficiency of conventional breeding in purging deleterious alleles was evident based on
the genomic evolutionary rate profiling and amino acid conservation modeling on the sequence
data of diverse accessions. For instance, in cassava (Manihot esculenta), domestication and
subsequent breeding relying on clonal propagation has increased deleterious alleles by 26%
and maintained the deleterious load in the heterozygous state instead of purging this load [51].
In long term, this inadvertent ‘shielding’ might lead to ‘mutation meltdown’ or extinction due to
gradual accumulation of deleterious alleles in small populations of asexual plants. This makes
purging of deleterious alleles a key target in future breeding of crops that harbor substantial
genetic load. A recent simulation study based on RAGE suggests that in the long term multiplex
genome editing may be a potent and necessary tool to purge deleterious alleles instead of prac-
ticing selection against carriers [52]. The potential of PAGE and RAGE relying on simultaneous
editing of multiple variants has been assessed in livestock breeding and the tools could potentially
extend to plant breeding where breeding efforts may have also reduced fitness and genetic
variation of our current crops. Targeted manipulation of quantitative variation through genome
editing has shown great potential in de novo domestication of crop plants (Box 5).

Speed Breeding (SB)
Long generation time of crops to reach fixed homozygous state following hybridization consid-
erably slows down the progress of basic and applied research. Efforts to reduce the genera-
tional interval time in different crops relied primarily on off-season nursery/shuttle breeding,
double haploid technology, and in vitro/embryo culture [53]. Embryo rescue technique, when
applied in combination with management of water regimes, light, and temperature, led to
eight generations of wheat and nine generations of barley in a year [54]. Similarly, a simplified
biotron breeding system based on regulating CO2 level, photoperiod, and root volume allowed
four crossing cycles in rice [55]. To this end, a recently proposed SB technique circumvents the
need for cumbersome tissue culture procedures to accelerate time to harvest and instead
relies on optimizing plant growth environment (photoperiod, temperature) combined with the
application of growth regulators, high-density planting, and early harvesting [56]. Particularly
suited for long-day plants or day-neutral plants, SB protocols have allowed researchers to
grow four to six generations in 1 year of crops, including chickpea (Cicer arietinum), pea
(Pisum sativum), wheat, barley, canola (Brassica napus), etc. SB methods markedly reduce
breeding cycle time and are considered to be an efficient means to improve selection gains
in crop breeding programs. In a collaboration between the University of Queensland and
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Box 5. Genome/Gene Editing to Accelerate Crop Domestication

Since its conception in 1968, ideotypes are predicated to have optimal phenotypic manifestations under defined environ-
mental conditions [168]; it has always served as a fascinating cropmodel to inspire plant breeding communities worldwide.
In fact, the ideal phenotype is the one that adapts to every environment in a unique way and therefore cannot be defined.
Unlike domestication, the concept relied on accumulating specific traits in the crop instead of performing selection against
the exotic features such as shattering, etc. [169]. Based on the morphology and physiology, crop ideotypes were
suggested in many crops, including rice, wheat, barley, and maize and witnessed success to a considerable extent. In
GAB 1.0, ‘Breeding by design’ intended to design superior genotypes by capturing allelic variation at all the loci controlling
agronomically important traits through: (i) locus identification, (ii) allele mining and exploiting the allelic variation present at all
these loci, followed by (iii) crossing the genotypes in a designed way. With recent advances in genomic technologies and
characterization of domestication traits in different crops, the ‘hypothetical biological model’ proposed once as a crop
ideotype now seems a realistic proposition (i.e., GAB 2.0).

Resigning plant types for improving agricultural productivity requires changes in plant systems that range from ‘straightforward’
to ‘seemingly fanciful’ and enabling technologies in synthetic biology is likely to assume a central role in the latter case [170].
Genome sequence information, in combination with previous genetic mapping experiments on domestication traits, have
elucidated gene(s)/loci underlying crop domestication. Notably, the monogenic nature of these genes renders these most
suitable for targeted manipulation. In this context, de novo domestication, a process of introgressing the domestication loci
back into exotic germplasms, is being viewed as a viable alternative to developing future crops [169]. Domestication is a
prolonged process that has resulted in inadvertent accumulation of deleterious alleles along with some useful traits into our
current crops. As has been described as a ‘cost of domestication’, the process of domestication is often associated with a
marked loss of both fitness and genetic diversity of the domesticated species [171]. De novo domestication facilitated by
targeted genome editing or introgression breeding could fast-track the recovery of domesticated forms while retaining benefi-
cial exotic traits. Recent studies in different crops have demonstrated the potential of genome editing technology for de novo
domestication of wild types. For example, by reverse-engineering six domestication genes (SELFPRUNING, OVATE,
FASCIATED, FRUIT WEIGHT,MULTIFLORA, LYCOPENE BETA CYCLASE) with CRISPR-Cas9 technology, Zsögön et al.
[172] improved wild tomato ancestor Solanum pimpinellifolium with respect to fruit number (10X), size (3X), nutrient content
(500% more lycopene accumulation), and plant architecture. In another independent study, de novo domestication of
S. pimpinellifolium was achieved by CRISPR-Cas9-based editing of five target genes (SP, SP5G, SlCLV3, SlWUS, SlGGP1),
resulting in enhanced fruit size and nutrient content while retaining stress tolerance (resistance to bacterial spot disease and
salt tolerance) of the wild ancestor [173]. Earlier, Rodríguez-Leal et al. [174] obtained novel quantitative variation for key
domestication traits (fruit size, inflorescence branching, and plant architecture) in tomato through creating cis-regulatory
mutations in three genes using CRISPR/Cas9 technology.

In view of the fact that 90% of the world calories are supplied by only 20 plant species [175], we need to broaden the array
of cultivated crops. In order to diversify cropping systems, Massawe et al. [175] suggest use of orphan or underutilized
crops that are better adapted to local or marginalized environments. Lemmon et al. [176] performed de novo domestica-
tion for a Solanaceae orphan crop groundcherry (Physalis pruinosa) by using CRISPR-Cas9-based targeted modification
of homologs of tomato domestication and improvement genes, SELFPRUNING (SP), SELF-PRUNING 5G (SP5G), and
CLAVATA (CLV)–WUSCHEL. However, optimized tissue culture and transformation protocols should be in place to make
genome editing a routine tool for plant improvement [176].
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DOW Agrosciences (https://www.theland.com.au/story/4623477/tackling-pre-harvest-
sprouting-in-wheat/), SB facilitated the development of an Australian high-protein milling
wheat variety, DS Faraday, that has tolerance to preharvest sprouting and leaf, stripe, and
stem rust. A recent study extended the possibility to apply SB to short-day plants like
soybean using a 10-h photoperiod and a light spectrum enriched with blue light [57]. However,
SB experiments on other short-day crops (rice and amaranth Amaranthus spp.) highlighted the
need for crop-specific optimization of light quality/intensity to improve generation turnover. The
importance of both quality and quality of light on plant photo-morphogenic response was
evident from an earlier study on grain legumes [58]. The widespread applications of standardized
SB systems include assisting hybridization, phenotyping of adult plant traits, MAS for target traits,
generation advancement through single seed descent (SSD), and gene editing in several crops.

A new approach, ExpressEdit, provides ample scope to combine gene editing and SB systems
in a tissue-culture free manner [59]. In ExpressEdit, ‘preassembled Cas9-single guide RNA
(sgRNA) ribonucleoproteins’ are delivered into plant shoot apical meristems using particle
644 Trends in Plant Science, June 2021, Vol. 26, No. 6
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Outstanding Questions
Haplotype-based breeding aims to de-
liver a designer cultivar by assembling
superior haplotypes into one geno-
type. Howwill the process take into ac-
count novel genetic interactions that
the transferred haplotypes establish
with the recipient genetic background?

The past decade has witnessed genomic
selection (GS) studies focusing on close
proximity/genetic relatedness between
individuals from training and breeding
populations for better accuracy. Given
this focus, how can the potential of wild
relatives, less represented in current
breeding populations, be harnessed for
genome-wide predictions?

Does the term ‘de novo domestication’
not trivialize a process that has taken
hundreds of years of selection and
breeding? In this respect, to what
extent will systems biology and
pangenomic approaches help achieve
the goal of obtaining future crops?

How can international service capacity be
built to support the breeding programs of
lesser developed countries, with limited
resources and poor expertise to deploy
the high-throughput technologies like
GS and HTP that lie at the core of
genomics-assisted breeding?

Will speed breeding short-day plants
witness similar success to breeding
long-day or day-neutral plants? How
can we resolve/alleviate the genotype-
dependence of current protocols to
facilitate their widespread applications?
bombardment or biolistic DNA delivery. The plants lacking Cas9 and having the desired trait
are selected using MABC. The ‘CRISPR-ready’ plants thus obtained can be targeted for
sgRNA spray.

Concluding Remarks: Way Forward and Challenges Ahead
There are many challenges facing plant breeders in the coming years. Increasing weather
volatility, apparent yield plateaus in some crops, connecting genotype to phenotype, predicting
genotype by environment interactions, and improved phenotyping methods are just a few
examples. Innovative tools and technologies have been instrumental in improving our under-
standing of genome structure and function, providing the genetic underpinnings of important
trait architectures. We anticipate continued improvement in the rate of genetic gains in crop
breeding programs across the globe, in spite of climate change, as our capacity to measure
and exploit quantitative trait variation in elite varieties, our germplasm repositories and novel
variation created using targeted genetic recombination [60] and genome editing. However,
achieving desired phenotypic manifestations and improved plant performance by targeted
manipulation of a considerable number of major- and minor-effect QTLs also demands a
systems biology approach in which breeders will need to carefully prioritize traits for a specified
target population of environments. Since precise manipulation of the causal loci will require in-
depth understanding of the genetic make-up of various traits, equal emphasis should be
placed on elucidation of trait architectures in combination with black box approaches like GS
that do not necessarily rely on the underlying biology of traits. The potential of GAB 2.0 will
be realized in the optimization of the methods of using crop genome information for crop im-
provement. Such optimization for obtaining desirable phenotypes requires continued innova-
tion in plant breeding methods resulting from new knowledge and improved technologies
(see Outstanding Questions).
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