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In the current era, one of biggest challenges is to shorten the breeding cycle for rapid
generation of a new crop variety having high yield capacity, disease resistance, high
nutrient content, etc. Advances in the “-omics” technology have revolutionized the
discovery of genes and bio-molecules with remarkable precision, resulting in significant
development of plant-focused metabolic databases and resources. Metabolomics has
been widely used in several model plants and crop species to examine metabolic
drift and changes in metabolic composition during various developmental stages and
in response to stimuli. Over the last few decades, these efforts have resulted in
a significantly improved understanding of the metabolic pathways of plants through
identification of several unknown intermediates. This has assisted in developing several
new metabolically engineered important crops with desirable agronomic traits, and has
facilitated the de novo domestication of new crops for sustainable agriculture and food
security. In this review, we discuss how “omics” technologies, particularly metabolomics,
has enhanced our understanding of important traits and allowed speedy domestication
of novel crop plants.

Keywords: omics, metabolomics, de novo domestication, crop improvement, domesticated-genes

INTRODUCTION

The process of crop domestication began approximately 12,000 years ago, and was an important
milestone during human civilization and led the foundation of modern agriculture. In the 21st
century, most of the cultivated crops are domesticated from their wild ancestral progenitors (Meyer
et al., 2012). During the domestication process plants were selected based on visible traits guided
by needs of the time which led to the selection of only few desired alleles and dilution of the genetic
variation present within the crop (Figure 1). For example, in cereals like wheat and rice, traits
such as increase in the number of seeds per plant, uniform seed maturation, and non-shattering of
seeds were preferred over the size of kernels during early domestication (Si et al., 2016). However,
the selection of such traits varies greatly from plant to plant or between crops. For instance, in
fleshy fruits or berries such as tomato, eggplant and apple, the size of the fruits and berries were
preferred over overall yield (Zhu et al., 2018). Likewise, in tuber producing plants such as potato
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the tuber size is one of the preferred traits (Fernie and Yan, 2019).
Surprisingly, cultivated plant species represent only 250 fully
domesticated species among 2500 species, which have undergone
the process of domestication, and represent 160 plant families
(Smýkal et al., 2018). This proportion is even starker considering
the total plant diversity available for the cultivation or those,
which are already being cultivated in different places (semi-
cultivated species). For example, around 400,000 semi-cultivated
plant species are currently known which can be utilized for
designing future crops (Smýkal et al., 2018; Fernie and Yan, 2019).

The process of domestication of a species is a very slow
and steady process. In fact, the modern cultivars available
were generated following a long series of events: (a) Neolithic
Revolution, (b) Columbian Exchange, (c) Industrial Revolution,
(d) Green Revolution, and (e) Genomic Revolutions (Smýkal
et al., 2018). Presently, to feed an ever-growing global population
in the face of climate change is challenge for agriculture especially
due to reduction of the arable lands due consistent conversion
of lands into semi-arid areas and nutrient deficient land along
with increase in soil pH or salinity. Therefore, a more rapid
method of developing elite climate smart cultivars with desired
traits is required. This could be achieved through integrated
OMICS approaches, which include genomics, transcriptomics,
proteomics, metabolomics and phenomics integrated with
bioinformatics analyses (Kumar et al., 2017, 2018; Sharma
et al., 2021). Plant OMICs based research have played very
important role in deciphering metabolic pathways and their
molecular regulators, which govern key traits and several
plant developmental processes (Kumar et al., 2017; Razzaq
et al., 2019). In the past decade there has been a significant
progress in the field of both sequencing (van Dijk et al.,
2018; Kumar et al., 2020; Schmidt et al., 2020) and analytical
methods for the detection of molecules (Ren et al., 2018;
Gilmore et al., 2019; Macklin et al., 2020), which has not
only improved detection throughput but also the accuracy
and the sensitivity (Kumar et al., 2017; Chiang et al., 2018;
Qi et al., 2019).

In the past, for the selection of traits breeding programs
involved phenotypic selection of plants (which are guided by
metabolic pathways) (Kiszonas and Morris, 2018). For instance,
during the Green Revolution (from 1960 to 1980), development
of semi-dwarf high yielding varieties of rice and wheat involved
phenotypic selections of improved lines which actually involved
selection of gibberellic acid pathway genes including the GA20
oxidase and DELLA protein encoding genes (Silverstone and
Sun, 2000). In fact, most of the traits, which were targeted
for the Green Revolution, are controlled by one or more
metabolic pathways. Therefore, precise editing of these metabolic
pathways can help in the development of varieties in a very
short time (Rodríguez-Leal et al., 2017; Zhang Y. et al., 2018;
Fernie and Yan, 2019). Previously, most of the reviews on
plant omics have focused on the instrumentation involved and
results obtained by different researchers (Kumar et al., 2017;
Mangul et al., 2019; Misra et al., 2019; Tang and Aristilde,
2020). In this review, we represent how this omics knowledge
can be utilized for development of improved cultivars by
targeting metabolic pathways and also emphasize the use of this

information for de novo domestication of wild ancestral species
for sustainable food security.

ROLE OF OMICS DATA IN
UNDERSTANDING PLANT TRAITS

Genomics plays an important role in the identification of
quantitative trait loci (QTLs) and genes controlling important
traits, particularly in domesticated crops (Fernie and Yan,
2019). Moving forward, great insights have been gleaned from
genome sequencing and re-sequencing programs examining
wild ancestral species of domesticated crops (Unamba et al.,
2015). In plant genomics, Next Generation Sequencing (NGS)
has played a very important role and provided opportunities
in the field of functional genomics due to the availability of
reference genomes for several model and crop plant species.
These resources combined with high quality re-sequencing offers
huge potential for discovery of causal genes and mechanisms
associated with the key agronomic traits (Thudi et al., 2016; Chen
et al., 2019; Varshney et al., 2019). Re-sequencing also enriched
the availability of SNPs data and can be utilized for genomics-
based studies such as GWAS (genome wide association study)
and QTL-seq (Kumar et al., 2020), both of which are useful tools
for trait mapping (Rivas et al., 2011; Zhu et al., 2011; Zhang
et al., 2021). With the advent of these technologies combined
with advances in metabolomics such as integration of GWAS
with metabolomics efficient means for dissecting underlying
molecular mechanisms involved in the growth and development
are available (Table 1; Fang and Luo, 2019).

Sequencing and QTL-seq Based Trait
Discovery
Presently, QTL-seq is one of the most successful approach
developed for the gene discovery and trait dissection (Kumar
et al., 2020; Pandey et al., 2020). This approach offers preliminary
idea for positional cloning for linked genetic factors or
genes, and it has excellent success in marker-assisted selection
for crop improvement programs (Xu F. et al., 2015). With
the advancements in NGS technologies new approaches like
quantitative trait locus sequencing (QTL-seq) has been utilized
for exploring rapid QTL or gene identification (Takagi et al.,
2013). In QTL-seq approach, the extreme highest and lowest
genotypes are selected from the mapping population for target
traits, followed by mixing an equal amount of DNA from
each bulk to build up two extreme bulk (High bulk and low
bulk). Then, each bulk is sequenced and assembled and gene
annotation is performed. This approach combined with Bulked
segregant analysis, accompanied by whole genome re-sequencing
technologies, is more effective and capable than the previous
QTL detection methods (Takagi et al., 2013). Utilizing QTL-seq
approach several QTLs and genes for different rice phenotypes
(Takagi et al., 2013; Daware et al., 2016; Ogiso-Tanaka et al.,
2017; Yang et al., 2017; Kadambari et al., 2018; Qin et al.,
2018; Bommisetty et al., 2020; Nubankoh et al., 2020), soybean
(Song et al., 2017; Zhang X. et al., 2018), chickpea (Singh et al.,
2016; Deokar et al., 2019), tomato (Illa-Berenguer et al., 2015),
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FIGURE 1 | Representation of domestication process and the loss of useful genetic variation due to selective breeding and selection of few alleles.

groundnut (Kumar et al., 2020; Luo et al., 2019; Zhao et al., 2020),
have been effectively identified. This approach has also been
deployed across in several crops due to its inherent ability to
understand both qualitative and quantitative traits (Table 2). For
instance, Kumar et al. (2020) identified the role of two genes
RING-H2 finger protein and zeaxanthin epoxidase in fresh seed
dormancy in groundnut; both genes are known to control abscisic
acid (ABA) accumulation. Very recently, Ramos et al. (2020)
identified three QTLs (genomic regions) viz QtlPC-C04, QtlPC-
C11 and QtlPC-C14 (linked to genes R1R2R3) associated with
resistance to Phytophthora capsici Leonian which causes crown
rot in squash (Cucurbita moschata). The most significant benefit
of whole genome sequencing is that it allows the identification of
causative mutations in target chromosomal regions. Additionally,
this method identifies molecular markers which are located inside
the harboring chromosomal region that can also be used to
narrow down the genomic region which will help in mining the
trait linked genes.

RNA-seq Based Trait Discovery
Advances in RNA sequencing (RNA-seq) technologies and
approaches have made significant impact toward trait discovery,
and have enabled plant developmental studies characterizing
expression patterns of all the functional genes as well as
regulatory RNAs (Nayak et al., 2019). RNA-seq is a more
robust approach for precise measurement of transcripts and
has been widely used for transcript profiling in several plant
species (Cloonan et al., 2008; Wang et al., 2009). This data is
vital for improving genome annotations, and offers precise gene
position information for functional characterization and genome
editing. The RNA-seq approach has been deployed for molecular
characterization of several important agronomic traits such as
seed size (Wan et al., 2017), seed coat color (Wan et al., 2018),
seed coat cracking (Wan et al., 2016), seed and bud dormancy
(Qi et al., 2015; Zhu et al., 2015; Khalil-Ur-Rehman et al.,
2017), fatty acid biosynthesis and oil quality (Nayak et al., 2019),
nutritional quality traits (Reddy and Ulaganathan, 2015), etc.,
which can offer precise gene information for developing designer
crops for future. Also, RNA-seq have been used to understand
the molecular mechanisms associated with salt tolerance in rice
(Zhou et al., 2016; Lei et al., 2020); Chinese rye grass (Sun et al.,

2013), and maize (Liang and Schnable, 2016). In wheat, RNA-seq
study reported the drought responsive molecular pathways along
with key candidate genes and molecular markers in the root
tissue (Iquebal et al., 2019). RNA-seq has also been shown to be
highly useful in combination with other -omics methods for gene
discovery and pathway investigations.

Proteomics Enabled Genetic Trait
Understanding
Knowledge of proteomics is being used to map the translated
genes and loci controlling the expression of respective genes.
It helps in identification of proteins responsible for bringing
intricate phenotypic variations. High throughput proteomics
has gone beyond the identification of individual proteins, to
quantitative profiling, post translational modification studies,
signaling, protein–protein interaction and many more areas.
Photosynthesis plays major role in biomass production and yield.
Change in protein profile studies was performed in chlorophyll
deficient Brassica napus leaves which established the relationship
between chlorophyll biosynthesis and photosynthesis (Chu et al.,
2015). Xylem sap proteomics has revealed several insights related
to cell wall formation (Zhang M. et al., 2014), leaf senescence
(Wang et al., 2012) biotic and abiotic stress response (Alvarez
et al., 2008; González et al., 2012), cell to cell communication
(Agrawal et al., 2010), and root–shoot communication (Krishnan
et al., 2011). The enhanced level of redox proteins, stress
and defense related proteins, calcium ion regulation proteins,
signaling G-protein and RNA metabolism related proteins were
induced in phloem sap study. Recently, proteomics study
revealed that low light stress obstructs carbon fixation and
OsGAPB overexpression augment tolerance to low light stress
conceivably by increasing CO2 assimilation and chlorophyll
accumulation in rice (Liu et al., 2020). Interestingly, simultaneous
upregulation of both biotic and abiotic stress responsive protein
has been observed during bacterial blight infection in rice, which
indicate the activation of common pathway (Kumar et al., 2015).
Whereas in case of rice-M. oryzae interaction PBZ1, OsPR-10,
SalT, Glu1, Glu2, and TLP proteins were up-regulated (Kim et al.,
2004). iTRAQ proteomics study of Oryza officinalis provided
evidences that proteins related to biosynthesis of secondary
metabolites and carbon metabolism were mostly enriched after
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TABLE 1 | List of selected studies involved mQTL and mGWAS approach.

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Apple
(Malus domestica)

Prima × Fiesta LC-MS Fruit mQTL Identified 669 mQTLs, includes a major mQTL
hotspot on LG16 contains gene leucoanthocyanidin
reductase belong to the phenylpropanoid pathway.

Khan et al., 2012

Arabidopsis
thaliana

Col-0 × C24 (RIL), ILs GC-MS Leaf mQTL Identified 385 mQTL for 136 metabolites Lisec et al., 2009

A. thaliana accessions LC-MS Leaf mGWAS Identification of 123 mQTL and 70 candidate genes Wu et al., 2018

314 natural accessions GC-MS Leaf mGWAS Identify two candidate genes (AT5G53120 and
AT4G39660) involved in the β-alanine metabolic
pathway

Wu et al., 2016

Bay × Sha (RIL) GC-MS Leaf mQTL Identified 11 mQTL clusters linked to the plant
central metabolism.

Rowe et al., 2008

RILs and ILs GC-MS Seedling mQTL Identified 153 QTLs for augmented additive (Z1)
and 83 QTL for dominance effects (Z2) in RIL

Lisec et al., 2009

96 accessions HPLC-DAD Leaf mGWAS Identified two major QTLs controlling glucosinolate
variation; and AOP and MAM as candidate genes

Chan et al., 2010

313-ecotype association
panel

LC-MS Seed mGWAS Identified two significant associated genomic
regions (One region is linked with serine-related trait
and second region is linked with four
histidine-related traits)

Angelovici et al.,
2017

Col-0 × C24 GC-MS Seed mQTL Identified 786 mQTLs and candidate genes
including bZIP10 as regulator of seed metabolism

Knoch et al., 2017

Barley
(Hordeum vulgare)

Diverse set of barley
accessions

LC-MS Flag leaf mGWAS Reported three mQTLs for metabolites
(γ-tocopherol, glutathione, and succinate content)
involved in antioxidative defense

Templer et al., 2017

Maresi × CamB (RIL) LC-MS Leaf mQTL Identified 138 mQTLs for 98 traits. Annotation of
mQTL identified genomic region with stress
response related genes

Piasecka et al., 2017

Qingke and barley
accessions including wild

LC-MS Leaf and
Seed

mGWAS Identified 90 significant mGWAS loci for variation of
phenylpropanoid content

Zeng et al., 2020

Blueberry
(Cyanococcus)

886 blueberry genotypes GC-MS Fruits mGWAS Identified 519 significant SNPs linked to 11 volatile
organic compounds

Ferrão et al., 2020

Maize
(Zea mays L.)

By804 × B73 (RIL) GC-MS Seedling,
Leaf, Kernel

mQTL Detected 297 QTL and candidate genes to the
amino acid biosynthetic and catabolic pathways,
tricarboxylic acid cycle and carbohydrate
metabolism

Wen et al., 2015

Inbred lines GC-MS Leaf mGWAS Identified 26 distinct metabolites strong
associations with leaf complex trait such as dry
mass, lignin composition etc.

Riedelsheimer et al.,
2012

Inbred lines HPLC Grain mGWAS Identified ZmVTE4 haplotype and three new gene
targets for increasing antioxidant and vitamin E
levels. Also identified two additional genes,
ZmHGGT1 and one prephenate dehydratase
parolog that modestly contribute to tocotrienol
variation

Lipka et al., 2013

Inbred lines UP-LC Kernel mGWAS Identified 74 loci functionally associated with kernel
oil content and fatty acid composition; Also
identified genes involved in oil biosynthesis
(DGAT1-2, FATB and FAD2), members of the oil
metabolic pathway (FAD2, LCACS, ACP, and
COPII) and one transcription factor (WRI1a)

Li et al., 2013

Inbred lines HPLC Kernel mGWAS Nine carotenoid compounds measured in grain
samples, the most abundant was zeaxanthin;
Identified 58 candidate genes involved in
biosynthesis and retention of carotenoids in maize.

Owens et al., 2014

Inbred lines and RIL
population

LC-MS Mature
Kernel

mGWAS Identified 1,459 significant locus–trait associations
across three environments through
metabolite-based genome-wide association
mapping, identified potential causal variants for five
candidate genes involved in metabolic traits

Wen et al., 2014

(Continued)
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TABLE 1 | Continued

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Inbred diversity panel LC-MS Kernel mGWAS Identified 19 modules which shows significant
associations with genetic control of biochemical
networks within the kernel.

Shen et al., 2013

513 diverse inbred lines
association panel

GC-MS Seedling,
Leaf, Kernel

mGWAS Identified 153 significant loci linked to primary
metabolism

Wen et al., 2018

Potato
(Solanum
tuberosum)

Diversity panel LC-MS Tuber mGWAS Identified 472 features in which significant SNPs
have been associated to glycoalkaloids
(α-chaconine, β-chaconine, and α-solamarine)
reported on chromosomes 2, 7, and 8

Levina et al., 2020

C (S. phureja × S.
tuberosum) × E
(S. vernei× S. tuberosum)

GC-MS Tuber mQTL Identified 87 mQTLs associated to primary
metabolism

Carreno-Quintero
et al., 2012

Rapeseed
(Brassica napus)

EXPRESS × SWU07 (DH) NIRS Seed mQTL Identified four QTLs for Glucosinolates content
between

He et al., 2018

Tapidor × Ningyou7 (DH) HPLC Leaf and
Seed

mQTL 105 mQTLs related to glucosinolate biosynthesis in
rapeseed seed and leaves have been observed

Feng et al., 2012

Rice
(Oryza sativa)

ZS97 × MH63 (RIL) LC-MS Flag leaf,
germinating
Seed

mQTL Identified 1,884 mQTLs in flag leaf and 937 mQTLs
in germinating seed samples

Gong et al., 2013

Sasanishiki × Habatak
(BIL)

GC-MS,
LC-MS,
CE-MS

Seed mQTL Identified 802 mQTLs for 759 metabolic traits;
including mQTL hotspot on chromosome 3
regulating amino acids content

Matsuda et al., 2012

Landraces accessions
and subpopulations rice
subspecies indica and
japonica

LC-MS Five-leaf
stage

mGWAS Identified 36 candidate genes controlling
metabolites level and nutritional composition

Chen et al., 2014

Landraces accessions LC-MS Leaf/
seedling

mGWAS Identified 323 associations, demonstrating that
phytochemicals produced in rice cultivars are
diverse

Matsuda et al., 2015

Landraces and elite
varieties of indica and
japonica

LC-MS Grains mGWAS More than 30 candidate genes were identified,
associated with metabolic and/or morphological
traits.

Chen et al., 2016

156 Landrace LC-MS Leaf/root
and other
tissue parts
of rice

mGWAS Identified two spermidine
hydroxyl-cinnamoyltransferases (Os12g27220 and
Os12g27254) that might underlie the natural
variation levels of spermidine conjugates in rice

Dong and Wang,
2015

ZS97 × MH63 (RIL) LC-MS Leaf and
Seed

mQTL Provided over 2,800 highly resolved metabolic
quantitative trait loci for 900 metabolites;
associated 24 candidate genes to various
metabolic quantitative trait loci by data mining,
including ones regulating important morphological
traits and bio-logical processes

Gong et al., 2013

Three CSSL populations
(N/Z, M/Z, and A/Z)

LC-MS Flag leaf mQTL Identified 1,587 mQTL, of which 684 in (A/Z), 479 in
(M/Z), and 722 in(N/Z) have been detected among
three CSSL population

Chen et al., 2018

Lemont × Teqing (RIL) GC-MS Leaf mQTL Identified two mQTL hotspots which have opposing
effects on carbon and nitrogen rich metabolites,
and regulate carbon and nitrogen partitioning.

Li et al., 2016

Strawberry
(Fragaria ×
ananassa)

F. x ananassa
232 × 1392 (F1)

LC-MS Fruit mQTL Reported 309 mQTLs for 77 polar secondary
metabolites.

Pott et al., 2020

232 × 1392 (F1) GC-MS Fruit mQTL Reported 133 unique mQTLs for 44 traits with
PVE% range from 9.6% to 46.1%. RNA seq
analysis identified candidate gene
Mannose-6-phosphate isomerase responsible for
natural variation in L-ascorbic acid in fruit

Vallarino et al., 2019

Tomato
(Solanum
lycopersicum)

Introgression lines LC-MS Fruit mQTL Detected 216 canalization metabolite quantitative
trait loci (cmQTLs) for secondary metabolites and
93 cmQTLfor primary metabolites.

Alseekh et al., 2017

(Continued)
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TABLE 1 | Continued

Plant Population/
accessions

Approach Tissue Study Significant outcome References

Introgression lines UPLC Fruit mQTL Identified 679 mQTLs for primary metabolites and
secondary metabolites

Alseekh et al., 2015

Introgression lines GC-MS Seed mQTL Identified 46 mQTLs in IL population and propose
post transcriptional regulation

Toubiana et al., 2012

Tomato accessions
including wild

GC-MS Fruit mGWAS Identified a total 44 loci associated with 19 traits,
including sucrose, ascorbate, malate and citrate
levels.

Sauvage et al., 2014

Tomato accessions
including wild

GC-MS Fruit mGWAS Identified 388 suggestive association loci (including
126 significant loci) for 92 metabolic traits including
nutrition and flavor-related loci by genome-wide
association study

Ye et al., 2019

IL12-3 × M82 LC-MS Fruit and
leaf

mQTL Reported 1528 mQTLs in fruit and 428 mQTL in
leaf; Major mQTL involved in the regulation of
diacylglycerols and triacylglycerols have been
detected on chromosome 12

Garbowicz et al.,
2018

76 ILs + recurrent parent
M82

LC-MS Seed mQTL Identified 338 mQTL for flavonoids, steroidal
glycoalkaloids, and specialized metabolites content

Alseekh et al., 2020

IL4-4 × M82 GC-MS, HPLC,
LC-MS

Fruit mQTL Identified 72 mQTL, where major mQTLs linked to
twenty genes which have a broad effect on several
metabolic pathways.

Liu et al., 2016

ILs GC-MS Fruit mQTL Reported 889 fruit traits related mQTLs and 326
yield-related traits mQTLs

Schauer et al., 2006

IL and heterozygous ILH GC-MS Fruit mQTL Identified 332 putative mQTL associated with
metabolite accumulation (174 mQTLs is dominantly
inherited, 61 mQTLs is additively inherited and 80
mQTLs is recessively inherited and negligible
number of mQTL showing the feature of over
dominant inheritance)

Schauer et al., 2008

S. lycopersicum
(M82) × S. pennellii Ils

GC-MS,
LC-MS,
HPLC-PDA,
NMR

Fruit mQTL Detected mQTL for carotenoids and tocopherols Perez-Fons et al.,
2014

Wheat
(Triticum aestivum)

KN9204 × J411 (RIL) LC-MS Kernel mQTL Identified 1005 mQTLs and 24 genes candidate
gene related to grain related traits

Shi et al., 2020

Excalibur × Kukri (DH) LC-MS Flag leaf mQTL Identified mQTLs for 238 metabolites across 159
intervals on genetic map; two mQTLs on
chromosome 7A coordinating the genetic control of
various metabolites

Hill et al., 2015

Winter elite lines (135) GC-MS,
LC-MS

Flag leaf mGWAS Identified significant associations 17 SNPs with six
metabolic traits, namely oxalic acid, ornithine,
L-arginine, pentose alcohol III, L-tyrosine, and a
sugar oligomer (oligo II)

Matros et al., 2017

Natural accessions LC-MS Mature
seeds

mGWAS A total of 1098 mGWAS associations were
detected with large effects, within which 26
candidate genes for flavonoid decoration pathway

Chen et al., 2020

Doubled haploid lines GC-MS Flag leaf mQTL Identified 112 mQTLs for 95 metabolites, of which
43 are known compounds

Hill et al., 2013

planthopper infestation (Zhang et al., 2019c). Several proteomics
and transcriptomics study conducted on seed dormancy study
revealed the important role of antioxidant mechanism, protein
thiol and redox regulation along with hormonal signaling in rice,
wheat and barley (Hu et al., 2015). Mass spectrometry (MS) based
proteomics study demonstrated the cultivar specific induction
of proteins in salt stress condition such as glutathione-based
detoxification of ROS was highly induced in tolerant variety
whereas proteins involved in iron uptakes were more expressed
in salt sensitive variety in barley (Witzel et al., 2009). Similarly,

the role of OsCYP2 in moderating the antioxidant enzymes
was established in transgenic rice overexpressing cyclophilin
during salt stress (Ruan et al., 2011). Seed proteomics of various
developmental stages during different stresses have revealed
the process involved in seed dormancy, seed germination, and
seed development (Finnie et al., 2011). Proteomics related to
environmental changes and abiotic stress focused on water supply
responsive proteins in wheat against drought, high temperature,
low temperature, frost, salt and heavy metals have been carried
out (Yang et al., 2011; Han et al., 2013; Kosová et al., 2013;
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TABLE 2 | List of important QTL-seq studies in crop plants.

Crop Population Target Trait QTL/Gene mapped References

Oryza sativa IR 64 × Sonasal Grain Weight Two genes LOC_Os05g15880 (glycosyl hydrolase) and
LOC_Os05g18604 (serine carboxypeptidase)

Daware et al., 2016

Nipponbare × BIL-55 Late heading under
short-day conditions

Zinc finger B-box domain containing protein
(Os04t0540200-01), WD40-repeat-domain–containing
proteins (Os04t0555500-01, Os04t0555600-01,
Os04t0564700-01), flowering locus D (Os04t0560300-01),
CCAAT-binding-domain–containing protein
(Os06t0498450-00)

Ogiso-Tanaka et al.,
2017

H12-29 × FH212 Grain Length and
Weight

qTGW5.3 (1.13 Mb) Yaobin et al., 2018

LND384 × INRC10192 Plant height asd1 (67.51 Kb) Kadambari et al., 2018

M9962 × Sinlek Spikelet fertility qSF1, qSF2, and qSF3 (LOC_Os01g59420,
LOC_Os02g31910, LOC_Os02g32080,
LOC_Os03g50730)

Nubankoh et al., 2020

BPT5204 × MTU3626 Grain weight qGW8 (LOC_Os08g01490 (Cytochrome P450), and
LOC_Os08g01680 (WD domain, G-beta repeat
domain containing protein)

Bommisetty et al., 2020

Triticum aestivum GY448 × GY115 Awnless trait Qal.nwipb-5AL (25-bp indel in B1 gene promoter region) Wang et al., 2021

Zea mays CMS-C lines × A619 Fertility Restoration qRf8-1 (17.93-Mb) Zheng et al., 2020

Brassica napus Huyou19 × Purler Branch angle Branch angle 1 (BnaA0639380D, a homolog of AtYUCCA6) Wang et al., 2016

Cabriolet × Darmor Vernalization FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING
LOCUS T (BnaFT.A02)

Tudor et al., 2020

Brassica rapa Zicaitai × Caixin Purple Trait BrMYBL2.1 gene Zhang X. et al., 2020

Glycine max Zhonghuang × Jiyu 102 Seed cotyledon color qCC1 (30.7-kb) and qCC2 (67.7-kb) Song et al., 2017

CSSL3228 × NN1138–2 Plant height Glyma.13 g249400 candidate gene Zhang X. et al., 2018

Arachis hypogaea ZH8 × ZH9 Testa color AhTc1, encoding a R2R3-MYB transcription factor Zhao et al., 2020

ICGV 00350 × ICGV 97045 Fresh seed dormancy RING-H2 finger protein and zeaxanthin epoxidase Kumar et al., 2020

Yuanza 9102 × Xuzhou 68-4 Shelling percentage Nine candidate genes in 10 SNPs Luo et al., 2019

Cicer arietinum ICC 4958 × ICC 1882 100-seed weight Two genes Ca_0436 and Ca_04607 Singh et al., 2016

ICCV 96029 × CDC Frontier
and ICCV 96029 × Amit

Ascochyta blight Six candidate genes on chromosomes Ca2 and Ca4 Deokar et al., 2019

Solanum lycopersicum Three populations (12S139,
12S143 and 12S75)

Fruit weight and
locule number

Three fruit weight (fw1.1, fw3.3, fw11.2) and one locule
number (lcn6.1) QTLs

Illa-Berenguer et al.,
2015

Cucumis melo MR-1 × M1-32 Stigma Color GS8.1 (268 kb) MELO3C003149, MELO3C003158, and
MELO3C003165

Qiao et al., 2021

Cucumis sativus PM-R × PM-S Powdery mildew
resistance

Two QTLs pm5.2 and pm6.1 (CsGy5G015660) Zhang et al., 2021

Alvarez et al., 2014; Capriotti et al., 2014; Kang et al., 2015). These
studies offered novel insights and better understanding of crop
physiology and metabolism during various kinds of stresses.

Metabolomics Based Trait Understanding
Holistic metabolomics based to study trails in plants were
started late, particularly this approach was started through the
introduction of untargeted metabolome detection (Alonso et al.,
2015). Several studies have been reported where a particular
metabolic pathways have been mapped (Sharma et al., 2021). For
instance, the substantial changes in the various phytohormones
was investigated in poplar leaf (Novák et al., 2008), rice various
aerial organs (Kojima et al., 2009), rosemary leaves et al. (Müller
and Munné-Bosch, 2011), Arabidopsis developing seeds (Kanno
et al., 2010), strawberry fruits (Gu et al., 2019), potato tuber
(Peivastegan et al., 2019), wheat developing seeds (Matsuura
et al., 2019), watermelon fruit (Kojima et al., 2021), etc. The
targeted approach has been also applied to explore the carotenoid

pathway (Fernandez-Orozco et al., 2013; Kim et al., 2016; Mibei
et al., 2017; Yoo et al., 2017; Price et al., 2018; Di Lena et al., 2019),
flavonoid pathways (Karimi et al., 2011; Dong X. et al., 2014;
Torres et al., 2019), amino acids (Torres et al., 2019; Praveen et al.,
2020), and fatty acids (Talebi et al., 2013; Vidigal et al., 2018).
Such profiling studies has helped in improving several important
traits in plants by targeting specific pathways. Almost 10 years
back Liu et al. (2011) targeted fatty acids biosynthesis pathways
for enhancing biofuel production. Very recently and fatty acid
desaturase 2 was targeted in several crops such as canola (Okuzaki
et al., 2018), peanut (Yuan et al., 2019), rice (Abe et al., 2018),
false flax (Morineau et al., 2017), and Soybean (Wu et al., 2020),
for enhanced production of oleic acid (C18:1), respectively.

Several un-targeted metabolomics approach has been utilized
to target multiple class of metabolites (amines, sugars, organic
acids, etc.) from a sample extracted from various tissues of the
model and crop plants such as Arabidopsis, apple, groundnut,
kiwi fruit, alpine bird’s-foot-trefoil, strawberry, grapes, mango,
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maize, medicago, orange, pear, sunflower, soybean, tomato, rice,
white lupin, etc. (Sharma et al., 2021). Now, the targeted and
un-targeted metabolomics approach have been coupled with
genomics data for carrying out metabolomics-based quantitative
trait locus (mQTL) and metabolic genome-wide association
studies (mGWAS) studies (Wen et al., 2015; Chen et al.,
2016); which simultaneously identifies the genomic region,
causal genes and key metabolites and associated metabolic
pathways that govern particular trait in plants. Recently,
Li K. et al. (2019) identified 65 primary metabolites viz 22
amino acids, 21 organic acids, 12 sugars, four amines and six
miscellaneous metabolites in the leaf of teosinte (an ancestor
of maize) and identifies advantageous genes present in the
wild relative associated with grain yield and shape trait in
maize. In tomato, for one of the important trait accumulation
of secondary metabolite in fruit was analyzed, and reported
several subset of mQTLs- including mQTLs associated with acyl-
sugar, hydroxycinnamates, naringenin chalcone, and a range of
glycoalkaloids (Alseekh et al., 2015). Likewise, there are several
studies which identified key genomic regions, candidate genes
and mQTLs related to important traits through mQTL and
mGWAS based studies including some domesticated traits, this
was extensively reviewed by Sharma et al. (2021).

Previously, a combined transcriptome, proteome and
metabolomics approach was used to investigate the ripening
process with a final aim of extending tomato fruit shelf life
(Osorio et al., 2011). This study showed a strong relationship
between metabolites and their associated transcripts controlling
ripening such as sugars, organic acids, and cell wall metabolism
pathways. Similar studies have been done for banana which
led to identification of genes including ERF1B, fructose-1,6-
bisphosphatase and polygalacturonase as key regulators of pulp
ripening (Li T. et al., 2019). Recently, a combined transcriptome
and metabolome study was deployed to study the molecular
aspects of resistance and the interaction between Trichoderma
harzianum strain T22 with tomato during defense responses
against aphids (Coppola et al., 2019). This study demonstrated
the importance of plant transcription factor families such
as ZIP, MYB, NAC, AP2-ERF, and WRKY in biotic stress
resistance. These examples show the potential of the -omics
studies, working in tandem to characterize complex molecular
interactions. These data have been used for the development
of several gene expression/proteome/metabolome atlases to
facilitate omics-driven crop improvement (Table 3).

MOLECULAR REGULATIONS OF
DOMESTICATION RELATED TRAITS:
SELECTED EXAMPLES

Over the past two decades the molecular regulation and the
associated metabolic pathways of several agronomic traits has
been revealed because of intensive research and the deployment
of omics tools (Table 4). For the major domesticated traits
their associated genes pathways have been linked with metabolic
networks; however, more focused research is required to
understand their specific role in particular metabolic pathways.

Here, we review progress in omics-based investigations of several
important domestications related traits.

Transcriptional Control for Loss of Seed
Shattering Trait in Cereal
From an evolutionary viewpoint, natural selection allows wild
plant species to have specific functions to disperse seeds and
fruits. Although from the agronomic viewpoint, natural seed
dispersal is an undesirable trait in crops as it leads to significant
seed loss in harvest. Consequently, natural seed dispersal was
strongly chosen against by ancient humans to ensure productive
cultivation during the domestication period (Purugganan and
Fuller, 2009; Lenser and Theißen, 2013). The non-shattering
traits were considered as the landmark of domestication in
seed crops, as it makes the domesticated species mostly rely
on human activity for propagation and enables the fixation of
other domestication traits (Purugganan and Fuller, 2009). Seed
crops have established their reduction of seed shattering ability
independently and it is a convergent morphological adaptation
to artificial selection (Purugganan and Fuller, 2009; Olsen and
Wendel, 2013).

In cereal, seed shattering or fruit dehiscence is enacted
through an abscission layer in the lemma-pedicel joint. Various
transcription factors (TFs) coding genes were found in rice
(Oryza sativa), which are involved in decreasing seed shattering.
Shattering4 (Sh4) encodes the TF with Myb3 homology and is
important for the formation of a functional abscission layer in
the pedicle (Li et al., 2006). A single change of amino acid in
DNA binding domain of Sh4 is intimately linked to the reduced
seed shattering in domesticated rice. Also, the expression of the
domesticated allele has been substantially reduced compared to
the wild allele (Li et al., 2006). Thus, the combination of coding
and regulatory alteration of Sh4 seems to affect the formation
of the abscission layer, and consequently tries to weaken the
shattering phenotype (Li et al., 2006). qSH1 is a major QTL on
chromosome 1 involved in seed shattering in rice. The main gene,
qSH1, codes a homeobox transcription factor-like BEL1 which is
homologous to AtRPL (Konishi et al., 2006). A single nucleotide
polymorphism (SNP) in the 5′-regulatory region effectively
nullifies qSH1 expression in the preliminary abscission layer in
the early development stage and contributes to non-shattering
traits of rice (Konishi et al., 2006). Interestingly, the regulatory
SNP in the homologs of RPL promoter are also amenable for
distinct structures of seed dispersal based on natural selection of
Brassica species with diminished replum development (Arnaud
et al., 2011). These studies show a notable convergent mechanism
where the same regulatory SNP could describe developmental
variations in seed dispersal structures, which are important
for both domestication and natural selection in distant species
(Arnaud et al., 2011; Gasser and Simon, 2011). SH5 is another
homeobox type BEL1 gene with a high qSH1 homology. SH5
has been expressed in the abscission layer (Yoon et al., 2014).
Knockout of SH5 inhibits abscission layer formation and prevents
seed shattering. Over-expression of SH5 leads to higher seed
shattering, a consequence of decreased pedicel lignin levels (Yoon
et al., 2014). The regulatory pathway of abscission layer formation
has recently been expanded to include Shattering abortion 1
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TABLE 3 | List of gene-expression, proteome and metabolome atlas developed in plant.

Plant name Scientific name Tissue/cell
type

Gene/Proteins/
Metabolites

Citations DOI

Gene expression atlas Genes

Chickpea Cicer arietinum 27 15,947 Kudapa et al., 2018 10.1111/pce.13210

Peanut Arachis hypogaea 19 NA Sinha et al., 2020 10.1111/pbi.13374

Soybean Glycine max 14 66210 Libault et al., 2010
Severin et al., 2010

10.1111/j.1365-313X.2010.04222.x
10.1186/1471-2229-10-160

Wheat Triticum aestivum 32 94,114 International Wheat Genome
Sequencing Consortium (IWGSC)

10.1126/science.aar7191

Rice Oryza sativa 40 ∼30,000 Jiao et al., 2009 10.1038/ng.282

Maize Zea may 11 22,151 Sekhon et al., 2013 10.1371/journal.pone.0061005

Bryophyte Physcomitrella patens 10 ∼32500 Ortiz-Ramírez et al., 2016 10.1016/j.molp.2015.12.002

Proteome atlas Proteins

Arabidopsis Arabidopsis thaliana 9 13,029 Baerenfaller et al., 2008 10.1126/science.1157956

Rice Oryza sativa 3 2,528 Koller et al., 2002 10.1073/pnas.172183199

Wheat Triticum aestivum 24 46,016 Duncan et al., 2017 10.1111/tpj.13402

Metabolome atlas

Arabidopsis Arabidopsis thaliana Wu et al., 2018 10.1016/j.molp.2017.08.012

(SHAT1), an AP2 transcription factor encoding gene (Zhou
et al., 2012). SHAT1 is needed for seed shattering by specifying
abscission layer. Sh4 positively regulates the SHAT 1 expression
in the abscission layer. qSH1 expression is lost in abscission layer
in both the shat1 and sh4 mutant background, indicating qSH1
acts downstream of the shat1 and sh4 in the abscission layer
establishment (Zhou et al., 2012). Intriguingly, qSH 1 is also
needed in the abscission layer for expression of SH1 and Sh4. Thus
the qSH 1 possibly takes part in a positive feedback loop of SH1 and
Sh4 by establishing the SHAT1 and Sh4 expression in the abscission
layer (Zhou et al., 2012). While SH5 and SHAT1 play a role in
differentiating the abscission layer, the question remains whether
both are artificially selected domestication genes. Like rice, decrease
of seed shattering in domesticated sorghum is a result of loss of
abscission in the joint that connects the seed hull with the pedicel. In
sorghum, seed shattering is regulated by a single gene, Shattering1
(Sh1), which encodes a transcription factor YABBY. The non-
shattering trait can be accounted for by any one of the three
different loss-of-function mutations selected independently during
sorghum domestication process (Lin et al., 2012). The notable
mutations in Sh1 orthologs in rice and maize may be related to the
shattering decrease in these crops (Lin et al., 2012). Whether Sh1
has been rewired into an SH5-directed seed shattering network
in rice remains to be investigated in the future. In a wild relative
of sorghum (Sorghum propinquum), seed shattering is conferred
by the SpWRKY gene. It is believed that SpWRKY controls cell
wall biosynthesis genes negatively in the abscission layer. Even
so, SpWRKY was not crafted by artificial selection to contribute
to the non-shattering characteristic for domesticated sorghum
(Tang et al., 2013). These above studies together have raised a
fascinating potential that the convergent domestication of non-
shattering crops may have achieved the same underlying genetic
goals by parallel selection (Lenser and Theißen, 2013).

In domesticated wheat (Triticum aestivum) free-threshing
trait (loss of spike shattering tendency) is conferred by important
Q gene (Simons et al., 2006). Q-gene encodes the AP2-family

transcription factor. The domesticated Q allele is abundantly
transcribed than the wild q allele. Besides, both alleles differ
in single amino acid, which significantly improves the homo-
dimerization ability of the cultivated allele (Simons et al., 2006).
Similar to Sh4, the development of the free-threshing character
in cultivated wheat might also have been due to the combination
of the coding and regulatory changes in the cultivated gene. The
difference of expression between Q and q seems more significant
as it can clarify the free threshing character in cultivated wheat
(Simons et al., 2006; Zhang et al., 2011). Even though mutation
which gives rise to Q has a significant effect on the process of
wheat domestication, as it helps farmers to harvest the grain more
effectively, the exact cellular cause contributing to free-threshing
character is still unclear. Similar research has been progressed in
non-cereals crop such as overexpression AtFUL to make the pods
shattering resistance in Brassica juncea (Østergaard et al., 2006).

Cross-Talk Between Phytohormones and
Related Genes Regulating Seed
Shattering and Dehiscence Zones (DZ)
Hormonal homeostasis and interactions have been found
recently as direct downstream effects of the core genetic network.
As an example indehiscent (IND) expression is involved in
the formation of local auxin minimum at the margin of the
valve by regulating the auxin efflux in the separation layer
cells (Sorefan et al., 2009). Further findings reveal that another
b-HLH class SPATULA (SPT) transcription factor, required for
carpel fusion early in the female reproductive organ development,
may interact physically with IND (Girin et al., 2011). Auxins
and cytokinins play an antagonistic role in plant growth and
development (Bishopp et al., 2011). This scenario also indicates
that the cytokinin signaling pathway is active at the valve
margins and such a signaling pathway is interrupted in the
shp1/2 and ind mutant. Consequently, local application of
cytokinins in the fruit development can help to restore valve

Frontiers in Genetics | www.frontiersin.org 9 April 2021 | Volume 12 | Article 637141

https://doi.org/10.1111/pce.13210
https://doi.org/10.1111/pbi.13374
https://doi.org/10.1111/j.1365-313X.2010.04222.x
https://doi.org/10.1186/1471-2229-10-160
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1038/ng.282
https://doi.org/10.1371/journal.pone.0061005
https://doi.org/10.1016/j.molp.2015.12.002
https://doi.org/10.1126/science.1157956
https://doi.org/10.1073/pnas.172183199
https://doi.org/10.1111/tpj.13402
https://doi.org/10.1016/j.molp.2017.08.012
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637141 March 29, 2021 Time: 17:31 # 10

Kumar et al. OMICS and Plant Domestication

TABLE 4 | List of genes domesticated in the past and associated metabolic pathways.

Crops Traits Domesticated
Genes

Involvement in the metabolic pathways References

Rice Plant architecture sd1 Encodes gibberellin 20-oxidase (Gibberellin pathway gene) Spielmeyer et al., 2002

Seed shattering sh4 Abscisic acid response elements (ABREs) have been identified which is
involved in ABA hormone signal pathways

Yan et al., 2015

qSH1 APETALA2-like transcription factor SUPERNUMERARY BRACT (SNP)
positively regulates the expression of two rice genes, qSH1 and SH5
(SNB-involved regulating pathway)

Jiang et al., 2019

Awn LABA1 / An-2 An-2 encodes a cytokinin synthesis enzyme that modulates awn length Gu et al., 2015; Hua
et al., 2015

qAWNL2 N.A Amarasinghe et al., 2020

Seed and hull
color

Rc and Rd Involved in proanthocyanidin synthesis via the flavonoid pathway Sweeney et al., 2006;
Furukawa et al., 2007

Seed dormancy
Sdr4

Zinc finger protein, OsVP1 activates Sdr4 expression to control rice
seed dormancy via the ABA signaling pathway

Sugimoto et al., 2010;
Chen et al., 2020

Grain size qSW5/GW5 GW5/ qSW5 involved in brassinosteroid signaling pathway to regulate
grain width and weight (Novel nuclear protein)

Shomura et al., 2008;
Weng et al., 2008; Liu
et al., 2017

Gn1a Encodes cytokinin oxidase Ashikari et al., 2005

Maize Plant architecture tb1 (teosinte
branched1)

Two maize mutants, teosinte branched1 (tb1) and grassy tillers1 (gt1),
have been shown affected in the regulation of auxin biosynthesis
pathway

Doebley et al., 1997;
Whipple et al., 2011

br2 Gene modulates the transport of auxin Zhang et al., 2019b

Inflorescence
architecture

ra1 (ramosa1),
Tga1

RA1 involved in the ramosa pathway (Transcription factor) Sigmon and Vollbrecht,
2010

Grain filling ZmSWEET4c Hexose transporter, SWEET4c is important for the Glc to the starch
biosynthesis in the endosperm during embryogenesis

Sosso et al., 2015

Wheat Vernalization Vrn2 (ZCCT1
and ZCCT1)

Likely to coordinate with GA, ABA, cytokinin, and JA signaling pathway Yan et al., 2004; Deng
et al., 2015

Vrn1 Central gene in vernalization pathway similar to APETALA of
Arabidopsis. Linked with GA, ABA, Cytokinin, and JA signaling pathway

Yan et al., 2003; Deng
et al., 2015

Free threshing Q and
homeologs

Involved in secondary cell wall synthesis pathways and regulation of
chemical composition of glumes

Zhang Z. et al., 2020

Plant architecture Rht-1 Repressor of gibberellic acid pathway Thomas, 2017

Sorghum Plant architecture dw3 Gene modulates the transport of auxin Multani et al., 2003

Grain
pigmentation

Tannin1 (Tan 1) Tan1 gene, encoding a WD40 protein, that regulate the tannin
biosynthesis

Wu et al., 2012

Barley Inflorescence
architecture

Vrs2 Vrs2 expression influences the expression of genes that regulate
biosynthesis and metabolism of auxin and cytokinin (Transcription
factor, HD-ZIP)

Komatsuda et al., 2007;
Youssef et al., 2017

Naked
(free-threshing)
grains

Nud ERF family transcription factor gene regulating a lipid biosynthesis
pathway (Transcription factor)

Taketa et al., 2008

Soybean Determinate
growth habit

Dt2 Plant height of semi-determinate plants is associated with GA signaling Zhang et al., 2019a

Tomato Fruit size fw2.2 Similar to human RAS, SlKLUH is the causal gene for the fw3.2 QTL
and encodes a CYP450 of the 78A class

Frary et al., 2000

SUN Regulating auxin biosynthetic and responsive pathway Xiao et al., 2008; Wang
et al., 2019

Mustard Flowering Time BrFLC1 Interacts with the vernalization pathway (MADS-box transcription factor)
and coordinate with gibberellic acid pathway

Yuan et al., 2009

margin formation and further enhance dehiscence in shp1/2
and ind mutants, suggesting that cytokinins play a crucial role
in valve margin differentiation (Marsch-Martínez et al., 2012).
Recent studies reveal gibberellins (GAs) are also involved in the
establishment of separation layer cell identity, in addition to
auxins and cytokinins (Arnaud et al., 2010). As per the “relief
of restraint” model, GA-mediated degradation of DELLA protein

is important for GA signaling and also necessary to trigger
expression of downstream genes (Harberd, 2003; Sun and Gubler,
2004). GA3ox1, which facilitates the final step in bioactive GAs
synthesis, is shown as the direct target of IND. ALC interacts
physically with DELLA repressors and local GAs production
destabilizes the DELLA protein and relieves ALC to play its
role in SL cell specification (Arnaud et al., 2010). In summary,
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these findings show that many phytohormones participate in
the DZ specification and indicate that precise balance between
biosynthesis and response is important. Notwithstanding the
studies where the function of hormones in the development
of DZ have been elucidated, very few studies about how such
hormonal signals are coordinated in DZ have been carried out.
One of the key challenges is to unravel the complete context of
the molecular mechanisms and interactions of plant hormones
underlying DZ-specification.

There are many ways for minimizing crop losses due to
crop shattering ranging from conventional parental selection
with minimum shattering to the screening of mutants and gene
editing methods. By advancing the next-generation sequencing
and the marker traits associations, many genes involved
in pod dehiscence were found, and a series of mutations
underlying shattering resistance in several crops and their
wild relatives have been identified (Fuller and Allaby, 2009;
Dong and Wang, 2015). Attempts have been made to improve
shattering resistance in Brassica, which include interfering in
the dehiscence process by manipulating the molecular and
hormonal control pathways (Fuller and Allaby, 2009; Altpeter
et al., 2016) and developing transgenic lines with pod-shattering
resistance (Liljegren et al., 2000, 2004). In future, studies
should focus, alongside gene-editing methods, on fine-tuning
of the degree of shatter-resistance with RNA interference
or the use of mutated forms of genes related to shattering
in various crops.

Key Genes Targeted for Dwarfing of
Cereal to Enhance the Productivity
The plant architecture is genetically controlled by a set of genes
which subsequent affect yield and productivity of crop plant
species. Often, mutation or knockdown of a single gene could
also lead to significant change in the overall plant growth and
development, subsequently plant architecture (Spielmeyer et al.,
2002). In 1960s, the agricultural transformation that increased
the production of rice and wheat was via the introduction
of cultivars with a genetic predisposition to a short stature
due to restricted elongation of stem (Silverstone and Sun,
2000). This phenotype enabled a significant partitioning of
photosynthate produced from photosynthesis to sink organs like
grains (Sun and Frelich, 2011).

Currently introduction of dwarfing genes is the most
important aspect deployed in modern cereal breeding. The stems
of tall wheat and rice crops are not strong enough to sustain
heavy grains of the high yielding cultivars, which result in
significant yield losses. In addition, the proportion of assimilates
partitioned in grain increases yields. Genes associated with the
semi-dwarf growth of the wheat and rice cultivars have been
studied. In wheat, Reduced height (Rht) gene has been identified
which is shown to interfere with GA signaling transduction
pathway (Peng et al., 1999). Subsequently, three research groups
investigated semi dwarf1 (SD1) gene from rice and found that
the same hormone impair the biosynthesis (Monna et al., 2002;
Sasaki et al., 2002; Spielmeyer et al., 2002). Thus, gibberellin
hormone appears to be central to plant stature control.

Wheat Rht Gene and Gibberellin Signaling
The Green Revolution’s wheat dwarfing genes originated in
Japan (Gale et al., 1985). The Norin 10 dwarfing genes are
now available worldwide in 70% of current commercial wheat
cultivars. Norin10 contains two dwarfing genes that are semi-
dominant homologous alleles on Chromosomes B and D. These
alleles are labeled as Rht-B1b (formerly Rht1) and Rht-D1b
(Rht2) to reflect their chromosome position (Boerner et al.,
1996). The Rht alleles cause a reduced response to the plant
hormone GA class (Gale et al., 1985). These plant hormones
are diterpenoid carboxylic acids, that are involved in several
processes of development in higher plants, including stem
elongation (Hooley, 1994). The Rht gene is an ortholog of
Arabidopsis GA-Insensitive (GAI) and maize dwarf 8 genes, for
which mutations result in GA-insensitive dwarfs (Peng et al.,
1999). Rht-1a/d8/GAI (wild type protein) is a subgroup of the
GRAS family of proteins that are thought to act as transcriptional
regulators (Pysh et al., 1999). Peng et al. (1999) reported base
substitutions in the Rht-B1b and Rht-D1b alleles that insert
stop codons within the DELLA region. They mentioned that
translational re-initiation at one of several methionines which
follow the stop codon could lead to the formation of truncated
Rht protein without the DELLA domain, which functions as a
constituent (GA insensitive) growth repressor. The D8 (Peng
et al., 1999) and GAI mutations (Peng et al., 1997) also lead to
partial or complete deletion from one or both of the conserved
domains. The Rht-1a/d8/GAI proteins thus function as negative
GA signaling regulators and suppress GA function, provided
N-terminal domains are present (Harberd et al., 1998; Dill
et al., 2001). To support this concept, ectopic expression of GAI
(Peng et al., 1999) in rice caused dwarfism and loss of function
mutations in Rht-like genes in some cases produces an over-
growth phenotype (Ikeda et al., 2001; Chandler et al., 2002).
Besides d8, Rht-1a orthologs were reported in rice (known as
OsGAI or SLR1) (Ogawa et al., 2000; Ikeda et al., 2001) and
barley (SLN1) (Chandler et al., 2002). While cereals have a single
case of Rht-1a/d8/GAI type proteins, Arabidopsis contains a
gene family encoding RGA proteins and three RGA-like proteins
(RGL1, -2, -3) in addition to GAI. The Arabidopsis homologues
seem to overlap in their function in various GA-regulated
developmental processes (Olszewski et al., 2002). It is unknown
how a single protein in cereals crops is functionally equivalent to
five proteins in Arabidopsis; such variation may indicate major
functional redundancy in Arabidopsis or fundamental differences
in GA signaling pathways between Arabidopsis and Gramineae
members. Recently, some progress was made in understanding
the function of Rht-like proteins and their GA repression. RGA
(Dill et al., 2001), SLR1 (Itoh et al., 2002), and SLN1 (Gubler et al.,
2002) are found in the nucleus and thus rapidly degraded with
GA presence, the DELLA domain needed for this process. Rht’s
upstream signal transduction pathway is still unknown, but GA-
induced degradation is believed to involve ubiquitin-mediated
proteolysis (Chandler et al., 2002).

Rice sd1 Gene and Gibberellin Biosynthesis
Unlike Rht, the sd1 mutation of rice is recessive and normal
height can be restored in mutants using GA application showing

Frontiers in Genetics | www.frontiersin.org 11 April 2021 | Volume 12 | Article 637141

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637141 March 29, 2021 Time: 17:31 # 12

Kumar et al. OMICS and Plant Domestication

that they have been impaired in GA production (Ashikari et al.,
2002). Three research groups independently isolated the sd1 gene
and showed it encodes GA 20-oxidase (GA20ox), an enzyme
involved in biosynthesis of GA (Monna et al., 2002; Sasaki et al.,
2002; Spielmeyer et al., 2002). Two of these research groups have
used positional cloning to detect a GA20ox open reading frame
close to the sd1 locus on the long chromosome arm (Monna et al.,
2002; Spielmeyer et al., 2002). They also reported mutations in
corresponding genes from semi-dwarf varieties. The third group,
which had inferred the gene’s identity by the effect of GA content
mutations, used PCR to amplify DNA fragments, corresponding to
two GA20ox genes, one of which mapped to the sd1 loci (Sasaki
et al., 2002; Ashikari et al., 2002). Semi-dwarf rice cultivars
with Dee-geo-woo-gen sd1 allele contain a 383-bp deletion in
the GA20ox gene (known as OsGA20ox2), which incorporates
stop codon that is likely to result in a highly truncated, inactive
enzyme. Gibberellin 20-oxidases are 2-oxoglutarate-dependent
dioxygenases catalyzing carbon-20 depletion in the penultimate
stage in biosynthesis of GA (Hedden and Phillips, 2000). These
oxidases are encoded by small gene families, members of which
have partial functional redundancy due to overlapping (but
different) expression profiles or because of movement of the
intermediates synthesized by enzymes between tissues. Therefore,
loss-of-function GA20ox mutants are relatively less GA-deficient
and are semi-dwarfs, unlike significant GA-deficient plants,
which are extremely dwarfed and sometimes sterile. Two GA20ox
genes were defined in rice: OsGA20ox1 (Toyomasu et al., 1997)
and OsGA20ox2. Remarkably, selection for semi-dwarfism in
rice has consistently yielded mutations in OsGA20ox2 instead
of OsGA20ox1 or another GA-biosynthesis gene (for example,
GA 3-oxidase is also encoded by a multi-gene family). Mutations
in other genes might have a severe developmental impact
or have negative impact on yield, and thus have been not
selected in breeding programs. Genetic and functional analyses
of SLR1/RHT and SD1 genes in rice and wheat have enormously
improved the understanding of GA biosynthesis and signals,
resulting in a strong methodology for manipulating the plant
height of major crops. Both cases illustrate the central role
played by GAs in controlling developmental processes. Therefore,
GA signaling pathways (biosynthesis and signal transduction)
are key aspects for manipulation in pursuit of further crop
yield improvements. The yields of existing cereal crops seem
to be approaching their limit, and new interventions are
required if population is not to outstrip the food supply.
Targeted genetic engineering/modification using newly emerged
genomics, genome-editing technologies may be part of the next
Green Revolution.

Achieving Submergence Tolerance
The incidences of uncertain rain and flood have been increased
due to continued climate change. Today, more than 30 percent
of the rice-planting land is vulnerable to flooding resulting
in crop loss. In 1960s, the development of semi-dwarf variety
was one of greatest achievement which significantly addressed
the issue of global hunger threat caused due to human
population explosion. The suppression of GAs production in
the stem reportedly made high yielding semi-dwarf rice varieties

susceptible to one of the most important abiotic stress “water
logging.” These developed semi-dwarf rice varieties lacked
submergence tolerance. The lower nodes of these varieties
unable to produce enough gibberellins to trigger elongation
of the internode.

Genomics Based Discovery of Genomic Regions
Associated With Submergence Tolerance
Submergence stress causes several adverse impacts on a plant
such as low light intensity, hypoxia, nutrient effusion, physical
injury, susceptibility to pathogen and pests attacks (Angaji et al.,
2010). Several QTL mapping studies reported number of QTLs
controlling submergence tolerance (Xu and Mackill, 1996; Nandi
et al., 1997; Toojinda et al., 2003). A major QTL (Sub1) for
submergence tolerance has been identified on chromosome
9 with LOD 36 and 69% of phenotypic variance explained
(PVE) (Xu and Mackill, 1996). Sequencing of Sub1 genomic
region identified three genes which encodes a ERFs (Sub1A,
Sub1B, and Sub1C) in which Sub1A has been reported as a
key component of submergence tolerance (Xu et al., 2006).
Further cloning and characterization of Sub1 QTL helping in the
detection of responsible genes and also help to discover tightly
linked gene-based markers for molecular breeding program
(Siangliw et al., 2003; Toojinda et al., 2005; Neeraja et al., 2007).
Furthermore, in other studies major QTLs namely qAG9-2 on
L.G. 9 and qAG7-1 on L.G. 7 were reported (Angaji et al., 2010;
Septiningsih et al., 2013). Later on, qAG9-2 QTL has been fine
mapped and found a candidate gene OsTPP7 which encodes
a trehalose-6-phosphate phosphatase which is responsible to
regulate anaerobic generation (Kretzschmar et al., 2015). Both
Sub1 and qAG9-2 major QTLs are widely used in rice breeding
programs to improve submergence tolerance at germination and
vegetative stages. Utilizing genomics resources several breeding
efforts are also made in developing submergence tolerance
varieties to sustain rice production. Various landraces and
traditional genotypes namely, Kurkaruppan, FR13A, Thavalu,
Goda Heenati, etc., were reported to be a suitable source
of alleles which is associated with submergence tolerance
(Miro and Ismail, 2013).

Precise Characterization of Genes Governing
Submergence Tolerance
In recent years significant progressed have been made toward
understanding the physiological, biochemical and genetic basis
of submergence tolerance, to identify the causal gene(s)
that are crucial for submergence tolerance (Oladosu et al.,
2020). Recently, Kuroha et al. (2018) identified the gene
SD1 (SEMIDWARF) responsible for submergence-induced
elongation of internode by producing gibberellins mainly GA4.
Another study identified genes SNORKEL 1 (SK1) and SK2
which encodes for ERFs, appeared to trigger submergence
tolerance via ethylene signaling (Hattori et al., 2009). Both gene
products further facilitate the internode elongation through GAs.
Previous study identified a submergence tolerance gene SUB1A
(an Ethylene-response-factor-like gene) on chromosome 9 which
encodes ERFs (Xu et al., 2006; Fukao et al., 2006). During flash
floods, SUB1A inhibits plant elongation at the seedling stage.
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Flash floods usually last for a few weeks. Cultivars carrying
SUB1A tolerance gene show stunted growth and can survive
in submerged conditions for a few weeks. Both SNORKEL
1 and SNORKEL 2 (SK1/2) genes and SUB1A encode ERFs
which are associated with GAs, but they act in opposite ways
in controlling plant development in response to submergence.
Further more research is required to uncover the various
pathways associated with SK1; SK2 and SUB1A. Furthermore,
recently two genes have been identified ACCELERATOR OF
INTERNODE ELONGATION 1 (ACE1) and DECELERATOR OF
INTERNODE ELONGATION 1 (DEC1) which are responsible to
control stem elongation (Nagai et al., 2020). ACE1 gene encoding
an unknown function protein which is associated with internodes
elongation via GAs, whereas, DEC1 gene encoding a zinc –
finger TF, which suppresses internodes elongation. Both the genes
influence gibberellin-activated cell division in stem nodes. The
expression of ACE1 gene during submergence conditions in rice
triggers elongation of internodes within a cell-division zone of

the plant. This results in an increased number of elongated
internodes and increased plant height. Further gene ACE1C9285
is controlled by SUB1C, a gibberellin-activated TF which is
upregulated in response to submergence (Fukao and Bailey-
Serres, 2008). SUB1C expression level seemingly low in cultivars
that contain the SUB1A-1 regulator gene, a homolog to SUB1C. In
short rice cultivars expressing gene SUB1A-1, GAs responsiveness
altered, subsequently use carbon pool for leaves elongation,
and restrict overall plant development and enter to transient
quiescent stage during flooding, an adaptation to overcome
deep floods (Fukao et al., 2006; Xu et al., 2006). In semi-dwarf
cultivars, internodes elongation only takes place in the upper
internodes during growth stage. Nagai et al. (2020) reported a
gene ACE1-LIKE1, which triggers upper internodes growth in
deep-water. Presently, these omics study based information on
the genetic basis of submergence tolerance is the base of rapid
improvement of plant architecture to design a high yielding crop
tolerant submergence.

FIGURE 2 | Schematic diagram representing the role of OMICS based research in gene characterization and development of designer crops using de novo
domesticated crops approach.

FIGURE 3 | A schematic representation of a draft model for the selection of target genes for CRISPR/Cas9 mediated domestication of wild ancestral species of
monocot.

Frontiers in Genetics | www.frontiersin.org 13 April 2021 | Volume 12 | Article 637141

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-637141 March 29, 2021 Time: 17:31 # 14

Kumar et al. OMICS and Plant Domestication

TRANSLATION OF OMICs DRIVEN DATA
FOR RE-DOMESTICATION AND DE
NOVO DOMESTICATION: UTILIZATION
OF GENOME/GENE EDITING TOOL

Gene-editing technologies have become choice of a researcher
to domesticate neglected crops and wild relatives in a short
period (Fernie and Yan, 2019). Traditionally, plant domestication
and the development of productive cultivars required decades of
breeding, which is also the key reason why so many breeding
programs over the last 100 years focused on further improvement
of a relatively small number of crops. Recent identification of
several major domestication genes and scientific breakthroughs
in integrating various genomic changes in plants concurrently
with CRISPR/Cas9 editing has allowed re-domestication of
existing crop plants and de-novo domestication wild species to
be domesticated within a single generation (Figure 2) (Schindele
et al., 2020). De-novo domestication has contributed to agro-
biodiversity and diet quality, with possible future environmental
and nutritional benefits (Singh et al., 2019). In the history of
crop domestication amid higher yield selection and breeding,
international germplasm exchange; multiple local resistance and
resilience genes of wild species have been lost or have never
been completely incorporated into breeding lines (Fernie and
Yan, 2019). In other words, wild relatives of domesticated
plants have significantly higher variable gene pool than that
of domesticated ones (Hickey et al., 2019). As we start to
uncover more about the framework of crop genomes and the
loci of quality traits, there are chances of incorporating valuable
characters into existing crop species and ways to quickly re-
domesticate new crops. This step can be effectively achieved
using breakthrough CRISPR-Cas9 gene-editing technologies,
in particular, to introduce beneficial alleles without linkage

TABLE 5 | List of genes targeted in wild ancestral species of tomato and
strawberry to demonstrate de novo domestication.

Wild relative Target Gene Traits modification References

Solanum
pimpinellifolium

CLV3, WUS,
SP, SP5G, and
GGP1

Plant height and
response to
phtotoperiodism, flower
numbers, and fruit size
and shape, and
ascorbic acid content

Zsögön et al.,
2018

OVATE, MULT,
FAS, SP, and
CycB

Plant architecture and
habitat, flower
numbers, and fruit size
and shape, and
lycopene content

Li et al., 2018

Fragaria vesca FveTAR1 and
FveYUC10

Auxin biosynthetic and
signaling genes
affecting plant growth
and reproductive organ
development

Feng et al.,
2019

FveTAA1 and
FveARF 8

Auxin biosynthetic and
signaling genes
affecting plant growth
and reproductive organ
development

Zhou et al.,
2018

drag (Li et al., 2018), to produce novel quantitative variations
(Rodríguez-Leal et al., 2017), direct deletion of deleterious
alleles (Johnsson et al., 2019), and/or higher recombination
rates (Mieulet et al., 2018). Recently, gene editing has been
shown to enhance plant architecture, flower development, and
fruit size in Physalis pruinosa (Lemmon et al., 2018). Gene
editing is a promising method to generate diversity and to
compensate for the genetic hitchhiking effects in germplasm. For
reference, associated selection of traits such as fruit weight and
disease resistance altered the tomato metabolome, providing an
opportunity for precise breeding to alter nutritional and flavor
traits (Zhu et al., 2018). These hitchhiking effects and others,
such as those found in rice and maize, represent promising goals
for genetic modification to fettle linkage drag (Palaisa et al.,
2004). For instance, African rice landrace Kabre possess superior
resistance to pests and tolerance to drought; however, during
domestication the plant architecture compromised affecting their
overall yield potential. To address this Lacchini et al. (2020)
targeted multiples genes which control plant architecture (HTD1)
and control seed size and/or yield (GS3, GW2, and GN1A)
by generating knockouts through multiplex CRISPR/Cas9. In
knockouts, mutation in HTD1 gene caused reduced plant high
to diminish lodging and improved tillering, whereas mutations in
GS3, GW2, and GN1A resulted increased panicle and length along
with improved seed girth. Earlier, Hu et al. (2019) demonstrated
generation of semi-dwarf rice lines by targeting gene SD1 and
Photosensitivity5 (SE5) in elite landraces Kasalath. In this post
genomics, the technique CRISPR/Cas has received overwhelming
response and till dates several knockouts of rice elite varieties
are available with improved traits by targeting specific genes
which were characterized due to viability of several omics
approached era. Some of the examples for the targeted traits
and gene targets in rice are LAZY1 for tiller-spreading, Gn1a,
GS3, and DEP1 for improved grain number, size and dense
erect panicles, SBEIIb for High amylose content, OsERF922 for
enhanced blast resistance, OsSEC3A for resistance against blast
causing pathogen Magnaporthe oryzae, OsSWEET13 for bacterial
blight resistance, ALS and EPSPS for herbicide resistance, OsPDS,
OsMPK2, OsMPK5, OsBADH2, OsAOX1a, OsAOX1b, OsAOX1c,
and OsBEL for tolerance against various abiotic stress, OsHAK-
1 for low cesium accumulation, and OsPRX2 for potassium
deficiency tolerance (Shan et al., 2013; Xie and Yang, 2013; Shan
et al., 2014; Xu et al., 2014; Zhang H. et al., 2014; Zhou et al.,
2014; Woo et al., 2015; Meng et al., 2017; Nieves-Cordones
et al., 2017; Mao et al., 2018; Ma et al., 2018). Likewise, in
wheat EDR1, TaMLOA1, TaMLOB1, and TaMLOD1 targeted for
resistance to powdery mildew, and GW2 and TaGW2 targeted
for increased grain size, weight and protein content (Shan et al.,
2014; Wang et al., 2014; Gil-Humanes et al., 2017; Kim et al.,
2018; Wang et al., 2018). In orphan crops cassava and flax
herbicide resistance has been introduced by targeting a gene
EPSPS (Sauer et al., 2016; Hummel et al., 2018); whereas ALS
was targeted in soybean (Cai et al., 2015). Similarly, many traits
have been introduced or improved by targeting various genes in
some economically important crops plants such as maize, tomato,
potato, grapes, orange, cucumber, tea, etc. (Adhikari and Poudel,
2020; Bhatta and Malla, 2020).
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The wild ancestral species of crop plants such as Solanum
pimpinellifolium for tomato; Solanum demissum and
S. stoloniferum of potato; Fragaria vesca of strawberry; Teosinte
and Tripsacum of maize; Triticum dicoccoides, and T. turgidum
L. ssp. Durum of wheat; Oryza rufipogon and O. longistaminata
of rice; Manihot glaziovii and M. neosana and Glycine soja

of soybean have been used for introgression key agronomic
important traits into cultivars though breeding program (Zsögön
et al., 2017). Moreover, most of the domesticated related traits
and associated genes well characterized and has been linked
with the metabolic pathway(s), and/or hormone biosynthesis
and signaling (Table 4); therefore, integrated omics approach

TABLE 6 | A model representing state of art for selecting the genes which can be edited to domesticate crop wild ancestral species through CRISPR/Cas9 approach.

Crop Name Target Gene Function References

Zea Mays Tb1 TCP-gene family TF which is involved in suppression of side branching changes the source/sink
relationships; yields increase.

Doebley et al., 1997;
Studer et al., 2011

tga1 SBP-box TF have a key role in alteration of the encased kernel to naked kernel Wang et al., 2015

CCT CCT domain-containing protein gene involved in decrease of photoperiod sensitivity Yang et al., 2013; Huang
et al., 2018

Glycine max DT1 CETS is a family of regulatory genes which are involved in transforming indeterminate growth to
determinate, resulting in developing a compact crop.

Tian et al., 2010; Cai et al.,
2018

GA20ox Key enzyme involved in Gibberellin biosynthesis and identified as its association with seed weight Lu et al., 2016

SHAT1-5 Plant specific NAC gene family TF involved in the biosynthesis of secondary cell wall which facilitating
fiber cell cap thickening result in a decreasing the rate of pod shattering

Dong Y. et al., 2014

Solanum
lycopersicum

ARF19 Auxin response factor 19 TF reported being a negative regulator of fruit set De Jong et al., 2009

BRC1a BRANCHED1a gene encoding a TCP family TF which involved in the regulation of lateral shoot
outgrowth

Martín-Trillo et al., 2011

CHI Chalcone Isomerase is associated with flavonoid biosynthesis Willits et al., 2005

S Compound inflorescence (s) encodes a homeobox TF which controls the number of flower/fruits per
inflorescence architecture

Lippman et al., 2008

CKX Cytokinin oxidase enzyme associated gene is involved in the inactivation of bioactive cytokinin Ashikari et al., 2005

FAS CLAVATA3 encoded the Fasciated gene which is associated with controlling locules number and size in
fruit

Xu C. et al., 2015

GLK2 Golden2-like TF belongs to GARP family which play a key role in the regulation of chloroplast
development in fruits

Powell et al., 2012

J1 JOINTLESS belongs to MADS-box gene family controlling the development of the abscission zone in
pedicels

Mao et al., 2000

Cyc-B Lycopene β-cyclase involved in the catalyzes the conversion of lycopene into β-carotene Ronen et al., 2000

NOR Non-ripening gene associated with the initiation of the normal fruit ripening Seymour et al., 2013

O OVATE is a regulatory gene involved in the regulation of fruit shape Liu et al., 2002

PRO PROCERA gene involved in suppression of gibberellin signaling Jasinski et al., 2008

RIN RIPENING INHIBITOR gene belongs MADS-box family; key role in controlling biosynthesis of ripening
-related ethylene

Seymour et al., 2013

SP SELF-PRUNING gene is a developmental regulator associated with indeterminate and sympodial
growth habit in tomato

Pnueli et al., 1998

SFT SINGLE FLOWER TRUSS gene involved in regulation of flowering Lifschitz et al., 2006

CLV3 CLAVATA3 key meristematic gene, regulating locule numbers in fruit Rodríguez-Leal et al., 2017

PSY1 Phytoene synthase 1 gene involved in the biosynthesis of carotenoid resulting in yellow flesh fruit Hayut et al., 2017

ANT1 Anthocyanin mutant 1 gene encodes a Myb TF which involve in increasing anthocyanin content Čermák et al., 2015

GAD2, GAD3 Key genes encoding an enzyme glutamate decarboxylase for biosynthesis of γ-aminobutyric acid
(GABA) in fruit

Nonaka et al., 2017

ALMT9 Al-ACTIVATED MALATE TRANSPORTER9 gene involved in decreasing the malate content
accumulation in fruit

Ye et al., 2017

MBP21 MBP21 is a MADS-box protein controlling formation of abscission zone in pedicel Roldan et al., 2017

BOP1, BOP2,
BOP3

BLADE ON PETIOLE gene reported being associated with early flowering with simplified inflorescences Xu et al., 2016

SP5G SELF-PRUNING 5G gene is a flowering repressor linked involved in the development of
day-length-sensitive tomato plant

Soyk et al., 2017

Cucumis
sativus

WIP1 WIP1 is a C2H2 zinc finger TF gene involved in development of gynoecious plant Hu et al., 2017

Actinidia
chinensis

CEN CENTRORADIALIS like gene associated with the development of compact plant with early terminal
flowering and fruit development

Varkonyi-Gasic et al., 2019
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which also involved metabolomics study has provided insights
into the molecular basis of trait domestication. One can
target these domesticated genes in wild ancestral plants for
their speedy domestication. Now through CRISPR-Cas9 method
these wild relative can be directly used for re-domestication
or de-novo domestication (Figure 3 and Tables 5, 6). One
of the important case study of de novo domestication in
tomato has been done by Zsögön et al. (2018) by targeting
important domestication related genes through CRISPR-Cas9
in tomato wild ancestral species S. pimpinellifolium. Zsögön
et al. (2018) targeted SELFPRUNING (SP, control general plant
growth habit), OVATE (O, regulate fruit shape); FASCIATED
(FAS), FRUIT WEIGHT 2.2 and CLAVATA3 (CLV3) (control
fruit size and locule numbers), MULTIFLORA (MULT, regulate
fruit number), and LYCOPENE BETA CYCLASE (CycB). The
engineered S. pimpinellifolium lines and achieved remarkable
change in the plant overall phenotype with important traits
essential for the commercial purpose such as increased lycopene
content, enhanced fruit shape and determinant growth of plant;
moreover, this was achieved in just single generation. Another
study involved editing of multiples genes SP, SP5G (control
day-length insensitivity), CLV3, WUSCHEL (WUS) and GDP-L-
galactose phosphorylase 1 (GGP1, control biosynthesis of ascorbic
acid) in S. pimpinellifolium (Li et al., 2018). This study clearly
showed how selective editing of domesticated related genes
can completely alter the plant architecture and improves the
nutritional quality of fruits and makes convert wild relative
into domesticated crop with retained biotic and abiotic stress
tolerance properties (Li et al., 2018). Very recently, in the
wild strawberry (Fragaria vesca) few attempts has been made
to demonstrate the procedure of the re-domestication or de
novo domestication (Zhou et al., 2018; Feng et al., 2019). These
attempts involved editing of genes tryptophan aminotransferase
of Arabidopsis 1 (TAA1, converts tryptophan to indole-3-
pyruvic acid), Auxin response factor 8 (ARF8, repressor of auxin
signaling) and YUCCA10 (YUC10, family of flavin-containing
monooxygenases convert IPyA to IAA), key auxin biosynthetic
and signaling pathways genes. Rice has five allotetraploids
(BBCC, CCDD, HHJJ, HHKK, and KKLL) wild species which
are also valuable genetic resources for improving of elite rice
varieties. Among them the CCDD (species from South America
genome) possess much stronger biotic and abiotic resistance
and larger biomass compared to the cultivated diploid rice.
Recently Yu et al. (2021) demonstrated de novo domestication
of wild allotetraploid rice PPR1 (O. alta; CCDD type genome)
by improving six agronomically important traits viz nutrition
use efficiency, abiotic stress tolerance, grain yield and quality,
heading date, biotic stress resistance and sterility by genome
editing targeting multiple genes including OaSD1-CC, OaSD1-
DD, OaAn-1-CC, and OaAn-1-DD by CRISPR/Cas9 method.
This suggests that CRISPR/Cas is a promising approach tool

for the domestication of crops (Crews and Cattani, 2018), and
is highly important for characters of defined selective sweeps
in related species. These achievements were possible due to
precise prediction of causal genes and metabolic pathways
achieved by interpretation of data generated through genomics,
transcriptomics, metabolomics, etc.

CONCLUSION

Omics have helped plant biologists to dissect important
developmental clues and gene characterization. Presently,
multidimensional omics approach where the biological
sample can be analyzed for transcriptomics, proteomics and
metabolomics in parallel, etc; offers plant biologists a complete
understanding of plant metabolism by revisiting the metabolic
pathways or identification of newer pathways. In the past
20 years, plant biologists have gathered significant amount of data
relevant to genomes, transcriptome, proteome, and metabolome.
Recent attempts are on development of gene-expression and
proteome atlas. Altogether, this would strengthen the knowledge
of the metabolic pathways, which have played crucial role during
domestication of crop as well as trait improvement. Now, this
knowledge has been translated to develop designer crops with
desired traits by editing metabolic pathways of wild ancestral
species (rich resource of genetic variations) called as de novo-
crop domestication. Domestication of wild or semi domesticated
crop (tolerant to stress responses) would be feasible by multi step
process were few important traits need to be improved first using
genome editing; later the homologous lines can be selected for
next level of trait modification. Such approach would be able
to deliver a commercial line in 5 to 10 years. The CRISPR/Cas
technique need to be explored in full extent by targeting several
traits such as bio-fortification of nutrition’s; because the current
growing population also demand nutritional security. To achieve
this, analysis of resequencing data available for the several crops
is important; including GWAS which can identify high quality
SNPs and haplotypes associated with target trait. Therefore,
we expected in next 20 years’ omics technology driven de-novo
crop domestication will play very important role in the field of
plant biotechnology.
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