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Abstract
Beyond the most crucial roles of RNA molecules as a messenger, ribosomal, and transfer RNAs, the regulatory role of many 
non-coding RNAs (ncRNAs) in plant biology has been recognized. ncRNAs act as riboregulators by recognizing specific 
nucleic acid targets through homologous sequence interactions to regulate plant growth, development, and stress responses. 
Regulatory ncRNAs, ranging from small to long ncRNAs (lncRNAs), exert their control over a vast array of biological pro-
cesses. Based on the mode of biogenesis and their function, ncRNAs evolved into different forms that include microRNAs 
(miRNAs), small interfering RNAs (siRNAs), miRNA variants (isomiRs), lncRNAs, circular RNAs (circRNAs), and derived 
ncRNAs. This article explains the different classes of ncRNAs and their role in plant development and stress responses. 
Furthermore, the applications of regulatory ncRNAs in crop improvement, targeting agriculturally important traits, have 
been discussed.
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Introduction

Crop plants adapt to different regulatory mechanisms to 
accomplish sustainable productivity. A myriad of non-cod-
ing RNAs (ncRNAs) are important players in these regu-
latory networks. In the recent past, research on ncRNAs 

has been accelerated with the advent of deep sequencing 
technologies in the field of molecular biology. The ncRNAs 
derived from transcriptionally active genes do not encode a 
functional protein (Palazzo and Lee 2015). The structural 
class of ncRNAs comprises ribosomal RNA (rRNA), trans-
fer RNA (tRNA), small nuclear RNA (snRNA), and small 
nucleolar RNA (snoRNA) (Fig. 1). The regulatory ncRNAs 
(rncRNAs) are broadly classified into long ncRNAs (lncR-
NAs, > 200 nt) and small ncRNAs (sncRNAs, 18–30 nt). 
Furthermore, several studies have reported the participation 
of other regulatory ncRNAs such as “circular” RNAs (circR-
NAs) and derived ncRNAs in plant processes (Sablok et al. 
2016; Zhu et al. 2018).

The first ncRNA characterized in baker’s yeast was ala-
nine tRNA (Holley et al. 1965). The catalytic role of the 
RNA in the 1980s opened a new perspective for research-
ers to understand the complex role of different ncRNAs 
(Morris and Mattick 2014). Subsequently, discovery of the 
regulatory action of ncRNAs in Caenorhabditis elegans was 
emerged as a big revolution in the world of “nc” RNA and 
led to the identification of different classes of ncRNAs in 
humans, animals, and plants (Chen 2009; Lee et al. 1993; 
Mattick and Makunin 2006; Yu et al. 2019). Besides, tech-
nological advancements also paved the way for identification 
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of several other regulatory ncRNAs modulating the expres-
sion of protein-coding genes in various cellular processes by 
interacting with different molecular pathways. However, the 
gathered knowledge of ncRNAs in plants is less compared to 
that in animals. In this review, we present the updates on the 
diverse regulatory role of ncRNAs in plant biology including 
ncRNA variants/isoforms, circRNAs, and derived ncRNAs. 
Furthermore, examples of ncRNA-mediated regulation in 
the development of plant phenotypes with improved agro-
nomic traits and the possible ways to utilize this information 
in crop improvement programs are discussed.

Biogenesis

ncRNA biogenesis is a complex phenomenon and can be 
derived from two major pathways: canonical and non-canon-
ical. Canonical pathway denotes the ncRNA synthesis by 
classical steps (Fig. 2), while non-canonical pertains to non-
classic/non-regular ways that follow alternative pathways 
(Fig. 3).

Canonical biogenesis

miRNAs

Canonical biogenesis of miRNAs and other siRNAs have 
been well-described earlier (Borges and Martienssen 2015). 
In brief, the miRNA biogenesis includes the synthesis of 
long primary transcripts called primary miRNAs (pri-miR-
NAs) with the aid of RNA Polymerase (Pol) II (Pol II), and 
it is further processed into precursor miRNAs (pre-miRNAs/
premiR) by a set of proteins — DICER-LIKE 1 (DCL1), 
HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE) 
(Rogers and Chen 2013). Subsequent processing of pre-
miRNA to miRNA/miRNA* duplex followed by the trans-
fer of duplex from the nucleus to cytoplasm, where the 
preferential loading of mature miRNA to RNA-INDUCED 

SILENCING COMPLEX (RISC) occurs and reaches its 
target mRNA transcript by binding with ARGONAUTE 1 
(AGO 1) protein. Thus, the regulation of target gene expres-
sion occurs either by transcript cleavage or by translational 
repression, and the miRNA* strand gets degraded (Borges 
and Martienssen 2015; Budak et al. 2015). miRNAs with 
21-nt length are processed by DCL1 or DCL4 proteins, 
while 22 and 24-nt length miRNAs are processed by DCL2 
and DCL3 proteins (Fig. 2a).

siRNAs

In contrast to miRNAs, siRNAs are either exogenous or 
endogenous, derived from the complementary long double-
stranded RNAs by RNA-DEPENDENT RNA POLYMER-
ASE (RDR) and cleaved into siRNAs by DCL1 proteins. 
Different classes of endogenous siRNAs in plants include 
secondary siRNAs (natural antisense transcript-derived siR-
NAs (natsiRNAs or nat-siRNAs), phased siRNAs (phasiR-
NAs), and trans-acting siRNAs (tasiRNAs or ta-siRNAs)) 
and heterochromatic siRNAs (hcsiRNAs) (Borges and Mar-
tienssen 2015) (Fig. 2a). natsiRNAs are the pairs of perfect 
complementary transcripts transcribed from endogenous 
coding or ncRNAs with the aid of Pol II/Pol IV, RDR2, and 
DCL1/DCL3-dependent pathway involved in post-transcrip-
tional gene regulation through RNA interference (RNAi) 
(Borges and Martienssen 2015). tasiRNAs and phasiRNAs 
are generated from cleavage fragments of miRNA-target 
transcripts, and their precursors are transcribed from non-
coding loci and protein-encoding genes, respectively, by Pol 
II. The subsequent cleavage of transcripts by miRNA-medi-
ated AGO1/AGO7 results in single-strand RNAs (ssRNAs) 
and further into double-stranded RNAs (dsRNAs) by RDR6 
and SUPPRESSOR OF GENE SILENCING3 (SGS3). Fur-
thermore, conversion of dsRNAs into 21 or 24-nt siRNAs by 
DCL2 or DCL4 and loading into AGO1/AGO4 results in tar-
get cleavage (Allen et al. 2004). Importantly, phasiRNAs are 
triggered by either “one-hit” (one binding site in the target) 

Fig. 1  Classification of non-coding RNAs: different classes and subclasses of structural and regulatory non-coding RNAs
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or “two-hit” (two binding sites in the target) models (Fei 
et al. 2013). Contrarily, hcsiRNAs (23–24 nt) involve in the 
transcriptional gene silencing (TGS) by guiding the meth-
ylation of DNA and/or histones through the RNA-directed 
DNA methylation (RdDM) (Matzke et al. 2015) (Fig. 2a). 
These are derived from the transposable elements (TE) and 
repeats of hc regions by the action of Pol IV and CLASSY1 
(CLSY1) followed by RDR2 and DCL3 to generate hcsiR-
NAs, that aid in the site-specific chromatin modifications 
(Yu et al. 2019).

lncRNAs and circRNAs

lncRNAs are usually derived from genomic regions 
that lack coding potential and possess the transcript 
length > 200 nt. The majority of lncRNAs that are tran-
scribed by Pol II possess a 5′ cap and non-adenylated or 
poly-adenylated 3′ tail. Other RNA polymerases like Pol 
IV and Pol V also play a central role in the biogenesis of 
lncRNAs (Wierzbicki et al. 2008, 2009). lncRNAs tran-
scribed from Pol IV and Pol V lack poly-A tails and merely 

Fig. 2  Canonical biogenesis of regulatory non-coding RNAs. a Small 
ncRNA biogenesis (left to right): microRNAs (miRNAs) transcribed 
from respective miR genes through the intermediate stem-loop struc-
tures called precursor miRNAs (pre-miRNAs) and miRNA duplexes 
by polymerase II (pol II) and other proteins. Further mature miRNA 
strand is incorporated to Argonaute (AGO) I for post-transcriptional 
gene silencing (PTGS) by target cleavage or repression. Next to the 
miRNAs, a class of natural antisense RNAs (natsiRNAs or nat-siR-
NAs) derived from the nat genes by the action of pol II or pol IV 
by forming double-stranded RNAs (dsRNAs) as intermediates either 
from overlapping loci or from complementary loci to generate cis 
and trans natsiRNAs. Trans acting siRNAs (tasiRNAs or ta-siRNAs) 
or phasiRNAs are transcribed from respective tasi or phasi genes by 
pol II through the formation of dsRNAs as intermediates. Action of 

RNA-dependent RNA polymerase 6 (RDR6) on dsRNAs results in 
the formation of 22-nt or 24-nt tasiRNAs or phasiRNAs. natsiRNAs/
tasiRNAs/phasiRNAs are involved in target gene cleavage. Hetero-
chromatic siRNAs (hcsiRNAs) are derived by the transcription of het-
erochromatin regions with Pol IV and RDR2 through the formation of 
intermediate dsRNAs. Further subsequent process of dsRNAs results 
in the formation of 24-nt hcsiRNAs that mainly involves chromatin 
modifications. b Long non-coding RNAs (lncRNAs): LncRNAs are 
transcribed by Pol II, and based on their relative position of their tran-
scription from the genome, lncRNAs are classified in to intergenic, 
sense, intronic, natural antisense, and bidirectional. c Circular RNAs 
(circRNAs): circRNAs are derived from the exons, introns, or exonic-
intronic regions through back-splicing of protein-coding genes
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less expressed when compared to lncRNAs derived from 
Pol II and play a significant role in driving RdDM (Budak 
et al. 2020; Zhou and Law 2015). Based on the biogenesis 
loci, lncRNAs are further classified as intergenic, intronic, 
sense or overlapping, antisense, and bidirectional (Budak 
et al. 2020) (Fig. 2b). lncRNAs regulate gene expression 
at transcriptional and post-transcriptional levels through 
different mechanisms. They act as scaffolds by interact-
ing with chromatin regulatory proteins, as miRNA decoys 
(sponges/target mimics), and as mediators in epigenetic 
silencing (Wang et al. 2018a).

In addition, circRNAs, a distinct class of endogenous 
ncRNAs characterized by covalently closed structures 
without 5′ or 3′ ends, are derived through non-sequential 
back-end splicing from the precursor mRNAs by Pol II 
(Zhang et al. 2016a). These are categorized into exonic, 
intronic, intergenic, and exon-intronic, based on the derived 
genomic region and regulates the gene expression by acting 
as sponges for miRNAs (Sablok et al. 2016) (Fig. 2c).

Non‑canonical biogenesis

Besides canonical, ncRNAs choose alternative routes for 
biogenesis through dicer-independent mechanisms and 
were described as “non-canonical” pathways, which include 
few miRNAs, and derived ncRNAs. Here, (1) pre-miRNA 
hairpin structures called “mirtrons” are generated through 
splicing mechanism instead of DCL1 (Budak and Akpinar 
2015; Meng and Shao 2012), 2) DLC2, DCL3, and DCL4, 
act on long inverted repeat transcripts which results in 
miRNA species varying in length, (3) processing of pri-
miRNAs in reverse orientation from loop to the base gen-
erates multiple duplexes of miRNA/miRNA* rather than a 
single duplex (Fig. 3a) (Budak et al. 2015; Sobkowiak et al. 
2012). Sometimes, the unusual genetic loci can also harbor 
non-coding small RNAs. For example, (1) the derivatives 
of rRNAs, tRNAs, snoRNAs, snRNAs, and transposons are 
derived ncRNAs (Son et al. 2013), (2) small RNAs (18–26 
nt) derived from tRNA are tRNA-derived fragments (tRFs), 

Fig. 3  Non-canonical biogenesis of non-coding RNAs. a Non-canon-
ical biogenesis of miRNAs occurs through mirtron-like transcripts 
which can be spliced and debranched in to pre-miRNA hairpins that 
bypasses the pri-miRNA step in canonical biogenesis. Debranched 
mirtron-like transcripts enters canonical miRNA pathway and later 
cleaved by Dicer like1 (DCL1) and Argonaute 1 (AGO1) proteins. 
b tRNA-derived non-coding RNAs pathway includes the action of 

RNases on both precursor tRNAs (pre tRNA) and mature tRNAs 
that give rise to small RNAs like 3′ U tRFs, 5′ tRFs, and 3′ tRFs. c 
Small RNA duplexes derived from ribosomal DNA (rDNA) through 
transcription and subsequent cleavage by DCL1 functions like miR-
NAs by entering in to AGO pathway. d Small RNAs derived from 
snoRNAs (sdRNAs) regulate their target transcripts by entering in to 
DCL1 and AGO1 pathway like miRNAs
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processed by either DICER or by Dicer-independent path-
way through the action of ribonuclease (RNase) (Fig. 3b). 
Based on their derived region, the tRFs are categorized into 
5′-tRFs, 3′-tRFs, and 3′-U tRFs. In plants, the regulatory role 
of tRFs through RNA degradation and translational inhibi-
tion was studied in Arabidopsis (Zhang et al. 2009; Zhu et al. 
2018), (3) miRNAs derived from ribosomal DNA (rDNA) 
have also been reported in humans and plants (De Paola 
et al. 2016; Mangrauthia et al. 2018) (Fig. 3c), (4) small 
RNAs derived from snoRNA (sdRNA) possess a function 
as like miRNAs (Taft et al. 2009) (Fig. 3d), (5) TE-derived 
ncRNAs are transcribed from TE genomic regions through 
Pol II and processed by RDR6 and DCL2/4 to form 21 or 
22-nt siRNAs and thus targets TE mRNAs for degradation 
in association with AGO1 (Cho and Paszkowski 2017). The 
activation of several TEs during hypomethylation results in 
epigenetically activated siRNAs (easiRNAs) (Creasey et al. 
2014). Furthermore, TEs can establish RNA hairpin struc-
tures and proces them through miRNA biogenesis pathways 
to form TE-derived miRNAs (Creasey et al. 2014; Nosaka 
et al. 2012). In addition, TE-derived lncRNAs have also been 
reported in plants (Wang et al. 2015a).

The non-canonical pathways and unconventional genetic 
loci of ncRNAs biosynthesis in plants indicate the unknown 
complexity of gene regulation. More in-depth studies in this 
area of research will help in understanding the precise regu-
lation of ncRNAs.

ncRNAs isoforms, mechanisms, 
and biological significance

The combination of high-throughput sequencing technolo-
gies and bioinformatics advancements aided the discovery of 
novel regulatory small RNAs called “isomiRs,” the canoni-
cal variants of miRNAs (Jeong et al. 2013). These multi-
ple miRNA isoforms/isomiRs are usually generated from 
a single locus by DICER from imprecise cleavage, which 
is perfectly complementary to their pre-miRNA sequences. 
IsomiRs differ from the canonical miRNAs by nucleotide 
variation in their 5′ or 3′-end or both of the seed regions 
thus targeting a different mRNA molecule. Based on the 
variations in length, isomiRs are classified as 5′, 3′, and 
polymorphic isomiRs. Comparatively, the existence of 3′ 
substituted isomiRs is more evident in plants than 5′ sub-
stituted isomiRs, which are considered as a potential source 
for target site alterations (Balyan et al. 2020; Yang et al. 
2019). In plants, the first isomiRs were reported in rice fol-
lowed by peach, Arabidopsis, common bean, etc., and their 
decisive role in plant development and stress response also 
has been elucidated (Jeong et al. 2013; Yang et al. 2019). 
IsomiRs regulates post-transcriptional responses by acting as 
canonical partners to miRNAs. These isoforms proved to be 

functionally capable of target cleavage and thereby involved 
in the miRNA regulatory network. Studies suggested that 
canonical miRNA variants and their targets are evolutionar-
ily conserved and are lineage-specific. For instance, miR156 
is one of the broad and highly conserved miRNA family 
domains, and its regulation has been widely documented in 
plants that comprise different isoforms (Yang et al. 2019). 
Studying various isoforms of different miRNAs and line-
age-specific isomiRs with respect to their parent miRNAs 
would help to understand their similar or differential roles 
in development, and stress responses (Budak et al. 2015; 
Yang et al. 2019).

Regulation of ncRNAs synthesis and decay

Besides the synthesis, the decay of the ncRNAs is equally 
an essential process to maintain homeostasis. Moreover, this 
additional layer of modulating ncRNA expression, process-
ing, and action will provide plasticity to the roles played by 
ncRNAs. Regulation of production and decay of different 
ncRNAs is still not completely understood in plants except 
for miRNAs with a few examples. In Arabidopsis, cyclin-
dependent kinase F: 1 (CDKF: 1) controls the transcription 
of MIR genes by regulating Pol II activity by phosphoryla-
tion. Similarly, a conserved transcriptional co-activator (a 
multi-subunit complex) reduces the loading of Pol II at MIR 
gene promoters (Hajheidari et al. 2012). Negative on TATA 
less2B (NOT2b) protein interacts with the Pol II for the 
efficient transcription of MIR genes (Wang et al. 2019a). 
Similarly, the cell division cycle 5 (CDC5) protein functions 
as a positive regulator of transcription in association with 
both Pol II and MIR promoters (Wang et al. 2019a). Apart 
from the transcription process, subsequent steps of biogen-
esis were also regulated. SE, dsRNA-binding protein, HYL1, 
and TOUGH (TGH) proteins interact with DCL1, to regu-
late miRNA accumulation. Similarly, feedback regulation of 
miRNAs biogenesis is a well-known phenomenon, where the 
miRNAs regulate their own biogenesis. miR162 and miR168 
are the two key feedback regulatory miRNAs by targeting 
DCL1 and AGO1 mRNAs (Song et al. 2019; Wang et al. 
2019a). Furthermore, methylation plays a prominent role in 
stabilizing and destabilizing the miRNAs. Usually, unmeth-
ylated miRNAs can be easily degraded either by uridylation-
dependent or by independent mechanisms. Methylated miR-
NAs can also be degraded through an unknown mechanism 
followed by the uridylation process. Overexpression of HUA 
ENHANCER1 (HEN1) SUPPRESSOR1 (HESO1) reduces 
miRNA accumulation in hen1 mutants of Arabidopsis (Song 
et al. 2019). Small RNA degrading nuclease (SDN) also 
plays an important role in the turnover of mature miRNAs, 
and its deactivation results in the accumulation of miRNAs 
and diminished plant development (Xie et al. 2015). More 
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extensive studies are required to understand the network of 
proteins/enzymes involved in the regulation of synthesis and 
decay of miRNAs and other ncRNAs.

Role of regulatory ncRNAs in plant growth 
and development

The crucial role of regulatory ncRNAs in plant growth and 
development has been elucidated in detail in many reviews 
and research articles. Especially, there are many stud-
ies on miRNAs and lncRNAs describing their regulatory 
role in plant growth and development (Li and Zhang 2016; 
Swarup and Denyer 2018; Yu et al. 2019). Here, we primar-
ily discussed how these ncRNAs regulate different complex 
networks. Different phase transitions from seed germina-
tion-vegetative-reproductive stages are crucial in the plant 
development process besides the growth of different tissues 
and organs.

The role of miRNAs as gene regulators in plant growth 
and development has been demonstrated in several studies 
(Li and Zhang 2016; Swarup and Denyer 2018; Yu et al. 
2019). Majorly, plant miRNAs target different transcrip-
tion factors (TFs) and genes of various pathways to regulate 
diverse biological processes (Fig. 4). Efforts to understand 
the regulatory mechanisms in controlling different plant 
developmental stages have led to the discovery of numerous 
miRNAs and their complex gene networks (Das et al. 2015; 
Swarup and Denyer 2018). Different miRNA-target mod-
ules especially, miR156-SQUAMOSA PROMOTER BIND-
ING PROTEIN-LIKE (SPL), miR159-MYELOBLASTOSIS 
(MYB), and miR172-APETALA 2 (AP2) are the key regula-
tors in different plant developmental phase transitions (Ma 
et al. 2020; Swarup and Denyer 2018). These modules act 
either as positive or as negative regulators in promoting from 
one phase to another. For instance, in Arabidospsis, miR156-
SPL module acts as a negative regulator for germination-veg-
etative-reproductive stage transitions, where the decreased 
levels of miR156 elicit the SPL expression to accelerate the 
transitions. On the other hand, miR172-AP2 module acts 
as a positive regulator for the same transition, where the 
increased levels of miR172 decrease the AP2 expression 
and thus promotes transition. This clearly implicates that 
miRNAs can turn on and off the specific pathways by fine-
tuning the expression of targets. Several studies showed that 
miRNAs establish the regulatory networks by coordinat-
ing with different hormones like gibberellic acid (GA) and 
abscisic acid (ABA) to control germination and dormancy 
processes in plants (Das et al. 2015; Liu and El-Kassaby 
2017; Martin et al. 2010). For instance, miR159 plays a vital 
role in controlling seed dormancy and germination via alter-
ing the balance between ABA and GA hormones (Martin 
et al. 2010). miR159 regulates the expression of MYB TFs, 

MYB33, and MYB101 to establish a positive regulation 
through ABA signaling in seed germination and dormancy 
(Reyes and Chua 2007). Furthermore, multiple members of 
the same gene family targeted by discrete miRNAs result 
in diverse biological functions. For instance, miR160 con-
trols seed germination by negatively regulating the expres-
sion of AUXIN RESPONSE FACTORS (ARFs) in rice, and 
Arabidopsis (Das et al. 2015). Similarly, miR167 controls 
the root development by modulating the expression of ARF6, 
and ARF8 by positive regulation (Gleeson et al. 2014). In 
leaf, miR165/166 regulates polarity with miR390 by target-
ing several ARF genes through the production of siRNAs 
(Chitwood and Timmermans 2010). These findings suggest 
the discrete regulatory role of miRNAs in different develop-
mental transitions by mediating definite signaling pathways. 
In addition, miRNAs also act in an integrative mode on a 
single biological function as discussed by Yu et al. (2019). 
Furthermore, isoforms of a miRNA family might participate 
in similar biological functions either through the same or 
through different target genes (Alptekin et al. 2017). For 
instance, miR159a.1-MYB and miR159a-p5-TETRAKETIDE 
ALPHA-PYRONE REDUCTASE 1 (TKPR1) modules associ-
ated with male meiosis and were significantly expressed in 
pollen and embryo sac. Thus, the complex regulatory net-
work of miRNA-target modules forms the molecular basis 
of growth and development.

Besides miRNAs, studies showed the role of siRNAs 
in plant development (Khraiwesh et al. 2012). The phased 
TAS3-tasiRNAs derived from miR390-AGO7 complex tar-
gets ARF family members, which regulate various biologi-
cal processes. The TAS3-tasiRNAs-ARF regulatory network 
emerged as the most conserved module in plants by regu-
lating developmental transitions, embryo development, root 
structure, shoot apical meristem (SAM) development, leaf 
morphology, and flower and phytohormone cross-talk (Deng 
et al. 2018; Xia et al. 2017; Yu et al. 2019). In Arabidop-
sis, TAS4-tasiRNAs are triggered by miR828 targeted MYB 
genes (PRODUCTION OF ANTHOCYANIN PIGMENT 1 
(PAP1), PAP2, and MYB113), which are involved in the 
regulation of anthocyanin biosynthesis pathway (Zhou et al. 
2020). Two homologous MYB genes regulate fiber develop-
ment in cotton, and interestingly, these regions were TAS4 
orthologs in Arabidopsis and cotton, where one of the MYB 
genes is targeted by miR828 to generate 21-nt phasiRNAs. 
Furthermore, miR828 derived cis, trans siRNAs and phasiR-
NAs also regulate trichome development (Guan et al. 2014). 
Besides these studies, the role of natsiRNAs and hcsiRNAs 
in plant development is comparatively less. The involve-
ment of cell-specific natsiRNA in the double fertilization 
process by regulating KOKOPELLI (KPL) and ARIADNE14 
(ARI14) genes has been studied in Arabidopsis (Borges and 
Martienssen 2015).
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In addition to the sncRNAs, lncRNAs tend to play a sig-
nificant role in different developmental processes of plants 
by regulating the expression of neighboring genes by acting 
in cis and distant genes by trans modes (Yu et al. 2019). The 
possible mechanisms of the regulation are by chromatin/
histone modifications through recruiting proteins, by acting 
as miRNA mimics, transcriptional regulation, and silencing 
or post-translational modifications. For instance, lncRNAs 
acting in cis were identified in root growth regulation and 

flowering time of Arabidopsis. The expression of PINOID 
(PID), an auxin transport gene, is regulated by the long 
intergenic non-coding RNA (lincRNA) AUXIN-REGU-
LATED PROMOTER LOOP (APOLO) through the for-
mation of chromatin loop, thus regulating the root growth 
in Arabidopsis (Ariel et al. 2014). Similarly, the lncRNA, 
COLD-INDUCED LONG ANTISENSE INTERGENIC NON-
CODING RNA (COOLAIR) regulates the expression of 
FLOWERING LOCUS C (FLC) gene through the association 

Fig. 4  Regulation of miRNAs in plant development and stress mechanisms. Different miRNA-target modules involved in plant growth, develop-
ment, abiotic and biotic stress episodes, and their regulation
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of chromatin and recruiting chromatin modifiers, and thus 
regulating flowering time and seed dormancy (Chen and 
Penfield 2018). Another example of cis acting lncRNA was 
LAIR (l-(LEUCINE-RICH REPEAT RECEPTOR KINASE 
(LRK)) ANTISENSE INTERGENIC RNA), which regulates 
grain yield in rice by recruiting chromatin-modifying com-
plexes to increase H3K4me3 and H4K16ac levels of its tar-
get LRK gene (Wang et al. 2018a). Similarly, few examples 
of trans acting lncRNAs were ALTERNATIVE SPLICING 
COMPETITOR (ASCO), which regulates the NUCLEAR 
SPECKLE RNA-BINDING (NSR) mRNA by modulating 
the alternative splicing patterns during root development of 
Arabidopsis (Bardou et al. 2014). Also, another lincRNA, 
HIDDEN TREASURE 1 (HID1) promotes photomorpho-
genesis and represses the greenness of cotyledons by regu-
lating the expression of PHYTOCHROME-INTERACTING 
FACTOR 3 (PIF3) through chromatin interaction (Wang 
et al. 2014). Furthermore, increased expression of lncRNA, 
long-day-specific male-fertility-associated RNA (LDMAR), 
is essential for the pollen development during long-day con-
ditions and single-nucleotide polymorphism (SNP) at the 
LDMAR locus increases RdDM at its promoter region and 
reduces LDMAR transcription (Ding et al. 2012).

Furthermore, studies on understanding the role of circR-
NAs in plant development have also been documented (Chu 
et al. 2018; Liu et al. 2017a; Zhang et al. 2020; Zhao et al. 
2019). In Arabidopsis, increased expression of circRNAs 
associated with porphyrin, chlorophyll metabolism, and 
signal transduction of hormones was detected during leaf 
senescence (Liu et al. 2017a). In another study, a circRNA 
derived from the 6th exon of SEPALLATA3 (SEP3) nega-
tively regulates its own gene by acting in cis by binding to 
its cognate DNA locus and forming R-loop. This results in 
transcriptional pausing and increased abundance of alterna-
tive splice variants of the parental transcript (SEP3), which 
in turn results in the surge of floral homeotic phenotypes 
(Conn et al. 2017). The overexpression of rice circRNA, 
Os08circ16564, resulted in a severe decline of the AK064900 
gene, which has been involved in the development of rice 
spikelet and floral organs (Lu et al. 2015). Though sequenc-
ing technologies aid the identification of several circRNAs 
in plants, the regulation of circRNAs still needs more in-
depth studies.

In addition, discoveries of other ncRNAs have added 
a piece of interesting information in this area of research 
(Cho 2018; Cho and Paszkowski 2017; Martinez et al. 2017). 
The tRNA-derived ncRNA, tRFGlu-CTC-5A, showed spe-
cific expression in flower tissues, while 5′-tRFs were accu-
mulated in pollen tissue of Arabidopsis (Martinez et al. 
2017). Expression of TE-derived lncRNA called MIKKI 
was detected in rice roots, and it has multiple intron sites 
that produce a binding site for miR171 upon splicing (Cho 
and Paszkowski 2017). Despite appreciable success in 

understanding the role of miRNAs in plant development, 
the functions and biological mechanisms of emerging ncR-
NAs like circRNAs and derived ncRNAs are still unclear. 
Intensive efforts are needed to ascertain the functional and 
regulatory role of emerging ncRNAs in concert to coordinate 
the different biological functions and mechanisms during 
plant development.

Role of regulatory ncRNAs in plant stress 
responses

Regulatory roles of ncRNAs in various stress episodes also 
have been well-studied in plants. Activation of different reg-
ulatory ncRNAs by biotic and abiotic stress elicitors leads to 
the regulation of crucial stress-responsive pathways through 
target transcripts (Fig. 5). As stated in the earlier section, 
among different ncRNAs, miRNAs are the extensively inves-
tigated class followed by siRNAs and lncRNAs (Khraiwesh 
et al. 2012; Song et al. 2019; Yu et al. 2019). Regulation 
of gene expression mediated by miRNAs during different 
stress responses (drought, heat, salinity, cold, nutrient, and 
pathogen) has been exemplified in a different model and 
crop plants such as Arabidopsis, wheat, rice, maize, and bar-
ley (Barciszewska-Pacak et al. 2015; Ferdous et al. 2017; 
He et al. 2019; Hua et al. 2019; Mangrauthia et al. 2017a; 
Sailaja et al. 2014). In addition, there are comprehensive 
reviews that delineated the expression and regulation of 
different conserved miRNAs during various environmental 
stress episodes (Ferdous et al. 2015; Megha et al. 2018; Song 
et al. 2019; Zhao et al. 2016).

The wide range of miRNAs expression in each stress 
response has been witnessed in many plant species. However, 
few miRNA-target modules can show definite expression 
patterns against specific stress by regulating target genes, 
and their pattern of expression can be conserved across dif-
ferent plant species (Song et al. 2019). In addition to plant 
growth and development, the role of conserved miRNA-
target modules is also crucial in conferring stress toler-
ance by integrating with metabolic pathways. Well-known 
conserved miRNA-target modules such as miR156-SPL, 
miR159-MYB, miR160-ARF, miR164-NAC (NAM, ATAF, 
and CUC ), miR167-ARF, miR169-NUCLEAR TRANSCRIP-
TION FACTOR-Y (NFY), miR319-TEOSINTE BRANCHED/
CYCLOIDEA/PROLIFERATING CELL FACTORS (PCF) 
(TCP), miR394-LEAF CURLING RESPONSIVENESS 
(LCR), miR396-GROWTH REGULATING FACTOR (GRF), 
and miR398- COPPER/ZINC SUPEROXIDE DISMUTASE 
(CSD) are known to play an important regulatory role in dif-
ferent stress environments to mitigate the detrimental effects 
(Fig. 4). For instance, different miRNAs are known to target 
TFs in phytohormone regulation, such as ABA, GA, ethyl-
ene signaling, and auxin signaling under drought conditions 
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(Ferdous et al. 2017). The miR167-ARF module regulates 
the auxin signaling pathway during drought stress. ARF6 
and ARF8, the targets of miR167, negatively regulates auxin 
signaling pathway through GRETCHEN HAGEN 3 (GH3). 
During drought, miR167 was upregulated in Arabidopsis, 
wheat, and maize, while it was downregulated in rice (Song 
et al. 2019). Similarly, miR169-NFY module also plays a sig-
nificant role during water-deficit conditions. In Arabidopsis, 
tomato, and Medicago, downregulation of miR169 enhances 
the expression of its target, NF-Y (Li et al. 2008; Megha 
et al. 2018; Zhang et al. 2011a). The increased expres-
sion of NF-Y in stomatal guard cells enhances the drought 
tolerance by controlling the aperture of the guard cell in 
plants (Li et al. 2008). Besides, miR160-ARF, miR156-
SPL, miR159-MYB33, miR164-NAC, miR172-AP2 etc. 
modules are also shown to be involved in the regulation of 
drought stress response (Song et al. 2019). Similarly, sev-
eral miRNAs were also identified in the regulation of plant’s 
heat stress response (Mangrauthia et al. 2017a; Ravichan-
dran et al. 2019; Sailaja et al. 2014; Wang et al. 2011). In 

Arabidopsis, Brassica, and Populus, one of the important 
and most conserved miRNA-target modules as a part of the 
heat stress response is miR398-CSD (Guan et al. 2013; Yu 
et al. 2012). In Arabidopsis, increased expression of miR398 
enhanced the heat tolerance in plants by negatively regulat-
ing the expression of its targets — CSD1, CSD2, and COP-
PER CHAPERONE OF CSD (CCD) (Guan et al. 2013; Lu 
et al. 2013). Decreased levels of CSD1, CSD2, and CCD 
aids in the accumulation of heat shock transcription fac-
tors (HSFs) and heat shock proteins (HSPs). Furthermore, 
other conserved modules, viz., miR156-SPL, miR172-AP2 
also contribute to heat stress response in plants (Song et al. 
2019; Zhao et al. 2016). In addition, the highly conserved 
miR394-LCR module participates in the cold stress response 
of plants. In Arabidopsis, overexpressed miR394a plants 
exhibit cold tolerance by negatively regulating the LCR gene 
(Song et al. 2016). Furthermore, the increased expression of 
genes encoding C-REPEAT BINDING FACTORS (CBFs) 
or DEHYDRATION-RESPONSIVE ELEMENT-BINDING 
FACTORS 1 (DREB1) in overexpressed miR394 and lcr 

Fig. 5  General model of stress-responsive regulation by regulatory 
non-coding RNAs in abiotic and biotic stresses. Abiotic and biotic 
stresses elicit the production of reactive oxygen species (ROS) and 
pattern-associated molecular pattern (PAMP) recognition in plants 
through signal perception. Synthesis of different classes of non-cod-
ing RNAs (ncRNAs) in response to ROS and PAMP is one of the 
defensive mechanisms in plants. miRNAs and other small ncRNAs 
thus produced in response to stress, bind to their respective target 
genes with the aid of Argonaute (AGO) proteins by forming RNA-
induced silencing complex (RISC), and thus regulate the expression 

of target genes. Long non-coding RNAs (lncRNAs) regulate the gene 
expression by mimicking the miRNA targets or through alternative 
splicing or by chromatin modification. Circular RNAs (circRNAs) 
regulate the gene expression by acting as miRNA sponges. Succes-
sively, thus generated ncRNAs regulate the different metabolic path-
ways that primes in the stress-responsive regulatory mechanism. BE- 
bacterial effector, SS- silencing suppressor, dsRNA- double-stranded 
RNA, PRRs- pathogen recognition receptors, R proteins- resistance 
protein, RISC- RNA-induced silencing complex
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mutant plants exhibits cold stress tolerance, which infers 
the positive regulation of miR394 through CBF-dependent 
pathway in acquiring cold stress tolerance (Song et al. 2016). 
Furthermore, the regulatory role of conserved miR319-TCP 
module conferring salinity tolerance in plants evidenced 
through overexpression studies of osa-miR319a in bent-
grass (Agrostis stolonifera) (Zhou et al. 2013). In addition 
to the abovementioned studies, the involvement of miR-
NAs in nutrient uptake and nutrient homeostasis also has 
been shown. For instance, participation of miR399-PHOS-
PHATE OVER ACCUMULATOR 2 (PHO2) module during 
phosphate deficiency, miR827-NITROGEN LIMITATION 
ADAPTATION (NLA) and miR169-NF-Y modules in nitro-
gen deficiency, and miR395-SULFATE TRANSPORTER2;1 
(SULTR2) in sulfur assimilation and transportation were 
also studied (Song et al. 2019). Besides miRNAs, studies 
also suggested the role of different isomiRs in plant stress 
responses. For instance, the differential expression of vari-
ous isomiRs of the conserved miR156 family was identified 
during drought stress in maize (miR156a, b, c, d, e, h, i, and 
l) and rice (miR156d-5p.2, miR156f-5p.2, miR156h-5p.2, 
and miR156j-5p.2) (Balyan et al. 2020; Zheng et al. 2019a). 
Also, during heat stress, the highly differential expression 
of miR156 isoform than its canonical miRNA has been wit-
nessed in Arabidopsis, which elucidates the important regu-
latory role of isomiRs (Baev et al. 2014).

Furthermore, the regulatory role of miRNA-target mod-
ules during biotic stresses caused by bacteria, fungi, viruses, 
and insects has also been established (Brant and Budak 
2018; Khraiwesh et al. 2012; Song et al. 2019) (Fig. 4). In 
Arabidopsis, the regulatory role of miR393-TRANSPORT 
INHIBITOR RESPONSE1(TIR1), AUXIN SIGNALING 
F-BOX1 (AFB2), and AFB3 was the first identified mod-
ule as a defensive response against Pseudomonas syringae 
pv. tomato DC3000, a bacterial pathogen. Here, increased 
miR393 expression levels due to bacterial PATHOGEN-
ASSOCIATED MOLECULAR PATTERNS (PAMP) 
flagellin (flg22) downregulate TIR1, AFB2, and AFB3, 
which results in increased bacterial resistance. Similarly, 
pathogen-associated triggered immunity in response to fun-
gal pathogens, miR773-METHYLTRANSFERASE 2 (MET2) 
module, displayed enhanced resistance (Salvador-Guirao 
et al. 2018). Also, in rice, the miR528-ASCORBATE OXI-
DASE (AO) module contributes towards the enhancement 
of viral defense by accumulating reactive oxygen species 
(ROS). Upon the rice stripe virus (RSV) infection, miR528 
masked by AGO 18 leads to elevated AO activity and in turn 
helps in the accumulation of basal reactive oxygen species 
(ROS) to enhance antiviral defense. In addition to the above 
discussed prominent regulatory roles of miRNA modules in 
both abiotic and biotic stress responses, there are many other 
modules (reviewed in Song et al. 2019) and are not further 
discussed here.

In addition, other sncRNAs like tasiRNAs are also shown 
to be involved in plant stress responses. For instance, HEAT-
INDUCED TAS1 TARGET 1 (HTT 1) and HTT 2 mRNA 
targets of TAS1 (trans-acting siRNA precursor 1)-derived 
tasiRNAs form miR173 contribute to thermotolerance in 
Arabidopsis (Li et al. 2014a). Plants with elevated levels 
of TAS1-siRNAs and decreased levels of the HTT genes 
are sensitive to heat stress, while the plants overexpressing 
HTT1 and HTT2 genes exhibited enhanced thermotolerance 
(Li et al. 2014a). Furthermore, during phosphate homeo-
stasis, positive regulation of protein derived from PHOS-
PHATE1;2 (PHO1;2) gene and its cis-NAT (cis-NATPHO1;2) 
in Arabidopsis has been confirmed. Downregulation of cis-
NATPHO1;2 through RNAi revealed the impaired allocation 
of phosphate from root to shoot, which ultimately led to 
reduced seed yield by reduction of PHO1;2 proteins (Jab-
noune et al. 2013). Similarly, the regulatory role of natsiR-
NAs during salt stress was demonstrated in Arabidopsis. 
natsiRNA (24 nt) generated from SIMILAR-TO-RCD-ONE 5 
(SRO5) mRNA, targets D1-PYRROLINE-5-CARBOXYLATE 
DEHYDROGENASE (P5CDH) results in the subsequent 
formation of 21 nt natsiRNAs. The generated natsiRNAs 
further participates in the cleavage of P5CDH mRNA. 
During salt stress, induction of SRO5 protein results in the 
declined expression of P5CDH activity leading to proline 
and reactive oxygen species (ROS) accumulation. Thus, 
the role of natsiRNAs of SRO5 on P5CDH genes, together 
with their respective proteins in osmoprotection and oxida-
tive stress during salt stress has been confirmed (Borsani 
et al. 2005; Khraiwesh et al. 2012). Similarly, the role of 
phasiRNAs derived from miR482, miR828, and miR6455 
during drought stress was studied in populus, where pop-
ulus-specific miR6455 derived 22-nt phasiRNA targeted 
NAC genes, that are known to play a crucial role in drought 
stress (Shuai et al. 2016). Furthermore, during biotic stress, 
the first plant-endogenous siRNA nat-siRNAATGB2 regu-
lates R-gene-mediated ETI (effector-triggered immunity) 
towards bacterial pathogen Pseudomonas syringae (Ps) 
infection (Navarro et al. 2006). Induction of this siRNA 
inhibits the expression of antisense target PENTATRICO-
PEPTIDE REPEAT PROTEIN-LIKE (PPRL), a negative 
regulator of RPS2-mediated ETI in response to Ps. Gener-
ated endogenous siRNA, nat-siRNAATGB2, aids in R-gene, 
RPS2-mediated race-specific disease resistance by inhibiting 
the expression of predicted negative regulator PPRL gene 
(Katiyar-Agarwal and Jin 2010). Furthermore, in Arabidop-
sis, phasiRNAs derived from PPR genes confers a defen-
sive response against the Phytophthora capsici infection 
(Hou et al. 2019). In tomato, transgenic lines expressing 
short tandem target mimic (STTM) RNAs of miR482/2118 
confirm the role of derived phasiRNAs in the regulation of 
nucleotide-binding site leucine-rich repeat (NLR) genes and 
the important role of NLR proteins in conferring disease 
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resistance against bacterial and oomycete pathogens (Canto-
Pastor et al. 2019). Similarly, overexpression of two tasiR-
NAs derived from TAS1 and TAS2 loci resulted in reduced 
virulence against the fungal pathogen Botrytis cinerea (Cai 
et al. 2018). Also, a study by Wu et al. (2020) reported the 
crucial role of 22-nt siRNAs derived from nitrate reductase 
(NIA1 and NIA2) genes helps in plant adaptation to different 
environmental stress responses by inducing gene silencing 
and translational repression. In addition to the mechanistic 
theme of regulation by sncRNAs, the emerging lncRNAs 
also have considerable attention for their regulatory role in 
plant stress responses.

lncRNAs that are responsive to different abiotic and biotic 
stresses also have been identified in different plant species. 
For instance, drought-responsive lncRNAs have been identi-
fied in Arabidopsis, populus, maize, rice, etc., (Chung et al. 
2016; Di et al. 2014; Pang et al. 2019; Qin et al. 2017; Shuai 
et al. 2014). During stress periods, it is evident that lncRNAs 
regulate the expression of multiple genes through possible 
mechanisms and act as potential gene regulators in different 
plant biological processes. For instance, in Arabidopsis, the 
lncRNA, DROUGHT INDUCED LNCRNA (DIR) is respon-
sive to drought and salinity stress and acts as a positive regu-
lator by modifying the expression of a series of genes. The 
overexpressed DIR plants exhibited enhanced drought and 
salinity tolerance (Qin et al. 2017). In rice, genes encoding 
for zinc-finger proteins of drought QTL region, qSDT2-1, 
were found to be the predicted targets of identified lncRNAs, 
which signifies their regulatory role in drought stress (Wei-
dong et al. 2020). Similarly, heat stress–responsive lncRNAs 
were also identified in brassica, cassava, rice, etc., (Ding 
et al. 2019; Luo et al. 2018; Wang et al. 2019b). In Bras-
sica rapa, two heat stress–responsive lncRNAs identified 
as endogenous target mimics for miR164a and contrasting 
expression of both miRNA and lncRNA define their impor-
tant role in heat stress response (Wang et al. 2019b). Fur-
thermore, different abiotic stress–responsive lncRNAs act 
as target mimics for miR156, miR159, and miR172, thus 
involves in the regulation of various stress-responsive genes 
ABA, ethylene signaling, HSPs, and HSFs pathways (Ding 
et al. 2019; Wang et al. 2019b). Similarly, cold and salin-
ity–responsive lncRNAs were identified in several plant spe-
cies (Karlik and Gozukirmizi 2018; Qin et al. 2017; Wang 
et al. 2015b, 2019c). Two lncRNAs, COOLAIR and COLD 
ASSISTED INTRONIC NON-CODING RNA (COLDAIR), 
promote flowering in plants during cold conditions (Whit-
taker and Dean 2017). Similarly, signatures of lncRNA 
regulation in biotic stress responses were evident from dif-
ferent studies (Nejat and Mantri 2017; Yu et al. 2019). For 
instance, in tomato during Phytophthora infestans infec-
tion, the lncRNA16397 induces the expression of GLU-
TAREDOXIN 22 gene by acting in cis and resulted in the 
enhanced resistance (Cui et al. 2017). Collectively, these 

results demonstrate the complex regulatory function of lncR-
NAs in defensive pathways by modulating the expression of 
defense responsive genes.

Similarly, the research on stress-responsive circRNAs 
and derived ncRNAs is in the course of its way. The expres-
sion of stress-responsive circRNAs using high-throughput 
sequencing technologies has been identified. In wheat, 
Wang et al. (2016a) identified 62 circRNAs in response to 
dehydration stress. Similarly, in pear fruits, 23 circRNAs 
showed increased expression during drought stress (Wang 
et al. 2018b). Furthermore, the expression of circRNAs in 
response to bacterial pathogen infection by Pseudomonas 
syringae pv. actinidiae (PSA) in kiwi fruits and by Pecto-
bacterium carotovorum subsp. Brasiliense (PCB) infection 
in potato delineates their role in biotic stress (Wang et al. 
2017a; Zhou et al. 2018). A recent study by Fan et al. (2020) 
in rice showed the contribution of circRNAs in response to 
Magnaporthe oryzae, a fungal pathogen. The high diver-
sity of circRNAs with tolerant genotype (IR25) during M. 
oryzae infection is due to more 3′ and 5′ alternative back-
splicing and complex splice sites. Furthermore, the role of 
circR5g05160 in enhancing immunity against M. oryzae has 
been reported (Fan et al. 2020). Besides circRNAs, accumu-
lation of different derived ncRNAs such as tRFs (tRNA-Val-
CAC, tRNA-Thr-UGU, tRNA-Tyr-GUA, and tRNA-Ser-UG) 
has been reported during heat and osmotic stress in wheat 
and phosphate stress in Arabidopsis and barley (Hacken-
berg et al. 2013; Hsieh et al. 2010; Wang et al. 2016b). 
Furthermore, activation of TE-derived lncRNA11195 after 
various abiotic stress treatments in Arabidopsis revealed 
the important role of transposon-derived lncRNAs in stress 
responses (Wang et al. 2017b). Though sequencing technolo-
gies expedite our understanding on the circular and derived 
ncRNAs in plants, still their functional characterization and 
in-depth investigation are prerequisite to assign the exact 
role of these emerging regulatory non-coding RNAs. We 
have summarized the stress-responsive regulatory non-cod-
ing RNAs and their expression which are valuable molecular 
resources in Tables S1 and S2, to understand their regulatory 
patterns associated with stress tolerance and plant defense 
mechanisms.

Harnessing the regulatory ncRNAs for crop 
improvement

Utilizing the available ncRNAs’ information and their regu-
lation would be a desirable application to address food and 
nutritional security. To use the ncRNAs’ information in the 
improvisation of key traits in various crops, different molec-
ular genetics–based approaches have been employed. There 
are some classic reports which demonstrate the effect of sin-
gle miRNA manipulation for diverse traits such as increased 

323Functional & Integrative Genomics (2021) 21:313–330



1 3

crop yield, biomass, and stress tolerance (Zhang and Wang 
2016). For instance, overexpression of evolutionarily con-
served miR156 in tomato plants showed association with 
fruit size (Zhang et al. 2016b). The SPL genes, targets of 
miR156, showed a positive association with rice yield (Jiao 
et al. 2010; Wang et al. 2012). In rice, miR156 regulates the 
expression of SPL13, SPL14, and SPL16 genes that in turn 
govern the regulation of grain size and panicle (Jiao et al. 
2010; Tang and Chu 2017; Wang et al. 2012). Similarly, 
increased expression of miR397 showed a positive correla-
tion with the grain size and yield by regulating its target 
gene, LACCASE (LAC) in rice (Zhang et al. 2013a). Wang 
et al. (2016c) reported enhanced expression of miR444 
in rice, which resulted in the downregulation of MAD23, 
MAD27a, and MADS57 during RSV infection, through acti-
vating RDR1-dependent antiviral RNA-silencing pathway.

Further, artificial miRNA (amiRNA/amiR) has also been 
suggested as a potential approach for crop improvement by 
constructing amiRNAs to regulate the target gene expres-
sion (Rosa et al. 2018; Zhang et al. 2018a). One such exam-
ple is the construction of amiR159b to target three crucial 
genes involved in seed oil metabolism, viz., fatty acid Δ12 
desaturase 1 (FAD2), fatty acid elongase 1 (FAE1), and fatty 
acyl-ACP thioesterase B (FATB) for high oleic content in 
Arabidopsis (Belide et al. 2012). The ability of amiR to tar-
get multiple traits is an added advantage to this approach. 
For instance, Ai et al. (2011) showed that co-expression of 
various amiRNAs targeting different viruses in transgenic 
plants leads to multiple virus resistance (Ai et al. 2011). 
amiRNAs designed from miR159a, miR167b, and miR171a 
precursors of Arabidopsis targeting expression of suppressor 
HC-PRO and P25 confer resistance towards Potato virus Y 
(PVY) and Potato virus X (PVX), respectively.

From markers’ perspective, single-nucleotide poly-
morphisms (SNPs) are present abundantly in ncRNA 
regions which is an essential feature in crop improvement 
as prospective biomarkers (Fabbri et al. 2019). The base 
composition for miRNA/premiR sequence is very crucial 
for its function and the altered bases/SNPs in the premiR 
sequence resulted in the unstable secondary structure. 
Some of the important agronomic traits like grain length 
and seed type differentiation were found to be associated 
with SNPs in premiR of miR2923a (Wang et al. 2013). 
These variations in ncRNAs can be further exploited 
to improve agronomic traits of interest. Similarly, the 
PHOTOPERIOD-SENSITIVE GENIC MALE STERILITY 
1 (Pms1) locus encodes lncRNA, PMS1T, specifically 
expressed in young panicles of rice (Fan et  al. 2016). 
miR2118 targets PMS1T to produce 21-nt phasiRNAs 
that specifically accumulated in the male sterile line dur-
ing long-day conditions. SNP in PMS1T nearby miR2118 
recognition site suggest its possible mechanism in repro-
ductive development of rice. Availability of whole genome 

sequences, followed by resequencing of multiple lines for 
a given crop species, provides an opportunity to look into 
the natural variations existing in the genome. Combining 
such information with the transcriptomic studies may aid 
in the identification of the functional role of such varia-
tions mediated through ncRNAs.

In addition, studies showed that genome editing with 
site-specific nucleases, especially with type II clustered 
regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system, is the pow-
erful genome editing approach for functional studies in 
plants (Basso et al. 2019; Chen et al. 2019; Mangrauthia 
et al. 2017b). CRISPR/Cas9 has shown the possibility to 
overcome the limitations associated with RNAi by con-
tributing to complete gene knockout and reduced off-target 
activities (Basso et al. 2019). Localization of certain ncR-
NAs in the nucleus possesses challenges with the imple-
mentation of RNAi as it is limited to the cytoplasm, where 
RISC is located. In the case of plants, the application of 
genome editing in crop improvement by targeting ncRNAs 
is in the emerging stage and efforts are being made to use 
the system efficiently (Basso et al. 2019). For instance, 
Jacobs et  al. (2015) targeted two miRNAs, miR1514 
and miR1509, in soybean with Cas9 and demonstrated 
the strong potential of targeting short ncRNA as a target 
using CRISPR/Cas9 (Jacobs et al. 2015). In a similar way, 
by using the CRISPR/Cas9 non-homologous end joining 
(NHEJ) strategy, one can introduce indels at pre-miRNA 
sequences or the miRNA processing sites of MIR genes 
to regulate miRNA biogenesis (Zhou et al. 2017). Collec-
tively, the abovementioned precision technologies would 
help in the effective utilization of ncRNAs’ information in 
crop improvement by developing cultivars with desirable 
characteristics.

This review on diverse ncRNAs ranging from the most 
familiar (miRNAs, siRNAs) to the emerging ncRNAs (lncR-
NAs, circRNAs, tRFs, and rDNA-derived miRNAs) and 
their isovariants identified in different plant species provides 
a better understanding of their functions at multiple stages of 
transcriptional and post-transcriptional gene regulation. Of 
note, the intervention of ncRNAs in the epigenetic mecha-
nisms highlights their potential, leading to genotypic/phe-
notypic variations across the plant species. We speculate 
that discussed ncRNAs were having their own decisive role 
in governing the regulation of plant growth, development, 
and environmental stress responses. The basic understanding 
of the characteristic features and functions of heterologous 
ncRNA species helps to link ncRNA function to the specific 
plant trait. It also highlights the crucial role of various ncR-
NAs, including target genes and their expression profiles 
under biotic and abiotic stresses, which will facilitate the 
trait-specific ncRNA selection and its deployment in crop 
engineering.
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Conclusions and future perspectives

This review expands our knowledge about the intertwined 
regulatory role of ncRNAs. With the advent of deep sequenc-
ing technologies, the identification of diverse ncRNAs and 
their profiling is increasing at unprecedented levels. In this 
context, we attempted to articulate the classification, bio-
genesis, and regulatory roles of the available plant ncRNAs. 
Moreover, deep-diving into ncRNA biogenesis is essential, 
as the knowledge of proteins/enzymes which are control-
ling the expression/decay of ncRNA is meager. In short, it 
was suggested that biogenesis of these diverse ncRNAs is 
induced, as per the plant developmental needs and stress 
challenges. To overcome the challenges of food security, 
functional validation of key ncRNAs and their isoforms has 
been piloted through the overexpression or knockout studies 
of siRNA/miRNAs. Of note, for the accurate view of ncRNA 
function, a novel tool CRISPR-Cas can be exclusively 
applied to prevent potential off-target mutations. So far, 
the functional studies on ncRNAs in plants confine mostly 
to miRNAs in different perspectives like development and 
stress-responsive regulation. On the other hand, research on 
other ncRNAs is still at infancy, and more intensive efforts 
are needed to unravel the complexity and functional role of 
different ncRNAs, especially circRNAs and derived RNAs. 
Likewise, it is still astonishing to believe how plants syn-
chronize the accumulation of these diverse ncRNAs as per 
their need. Furthermore, to utilize the information of ncR-
NAs for crop improvement, an extensive knowledge is essen-
tial to understand their functional and regulatory role in dif-
ferent gene regulatory networks. In addition, it is imperative 
to develop a trait-specific candidate ncRNA catalogue which 
will be targets for engineering new crop varieties. Overall, 
this review will be helpful to the researchers to enhance their 
understanding of different classes of ncRNAs and their func-
tional link with the plant phenotype and regulation. Though 
many challenges are yet to be addressed, strategic imple-
mentations of ncRNA-based approaches in molecular crop 
breeding will further strengthen to overcome the impending 
food crisis.
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