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Intermittent drought and an incidence of grain mold disease are the twomajor constraints

affecting sorghum production and productivity. The study aimed at developing

drought-tolerant sorghum varieties possessing a high protein content and tolerance

to grain mold with stable performance using additive main effects and multiplicative

interaction (AMMI) and genotype and genotype × environment interaction (GGE)

biplot methods. Systematic hybridization among the 11 superior landraces resulted in

subsequent pedigree-based breeding and selection from 2010 to 2015 evolved 19

promising varieties of grains such as white, yellow, and brown pericarp grains. These

grain varieties were evaluated for their adaptability and stability for yield in 13 rainfed

environments and for possessing tolerance to grain mold in three hot spot environments.

A variety of yellow pericarp sorghum PYPS 2 (3,698 kg/ha; 14.52% protein; 10.70

mg/100 g Fe) possessing tolerance to grain mold was identified as a stable variety by

using both AMMI and GGE analyses. Four mega-environments were identified for grain

yield and fodder yield. Sorghum varieties PYPS 2, PYPS 4, PYPS 8, and PYPS 11 were

highly stable in E2 with a low grain mold incidence. Besides meeting the nutritional

demand of smallholder farmers under dryland conditions, these varieties are suitable

for enhancing sorghum productivity under the present climate change scenario.

Keywords: sorghum, landraces, drought tolerance, grain mold, G × E interaction, AMMI, GGE biplot

INTRODUCTION

Sorghum [Sorghum bicolor (L.) Moench] is a widely adaptable cereal crop cultivated in tropical,
subtropical, and temperate regions of the world. It is the fifth most important cereal crop next to
wheat, rice, maize, and barley, and it is a staple food for millions of people in the semiarid regions of
Asia and Africa (Mundia et al., 2019). Sorghum grew globally in over 40.07 Mha with a production
of 57.89million tons and productivity of 1,444 kg/ha (FAOSTAT, 2019). In India, it is the thirdmost
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important food grain next to rice and wheat cultivated in an
area of 4.09 Mha (FAOSTAT, 2019) in the rainy (Kharif ) season
as a rainfed crop and in the post-rainy (Rabi) season under
residual soil moisture. More than 90% of the sorghum area and
85% of the production are concentrated in the warm semiarid
tracts of central and south India (Davis et al., 2019). The
productivity of sorghum in India is still considered to be low at
849 kg/ha compared to the average global productivity of 1,444
kg/ha (FAOSTAT, 2019). This can be attributed to poor soils
(marginal lands), unreliable rainfall, incidence of insect pests and
diseases, and poor crop input management. The water deficit is
significantly increased due to irregularities in rainfall distribution
exacerbated by climate change (Eggen et al., 2019; Ocheing
et al., 2020). While the rainy season is predominated by the
sorghum hybrids, the post-rainy season is dominated by open-
pollinated varieties that contribute to low sorghum productivity
(Patil et al., 2014). This indicates that a greater emphasis is
required for separating and strengthening the focus of rainy and
post-rainy breeding on the cultivars’ genetic enhancement and
their adaptability.

Sorghum has an inherent ability to adapt to a harsh climate.
The crop can grow well in dry conditions and can also tolerate
water logging, thus making it ideal for cultivation in the arid and
semiarid regions of the world (Hadebe et al., 2017). These factors
change in relation to climate change, which is predicted to make
sorghum production riskier, especially under rainfed agriculture
and more so for smallholder farmers (McCarthy and Vlek, 2012).
A feasible approach of modifying management practices through
a deliberate choice between an improved sorghum variety and
local landraces accompanied by an appropriate time of sowing
will enhance the adaptive capacity of many resource-poor
sorghum farmers and ultimately increase sorghum production
ensuring food and livelihood security (Akinseye et al., 2020).

Grain mold is one of the most important diseases in sorghum,
which is caused by a complex of fungal species. The genera
Fusarium, Curvularia, and Alternaria are mainly responsible
for 80–90% of the infection in India (Das et al., 2020).
Species of Bipolaris, Phoma, Drechslera, Exserohilum, Aspergillus,
Cladosporium, Penicillium, Olpitrichum, Gonatobotrytis, and
Aspergillus are also detected sporadically in low frequency (Das
et al., 2020). The disease can cause yield losses ranging from 30 to
100% depending on the cultivars and weather conditions (Kalaria
et al., 2020). Losses in seed weight, grain density, germination,
and seed viability due to grain mold lead to a significant decline
in seed quality parameters in the rainy season (Nida et al., 2019).
Toxins and secondary metabolites produced by the fungi on
infected grains render sorghum unfit for human consumption
and for cattle and poultry feed (Das et al., 2020). Host-plant
resistance is the most cost-effective, efficient, and eco-friendly
management practice (Mofokeng et al., 2017). In sorghum,
properties such as panicle compactness, glume cover, glume
pigmentation, grain hardness, polyphenols (tannins), flavonoids
(flavan-4-ols), and antifungal proteins (chitinases, glucanases,
sormatin, PR-10, and RIPs) confer a resistance to grain mold
disease. There is a need to avoid dependency on a few sources
of grain mold-resistant genes and alleles that are currently
available, and in this context, crop wild relatives and landraces

offer a tremendous scope acting as reservoirs of useful genes for
sorghum improvement (Brar and Khush, 2018; Kyratzis et al.,
2019). With an increase in the effect of climate change, there is
a need to collect, screen, and identify novel sorghum germplasm
harboring the grain mold-resistant trait that can be harnessed for
adaptation to rainfed agroecologies of India.

Sorghum is a significant source of dietary energy, protein,
and micronutrients for the vast majority of the population
in sub-Saharan Africa and India (Awika, 2017). It is a
good source of phytochemicals including phenolic acid,
flavonoids, anthocyanins, phytosterols, plicosanols, tannins, and
carotenoids, which make the grain suitable for developing
the functional food and nutraceuticals (Balcerek et al.,
2020). Additionally, high antioxidant levels in pigmented
and tannin sorghum varieties offer many health benefits
including slow digestability, cholesterol-lowering, antioxidant,
anti-inflammatory, and anticarcinogenic properties (Abdelhalim
et al., 2021). The presence of tannins in the testa, which is a
layer beneath the pericarp, improves a resistance to grain mold
in sorghum (Cuevas et al., 2018). However, red-pigmented testa
and high tannin content are less desired in India where red
grain sorghum varieties are rarely used for human consumption.
Yellow pericarp sorghum is rich in flavanones and has slightly
higher total phenolic contents than white sorghum (Dykes
et al., 2011). There is a great demand for sorghum with a
yellow pericarp owing to high nutritional and good flatbread
making and keeping qualities (Jaisimha, 2019). Biofortification
of sorghum through genetic approaches and an increased intake
of nutrition-rich sorghum grains can help in improving the
nutritional security in the developing world (Kumar et al., 2015).

Keeping in view of a narrow genetic diversity for grain
minerals in modern sorghum cultivars, the identification and
utilization of valuable alleles in wild ancestors of crop plants
are considered as a sustainable approach for enhancing sorghum
nutrition (Mofokeng et al., 2018; Abdelhalim et al., 2019). India
is considered as the secondary center of sorghum diversity
next to East Africa (Ananda et al., 2020). High levels of
within- and between-population variability among the sorghum
landrace collections indicate a high germplasm diversity and a
traits-based genetic novelty, which contribute to sorghum yield
and adaptation improvement (Ghebru et al., 2002). However,
adaptability and stability in yield are often challenged by the
presence of a genotype × environment (G × E) interaction,
which is a number one factor responsible for changing the
genotype performance in different environments. Hence, it
is important that multi-environment trials are conducted
periodically to investigate the G × E interaction for selecting
stable genotypes for yield and other important traits. The
additive main effects and multiplicative interaction (AMMI)
analysis proposed by Gauch (2013) and the genotype and G
× E interaction (GGE) biplot model developed by Yan et al.
(2000) are powerful tools used by plant breeders, geneticists, and
agronomists for the identification of genotypes with high yield
and wide adaptability.

These methods were also used to identify the landraces
with yield stability and adaptability in sorghum (Admas and
Tesfaye, 2017), chickpea (Pouresmael et al., 2018), wheat
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(Bavandpori et al., 2018), common bean (Philipo et al., 2020),
etc. for further use in breeding programs for the development
of new varieties. In sorghum, the high genetic and phenotypic
diversity were reported from the landraces collected from India
(Elangovan et al., 2009, 2012; Vara Prasad and Sridhar, 2019),
Ethiopia (Adugna, 2014; Amelework et al., 2015; Derese et al.,
2018; Wondimu et al., 2020), Eritrea (Tesfamichael et al., 2014),
and Sudan (Abdelhalim et al., 2021). These landraces are the
indispensable sources of genetic variation that can be utilized
by plant breeders in the development of improved varieties with
higher productivity, nutrients, grain mold tolerance, and climate
resilience (Dwivedi et al., 2016; Godwin et al., 2019).

An attempt was made in this study to utilize the sources of
variation for grain mold tolerance and a protein content present
in sorghum landraces, which were evolved under vulnerable
conditions with low inputs after the continuous selection by the
farmers. To our knowledge, this is the first study to identify
stable, high-yielding, drought- and grain mold-tolerant, and
nutritionally rich sorghum varieties that were developed from the
landraces in the Indian subcontinent. The objectives of the study
were to (1) collect the landraces from the southern and central
parts of India and identify agronomically superior landraces with
a resistance to grain mold disease; (2) develop potential sorghum
varieties from the superior landraces; (3) identify high-yielding,
grain mold-tolerant genotypes with a stable performance using
AMMI and GGE analyses; and (4) determine the nutrient
composition [starch, sugar, protein, iron (Fe), and zinc (Zn)] of
the developed sorghum varieties.

MATERIALS AND METHODS

Collection and Maintenance of Landraces
A total of 108 landraces were collected from various locations
in the southern and central parts of India in 2008. These
landraces represented a diversity for grain maturity, grain color,
panicle shape, grain yield, fodder yield, porridge making quality,
fodder quality, and tolerance to grain mold disease under field
conditions (Supplementary Table 1). In the field evaluation of
these landraces from 2008 to 2010, a single-plant selection
was followed by self-pollinating main panicles of individual
landrace collections for three generations to bring a genetic
uniformity within the landraces at the Regional Agricultural
Research Station (RARS), Palem, Telangana (Former Andhra
Pradesh), India. Based on the construction of passport data and
dendrogram (Supplementary Figures 1, 2) using the distances
matrix obtained by an unweighted pair group method with
arithmetic mean (UPGMA), 36 diverse landraces (PSLRC 1–
PSLRC 36) distinct for various characters, viz., maturity, grain
type, tolerances to grain mold disease, and terminal moisture
stress, were maintained for future breeding (Table 1).

Development of Sorghum Varieties
From 2010 to 2015, hybridization followed by a selection was
carried out in rainy and post-rainy seasons by utilizing 11
agronomically superior and grain mold-resistant landraces. A
minimum population of 250 plants was maintained in each F2
and subsequent generation. They were advanced to F6 generation

by using the pedigree method of selection. The F6 progeny
of individual cross combination was considered as a single-
sorghum advanced genotype having a diverse genetic background
for agronomic and grain characters and grain mold resistance
(Figure 1). About 19 superior advanced sorghum cultivars were
identified after the evaluation for two consecutive seasons (rainy
and post-rainy seasons, 2014) in an advanced variety trial at
RARS, Palem, Telangana, India, among which seven genotypes
were characterized with a yellow pericarp and six genotypes
were with a brown pericarp. The remaining six genotypes had
a white grain and a white grain with black glume (Table 2,
Supplementary Figures 3, 4).

Nutritional Composition Analysis
The nutritional composition analysis of 19 sorghum varieties
evaluated at E1 (Palem) in 2018 was performed at MFPI-
Quality Control Laboratory, Prof. Jayashankar Telangana State
Agricultural University, Hyderabad, Telangana, India. Whole
grains were collected from the fields where they were grown
and analyzed for the protein, total starch, sugar, Fe, and
Zn content. The protein level was quantified by using the
generic combustion method of analysis with the LECO F-
528 nitrogen analyzer (LECO, St. Joseph, MI, USA) calibrated
with ethylenediaminetetraacetic acid (EDTA) according to the
association of official analytical chemists method (AOAC, 2016).
The grain samples were ground to a suitable fineness to pass No.
20 sieve and dried at 102 ± 2◦C for 2 h. A moisture-free sample
weighing 200mg was analyzed to estimate protein content.
Analyses for total starch, sugar, Fe, and Zn were performed
according to Shegro et al. (2012). Starch content was determined
by using a total starch assay procedure. The total sugar content in
stalks at physiological maturity was estimated as the total soluble
sugars by using a handheld refractometer. For the determination
of Fe and Zn contents, sorghum grains were ground to a fine
powder. About 2-g flour samples were oven-dried for 3 h after
which the samples were triple acid digested by the addition of
1ml of 55% (v/v) HNO3 after cooling. The acid was evaporated
by using a sand bath and the samples were oven-dried again.
The samples were moistened by using 10ml of 55% HNO3 (1:2
v/v), and they were then placed in the sand bath for 5–10min.
The samples were allowed to dissolve overnight to extract the
minerals accordingly.

Evaluation of Varieties for Yield
Performance and Screening for Grain Mold
Tolerance
About 19 advanced sorghum varieties along with a popular
variety (CSV 31) were evaluated over the three rainy seasons
(June–September) from 2016 to 2018 at 13 locations for yield
and yield-related characters (Table 3). A single location tested for
three consecutive seasons of 2016, 2017, and 2018 was considered
as one environment. All 13 environments are drought-prone
environments characterized by intermittent dry spells with E4,
E6, E8, E9, and E11 receiving an annual rainfall of ≤600mm
(Table 3). Each sorghum genotype was planted on six rows
of 5-m length plot by using between- and within-row spacing
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TABLE 1 | Description of the superior sorghum landraces used in this study.

S. No. Local

accession

Number

Sorghum

race

Days to

50%

flowering

Plant

Height (cm)

Glume

cover-age

%

Grain color Panicle

compactness

Grain mold

resistance

1 PSLRC 1 Durra 65 285 71 Yellow Semi compact Tolerant

2 PSLRC 2 Durra 68 315 83 Yellow Semi compact Tolerant

3 PSLRC 3 Guinea 68 246 79 White Semi compact Tolerant

4 PSLRC 4 Durra 66 220 67 Yellow Semi compact Tolerant

5 PSLRC 5 Guinea 71 264 54 White Compact Susceptible

6 PSLRC 6 Durra 69 310 63 Yellow Semi compact Tolerant

7 PSLRC 7 Durra 68 240 71 Yellow Semi compact Tolerant

8 PSLRC 8 Durra 65 298 90 Brown Semi compact Tolerant

9 PSLRC 9 Durra 71 210 85 Brown Semi compact Tolerant

10 PSLRC 10 Durra 72 218 46 Brown Semi compact Tolerant

11 PSLRC 11 Durra 69 195 62 Brown Semi compact Susceptible

12 PSLRC 12 Durra 68 226 76 Yellow Semi compact Tolerant

13 PSLRC 13 Durra 65 315 88 Yellow Semi compact Tolerant

14 PSLRC 14 Durra 62 242 77 Yellow Semi compact Tolerant

15 PSLRC 15 Durra 64 292 90 Brown Semi compact Tolerant

16 PSLRC 16 Durra 66 262 72 Yellow Semi compact Tolerant

17 PSLRC 17 Durra 65 245 75 Brown Semi compact Tolerant

18 PSLRC 18 Durra 64 272 80 Yellow Semi compact Tolerant

19 PSLRC 19 Durra 71 282 69 Yellow Compact Tolerant

20 PSLRC 20 Guinea 78 265 54 Black glume Loose Tolerant

21 PSLRC 21 Guinea 76 272 78 Black glume Loose Tolerant

22 PSLRC 22 Guinea 64 218 43 Black glume Loose Tolerant

23 PSLRC 23 Durra 75 234 68 Brown Semi compact Tolerant

24 PSLRC 24 Durra 72 240 75 Brown Semi compact Tolerant

25 PSLRC 25 Durra 76 265 56 Brown Loose Tolerant

26 PSLRC 26 Durra 75 245 70 Yellow Semi compact Tolerant

27 PSLRC 27 Durra 68 262 38 Brown Compact Tolerant

28 PSLRC 28 Durra 62 275 81 Yellow Semi compact Tolerant

29 PSLRC 29 Guinea 65 260 75 White Compact Tolerant

30 PSLRC 30 Guinea 66 235 68 White Semi compact Tolerant

31 PSLRC 31 Durra 72 292 91 Brown Loose Tolerant

32 PSLRC 32 Durra 70 210 94 Yellow Semi compact Tolerant

33 PSLRC 33 Durra 68 228 79 Yellow Semi compact Tolerant

34 PSLRC 34 Durra 65 235 82 Yellow Semi compact Tolerant

35 PSLRC 35 Durra 65 242 69 Yellow Semi compact Tolerant

36 PSLRC 36 Durra 65 262 78 Yellow Semi compact Tolerant

The above landraces were selected to develop varieties after diversity analysis of 108 landraces following an unweighted pair group method with arithmetic mean (UPGMA)

(Supplementary Table 1 and Figure 1).

of 45 and 10 cm, respectively. Weeds, insect pests, and foliar
disease control were carried out as recommended for the crop
by using a combination of chemical and cultural practices.
During harvest, the four central rows within each plot were
sampled for grain yield and fodder yield. The 19 genotypes
along with susceptible (SPV 462) and resistant (IS 8545) checks
were also evaluated in the sorghum grain mold nursery over
the three rainy seasons (June–September) in 2016 to 2018 at
three locations viz., RARS, Palem, Agricultural Research Station,
Tandur, Agricultural Research Station,Madhira, Telangana, India
under natural epiphytotic conditions for a grain mold evaluation.

Each genotype was sown in six rows of 5m in length during the
first fortnight of June so that the grain maturity stage coincided
with the periods of frequent rainfall received in the ensuing
August–September, thus predisposing the crop to grain mold
disease. During rain-free days, high relative humidity (>90%)
was maintained from the flowering to the physiological maturity
stage by using sprinkler irrigation. About 10 uniformly flowering
plants with the same flowering window were tagged in each row.
The visual panicle grain mold rating (PGMR) was taken on each
of the tagged plants at the prescribed physiological maturity by
using a progressive 1–9 scale, where 1 = no mold infection,
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FIGURE 1 | A flow diagram showing the development of sorghum varieties utilizing landraces through a pedigree selection (2010–2015) followed by

multi-environment trials (2016–2018).

2= 1–5%, 3 = 6–10%, 4 = 11–20%, 5 = 21–30%, 6 = 31–40%,
7 = 41–50%, 8 = 51–75%, and 9 = 76–100% molded grains
on a panicle (Singh and Bandyopadhyay, 2000; Thakur et al.,
2007). All the trials at each location were conducted in a complete
randomized block design with three replications.

Data Analysis
Combined ANOVA was performed for yield and disease reaction
at 13 and 3, environments, respectively. Statistical computations

and estimations were carried out by using GenStat 18.0
(Goedhart and Thissen, 2010) to partition the yield variation
into environments, GGE. The grain yield, fodder yield, and
disease resistance reaction data were subjected to the AMMI and
GGE biplot analysis. The AMMI model combines both additive
and multiplicative components of two-way data structures,
which helps in the prediction of potential genotypes and an
environmental effect on them (Gauch and Zobel, 1996; Gauch,
2013). The GGE biplots were constituted from the first two
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principal components (PC1 and PC2) derived by subjecting
the environment-centered yield data (which contains GGE) to
singular-value decomposition (SVD). The model for a GGE
biplot (Yan et al., 2000) based on SVD of the first two principal
components (PC) is:

Yij = µ + βj +
∑k

k=1
λkγik δjk

where Yij is the mean of genotype i in environment j; µ is the
grandmean; βj is the environment main effect; k is the number of
PC required for appropriate depiction of GGE, n is the singular

TABLE 2 | Sorghum genotypes evolved through hybridization followed by a

selection from the superior landraces.

S. No. Genotype Cross combination Grain color

1. PYPS-1 PSLRC 2 × PSLRC 3 Yellow

2. PYPS-2 PSLRC 2 × PSLRC 4 Yellow

3. PYPS-3 PSLRC 3 × PSLRC 4 White

4. PYPS-4 PSLRC 2 × PSLRC 6 Yellow

5. PYPS-5 PSLRC 21 × PSLRC 7 White grain with black glume

6. PYPS-6 PSLRC 3 × PSLRC 6 White

7. PYPS-7 PSLRC 3 × PSLRC 7 White

8. PYPS-8 PSLRC 8 × PSLRC 9 Brown

9. PYPS-9 PSLRC 8 × PSLRC 10 Brown

10. PYPS-10 PSLRC 9 × PSLRC 10 Brown

11. PYPS-11 PSLRC 4 × PSLRC 6 Yellow

12. PYPS-12 PSLRC 4 × PSLRC 12 Yellow

13. PYPS-13 PSLRC 2 × PSLRC 21 Yellow

14. PYPS-14 PSLRC 20 × PSLRC 21 White grain with black glume

15. PYPS-15 PSLRC 2 × PSLRC 7 Yellow

16. PYPS-16 PSLRC 20 × PSLRC 7 White grain with black glume

17. PYPS-17 PSLRC 2 × PSLRC 8 Brown

18. PYPS-18 PSLRC 3 × PSLRC 8 Brown

19. PYPS-19 PSLRC 4 × PSLRC 8 Brown

value; λk is the singular value of the kth PC (PCk). γik and δjk
are the scores of ith genotype and jth environment, respectively,
for PCk.

The GGE biplot software was used to generate graphs showing
(1) a “which-won-where” pattern to identify mega-environments,
(2) ranking of varieties based on yield and stability, and (3)
a correlation of vectors between the environments as per the
method described by Yan and Kang (2003).

RESULTS

AMMI Analysis
The combined ANOVA analysis showed highly significant
(p ≤ 0.05) genotype differences over locations and seasons
suggesting that both grain and fodder yields varied across the
environments. Highly significant environments, genotypes, and
G× E interaction explained 35.3, 23.6, and 29.8% of the total sum
of squares for grain yield and 28.9, 23.4, and 25.0% for fodder
yield, respectively (Table 4). The magnitude of the environments
(E) and G × E interaction sum of squares were twice larger than
that for genotypes sum of squares indicating ample of variations
in the genotypic response across the environments for both grain
yield (58.9%) and fodder yield (53.9%). Further partitioning of
the G× E interaction sum of squares resulted in two significantly
interaction PC axes (IPCA1 and IPCA2), which explained 35.9
and 20.7% of the variation, respectively, and together contributed
to 56.6% of the total G × E interaction for grain yield. Similarly,
for fodder yield, IPCA1 and IPCA2 explained 54.9 and 11.9%
of the G × E interaction, respectively, and together contributed
to 66.8% of the total variation. This explained the differential
performance of genotypes for grain yield and fodder yield across
the environments.

AMMI Stability Value
The AMMI stability value (ASV) proposed by Purchase et al.
(2000) is used to identify stable genotypes and environments.
For environments and genotypes, a low ASV indicates that
the environments and genotypes are highly stable and least

TABLE 3 | Details of the 13 environments tested for yield and stability of 19 sorghum genotypes in Telangana, India.

Environment Location Latitude Longitude Soil type Rainfall (mm)

E1 Palem 16.5461◦ N 78.2077◦ E Red sandy 690

E2 Tandur 17.2576◦ N 77.5875◦ E Sandy loam 780

E3 Madhira 16.9182◦ N 80.3633◦ E Sandy loam 750

E4 Hanwada, Mahabubnagar 16.8106◦ N 77.9196◦ E Red sandy 600

E5 Kodangal 17.1103◦ N 77.6235◦ E Sandy loam 760

E6 Gaddamallaihguda 17.0974◦ N 78.6867◦ E Red sandy 560

E7 PA Pally 16.6996◦ N 79.0267◦ E Sandy loam 700

E8 Maddur 15.8563N 77.2431◦ E Sandy loam 600

E9 Aler 17.6437◦ N 79.0430◦ E Red sandy 580

E10 Kulkacherla 17.0161◦ N 77.8746◦ E Red sandy 630

E11 Ramapuram 15.9653◦ N 77.9410◦ E Red sandy 580

E12 Kothakota 16.3787◦ N 77.9410◦ E Red sandy 720

E13 Devarakadara 16.6248◦ N 77.8410◦ E Red sandy 650
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TABLE 4 | Additive main effects and multiplicative interaction (AMMI) ANOVA for grain yield and fodder yield of 19 sorghum genotypes evolved from landraces over 13

locations in 3 years (2016–2018).

Grain Yield Fodder Yield

Source DF SS MS F %

contribution

SS

SS MS F %

contribution

SS

Total 2,222 1,087,099,555 489,244 – 36,509,998,551 16431142.46

Genotypes 18 324,366,092 18,020,338** 520.53 23.6 8,547,745,363 474874742.38** 200.98 23.4

Environments 12 384,294,081 32,024,506** 925.05 35.3 10,581,124,368 881,760,364** 373.20 28.9

Blocks 26 53,982,701 2,076,257 59.97 4.96 2,582,926,484 99343326.30 420.85 7.07

Interaction 216 256,949,082 1,189,580** 34.4 29.8 9,127,499,637 42256942.76** 17.88 25.0

IPCA1 29 92244720.43 3180852.42 91.88 35.9 5010997300.71 172793010.36 73.13 54.9

IPCA2 27 53,188,460 1,969,943 56.90 20.7 1086172456.80 40228609.51 170.24 11.9

Residuals 160 111515901.6 96,356 3221.23 43.7 3,030,329,880 18,939,562 1282.58 33.2

Error 1,950 67,507,598 34,619 – 4,607,225,870 2362679.93

**significant at 1% probability level.

DF, Degrees of freedom; SS, Sum of squares; MS, Mean sum of squares; F, F-calculated value; IPCA, Interaction principal component axis.

interactive whereas a high ASV indicates that the environments
and genotypes are highly interactive and unstable. Based on the
ASV for grain yield, E5, E11, and E13 were the most stable
and high yielding environments (Table 5). On the contrary, E4
followed by E10 was the most unstable and most interactive
environment with high ASV scores for grain yield. For fodder
yield, the environments E6 and E10 were mostly stable with low
ASV scores, and the environments E5, E1, and E4 were mostly
unstable with high ASV scores (Table 5).

Sorghum varieties PYPS 2, PYPS 5, PYPS 8, PYPS 13, PYPS
14, and PYPS 17 were the most stable varieties for grain yield,
and PYPS 11, PYPS 16, PYPS 7, PYPS 4, and PYPS 18 were the
most unstable varieties (Table 6). For fodder yield, the varieties
PYPS 16, PYPS 10, PYPS 13, PYPS 15, and PYPS 2 were the most
stable, and PYPS 8, PYPS 5, and PYPS 9 were unstable (Table 6).

Genotype Stability Index
Genotype stability index (GSI) can be used to classify stable
genotypes incorporating both yield and stability in a single non-
parametric index (Singh et al., 2019). The GSI considered the
ranks of the genotype yield across the environments and ASVs.
GSI was calculated as the sum of Rank of ASV [RASV (ASV)]
and RY (Rank of mean genotype yield of all environments).
Considering high grain and fodder yields, a high protein content
and moderate resistance to grain mold, low ASV values and high
GSI, sorghum varieties PYPS 1 and PYPS 13 were identified as the
best stable genotypes. Sorghum varieties PYPS 2, PYPS 8, PYPS
12, PYPS 15, and PYPS 16 having high grain and fodder yields
with either a low ASV or a high GSI were also known as the best
stable varieties across the environments (Table 6).

AMMI Biplot Analysis
In the AMMI1 and AMMI2 biplots (Figure 2), the environments
were designated by the letter “E” followed by numbers 1–13 as
suffix while the genotypes were represented by the letter “G”
followed by numbers 1–19. In the AMMI1 biplot, the main
effects (genotype mean and environment mean) on abscissa were

plotted against the respective IPCA1 scores on the ordinate (Yan
et al., 2007). The quadrants (Q) in the AMMI1 graph represent:
higher mean (QI and QII), lower mean (QIII and QIV), +ve
IPCA1 score (QI and QIV), and –ve IPCA1 score (QII and QIII).
When a genotype and an environment have the same sign on
the IPCA1 axis, their interaction is positive and, if opposite, their
interaction is negative. Thus, if a variety has a IPCA1 score nearer
to zero, it has a small interaction effect and was considered as
stable over wide environments. On the other hand, genotypes
with high mean yield and large IPCA1 scores were considered as
explicitly adapted to specific environments (Abdi and Williams,
2010).

Accordingly, in the present study, sorghum varieties PYPS
2, PYPS 8, and PYPS 15 were specifically adapted to the high-
yielding environments E1 and E10 and the varieties PYPS 13
and PYPS 16 were adapted to the environments E5 and E9
with grain yield more than the grand average yield (Figure 2A).
Furthermore, the varieties PYPS 2, PYPS 8, and PYPS 13 were
also more stable in comparison to PYPS 4, PYPS 7, PYPS 11,
and PYPS 16. Similarly, the varieties PYPS 1, PYPS 5, PYPS
6, PYPS 10, and PYPS 14 were nearer to zero indicating that
they are highly stable for grain yield than other varieties. For
fodder yield, the varieties PYPS 2, PYPS 13, and PYPS 8 were
specifically adapted to high-yielding environments E1, E5, E9,
and E10 (Figure 2B). The varieties PYPS 10, PYPS 12, PYPS 15,
and PYPS 16 were more stable in comparison to PYPS 4, PYPS 5,
PYPS 9, PYPS 17, and PYPS 8 as these genotypes were far from
the origin. The varieties PYPS 11, PYPS 15, and PYPS 16 were
nearer to zero indicating a higher stability for fodder yield than
the other genotypes.

The AMMI2 biplot is a graphical representation of the
interaction effect wherein the relationship between the genotypes
and environments is depicted in a vector view (Guerra et al.,
2009). The biplot detects the environments and genotypes that
contributed least to the interaction (most stable) as well as the
desirable combinations of genotypes and environments in terms
of specific adaptability. The statistically stable genotypes and
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TABLE 5 | Mean performance for grain yield, fodder yield, IPCA1, IPCA2 scores, and ASV values of 13 environments.

S. No. Environment Grain yield (kg/ha) IPCA1 IPCA2 ASV Fodder yield (kg/ha) IPCA1 IPCA2 ASV

1 E1 3,398 −10.36 −1.58 17.96 15,970 −41.17 1.82 189.00

2 E2 2,860 −8.68 −6.32 16.27 13,893 −20.58 −2.80 94.30

3 E3 2,707 2.90 16.71 17.40 12,707 34.07 5.56 156.80

4 E4 2,417 18.31 −10.83 33.40 11,705 37.63 −23.84 174.60

5 E5 3,396 1.85 2.54 4.06 15,968 −43.31 −5.13 199.06

6 E6 2,883 −11.63 −5.58 16.00 13,878 0.88 −15.41 15.90

7 E7 2,716 0.57 13.30 13.30 12,776 14.04 17.09 66.70

8 E8 2,699 10.02 0.01 17.32 12,931 16.29 −8.10 75.20

9 E9 3,076 6.07 −11.80 15.80 14,591 −8.47 −31.76 50.20

10 E10 3,044 −18.98 −4.60 32.30 14,314 −5.27 7.79 25.40

11 E11 2,865 −2.97 7.46 9.00 13,844 −17.66 17.40 82.84

12 E12 2,659 6.72 6.79 13.40 12,852 21.44 3.69 98.50

13 E13 2,725 6.20 −6.10 12.30 12,996 12.10 33.71 57.00

Overall mean 2880.38 13725.10

LSD (0.05) 341.45 1159.50

IPCA, Interaction principal component axis; ASV, AMMI stability value; LSD, Least significant difference.

environments are represented by the points nearer to the origin
in the AMMI2 biplot, with the values being nearer to zero for the
two axes of interaction (IPCA1 and IPCA2). The discrimination
power of a test environment is proportional to the length of
the environment vector, which is the line connecting the origin
and test environment and those genotypes falling apart from
the origin with long spokes were termed as highly interacting
genotypes (Yan and Holland, 2010).

In this study, for grain yield, the environments E4, E3,
E10, and E9 were farthest from the origin and were the
most discriminating but non-representative (unstable) while
E5, E11, E2, E6, and E13 lied closest to the origin and
contributed least to the G × E interaction (Figure 3A). They
were the most representative (stable) environments but with
poor discriminating ability. Sorghum varieties PYPS 11, PYPS 15,
PYPS 10, and PYPS 7 were more responsive since they were away
from the origin, whereas PYPS 5, PYPS 2, PYPS 17, and PYPS
14 were closer to the origin, and hence they were less sensitive
to environmental changes for grain yield (Figure 3A). For fodder
yield, the environments E13, E9, E4, E5, and E1 were the most
discriminating but non-representative (unstable) and E10, E8,
and E6 were the most stable environments (Figure 3B). Sorghum
varieties PYPS 13, PYPS 11, PYPS 8, and PYPS 2 were more
responsive and the varieties PYPS 19, PYPS 16, PYPS 1, PYPS
14, and PYPS 3 were less sensitive to changes in the environment
(Figure 3B).

GGE Biplot Analysis
The GGE biplot developed by Yan et al. (2000) displays the
genotype main effect (G) plus G × E interaction, which are the
two sources of variation that are relevant to a cultivar evaluation.
The which-won-where pattern first described by Yan et al. (2000)
identifies the best performer for a site(s) and defines mega-
environments (subregions) by selecting the superior genotypes

for each mega-environment, thus effectively exploiting both
genotypes and G× E interaction.

(a) The which-won-where pattern

The polygon view of the GGE biplot displays the “which-
won-where” pattern by connecting the markers of the genotypes
that are further away from the biplot origin such that all the
other genotypes are contained in the polygon (Yan et al., 2000).
Genotypes having the specific adaptive ability for a specific
environment or group of environments were identified by using
this pattern. The biplot is further divided into sectors delimited
by the lines perpendicular to each side of the polygon. The
genotypes in a sector are similar in performance compared to the
genotypes in other sectors.

In the present study, the biplot is divided into five sectors
for grain yield (Figure 4A) and four sectors for fodder yield
(Figure 4B). The varieties PYPS 2, PYPS 4, PYPS 5, PYPS
7, PYPS 11, and PYPS 16 were situated at the apex of the
polygon, representing the highest grain yield and indicated
superior genotypes (Figure 4A). Sorghum varieties PYPS 1, PYPS
9, PYPS 14, and PYPS 17 were closest to the center of origin
indicated a low variation in the G × E interaction for grain
yield (Figure 4A). The variety PYPS 16 was suitable for the
three environments E4, E8, and E12. The varieties PYPS 2, PYPS
8, PYPS 13, and PYPS 15 were suitable for the remaining 10
environments E1, E2, E3, E5, E6, E7, E9, E10, E11, and E13 for
grain yield (Figure 4A). The varieties PYPS 2, PYPS 5, PYPS 6,
PYPS 10, PYPS 13, and PYPS 14 were situated at the apex of
the polygon, representing the highest fodder yield and indicated
superior genotypes (Figure 4B). Sorghum variety PYPS 2, PYPS
15, and PYPS 1 were suitable for E2, E3, E4, E6, E7, E8, E10, E12,
and E13 for fodder yield. The varieties PYPS 8, PYPS 13, and
PYPS 11 were suitable for environments E1, E2, E5, E9, and E11
(Figure 4B). The varieties PYPS 1, PYPS 3, PYPS 7, and PYPS 11
were closest to the center of the origin indicated a low variation
in the G× E interaction for fodder yield (Figure 4B).
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TABLE 6 | Classification of stable sorghum varieties based on mean performance, ASV and stability index for grain yield, fodder yield, disease reaction, and protein.

S. No. Genotype Grain yield

(kg/ha)

and its

rank

IPCA1 IPCA2 ASV and

RASV

GSI and

RGSI

Fodder yield

(kg/ha) and

its rank

IPCA1 IPCA2 ASV and

RASV

GSI and

RGSI

Disease

Score

and

rank

ASV and

RASV

GSI and

RGSI

Protein

(%) and

rank

1 PYPS-1 2,756 (7) −0.36 5.56 5.6 (7) 13 (4) 14,108 (6) −7.79 −1.13 35.8 (9) 14 (5) 4.52 (10) 0.01 (1) 11 (2) 12.32 (4)

2 PYPS-2 3,698 (1) −2.46 0.96 4.4 (3) 4 (1) 20,586 (1) −23.99 20.70 18.6 (7) 8 (2) 3.92 (3) 0.6 (18) 21 (14) 14.52 (1)

3 PYPS-3 2,639 (14) −6.14 −5.09 11.7 (12) 25 (13) 12,448 (12) 7.95 1.06 36.5 (10) 21 (10) 4.5 (8) 0.11 (10) 18 (10) 9.78 (15)

4 PYPS-4 2,603 (18) −12.54 2.18 21.8 (16) 33 (18) 13,008 (9) 20.84 6.84 96 (16) 24 (13) 4.1 (5) 0.4 (16) 21 (15) 10.3 (14)

5 PYPS-5 2,514 (20) −1.09 −1.00 2.1 (1) 20 (9) 11,793 (16) 26.90 16.18 124.7

(18)

33 (19) 4.51 (9) 0.09 (7) 16 (7) 10.52 (12)

6 PYPS-6 2,604 (17) −2.26 8.07 8.9 (8) 24 (12) 12,335 (13) −9.22 −14.77 44.8 (12) 24 (13) 4.73 (13) 0.32 (13) 26 (16) 9.63 (16)

7 PYPS-7 2,575 (19) 11.81 13.00 24.2 (17) 35 (19) 13,059 (8) 7.76 −12.63 37.8 (11) 18 (7) 4.18 (6) 0.18 (11) 17 (8) 9.25 (18)

8 PYPS-8 3,584 (2) −0.74 −2.43 2.7 (2) 4 (1) 18,632 (2) −49.35 15.59 227.5

(19)

21 (10) 3.71 (2) 0.04 (3) 5 (1) 13.26 (3)

9 PYPS-9 2,712 (12) 2.64 8.65 9.8 (9) 20 (9) 11,984 (15) 22.22 −12.69 102.8

(17)

31 (17) 4.78 (15) 0.09 (7) 22 (15) 14.13 (2)

10 PYPS-10 2,619 (16) −0.32 9.98 10.0 (10) 25 (13) 11,538 (18) 2.22 2.37 10.81 (2) 20 (8) 5.1 (18) 0.37 (15) 33 (19) 9.58 (17)

11 PYPS-11 2,699 (13) −18.36 1.28 31.8 (19) 31 (17) 13,895 (7) 9.28 26.82 50.3 (14) 20 (8) 3.65 (1) 0.23 (12) 13 (5) 10.73 (8)

12 PYPS-12 2,729 (9) −6.61 −2.17 11.6 (11) 18 (7) 12,728 (10) 0.83 −15.84 16.2 (5) 14 (5) 4.8 (16) 0.06 (4) 20 (12) 10.95 (6)

13 PYPS-13 3,514 (3) 0.88 −4.65 4.6 (4) 7 (3) 18,122 (3) −2.55 −2.00 11.8 (3) 6 (1) 3.97 (4) 0.09 (7) 11 (4) 10.66 (10)

14 PYPS-14 2,718 (10) 1.90 −3.31 4.7 (5) 14 (6) 11,392 (20) 3.13 8.36 16.6 (6) 25 (15) 5.32 (19) 0.07 (5) 14 (6) 10.52 (12)

15 PYPS-15 3,432 (4) −3.74 −14.39 14.4 (14) 18 (7) 16,955 (4) −0.20 −12.80 12.8 (4) 8 (2) 4.54 (11) 0.08 (6) 17 (9) 8.78 (19)

16 PYPS-16 3,268 (5) 17.02 −10.70 31.3 (18) 23 (11) 12,561 (11) 1.01 0.98 4.74 (1) 11 (4) 5 (17) 0.02 (2) 19 (11) 10.77 (7)

17 PYPS-17 2,729 (8) 2.80 1.21 4.9 (6) 13 (4) 11,697 (17) 16.07 14.06 75.3 (15) 31 (17) 4.74 (14) 0.5 (17) 31 (18) 11.28 (5)

18 PYPS-18 2,713 (11) 11.86 −3.92 20.8 (15) 25 (13) 11,627 (19) 9.62 −13.32 46.15

(13)

30 (16) 4.73 (12) 0.72 (19) 31 (17) 10.6 (11)

19 PYPS-19 2,620 (15) 6.98 3.78 12.6 (13) 27 (16) 12,309 (14) 4.23 20.70 27.9 (8) 21 (10) 4.39 (7) 0.32 (13) 20 (13) 10.72 (9)

CSV 31 2,896 (6) −3.26 16,588 (5) −1.62 −11.36

Grand mean 2881.1 13868.3

LSD (0.05) 412.68 2889.87 2.54 2.15

Value in the parenthesis indicates rank.

IPCA, Interaction principal component axis; ASV, AMMI stability value; RASV, Rank of ASV; GSI, Genotype stability index; RGSI, Rank of GSI; LSD, Least significant difference.
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Nagesh Kumar et al. Sorghum Landraces for Drought-Prone Environments

FIGURE 2 | Additive main effects and multiplicative interaction (AMMI1) biplot depicting additive effects vs. interaction principal component axes (IPCA1) for grain yield

(A) and fodder yield (B) of 19 sorghum varieties tested across 13 environments.

FIGURE 3 | AMMI2 biplot showing two main axes of interaction (IPCA2 vs. IPCA1) for grain yield (A) and fodder yield (B) of 19 sorghum varieties tested across 13

environments.

(b) Mega-environments

In the GGE biplot for grain yield, the five lines (rays)
divided the biplot into five sectors. Environments were present
in four sectors and these were considered as four mega-
environments (Figure 4A) and the superior genotypes for each
mega-environment were positioned at the vertex. The GGE
biplot for grain yield resulted in four mega-environments viz.,
first, a mega-environment comprising E8 and E12 with PYPS
16 as the best performing variety; second, a mega-environment
comprising E9, E13, E3, E7, E5, E11, and E2 with PYPS 2
performing the best; third, a mega-environment comprising

of E1, E6, and E10, where once again, PYPS 2 was the best
performing variety; and fourth, a mega-environment with only
one environment E4. Sorghum varieties PYPS 4, PYPS 5, PYPS 7,
and PYPS 11 were located at the vertices in the sectors that did
not show any environment, indicating that these genotypes were
not superior in any of the mega-environments (Figure 4A).

Similarly, in the GGE biplot for fodder yield, four mega-
environments were identified viz., the first mega-environment
comprising E4, E6, E7, E8, E10, E12, and E13 with PYPS 2
as the best performing variety; the second mega-environment
comprising E1, E2, E9, and E11 with PYPS 8 and PYPS 13 as
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FIGURE 4 | Polygon views of the genotype × environment interaction- (GGE-) biplot based on symmetrical scaling depicting “which-won-where” and

mega-environment delineation for grain yield (A) and fodder yield (B) of 19 sorghum varieties tested across 13 environments.

the best performing varieties (Figure 4B). The third and fourth
mega-environment consisted of the single environment of E3
and E5, respectively, suitable for PYPS 2 and PYPS 13. Sorghum
varieties PYPS 5, PYPS 6, PYPS 10, and PYPS 14 were located at
the vertices in the sectors that did not show any environment,
and hence they were not suitable for any mega-environment
(Figure 4B).

In addition, the GGE biplot was used to graphically estimate
the pattern of environments and discriminate the genotypes
(Yan et al., 2000) based on the environment-focused scaling and
genotype-focused scaling.

GGE Biplot of Environment View for Yield
The environmentally centered GGE biplot was used to estimate
the pattern of environments for grain yield (Figure 5A) and
fodder yield (Figure 5B). To compare the relationship between
the environments, lines were drawn to connect the test
environments to the biplot origin as environment vectors.
The angle cosine between the two environments was used to
determine the correlation between them (Dehghani et al., 2010).
For grain yield, the angles between the vectors of the majority
of the environments were acute, with few overlapping with
one another, indicating a positive correlation (Figure 5A). For
example, there was an overlapping between the vectors for the
environments E3, E9, and E13, and also between E5 and E7.
The presence of a wide angle between E4 and E10 indicated
that they were negatively correlated and were not similar
(Figure 5A). Similarly, for fodder yield, the presence of small
angles between the vectors for an environment indicated that the
tested environments were similar (Figure 5B). The widest angle
between the vector of E3 and E5 suggested a dissimilarity between
these two environments.

GGE Biplot of Genotype View for Grain
Yield
The vector view of GGE biplot in the genotype-focused scaling
measured their dissimilarity in discriminating the genotypes
(Kumar et al., 2021). For grain yield, sorghum varieties PYPS1,
PYPS 6, PYPS 7, PYPS 9, PYPS 10, PYPS 17, PYPS 18, and
PYPS 19 showed the same group position. The varieties PYPS 3,
PYPS 4, PYPS 5, PYPS 8, PYPS 11, and PYPS 12 fell in the same
group. Likewise, the varieties PYPS 2, PYPS 13, PYPS 14, and
PYPS 15 were in the same group. One sorghum variety PYPS 16
with a distinct group was discriminating suggesting dissimilarity
with other groups (Figure 6A). For fodder yield, PYPS 1, PYPS
2, and PYPS 15 showed the same group position (Figure 6B).
The varieties PYPS 8, PYPS 11, and PYPS 13 showed the same
group position with the remaining varieties in two different
group positions.

GGE Biplot on Environment for Comparing
Environments With an Ideal Environment
Discriminating ability and representativeness of the testing
environments are important measures of the GGE biplot.
The concentric circles in Figure 7 help us in visualizing the
length of the environment vectors, which are a measure of the
discriminating ability of the environments and the SD within
the respective environments (Yan and Tinker, 2006). The average
environment that is drawn as a small circle at the end of the
arrow (Figures 7A,B) has the average coordinates of all test
environments, and the average environment axis (AEA) is the
line passing through the average environment and the biplot
origin. A test environment showing a smaller angle with the AEA
is more representative than the other test environments (Yan and
Rajcan, 2002).
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FIGURE 5 | GGE biplot of the correlation among 13 tested environments for grain yield (A) and fodder yield (B) of 19 sorghum varieties.

FIGURE 6 | GGE biplot of genotype-focused scaling for discriminating 19 sorghum varieties tested across 13 environments for grain yield (A) and fodder yield (B).

For grain yield, the environments E4, E9, and E13 were
the most discriminating genotypes, very closely followed by
E1, E2, E6, and E10. The environments E3 and E7, with
the shortest vectors from the origin, provided little or no
information about the genotype difference and were considered
as non-discriminative environments (Figure 7A). Based on the
angle of the environment with AEA, the environments E5
and E11 were the most representative whereas E4 and E10
were the least representatives for grain yield. For fodder yield,
the environments E1 and E5 were the most discriminating
genotype while E2, E9, E10, and E11 were moderately

discriminating. The environment E4 followed by E3 and E7
were considered as non-discriminative environments. Further,
the environments E10 and E6 were the most representative
whereas E3 and E5 were the least representatives for fodder yield
(Figure 7B). The environments E5, E9, and E13 (Figure 7A)
and the environments E11 and E12 (Figure 7B) located
in the first concentric circles were identified as the most
ideal environments for obtaining high grain and fodder
yields, respectively. The evaluation in these environments
maximized the observed genotypic variation among the 19 tested
sorghum varieties.
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FIGURE 7 | GGE biplot of environment-focused scaling for comparing 13 test environments with an ideal environment for 19 sorghum varieties for grain yield (A) and

fodder yield (B).

GGE Biplot of Stability and Mean
Performance of Genotypes Across
Average Environments
The line passing through the biplot origin and the average
environment with a single arrow is the AEA. Projections of
genotype markers to the AEA depict the mean yield of genotypes
(Figure 8). For grain yield, PYPS 2 was the high-yielding variety
and PYPS 5 was the lowest yielding variety (Figure 8A). For
fodder yield, PYPS 2 was once again the high-yielding variety and
PYPS 10 was the lowest yielding variety (Figure 8B). A double
arrowed line passing through the biplot origin and perpendicular
to the AEA abscissa is the AEA ordinate (Figure 8). A greater
projection onto AEA ordinate regardless of the direction means a
greater stability. Accordingly, sorghum varieties PYPS 2, PYPS 5,
PYPS 8, PYPS 13, PYPS 14, and PYPS 17 with shorter projections
over the environments were stable, and the varieties PYPS 11 and
PYPS 16 were unstable for grain yield (Figure 8A). For fodder
yield, PYPS 2, PYPS 10, PYPS 15, and PYPS 16 were mostly stable
over the environments, and the varieties PYPS 5, PYPS 8, and
PYPS 13 were unstable (Figure 8B).

AMMI and GGE Analyses for Grain Mold Tolerance
Sorghum varieties PYPS 8 and PYPS 13 recorded low disease
scores of 3.71 and 3.97, respectively, for grain mold incidence.
Further, these varieties showed low IPCA1 values (0.01 and
0, respectively) and ASVs (0.04 and 0.09, respectively), and
hence they were considered as the most stable varieties against
grain mold disease (Table 7, Supplementary Table 2). Sorghum
variety PYPS 2 showed less incidence of grain mold with a score
of 3.92. However, the ASV was relatively high at 0.60, and hence
it was moderately stable.

The AMMI biplot revealed that the varieties PYPS 2, PYPS
11, and PYPS 19 had a low grain mold incidence and were
moderately stable (Figure 5A). The varieties PYPS 4 and PYPS
7 had low grain mold disease but were unstable. The variety
PYPS 14 and the susceptible check SPV 462 were stable with a
high grain mold incidence. The GGE biplot graphic analyses of
19 sorghum varieties tested at three environments revealed the
magnitude of the interaction of each genotype and environment
for grain mold incidence (Figure 5B). PYPS 2, PYPS 4, PYPS 8,
and PYPS 11 were themost stable varieties for E2 with a low grain
mold incidence followed by the varieties PYPS 7 and PYPS 13.
The susceptible check SPV 462, though suitable for environment
E2, recorded a high incidence of grain mold.

Nutrient Composition of Sorghum Varieties
The starch, sugar, protein, Fe, and Zn contents varied among the
19 tested sorghum varieties (Table 8). The starch content ranges
from 32.11% (PYPS 16) to 57.09% (PYPS 13). The total sugar
content among the tested varieties varied from 5.25% (PYPS 9)
to 14.93% (PYPS 15). The highest percentage of total protein
content was encountered in the grains of PYPS 2 (14.52%) and
PYPS 8 (14.13%) whereas the lowest one was demonstrated in
PYPS 15 (8.78%). There were significant (p < 0.05) differences
in the total Fe content among the tested sorghum varieties, with
the highest total Fe content in PYPS 4 (12.75mg) followed by
PYPS 2 (10.75mg) and the lowest in PYPS 15 (4.31mg) and PYPS
18 (4.40mg). Significant differences were also found among the
sorghum varieties for the total Zn content. The varieties PYPS
1 (3.40mg), PYPS 8 (3.40mg), and PYPS 9 (3.30mg) had the
highest Zn content while the varieties PYPS 15 (1.80mg), PYPS 5
(1.90mg), PYPS 7 (1.90mg) recorded the lowest Zn content.
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FIGURE 8 | GGE biplot of stability and mean performance of 19 sorghum varieties across average environments of 13 test environments for grain yield (A) and fodder

yield (B).

DISCUSSION

In this study, a total of 108 landraces were collected, and 36

superior landraces of 108 landraces were identified. About 11

of these landraces were used to develop 19 sorghum varieties.

Previous reports (Tesso et al., 2008; Adugna, 2014; Abraha
et al., 2015; Amelework et al., 2016; Wondimu et al., 2020) have
identified sorghum landraces with a wide range of variations that

could provide new sources of tolerance and highly contrasting
lines for use in future breeding programs. The landraces used
in the present study were collected from the interior parts of
central and southern India where they might have evolved in
response to diverse agroecological zones and farming systems
practiced in those regions and were better adapted to the low
input and marginal cultivation conditions of these areas coupled
with a frequent occurrence of grain mold disease. The 13
rainfed locations tested in this study represented the rainfed
dryland conditions and were characterized by a complex climate
that is largely semiarid and dry subhumid, with a short wet
season followed by a long dry season. Sorghum cultivated in
these regions is prone to highly erratic rainfall (spatially and
temporally), with a strong risk of dry spells at critical growth
stages and heavy rains at the grain maturity stage. The present
study identified 36 superior performing landraces, cultivated in
water-stress conditions and had a tolerance to grain mold due to
an indirect selection for associated traits such as panicle shape,
grain color, seed compactness, etc. over the years, which could be
utilized to develop elite lines in sorghum breeding programs.

In the present study, the evaluation of 19 sorghum varieties
derived from the superior landraces using AMMI and GGE
biplots has demonstrated a higher contribution by the G × E
interaction to the total variation than the genotypes suggesting
that the environment had a high impact on the performance of

the sorghum varieties for both grain yield and fodder yield. Even
though the proportion of the environment is the largest for both
grain and fodder yields, the genotypes and G × E interaction
have a paramount importance for the genotype evaluation (Yan
and Kang, 2003). These findings are in agreement with Reddy
et al. (2014) and Al-Naggar et al. (2018) who reported the
predominance of the environment’s main effect as the source
of variation in the multi-environment trials in sweet sorghum
and grain sorghum, respectively. Abiotic factors such as soil
moisture, pH, mineral availability along with the weather and
biotic factors including natural pest and disease occurrencemight
have contributed to large variations in the yield performance of
the genotypes. The potential of the genotypes could be more
exploited if the best performing genotypes were identified for the
specific environments.

The total variations (56.6, 66.8%) contributed by IPCA1 and
IPCA2 explained the differential performance of genotypes for
grain yield and fodder yield across the 13 environments. Because
of their maximum contribution, IPCA1 and IPCA2 were used to
plot a two-dimensional GGE biplot. Gauch (2013) suggested that
the most accurate model for AMMI can be predicted by using
the first two IPCAs. Several researchers used the first two IPCAs
for the GGE biplot analysis because they explained a greater
percentage of the G × E interaction for sorghum (Al-Naggar
et al., 2018), barley (Vaezi et al., 2017), pigeonpea (Rao et al.,
2020; Kumar et al., 2021), wheat (Verma et al., 2015), and maize
(Solomon et al., 2008).

AMMI stability value, which is the quantitative stability value
developed through the AMMI model by Purchase et al. (2000),
has been considered as the most appropriate single method of
describing the stability of genotypes (Naroui et al., 2020). Several
studies have identified the genotypes with smaller ASV and better
stability and those with high ASV but higher yields for specific
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TABLE 7 | Disease reaction scores against grain mold, IPCA scores, and ASV

values of 19 sorghum genotypes over three environments from 2016 to 2018.

S. No. Genotype/Environment Score PC1 PC2 ASV

1 PYPS-1 4.52 −0.07 0.08 0.01

2 PYPS-2 3.92 0.24 0.06 0.60

3 PYPS-3 4.50 0.02 0.11 0.11

4 PYPS-4 4.10 −0.16 −0.11 0.40

5 PYPS-5 4.51 0.03 0.07 0.09

6 PYPS-6 4.73 −0.13 0.03 0.32

7 PYPS-7 4.18 −0.07 0.06 0.18

8 PYPS-8 3.71 0.01 −0.04 0.04

9 PYPS-9 4.78 0.00 −0.09 0.09

10 PYPS-10 5.10 −0.13 0.14 0.37

11 PYPS-11 3.65 0.09 0.07 0.23

12 PYPS-12 4.80 −0.07 0.11 0.06

13 PYPS-13 3.97 0.00 −0.09 0.09

14 PYPS-14 5.32 0.03 0.02 0.07

15 PYPS-15 4.54 −0.03 −0.06 0.08

16 PYPS-16 5.00 0.01 −0.02 0.02

17 PYPS-17 4.74 0.20 −0.03 0.50

18 PYPS-18 4.73 −0.12 −0.07 0.72

19 PYPS-19 4.39 0.09 −0.04 0.32

20 SPV 462 (Susceptible check) 8.33 0.02 −0.13 0.24

21 IS 8545 (Resistant check) 4.04 0.03 −0.03 0.06

E1 4.66 0.30 −0.17 0.33

E2 4.63 0.04 0.29 0.29

E3 4.64 −0.34 −0.12 0.85

LSD (0.05) 2.54

IPCA, Interaction principal component axis; ASV, AMMI stability value; LSD, Least

significant difference.

Disease Score between 3.0 and 5.0 with 6–30% grain mold incidence is considered

as tolerant, disease score 6.0–9.0 with 31–100% grain mold incidence and identified

as susceptible.

adaptability in crops including bread wheat (Farshadfar, 2008),
grain sorghum (Adugna, 2014), and finger millet (Lule et al.,
2014). In the present study, the high yields and stability (low
ASV) of varieties such as PYPS 2, PYPS 5, PYPS 8, and PYPS
13 might be attributed to the 11 parental landraces, which could
offer potential new sources of genes for higher grain and fodder
yields and stability. These genotypes merit further genetic studies
for adaptation and physiological traits for dissecting the traits
contributing to stability.

In this study, several stable sorghum varieties were identified
for grain yield and fodder yield. For example, PYPS 8 was stable
and high in yield for grain yield. However, most of the stable
genotypes need not necessarily have the best yield performance
(Mohammadi and Amri, 2007). Hence, GSI was used as a single
criterion to classify stable genotypes. To our knowledge, this
is the first study incorporating grain and fodder yields’ mean,
protein content, grain mold reaction, and stability index to
identify high-yielding, high protein, grain mold tolerant, and
stable sorghum varieties such as PYPS 1, PYPS 2, PYPS 8, PYPS

13, etc. In wheat, Singh et al. (2019) have used GSI to identify
stable high-yielding genotypes in India.

Genotypic stability is crucial to grain yield and the best
genotype needs to combine good yield and stable performance
across a range of production environments. Based on the
AMMI1 biplot, the current study identified the sorghum varieties
with wide and specific adaptability for both grain yield and
fodder yield. For example, sorghum variety PYPS 8 with a low
absolute IPCA1 score and the above-average grain yield was
stable, showing less-variable yield across the environments, thus
making it a promising multilocation testing and validation. On
the contrary, the varieties PYPS 1 and PYPS 10 performed
consistently across locations but with below-average grain yields.
The variety PYPS 2 showed specific adaptability to E1 and E10 for
grain yield. Similarly, Al-Naggar et al. (2018) identified two grain
sorghum B-lines with site-specific adaptability in Egypt.

Interestingly, the varieties differed in their grain yield and
fodder yield performances across locations. For example, the
variety PYPS 15 showed specific adaptation to environments E1
and E10 for high grain yield (3,432 kg/ha) but was the most
widely adaptable variety for fodder yield (16,955 kg/ha). Sorghum
varieties PYPS 2, PYPS 8, PYPS 13, and PYPS 15 were considered
as the best dual purpose cultivars (Figure 9) due to their higher
grain and fodder yields (3,698, 2,0586 kg/ha; 3,584, 18,632 kg/ha;
3,514, 18,122 kg/ha; 3,432, 16,955 kg/ha) whereas PYPS 16 and
PYPS 11 were the best varieties exclusively for grain (3,268 kg/ha)
and fodder (13,895 kg/ha).

The relationship between the testing environments was
graphically evaluated by using the angles between the vectors.
The presence of wide obtuse angles between E5 and E12 with
E2 suggested a negative correlation or strong crossover G × E
interaction for grain yield (Yan and Tinker, 2006). This indicated
that the genotypes performing better in one environment would
perform poorly in another environment. Closer relationships
among the locations depicted by small cosine angles (<90◦)
indicated the non-existence of a crossover G × E interaction
suggesting that the ranking of genotypes does not change from
environment to environment. The environments E5 and E12
and the environments E3 and E7 fall under the latter. The
present study indicated amixture of crossover and non-crossover
types of G × E interaction, which has been reported in various
studies (Rakshit et al., 2012; Naroui et al., 2013; Aruna et al.,
2015). Furthermore, eliminating similar environments from
multilocation trials of sorghumwill help in the optimal utilization
of resources.

In the polygon view of the GGE biplot derived from the
first two main PC, PC1 refers to the yield ratio, associated with
genotypic characteristics and PC2 refers to the yield related to
the G × E interaction (Yan et al., 2007; Yan and Holland, 2010).
In the present study, the contribution of the first two PCs toward
99.9 and 95.9% of the variability for grain yield and fodder yield,
respectively, justified the use of the GGE biplot to effectively
interpret the variability in the multi-environment data. The 13
tested environments in this study contributed to 35.5% of the
total variation in grain yield and 28.9% in fodder yield. Mushayi
et al. (2020) reported as much as 63% of the variation being
explained by location in grain yield for maize. In this study, the
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TABLE 8 | Nutrient composition of sorghum genotypes collected from E1 (Palem, Telangana, India) in 2018.

S. No. Genotype Starch Sugar Fe (mg/100g) Zn (mg/100g) Protein (%)

1 PYPS-1 49.73 8.76 5.60 3.40 12.32

2 PYPS-2 53.93 10.01 10.70 2.80 14.52

3 PYPS-3 38.44 12.68 5.50 2.40 9.78

4 PYPS-4 48.61 14.09 12.70 2.90 10.30

5 PYPS-5 53.88 11.43 5.40 1.90 10.52

6 PYPS-6 43.50 9.13 6.20 2.20 9.63

7 PYPS-7 45.13 12.18 7.40 1.90 9.25

8 PYPS-8 48.77 9.67 6.60 3.40 13.26

9 PYPS-9 52.86 5.25 6.00 3.30 14.13

10 PYPS-10 39.46 12.30 7.80 2.50 9.58

11 PYPS-11 45.43 9.84 5.80 2.70 10.73

12 PYPS-12 46.50 9.95 5.30 2.10 10.95

13 PYPS-13 57.09 8.82 4.90 2.40 10.66

14 PYPS-14 43.05 6.77 5.40 3.00 10.52

15 PYPS-15 40.16 14.93 4.40 1.80 8.78

16 PYPS-16 32.11 13.59 6.40 2.90 10.77

17 PYPS-17 56.38 6.98 5.40 2.00 11.28

18 PYPS-18 38.29 9.77 4.40 2.30 10.60

19 PYPS-19 45.20 9.60 6.70 2.80 10.72

LSD 7.21 2.84 2.14 0.64 2.15

CV% 14.71 11.41 8.75 7.86 14.24

Range 24.98 9.68 8.30 1.6 5.74

LSD, Least significant difference; CV, Coefficient of variation.

highest grain yielding variety PYPS 2 performed best at E2, E1,
E11, E6, and E10. These environments are in complete contrast
to the best yielding environments E3, E8, E12, and E13 for high
fodder yield. Several authors identified high-yielding genotypes
for grain sorghum (Rakshit et al., 2012; Al-Naggar et al., 2018),
forage sorghum (Aruna et al., 2015), and sweet sorghum (Rono
et al., 2016).

In the GGE biplot analysis, partitioning of the test
locations into meaningful mega-environments is the best
approach to exploit the positive G × E interaction (Yan
and Tinker, 2006). In the present study, the test locations
were divided into a total of four mega-environments for
grain yield and four for fodder yield. The varieties performed
differently across the mega-environments for grain yield
and fodder yield. For example, the variety PYPS 2 was
the best for the two mega-environments for high grain
yield and fodder yield and PYPS 5 was not suitable for
any mega-environment suggesting that different genotypes
should be deployed for each mega-environment to achieve
optimal adaptation.

Based on the AMMI analysis, PYPS 8 and PYPS 13 were
identified as the most stable sorghum varieties with a low
grain mold incidence. The AMMI and GGE biplot methods
were used to identify resistance sources to different diseases in
multiple locations and also high-yielding stable genotypes in
wheat, groundnut, mungbean, melon, etc. (Akcura et al., 2017;
Chaudhari et al., 2019; Naroui et al., 2020; Tollo et al., 2020).
In a previous study, Diatta et al. (2019) evaluated five sorghum

hybrids along with their parental lines and reported a significant
G× E interaction for grain yield. However, the G× E interaction
was not significant for panicle mold infestation. Grain mold is a
complex disease whose incidence is governed by a host resistance
and an environment. Grain mold resistance was correlated with
open panicles, long glumes, a greater glume coverage length, and
area (Sharma et al., 2010). Loose panicle sorghum is more likely
to be resistant to grain mold because the compact heads hold
more moisture that favors disease development. Weather factors,
particularly relative humidity play a dominant and determining
role in grain mold severity. The wet weather condition following
flowering is necessary for the grain mold development. The
longer the duration of wetness on grain surface, the greater is
the incidence of grain mold (Das et al., 2020). Photoperiod-
sensitive cultivars that mature after the rains often escape grain
mold infection (Patted et al., 2011). Sorghum cultivars with
a white grain are more vulnerable to grain mold than those
with a brown and red grain pericarp. In the present study,
the varieties PYPS 8 and PYPS 13, which showed a low grain
mold incidence, had a brown and yellow pericarp, respectively.
Their parental lines viz., PSLRC 8, PSLCRC 9, PSLRC 2, and
PSLRC 21 were characterized by a brown and yellow pericarp
with high tannin levels, which might have contributed to grain
mold tolerance. Furthermore, their panicles were semi-compact
to loose a trait important for grain mold tolerance due to non-
retention of moisture and better air circulation (Glueck et al.,
1977; Rao et al., 1999; Patted et al., 2011). Glume length and area
of coverage over the grain is related to the grain mold escape
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FIGURE 9 | High-yielding, grain mold-tolerant, and protein-rich sorghum

varieties developed from the superior landraces. (A) PYPS 2 (grain yield: 3,698

kg/ha and protein: 14.51%), (B) PYPS 8 (grain yield: 3,584 kg/ha and protein:

14.13%), and (C) PYPS 15 (grain yield: 3,432 kg/ha and protein: 8.78%).

as the grains are protected from the exposure to rain. Patted
et al. (2011) reported that sorghum progenies with a very long-
to-long glume coverage escaped grain mold tolerance. They also
reported that black- and red-colored glumes were moderately
resistant to grain mold due to the presence of tannins, which
inhibit the growth of saprophytic fungi, and thus reducing a grain
mold incidence.

An analysis of nutrient composition revealed a mean starch
content of 46.04% that is lower than the average content varying
from 56 to 73% (Ratnavathi and Patil, 2013). The protein content
ranging from 10.4 to 10.62%was reported in sorghum germplasm
collections (Weckwerth et al., 2020). Other studies in sorghum
have reported the protein content of 9–11% (Elbashir et al.,
2008; Ahmed et al., 2014). Abdelhalim et al. (2021) reported

the protein content ranging from 6.3 to 12.5% among the five
landraces evaluated for their potential in biofortification. The
protein content of the three varieties viz., PYPS 2 (14.52%), PYPS
9 (14.13), and PYPS 8 (13.26%) tested in this study is higher than
that of sorghum landraces reported by Abdelhalim et al. (2021).
The high protein content of the genotypes in this study suggested
the possibility of a similar feature in the parent landraces PSLRC
2, PSLRC 3, PSLRC 4, PSLRC 8, PSLRC 9, and PSLRC 10. These
landraces, in addition to the genotypes PYPS 2, PYPS 8, and
PYPS 9, offer a significant source of new genetic materials, as
well as fortified ingredients for enhancing the nutritional value of
sorghum grains. One nutritional constraint to the use of sorghum
as food is the poor digestibility of sorghum proteins in cooking
(Tesso et al., 2008). Duressa et al. (2020) have reported sorghum
accessions with a protein content as high as 15% but with
different digestibility percentages (a measure of the susceptibility
of protein to proteolysis). For example, the sorghum accession
SC663 with a protein content of 15.5% had a high protein
digestibility of 70.77%. On the contrary, the sorghum accession
SC25 with a protein content of 14.8% had a protein digestibility
of 49.73%. Hence, it is important that the sorghum varieties with
a high protein content are evaluated for protein digestibility to
identify the genotypes with high protein availability.

In the present study, the varieties varied in their grain Fe
and Zn concentrations. Phuke et al. (2017) reported a highly
significant G × E interaction for Fe and Zn levels in sorghum
recombinant inbred lines. They found a significant variation in
Fe and Zn across the environments and a significant positive
correlation between the Fe and Zn concentrations. While the
varied concentrations of Fe and Zn in the present study might
be genetically controlled, the effect of the environment and
the possible G × E interaction need to be investigated by
multi-environment testing of the sorghum genotypes. Shegro
et al. (2012) also reported a diversity in nutritional composition
among the sorghum landraces and identified the accessions with
high concentrations of proteins and minerals (Fe, Fe, Ca, K,
Mn, P, and Mg). The variations in mineral contents of the
19 sorghum genotypes in this study may be due to genotype,
mineral concentrations in the soil as well as translocation rates
of the elements from the soil, as well as environmental factors
such as temperature and rainfall or an inherent ability of
the genotypes to absorb the nutrients from the soil (Shegro
et al., 2012). The assessment of a phenotypic correlation
among the protein, starch, sugar, and mineral compositions of
the genotypes in this study might have implications for the
sorghum crop improvement in relation to human nutrition and
livestock feed. Weckwerth et al. (2020) have suggested the use
of genomic selection (GS) using genome-wide DNA markers
in crop breeding programs to target multiple and complex
traits. This can be deployed in a sorghum breeding program to
simultaneously target yield, drought tolerance, and nutritional
composition including protein, starch, Fe, and Zn. Not just
for sorghum, but such an approach integrating GS with an
environment-dependent PANOMICS analysis can improve the
productivity, biotic and abiotic stress tolerance, and nutritional
value of several crops including pigeonpea, groundnut, chickpea,
etc. (Weckwerth et al., 2020).
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In cereals, the nutritional quality and end use properties
are linked to arabinoxylans (AX) that are the major polymers
present in the cell walls of grains (Saulnier et al., 2007). Though
wheat AX has been extensively reviewed (Saulnier et al., 2007),
limited information is available on sorghum AX concerning the
amount, composition, and expression. Nandini and Salimath
(2001) reported that the structural features of AX are linked
with a good flatbread-making quality in sorghum. PYPS-2, the
high yielding, protein-rich, and grain mold-tolerant genotype
has a high consumer preference owing to good flatbread-
making quality (Jaisimha, 2019), which might be linked to
the structure and/or amount of AX. Though the expression is
mainly genetically controlled, a positive relationship with the
amount of AX and drought has been reported in wheat (Coles
et al., 1997). As demonstrated in this study, the 36 landraces
and the 19 genotypes were evaluated under rainfed situations
where prolonged drought stress is a common occurrence, which
may have influenced the AX expression vis-à-vis flat bread-
making quality. The evaluation of sorghum genotypes for their
AX amount and expression in different environments might
help in identifying stable and adaptable cultivars with enhanced
nutritional quality. To achieve this, research may first be
reoriented toward the understanding of the AX biosynthesis,
the identification of the candidate genes, and exploitation of the
variation toward the development of new cultivars with improved
nutritional quality and processing properties.

CONCLUSION

The present study reports the development of an elite sorghum
breeding material using locally adapted landraces through
pedigree breeding for the grain and fodder yield. The study has
identified stable environments for grain yield (E5) and fodder
yield (E11), which suggest that testing of initial hybrids and
varietal trials in these two environments is more discriminating
and rewarding to save resources in Telangana, India. The
study showed the potential of the collected landraces for
the development of high-yielding sorghum varieties suitable
for rainfed cultivation in India and spill-over to African
subcontinents. The study demonstrated a scope for the utilization
of these diverse, locally adapted landraces that have been evolved

through a continuous selection by the farmers in varied-agro-
climatic zones under low input conditions to develop climate-
resilient sorghum cultivars and ultimately contribute to healthy,
global food, and feed security.
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