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Abstract
Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. 
Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated 
carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield 
and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC 
genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the 
regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and 
biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have 
been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been 
determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on 
the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the 
establishment of various stress-adaptive mechanisms in model and food crop plants.
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Introduction

Transcription factors (TFs) contribute to about 7% of the 
coding part of plant transcriptomes. Several TFs also func-
tion as immediate or early stress-responsive factors against 
biological triggers (Hoang et al. 2017; Lindemose et al. 
2013). Transcription factors are well known to initiate the 
reaction cascades by binding to cis-elements upstream of 
target genes, which encode proteins for particular biologi-
cal roles (Baillo et al. 2019). A typical TF is comprised 
of four parts: a conserved DNA-binding part, a variable 
transcription-regulation part, an oligomerization part, and a 

nuclear localization signal (NLS) for protein import into the 
nucleus. The preferential involvement of some TFs as master 
regulators of signaling and regulatory mechanisms in stress 
acclimatization is well explored (Hoang et al. 2019). For 
instance, members of TF sub-families (CBF/DREB, MYB, 
WRKY, NAC, bZIP, APETALA, C2-H2 type zinc fingers, 
basic helix-loop-helix etc.) are recognized to be intimately 
involved in transforming stress signals into alterations in 
gene expression and thereby triggering adaptive responses 
in plant cells (Kosová et al. 2015; Lata et al. 2011). There are 
several recent examples of stress-related TFs from the NAC 
(NAM, ATAF, and CUC) TF subfamily. The acronym NAC 
originates from three different genes (No Apical Meristem: 
NAM, Arabidopsis Transcription Activation Factor: ATAF, 
and Cup-Shaped Cotyledon: CUC ), where NAC domain was 
first reported (Aida 1997; Sablowski et al.1998). NAC is 
considered one of the largest TF families in plants, with 
more than 100 genes reported in Arabidopsis thaliana (L.) 
Heynh. (Arabidopsis) as well as several other members of 
the plant kingdom (Table 1) (Baillo et al. 2019; Singh et al. 
2019).

The NAC TFs control plant development, senescence, 
morphogenesis, and abiotic stress tolerances (Kosová et al. 
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2015; Singh et al. 2016). It is noteworthy that NAC members 
constitute a well conserved DNA binding (NAC) domain at 
the N-terminal and a varied C-terminal domain that gener-
ally has an intrinsically disordered region. The intrinsically 

disordered region contributes to various biological func-
tions among sub-families, for instance, regulates transcrip-
tion via an ABA-dependent or ABA-independent pathway to 
modulate stress-related gene expression (Baillo et al. 2019; 
Ernst et al. 2004). There are even more complex functions 
associated with NACs, for example, influencing miRNA 
mediated cleavage of mRNAs (Mallory et al. 2004) and 
ubiquitin-dependent proteolysis (Xie et al. 2002). Whether 
this complex TF family has roles limited to stress and plant 
development, is still under debate.

This review primarily focuses on the role this plant-
specific TF subfamily plays during general developmental 
and adaptive regulation in food crops. Here, we summarize 
the evidence currently available (particularly from the past 
decade), concerning the range of NAC functions in control-
ling the growth and development of the plants, and their 
participation in the plant’s adaptive response against a vari-
ety of stresses (Fig. 1). We also discuss important transla-
tional aspects associated with NAC TFs in combating the 
latest challenges of climate change through biotechnological 
interventions.

NAC proteins: structure, function, regulation 
co‑relations

As noted above, NAC proteins are represented by a con-
served N-terminal DNA binding domain and a variable 
transcription regulatory region at the C-terminus, which 
plays a role in either transcriptional activation or repres-
sion of stress-induced genes and pathways (Puranik et al. 

Table 1  NAC gene distribution among common cereal and legume 
crops (acc. to Plant Transcription Factor Database version 4)

Species name No of 
NAC 
genes

Birdsfoot trefoil (Lotus japonicus) 116
Barrel medic (Medicago truncatula) 123
Soybean (Glycine soja) 173
Soybean (Glycine max) 269
Pigeonpea (Cajanus cajan) 96
Peanut (Arachis hypogaea) 32
Peanut (Arachis ipaensis) 83
Peanut (Arachis duranensis) 82
Chickpea (Cicer arietinum) 96
Common bean (Phaseolus vulgaris) 106
Mung bean (Vigna radiata) 82
Cowpea (Vigna unguiculata) 20
Rice (Oryza sativa -japonica) 170
Rice (Oryza sativa -indica) 158
Maize (Zea mays) 189
Barley (Hordeum vulgare) 150
Foxtail millet (Setaria italica) 165
Sorghum (Sorghum bicolor) 180
Wheat (Triticum aestivum) 263
Pearl millet (Pennisetum glaucum) 151

Fig. 1  Diagrammatic representation of potential NAC genes involved in the primary and secondary phases of plant growth and adaptive response
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2012; Yamaguchi et al. 2010, Fig. 2). The N-terminus is 
separated into sub-domains dubbed A through E. Within 
the conserved N-terminal domain too, the sequence varies. 
Sub-domains C and D are highly conserved and positively 
charged. These sub-domains bind to DNA. The positions 
Lys123 and Lys126 (β4–5; sub-domain D), Val119–Ser183 
(β4–6; sub-domain D–E), and Lys79, Arg85, and Arg88 
(β1–2; sub-domain C) are considered essential residues 
for DNA binding (Chen et al. 2011; Ernst et al. 2004). 
Among these, Arg88 has so far been found conserved in 
all NAC proteins (Puranik et al. 2012). The redundancy 
of Lys79 and Arg85 has also been proposed as a reason 
for the varying DNA binding abilities of NAC proteins 
(Jensen et al. 2010). The nuclear localization signal rests 
in the sub-domain D, mediated by the lysine residues 
which help in nuclear shuttling (Le et al. 2011; Olsen et al. 
2005a, b; Tran et al. 2009). Sub-domains B and E are rela-
tively divergent and may be contributing to NAC protein 
function diversity, along with the C-terminal domains. 
Sub-domain A plays a role in functional dimer formation 
through Leu14–Thr23 and Glu26–Tyr31 residues (Ernst 
et al. 2004; Jensen et al. 2010; Olsen et al. 2005a; Ooka 
et al. 2003; Puranik et al. 2012). Model of a typical NAC 
protein from pearl millet (PgNAC21) showing α-helix 

and twirled β-sheet bound to target DNA can be seen in 
Fig. 3a, b.

The NAC domain has also been implicated in protein 
binding activities, which in turn may be crucial to vari-
ous functions of the NAC proteins including stress toler-
ance (Olsen et al. 2005a; Tran et al. 2007; Yamaguchi et al. 
2010). The C-terminal domain has a low complexity region 
containing serine–threonine, proline–glutamine, or acidic 
residue repeats (Fang et al. 2008). This causes an intrin-
sic disorder and renders a lack of stable three-dimensional 
structures (Jensen et al. 2010). However, this makes the 
NACs interact with diverse targets (Lipoxygenase, DEAD/
DEAH box helicase, Pectin methyl esterase inhibitor, and 
Homeobox associated proteins coding genes, etc.) (Grover 
et al. 2014). These motifs are conserved within a given sub-
family but vary among groups of sub-families.

To this end, there are several sub-families of the NAC 
proteins, classified and described in the literature (Hu et al. 
2010; Lv et al. 2016). Some works reported as many as 18 
sub-families for NAC TFs (Shang et al. 2013), though no 
definitive role has been assigned to a particular sub-family. 
These uncertainties emerge because of the rich diversity of 
NAC domains. This is also the reason for limited success 
in identifying the role of NAC individual genes within a 

Fig. 2  A conceptual diagram of 
a typical NAC protein showing 
N- and C-terminals A B C D E HIGHLY VARIABLE

N-terminal C-terminal

DNA binding NAC domain Transcrip�onal regulatory region

Fig. 3  Representation of 3-D 
structure of NAC protein 
(PgNAC21) from pearl mil-
let. a Structure prediction of 
PgNAC21 protein by homology 
modelling server using SWISS-
MODEL. b PgNAC21 structure 
depiction by PDB (Protein Data 
Bank) showing α-helix and 
antiparallel β-sheet for DNA 
binding
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given sub-family (Puranik et al. 2012). Additionally, these 
attributes of NAC sub-families are also indicative of redun-
dancy for the target gene members. However, identifying 
the expression pattern will be the first step in understanding 
how these NAC members are involved in stress response.

Expression of NAC genes 
during development and stress response

Stress-responsive NAC genes are expressed differentially 
and are highly regulated at the transcriptional level. Phylo-
genetic analysis indicates that stress-responsive NAC TFs 
contain the closely homologous NAC domain (Fang et al. 
2008; Tran et al. 2009). Analysis of Arabidopsis seedlings 
using the Agilent 22 K Oligo DNA microarray revealed that 
12 ANAC genes out of 67 (reported in the genome), were 
induced by ABA and abiotic stresses (Fujita et al. 2004). 
Arabidopsis salt-stressed root transcriptome using 70mer 
oligomer microarray probes comprising 23,686 genes, 
exposed differential expression in the ANAC genes: 23 were 
up-regulated whereas seven genes were suppressed (Jiang 
and Deyholos 2006). Other work by Matsui et al. (2008) 
showed that, when the whole genome expression profil-
ing (tiling array) in three-week old Arabidopsis seedlings 
was subjected to drought, cold, salinity, and ABA stress, 30 
ANAC genes out of 108, were up-regulated under at least one 
of the imposed stresses. Later, Jiang et al. (2014) reported 
hyper-sensitivity of lines of Arabidopsis overexpressing 
the RhNAC3 gene from rose (Rosa hybrida) upon ABA or 
drought stresses during seed germination and leaf closure 
stages. Nevertheless, NAC family members exhibit prefer-
ential gene expression at various life cycle stages, or during 
the development of tissues. In this regard, NTM1-Like or 
“NAC with Transmembrane Motif 1”-Like (NTLs), a class 
of membrane-associated NAC transcription factor, which 
is known to be associated with transcriptional response to 
external stimuli, and linked to delayed flowering (NTL8). 
Investigations revealed that higher expression of NTLs was 
linked to a reduced expression of FLOWERING LOCUS 
T (FT). This in turn resulted in flowering delay, reduced 
growth and leaf curling in Arabidopsis (Kim et al. 2007).

In Medicago truncatula, out of 97 MtNAC candidate 
genes, 40 NACs were expressed in different tissues –roots, 
buds, seed pods, and flowers (Ling et al. 2017). Among the 
expressed NACs, nine genes were preferentially expressed 
in roots, 13 in seed pods, and three in buds. Moreover, 
RNA-seq data analysis showed that 44 MtNAC genes were 
found regulated by various stresses such as cold, drought, 
salt, freezing, and ABA-stress. Of these, 17 MtNAC genes 
were up-regulated, whereas only MtNAC1 was down-reg-
ulated under all stresses. Further, 33 genes were induced 
exclusively by cold and drought, whereas 12 genes were 

specifically expressed during freezing and salinity stresses. 
Expression of MtNAC50 was highly up-regulated during 
cold, and MtNAC95 was up-regulated in salt, drought, and 
ABA stresses. Similarly, MtNAC57 and MtNAC73 were up-
regulated during all stresses apart from freezing (Ling et al. 
2017).

Fang and co-authors (Fang et al. 2008) employed 70mer 
oligomer microarray analysis to identify 140 putative 
ONAC-like TFs in rice (Oryza sativa). Twenty-one of these 
were induced by drought or salinity and five were repressed 
by stress in the seedling stage. The same authors (Fang et al. 
2008) validated 20 ONAC genes with elevated expression 
levels using rice seedlings and found that five genes were 
induced by dehydration, 19 by salt, and 16 by cold.

Ha et al. (2014) used phylogenetic analysis to identify 
71 CaNAC genes, including eight membrane-bound NACs, 
from the chickpea (Cicer arietinum) genome. Nineteen of 
the predicted 23 dehydration-related CaNAC genes were 
specific to either roots or leaves. Fourteen genes were up-
regulated, whereas four were down-regulated under dehy-
dration stress in leaves. CaNAC06 and CaNAC67 were the 
most up-regulated genes with 200 to 300-fold. The highly 
down-regulated genes were CaNAC02 and CaNAC04. In root 
tissues, 12 genes were up-regulated, and three genes were 
down-regulated during dehydration. By comparison, 88 NAC 
genes were identified in the pigeon pea (Cajanus cajan), 
using homology searches, and de novo approaches based 
on the published pigeon pea draft genome (Satheesh et al. 
2014). Of these, 36 NAC genes were identified as putatively 
drought-responsive, based on the phylogenetic analysis 
(Satheesh et al. 2014). Several stress-responsive cis-acting 
regulatory elements (MYB, TC rich repeats, HSE element, 
ABRE element) were reported from promoter regions of 
these NAC genes, which may contribute to enhancing the 
stress tolerance.

More recently, Hussain et  al. (2017) identified 
139 GmNAC genes in the soybean (Glycine max), and 
observed genotype-based GmNAC gene expression in 
response to drought. Out of these 139 GmNAC genes, 
28 genes were predicted to be drought-responsive, based 
on the phylogenetic analysis. Eight of the GmNAC genes 
(GmNAC004, 021, 065, 066, 073, 082, 083, 08) showed 
higher expression levels in drought-resistant cultivars 
than in drought-sensitive cultivars and were induced 
despite the level of dehydration sensitivity of cultivars. 
Earlier, Le et  al. (2011) reported 50 putative stress-
responsive GmNAC genes, based on the sequence align-
ment and phylogenetic analysis with known Arabidop-
sis (ANAC055, ANAC072, ANAC019) and rice (SNAC1/
SNAC2) stress-responsive NAC genes. Sixteen GmNACs 
were tissue-specific and highly expressed in roots and 
flowers. Twenty-five GmNACs were induced, and six 
were repressed by two-fold or more under dehydration 
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stress in roots and shoots of soybean. GmNAC085, which 
is identical to the widely-studied SNAC1/ONAC2, dis-
played induction of 390-fold in shoots and 20-fold in 
roots and was amongst those genes most highly expressed 
gene during dehydration.

The overall expression patterns observed across differ-
ent plants imply the selective up-regulation of individual 
NAC members and indicate the contribution of NAC TFs 
in the stress adaptation scheme (Figs. 4, 5, 6). However, 
there is still debate about whether there are several NAC 
candidates with conserved roles across plant species in 
response to stress type. In the next sections, we summa-
rize the NAC roles more specific to various stress adap-
tive schemes and how this information could be utilized 
to exploit NACs for crop improvement.

Potential of NACs in crop improvement

Abiotic stress tolerance

Although NAC proteins were initially found to associ-
ate with plant development, their involvement in stress 
responses is now being increasingly recognized (Jensen 
and Skriver 2014). Classically, three closely associated NAC 
proteins members (ANA019, ANAC055, and ANAC072 
(RD26)) respond to various abiotic stresses and hormones 
such as dehydration, freezing, salinity, wounding, jasmonic 
acid (JA), and abscisic acid (ABA). Most of the knowledge 
about these proteins stems from genome-wide and functional 
genomics studies in the most studied plants such as soybean 
(Hao et al. 2011), rice (Ohnishi et al. 2005), and Arabidop-
sis (Jiang et al. 2014), among others. Over-expression of 
these TFs has often provided substantial evidence supporting 

Fig. 4  Schematic representation of NAC regulation in plant abiotic 
stress tolerance. Upon encountering stress, the NAC gene is induced 
by ABA dependent/independent pathway, which in turn binds to 
the promoter sequences of other genes (COR, DREB etc.), thereby 
regulating ROS, GSTF, FT expression. On the other hand, accu-
mulation of unfolded/misfolded proteins triggers unfolded protein 
response (UPR) in the ER. Thus, membrane bound NAC domain 
proteins (NTLs) are activated by ER stress and undergo conforma-
tional changes (TMD cleavage) to modulate the expression of stress-

induced gene. NTLs thus, plays important role in communicating 
ER stress signaling from PM to nucleus to mitigate the ER stress. 
NACRS NAC recognition site/sequence, COR Cold regulated, RD 
responsive to desiccation, ER endoplasmic reticulum, NTL NAC with 
Transmembrane Motif 1″-Like, TMD transmembrane domain, AREB 
abscisic acid-responsive element-binding protein, DREB drought-
responsive element-binding, ROS reactive oxygen species, GSTF glu-
tathione S-transferase; FT flowering locus T; UPR unfolded protein 
response, PM plasma membrane
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Fig. 5  Representation of the NAC transcriptional regulatory network 
associated with stress adaptation from case studies of rice (Drought: 
Chung et al. 2018, Heat: Fang et al. 2015) and wheat (Salinity: Zhang 
et  al. 2016, Huang et  al. 2015). a During heat, ONAC003 (SNAC3) 
expression is induced upon perceiving stress. Binding of ONAC003 
with NAC-specific NACRS (NAC recognition sequences/site) and 
CDBS (Core DNA-binding sequence,) and is activated. This results 
in up-regulation of targets CATA  (Catalase isozyme A-like), APX3 
(Ascorbate peroxidase 3), APX8 (Ascorbate peroxidase 8), RbohF 
(NADPH oxidase), and Prx IIE2 (Peroxiredoxin), thereby reducing 
peroxide levels  (H2O2), MDA (Malondialdehyde) and electrolytic leak-
age. This modulation of ROS metabolism by target gene up-regulation 
results in heat tolerance in rice plants. b OsNAC regulatory networks 
include the activation of OsNAC5, 6, 9, and 10 TFs during drought 
stress. Further, OsNAC activation leads to the up-regulation of various 
ERF (Ethylene responsive factor) domain genes. Target genes, such 
as OsERF1, OsERF54, OsERF57 and OsERF107, and OsERF9 are 
directly up-regulated by OsNAC5, OsNAC6, OsNAC9 and OsNAC10. 
The up-regulation of target genes (OsERF1, OsERF54, OsERF57, 

OsERF107, and OsERF9) leads to the increased expression of LAC26 
(Laccase-22-like), TAG lipase 2 (Triacylglycerol lipase 2), Glucan 
endo-1,3-beta-glucosidase 6, and OsEXP7 (expansin-A7-like), which 
altogether resulted in alteration of the root architectures for drought 
tolerance and enhanced grain yield in rice. c In case of salinity stress, 
TaNAC47 and TaNAC29 expression is induced in response to stress 
signaling via the ABA dependent pathway. TaNAC47 binds to ABRE 
cis-elements and activates transcription. This leads to up-regulation of 
targets such as, RD29A (Responsive to desiccation A), RD29B (Respon-
sive to desiccation B), GSTF6 (Glutathione S-transferase F6), RD20 
(Responsive to desiccation 20), P5CS1 (Δ1-pyrroline-5-carboxylate 
synthetase 1), COR47 (Cold regulated 47) in Arabidopsis. This, in 
turn, leads to reduced water loss and increased proline and soluble 
sugar, further improving survival under salinity stress in plants. Simi-
larly, increased expression of TaNAC29 during salinity stress leads to 
up-regulation of RD29b (Responsive to desiccation 29b) and ERD11 
(Early responsive to dehydration)  target genes, thereby enhancing 
SOD (Superoxide dismutase) and CAT (Catalase) activity, resulting in 
reduced water and enhanced salinity tolerance in Arabidopsis
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their activities (Table 2). For instance, transgenic rice plants 
overexpressing the SNAC2 gene demonstrated a significantly 
enhanced germination and higher growth rates than the wild 
type (WT) under imposed salinity (Hu et al. 2008). Addi-
tionally, these plants showed greater vigor than non-trans-
formed controls under a freezing environment. Similarly, 
transgenic tobacco lines overexpressing the poplar NAC13 
gene, demonstrated enhanced salt tolerance (Cheng et al. 
2020).

OsSNAC1, a rice stress-responsive TF, was shown to 
ameliorate salinity and drought tolerance in wheat cultivars 
when over-expressed (Saad et al. 2013). Wheat plants over-
expressing the OsSNAC1 gene had elevated sensitivity to 
abscisic acid (ABA), which caused higher water and chlo-
rophyll levels in their leaf tissues with an increased fresh 
and dry root weight. Furthermore, a higher level of OsS-
NAC1 was involved in regulating the expression of abiotic 
stresses and ABA signaling genes such as wheat 1-phos-
phatidylinositol-3-phosphate-5-kinase, type 2C protein 
phosphatases, sucrose phosphate synthase, and the regula-
tory components of the ABA receptor (Saad et al. 2013). 
Conversely, OsSNAC1 over-expression in cotton (Gossyp-
ium hirsutum) plants improved drought and salt tolerance 
by facilitating vigorous root growth and lowering the tran-
spiration frequency relative to non-transformed plants (Liu 
et al. 2014). OsNAC6 from rice was induced by multiple 
stresses such as cold, abscisic acid (ABA), drought, salt, 
and JA, and is thus considered a redundant candidate for 
signals derived from abiotic as well as biotic stresses in rice 
(Ohnishi et al. 2005). This gene is also induced by wound-
ing, along with other early-responsive genes (Ohnishi et al. 
2005). Ochiai et al. (2011) claimed an enhanced tolerance 
to Boron toxicity by inhibition of the NAC-like transcription 
factor BORON EXCESS TOLERANT1 (BET1) gene in trans-
genic rice. A recent example includes ONAC066, which is 
induced in response to multiple stresses: polyethylene glycol 
(PEG),  H2O2, or salinity treatments of the ONAC066-over-
expressing transgenic rice plants resulted in greater accu-
mulation of soluble sugars and proline, reduction in reactive 
oxygen species (ROS), and water loss, thereby providing 
accelerated drought and oxidative resistance in rice plants 
(Yuan et al. 2019). Similarly, OsNAC14 provided increased 
drought resistance in over-expressed rice plants during veg-
etative growth by repairing the damaged DNA and defense 
mechanism (Shim et al. 2018). Transgenic plants also had 
greater panicle number and a faster grain filling rate than 
WT (Shim et al. 2018). OsNAC14 functions by binding to 
the OsRAD51A1 promoter, a constituent of DNA repair 
machinery. Another case reported by Fang et al. (2015) 
revealed the importance of the SNAC3 (ONAC003) gene 
in conferring heat and drought endurance through the up-
regulation of high temperature responsive genes (Fig. 5a). 
Further, SNAC3 overexpressing rice plants exhibited lesser 

electrolytic leakage, Malondialdehyde (MDA) and peroxides 
levels than WT at high temperatures, thereby demonstrating 
tolerance via ROS modulation (Fang et al. 2015). Similarly, 
OsNAC5, 6, 9, and 10 conferred drought endurance in over-
expressed rice plants by up-regulating target genes that are 
responsible for altering root architecture (Chung et al. 2018, 
Fig. 5b). Transgenic plants also had reduced grain yield loss 
under drought stress compared to WT.

TaNAC29, a wheat (Triticum aestivum) NAC TF, 
was reported to boost tolerance against salt and drought 
when over-expressed in Arabidopsis plants, but compro-
mised the flowering time (Huang et al. 2015, Fig. 5c). In 
another study, over-expression of TaNAC47 in Arabidop-
sis caused ABA hypersensitivity resulting in the activa-
tion of a plethora of responses by altering gene expres-
sion and displayed enhanced resistance towards PEG, 
salinity, and freezing stresses in transgenic plants (Zhang 
et al. 2016, Fig. 5c). Another possible dehydration toler-
ance case occurred when TaRNAC1 was over-expressed 
in transgenic wheat under PEG. This generated higher 
aboveground biomass and yield under water-deficit con-
ditions (Chen et  al. 2018). TaNAC2L over-expression, 
induced by high-temperature, stimulated heat-responsive 
gene expression, thereby enhancing thermotolerance in 
transformed Arabidopsis plants (Guo et al. 2015). Earlier, 
Mao et al. (2012) also reported the role of the TaNAC2 
allele in improving drought, salt, and freezing tolerance 
in TaNAC2-overexpressing Arabidopsis plants. The role 
of NAC family TFs in wheat is not limited to abiotic stress 
only. A recent report indicated that TaNACL-D1 interac-
tion with TaFROG (Fusarium Resistance Orphan Gene) 
can facilitate resistance to Fusarium head blight disease. 
Unusually, TaNACL harbors the Triticeae-specific protein 
in the C-terminal region (Perochon et al. 2019). As dis-
cussed in previous sections, the virtue of complexity in the 
C-terminus in the NAC TF genes is fascinating. Therefore, 
it will be interesting to see more cases of genus-specific 
roles of NAC members in the future.

Documentation of the role of NAC members in stress 
adaptation is not limited to Triticeae. ZmNAC111, a maize 
(Zea mays) TF, was associated with increased drought tol-
erance of maize seedlings and water-use efficiency (WUE), 
along with expression of drought-responsive genes during 
water deficit (Mao et al. 2015). Another report claimed the 
involvement of ZmNAC55 in inducing drought resistance to 
overexpressing Arabidopsis plants (Mao et al. 2016). Fur-
ther, ZmNAC55 gene had multiple cis-elements related to 
abiotic stress acting in the promoter region.

Soybean is a crucial legume crop that is cultivated mainly 
to provide cooking oil and dietary protein. GmNAC11 and 
GmNAC20, which are well-characterized genes in soybean, 
that are differentially expressed under many environmen-
tal stresses coupled with plant hormones (Hao et al. 2011). 
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These genes encode proteins that localize to the cell nucleus 
and bind to a core DNA sequence CGT[G/A] (Hao et al. 
2011). GmNAC11 is a transcriptional activator regulating 
Drought-responsive element-binding 1A (DREB1A), Early 
responsive to dehydration 11 (ERD11), Cold regulated 
15A (COR15A), Ethylene responsive factor 5 (ERF5), Ras-
related protein Rab18 (RAB18), and Potassium channel in 
Arabidopsis thaliana 2 (KAT2) genes, thereby building salt 
tolerance (Hao et al. 2011). Over-expression of GmNAC20, 

on the other hand, augments salt and freezing tolerance 
(Hao et al. 2011). In similar manner, Arabidopsis plants 
that over-expressed GmNAC019 showed enhanced survival 
rates, intense antioxidant defense, lower peroxide levels and 
water loss under soil drying situations (Hoang et al. 2019). 
The transgenic plants were also found to be hypersensitive 
to ABA, exhibiting lower seed germination rates with fewer 
green cotyledons which suggested ABA-mediated regula-
tion. Another recent report indicated the involvement of 

Fig. 6  Representation of the NAC transcriptional regulatory net-
work associated with stress adaptation from cases studied in SAT 
cereals (Shinde et  al. 2019) and legume (Yu et  al. 2016) to provide 
stress tolerance in Arabidopsis and rice plants. Blue arrows indicate 
up-regulation; red arrows indicate down-regulation. a Chickpea Car-
NAC4 is induced under drought and salinity. Upon activation, Car-
NAC4 in Arabidopsis plants causes up-regulation of RD29, COR15A, 
KIN1, DREB genes, resulting in lower MDA and low water loss. b 
The pearl millet PgNAC21 regulatory network involves induction of 
NAC21 in response to salt and ABA exposure. Binding of MYB1 to 

upstream regulatory sequences (NACRS) of PgNAC21 in Arabidopsis 
plants activates its expression, which then leads to up-regulation of 
target gene (COR, RD20, GSTF6), resulting in salt stress adaptation. c 
Finger millet EcNAC67 is induced during salinity and drought stress. 
Activation of EcNAC67 in rice plants causes a greater abundance of 
gene transcripts, which result in increased plant biomass, lower yield 
loss and better survival of rice plants under drought and salt condi-
tions. SAT semi-arid tropics, NACRS NAC recognition site, COR15A 
cold regulated, RD29 responsive to desiccation29, GSTF6 glutathione 
S-transferase F6, MDA malondialdehyde
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Table 2  Evidence of attaining abiotic stress adaptation in NAC over-expressor plants specifically cereals and legumes

NAC TF in abiotic 
stress adaptation in 
plant

Source plant Stress acquired in crop 
species

Method (functional 
validation)

Stress response References

AemNAC2, AemNAC3 Aegilops markgrafii 
(wild relative of the 
cultivated wheat)

Wheat (cultivar-Bob-
white)

Over-expression Cadmium (Cd) toler-
ance

Du et al. (2020)

AhNAC2 Peanut (Arachis 
hypogaea)

Arabidopsis Over-expression Drought and Salt 
stress tolerance

Liu et al. (2011)

AhNAC3 Peanut (Arachis 
hypogaea)

Tobacco (Nicotiana 
tabacum)

Over-expression Dehydration and 
Drought tolerance by 
increasing superox-
ide scavenging

Liu et al. (2013)

AhNAC4 Peanut (Arachis 
hypogaea)

Tobacco Over-expression Drought tolerance Tang et al. (2017)

AtNAC2 (ANAC092) Arabidopsis Peanut (Arachis 
hypogaea)

Over-expression Drought and Salinity 
and improved yield 
under water-limited 
conditions

Patil et al. (2014)

CarNAC4 Chickpea (Cicer 
arietinum)

Arabidopsis Over-expression Drought and Salt 
stress tolerance

Yu et al. (2016)

CarNAC6 Chickpea (Cicer 
arietinum)

Arabidopsis Over-expression Dehydration toler-
ance and lateral root 
development

Liu et al. (2017)

EcNAC1 Finger millet (Eleusine 
coracana)

Tobacco Over-expression Water-deficit and Salt 
stress

Ramegowda et al. 
(2012)

EcNAC67 Finger millet (Eleusine 
coracana)

Rice Over-expression Salinity and Drought 
stress tolerance

Rahman et al. (2016)

GmNAC019 Soybean (Glycine 
max)

 Arabidopsis Over-expression Drought tolerance Hoang et al. (2019)

GmNAC109 Soybean (Glycine 
max)

Arabidopsis Over-expression Drought and Salt 
stress tolerance

Yang et al. (2019)

GmNAC11 Soybean (Glycine 
max)

Arabidopsis Over-expression Salt tolerance Hao et al. (2011)

GmNAC20 Soybean (Glycine 
max)

Arabidopsis Over-expression Salinity and freezing 
tolerance

Hao et al. (2011)

GmSNAC49 Soybean (Glycine 
max)

Arabidopsis Over-expression Drought tolerance So and Lee, (2019)

HvSNAC1 Barley (Hordeum 
vulgare)

Barley Over-expression Drought tolerance Al Abdallat et al. 
(2014)

MuNAC4 Horse gram (Macroty-
loma uniflorum)

Peanut Over-expression Drought tolerance Pandurangaiah et al. 
(2014)

ONAC022 Rice (Oryza sativa) Rice Over-expression Drought and Salt toler-
ance

Hong et al. (2016)

ONAC066 Rice (Oryza sativa) Rice RNAi Drought and Oxidative 
stress

Yuan et al. (2019)

OsNAC14 Rice (Oryza sativa) Rice Over-expression Drought tolerance 
(higher panicle num-
ber and filling rate)

Shim et al. (2018)

ONAC095 Rice (Oryza sativa) Rice Chimeric repressor-
mediated suppres-
sion

Drought tolerance Huang et al. (2016)

OsNAC2 Rice (Oryza sativa) Rice Over-expression Salt tolerance Shen et al. (2017)
OsNAC5, OsNAC6, 

OsNAC9, OsNAC10
Rice (Oryza sativa) Rice Over-expression Drought tolerance and 

high grain yield
Chung et al. (2018); 

Fig. 5b
OsSNAC1 Rice (Oryza sativa) Cotton (Gossypium 

hirsutum)
Over-expression Drought and Salt toler-

ance
Liu et al. (2014)
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GmSNAC49 in inducing Arabidopsis drought tolerance by 
up-regulating drought-responsive genes via ABA signaling 
period (So and Lee 2019).

Chickpea (Cicer arietinum), a vital legume crop in the 
semi-arid tropics (SAT), is naturally resistant to several 
abiotic stresses and suboptimal conditions. CarNAC6 is a 
chickpea nuclear protein that can bind to CGT[G/A]. Over-
expression of CarNAC6 in Arabidopsis plants resulted in 
an enhanced drought tolerance and promoted root develop-
ment under saline conditions (Liu et al. 2017). In a simi-
lar fashion, over-expression of CarNAC4 in Arabidopsis 
plants led to increased expression of the stress-related 
genes- Early Responsive to Dehydration 10 (ERD10), Cold 
Regulated 15A (COR15A), Responsive to desiccation 29A 
(RD29A), KIN1 (Stress-induced protein KIN1), Cold Regu-
lated 47 (COR47), and Drought-responsive element-bind-
ing A (DREBA), thereby enhancing endurance to drought 
and saline conditions (Yu et al. 2016, Fig. 6a). CarNAC2, 
another chickpea gene encoding NAC protein (transcrip-
tional activator), is a nuclear protein of 191 amino acids 

that showed enhanced resistance in transformed Arabi-
dopsis plants when over-expressed (Yu et al. 2014). A few 
years ago, Peng et al. (2009) reported drought and hormone 
(indole-3-acetic acid and ABA) induction of the CarNAC3 
protein with a conserved NAC domain belonging to the NAP 
(NAC-like, activated by APETALA3/PISTILLATA ) sub-class 
of the NAC superfamily. Similarly, transgenic Arabidopsis 
plants overexpressing drought-induced AhNAC2 from pea-
nuts (Arachis hypogaea) resulted in a greater expression of 
stress-related genes and a higher endurance to drought and 
salinity compared to the control (Liu et al. 2011). Moreo-
ver, AhNAC2 overexpressing Arabidopsis lines were ABA 
hypersensitive at seed germination, stomatal closure, and 
root growth relative to WT plants, implying the function-
ing of AhNAC2 in ABA signaling. Another report suggested 
that over-expression of AtNAC2 (ANAC092) in groundnuts 
provided tolerance against salinity and drought stress, and 
improved yield (Patil et al. 2014). Tang et al. (2017) isolated 
and characterized stress-responsive AhNAC4, from peanut 
immature seeds. Peanut AhNAC4 belonging to the ATAF 

Table 2  (continued)

NAC TF in abiotic 
stress adaptation in 
plant

Source plant Stress acquired in crop 
species

Method (functional 
validation)

Stress response References

OsSNAC1 Rice (Oryza sativa) Wheat Over-expression Drought and Salt 
stresses

Saad et al. (2013)

PgNAC21 Pearl millet (Pennise-
tum glaucum)

 Arabidopsis Over-expression Salinity stress toler-
ance

Shinde et al. (2019)

SbSNAC1 Sorghum (Sorghum 
bicolor)

Arabidopsis Over-expression Drought tolerance Lu et al. (2013)

SNAC3 Rice (Oryza sativa) Rice Over-expression/
RNAi

Heat and Drought 
tolerance

Fang et al. (2015)

TaNAC29 Wheat (Triticum 
aestivum)

Arabidopsis Over-expression Salt and Drought toler-
ance

Huang et al. (2015),
Xu et al. (2015)

TaNAC2a Wheat (Triticum 
aestivum)

Tobacco Over-expression Drought tolerance Tang et al. (2012)

TaNAC47 Wheat (Triticum 
aestivum)

Arabidopsis Over-expression Salt, Drought, and 
Freezing stresses 
tolerance

Zhang et al. (2016)

TaNAC2 Wheat (Triticum 
aestivum)

Arabidopsis Over-expression Drought, Salt, and 
Freezing stresses 
tolerance

Mao et al. (2012)

TaNAC2L Wheat (Triticum 
aestivum)

Arabidopsis Over-expression Heat tolerance Guo et al. (2015)

TaNAC69 Wheat (Triticum 
aestivum)

Wheat Over-expression Dehydration toler-
ance and water use 
efficiency

Xue et al. (2011)

TaRNAC1 Wheat (Triticum 
aestivum)

Wheat Over-expression Enhances root length, 
biomass and Drought 
tolerance

Chen et al. (2018)

ZmNAC1 Maize (Zea mays) Arabidopsis Over-expression Lateral root develop-
ment

Li et al. (2012)

ZmNAC55 Maize (Zea mays) Arabidopsis Over-expression Drought tolerance Mao et al. (2016)
ZmSNAC1 Maize (Zea mays) Arabidopsis Over-expression Dehydration tolerance Lu et al. (2012)
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subfamily was highly induced by drought. Over-expression 
of AhNAC4 improved drought tolerance with an increase in 
stomatal closure and higher WUE in transformed tobacco 
(Nicotiana tabacum) plants compared to WT. Interest-
ingly, when tobacco seedlings were subjected to 15 days of 
drought, all WT plants displayed severe wilting because of 
water scarcity, whereas the transgenic plants showed delayed 
leaf wilting. Further, the WT plants became completely 
desiccated, and most of them (70%) did not recover after 
being watered. In contrast, a higher survival ratio was seen 
in AhNAC4 transgenic plants, with 90% remaining viable, 
indicating its importance in improving drought tolerance 
(Tang et al. 2017). Similarly, MuNAC4, a NAC TF from 
horse gram (Macrotyloma uniflorum), displayed enhanced 
drought tolerance in addition to proliferated lateral root 
growth as compared to WT when introduced into peanut 
plants. The imposition of long-term drought resulted in an 
increase in lateral roots with reduced membrane damage, 
increasing osmotic adjustment, and anti-oxidative enzyme 
regulation in transgenic peanut under stress (Pandurangaiah 
et al. 2014).

Pearl millet (Pennisetum glaucum) is an important cereal 
crop that is cultivated mainly in SAT for its high nutritional 
value. The plant, which is well known for its resistance to 
abiotic stress, has gained much attention since its whole-
genome sequences became available (Varshney et al. 2017). 
PgNAC21, a pearl millet NAC gene, has been shown to pro-
vide salinity tolerance in transgenic Arabidopsis plant by up-
regulating COR47, RD20, and GSTF6 (Glutathione S-trans-
ferase F6) target genes (Shinde et al. 2019, Fig. 6b). Another 
example of SAT cereal crop NAC is finger millet (Eleusine 
coracana). Over-expression of finger millet EcNAC67 in rice 
plants resulted in an increased root and shoot biomass, less 
reduction in grain yield and maintenance of higher water 
content leading to better survival against drought and salin-
ity situations (Fig. 6c). Similarly, SbSNAC1, a member of 
the NAC superfamily from tropical cereal sorghum (Sor-
ghum bicolor), is expressed during drought and salinity and 
at a relatively higher concentration in roots (Lu et al. 2013). 
Transgenic Arabidopsis plants that over-expressed SbSNAC1 
showed improved survival rates under drought stress accom-
panied by vigorous green leaves with reduced ion leakage 
compared with WT plants (Lu et al. 2013).

NAC TFs are undoubtedly effective as an upstream reg-
ulator of the expression of adaptive stress by downstream 
genes. A schematic representation of the NAC transcrip-
tional network along with its target genes is shown in Fig. 5 
as an aid to understanding their role in stress adaption in 
rice and wheat crops. Fine-tuning the expression of stress-
specific NAC TFs is very promising for designing plant 
stress tolerance. However, it is also important to identify 
the other parallel biological processes influenced by NACs 

that indirectly contribute to plant adaptive responses and 
yield potential under negative environmental cues.

NACs in secondary cell wall synthesis

Secondary cell walls (SCWs) are the greatest contributors 
to plant biomass. Secondary cell walls present in the fibers 
and tracheary elements of plants are comprised of cellulose, 
hemicelluloses and lignin. The lignocellulosic biomass rep-
resents the carbon-free raw material for generating biofuels. 
Thus, engineering plants with better SCW characteristics is 
a key approach to reducing the processing of lignocellulosic 
biomass. Also, plant resistance to pathogens depends on a 
complicated mesh of constitutive/inducible defensive barri-
ers. In order to successfully colonize the host plant tissues, 
pathogens need to overcome the plant cell wall. In this con-
text, the plant cell wall acts as a passive barrier that regulates 
defense processes and as a platform for signaling the mol-
ecules that activate immune responses (Miedes et al. 2014).

NAC TFs are confirmed as mediating SCW synthesis in 
several species (Grover et al. 2014; Valdivia et al. 2013). 
A sub-group of closely related NST1 (ANAC043), NST2 
(ANAC066), and NST3/SND1 (ANAC012) proteins, func-
tion as master transcriptional switches in mediating SCW 
formation (Mitsuda and Ohme-Takagi 2008; Singh et al. 
2016), (Fig. 7). Both SND2 (SECONDARY WALL NAC 
DOMAIN PROTEIN2) and SND3 (SECONDARY WALL 
NAC DOMAIN PROTEIN3) function downstream of NST1 
and NST3 (Singh et al. 2016; Zhong et al. 2008). SND2 
up-regulates the genes responsible for cellulose, hemicel-
lulose, and lignin biosynthesis and polymerization. VND6 
and VND7, which are Vascular NAC Domain proteins, act 
as regulators of SCW biosynthesis, particularly in the xylem 
vessels (Kubo et al. 2005; Yamaguchi et al. 2008). However, 
XND1, which is a Xylem NAC Domain1 protein, acts as a 
negative regulator of secondary cell wall formation in xylem 
vessels by inhibiting VND functions to activate SCW associ-
ated gene expression.

Over-expression of SND2 in Arabidopsis caused up-reg-
ulation of the biosynthetic genes that encode components to 
initiate the formation of SCW (cellulose and lignin polymer-
ization; Hussey et al. 2011). SND2, which occupies a central 
role in the transcriptional regulatory network for the SCW 
synthesis, also upregulates the MYB103 TF and SND1 when 
it is over-expressed. SND2 over-expression also negatively 
influences the fiber wall deposition in Arabidopsis; in con-
trast, its over-expression in Eucalyptus caused an increase 
in fiber cell area (Hussey et al. 2011). Hussey et al. (2011) 
also highlighted the importance of determining expression 
thresholds for SND2 over-expression that are optimal for 
an enhanced SCW deposition, since expression beyond the 
threshold led to co-suppression.
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Rice OsSND2, a close homolog of AtSND2, was discov-
ered to be associated with regulating SCW biosynthesis in 
rice and offered a scheme for engineering the green biomass 
production (Ye et al. 2018). OsSND2 is primarily expressed 
in the internodes and the panicles, and its over-expression 
results in up-regulation of SCW biosynthetic genes and 
increased cellulose content (Ye et al. 2018). Other potential 
candidates include SECONDARY WALL NAC DOMAIN 
PROTEINs (SWNs) regulating the formation of SCW in 
rice (OsSWNs). They are being used for engineering the 
cell wall in monocotyledonous forage crops applications. For 
instance, the OsSWN2S chimeric repressor, which has a very 
low ability for transcriptional activation, when driven by 
OsSWN1 (high transcriptional activation ability) promoter, 
results in a reduced cell wall thickening (sclerenchymatous 
cells) with low lignin and xylose contents (Yoshida et al. 
2013). Similarly, Chai et  al. (2015) reported that over-
expression of OsSWN1 results in SCW-related gene expres-
sion with improved lignin and reduced sugar build-up in 
transgenic plants. Since OsSWN1-like genes are highly con-
served in crops such as rice, sorghum, and switchgrass, this 
indicates the potential of exploiting the OsSWN1 orthologs 
in other crop species used as food and fodder (Chai et al. 
2015).

Zhao et al. (2010) identified genes responsible for SCW 
biosynthesis in the model legume M. truncatula. Insertion 
of Tnt1 retrotransposon in a NAM-like protein MtNST1 
(NAC SECONDARY WALL THICKENING PROMOTING 
FACTOR 1) resulted in a reduced expression of cellulose, 

hemicellulose, and lignin biosynthetic genes. Hence, a lack 
of lignin in phloem fibers, decreased vascular lignin, and 
reduced cell wall polysaccharide content were found associ-
ated with loss of MtNST1 function (Zhao et al. 2010). Simi-
larly, NST1 gene in M. truncatula that has lost the function 
mutation (T94K) produced no lignification in interfascicu-
lar fibers (nst1-3 mutant), as in the case of tnt1 transposon 
insertion alleles (Wang et al. 2011). T94K mutation in SND1 
(Arabidopsis homolog) caused loss of target binding with 
the resultant incompetence to activate secondary wall syn-
thesis genes. Moreover, SND1 expression undergoes posi-
tive feedback control from itself, and tethers directly to a 
conserved motif present in its promoter region (Wang et al. 
2011).

The root cap is a multilayered column consisting of 
parenchyma cells that lie on the top of the growing root tip 
and strengthen growth by taking care of the root meristem 
and sensing gravity in addition to rhizospheric interaction. 
NAC family members, viz., SMB (SOMBRERO), BRN1 
(BEARSKIN1), and BRN2 (BEARSKIN2), along with VND 
and NST genes, were found to be involved in root cap matu-
ration and showed similar phenotypic patterns when over-
expressed (Bennett et al. 2010; Mitsuda et al. 2005, 2007; 
Zhong et al. 2006, 2007). Over-expression of NAC proteins 
(SMB, BRN1, BRN2) class IIB activated transcriptional 
pathways, resulting in secondary cell wall synthesis (SCW) 
by transcription of VND, NST, and root cap maturation genes 
(Bennett et al. 2010; Kamiya et al. 2016).
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Fig. 7  The transcriptional network regulating SCW formation by 
NAC domain proteins. NST1/2/3 are the master switches for control-
ling secondary cell wall biosynthesis in fibers. SND2/3 functions, 
which are downstream of NST1 and NST3, activates transcription of 
MYB factors and up-regulate genes associated with cellulose, xylem, 
hemicellulose, and lignin biosynthesis. VND6,7 and SWNs also act 
as regulators of SCW biosynthesis, specifically in vascular vessels. 

On the other hand, XND1 protein acts contrary to VND proteins by 
inhibiting SCW biosynthesis and PCD in xylem vessels. SCW sec-
ondary cell wall, PCD programmed cell death, NST NAC SECOND-
ARY WALL THICKENING PROMOTING FACTOR, SND2/3 
SECONDARY WALL NAC DOMAIN PROTEIN, VND VASCU-
LAR NAC DOMAIN PROTEIN, SWNs SECONDARY WALL NAC 
DOMAIN PROTEINS, XND1 XYLEM NAC DOMAIN 1
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NACs in yield potential (grain yield), seed size 
and biomass

Nitrogen (N) is among the primary nutrients that influence 
plant productivity, and limited N supply causes major con-
straints on crop yield (Jones et al. 2013). Well-developed 
roots are required for an efficient N acquisition. Nitrogen 
uptake, assimilation, remobilization, and storage are regu-
lated by complex gene networks (Masclaux-Daubresse et al. 
2010). In major cereal crops, N assimilation genes often 
colocalize with quantitative trait loci (QTLs) influencing 
grain yield and nitrogen use efficiency (NUE) (He et al. 
2015). Several studies have indicated that expression of 
various NAC members was related to nutrient seed develop-
ment and deficiency stress (Agarwal et al. 2011; de Zélicourt 
et al. 2012; Vidal et al. 2013). These yield associated NACs 
hold great potential as targets for crop improvement, and 
their functions should be explored further. AtNAC4, a target 
of the AtAFB3 (AUXIN SIGNALING F-BOX3), has been 
shown to be a principal regulator of the nitrate-responsive 
network in Arabidopsis (Vidal et al. 2014). In a different 
finding, AtNAC4 was reported to work upstream of the OBF 
BINDING PROTEIN4 (AtOBP4), a zinc finger TF to induce 
nitrate response (Vidal et al. 2013). In rice, the PS1 (prema-
turely senile)/Oryza sativa NAC-like, transcriptionally acti-
vated by APETALA3/PISTILLATA  (OsNAP), controls N and 
other nutrient stockpiling in grains. OsNAP over-expression 
up-regulated the genes for various amino acids and peptide 
transporters and significantly promoted senescence, whereas 
OsNAP knockdown resulted in senescence delay in rice 
(Liang et al. 2014). Reduced OsNAP transcript accumulation 
caused delay in leaf senescence including extended grain-
filling duration, leading to higher yield potential (Liang et al. 
2014). PS1 is a functional ortholog of AtNAP and belongs 
to the NAP subfamily of NAC proteins. The C-terminus of 
OsNAP functions as an activator, whereas the NAC sub-
domains 3 and 4 function as a repressor (Liang et al. 2014). 
In another case, the over-expression of root specific OsNAC5 
in rice plants showed an increment in grain yield of 9–23% 
under normal conditions (Jeong et al. 2013). However, grain 
yield was found to be 22–63% higher under drought con-
dition than in WT plants. Moreover, the transgenic plants 
developed enlarged root diameter due to an expanded stele 
and aerenchyma at the flowering stage, contributing to 
enhanced drought tolerance (Jeong et al. 2013). In addition 
to this, GLP (Germin-like protein), PDX (Pyridoxin biosyn-
thesis protein), MERI5 (Meristem protein) and O-methyl-
transferase were found to be up-regulated in transgenic rice. 
Further, OsNAC5 also plays an essential role in loading iron 
to the seeds via senescence signaling (Ricachenevsky et al. 
2013). In contrast to the positive up-regulation of yield by 
NAC members, a recent study showed over-expression of 
miR164b and down-regulation of OsNAC2 in rice indicating 

improved plant architecture and increased grain yield/num-
ber than in WT plants (Jiang et al. 2018).

Rice ONAC020, ONAC026, and ONAC023 genes are 
highly expressed during seed development (Mathew et al. 
2016). ONAC020 and ONAC026 belong to the same phylo-
genetic clade as CUC3, an important gene in seed develop-
ment (Mathew et al. 2016). ONAC020 and ONAC026 are 
closely related to CUC3, and all three possess typical NAC 
sub-domains architecture and a NAC repression domain 
(NARD) (Mathew et  al. 2016). It is worth mentioning 
that expression levels for these genes varied among rice 
accessions with contrast in seed size. These genes regulate 
downstream genes to a varying magnitude due to sequence 
alterations in the promoter’s regions. These ONAC020 
and ONAC026 genes have a DLN stretch (ERF-associated 
repression motif in plants) in the B domain. Repressor 
ONAC026 dimerizes with trans-spliced forms of ONAC020 
(ONAC020.A, ONAC020.B, ONAC020.C), or ONAC023 to 
form a heterodimer complex that localizes in the nucleus. It 
is most likely that the expression levels (repression/activa-
tion) of the complex may vary across the seed developmental 
stages. Further, these seed size-related NAC genes, function 
in seed development processes and can be utilized as pos-
sible targets for crop improvement (Mathew et al. 2016). 
Moreover, seed size improvement is not only an attribute of 
yield potential; acquiring the capability for enhanced micro-
nutrient uptake and utilization is also very important.

Plants with stay-green phenotypes exhibit inefficient N 
remobilization, resulting in low harvest index, despite having 
the potential for higher productivity (Gregersen et al. 2008). 
However, plants with faster senescence exhibit an efficient 
N remobilization, leading to high grain protein content but 
with reduced grain yield (See et al. 2002). Several studies 
indicated that NAC genes are promising targets in breeding 
approaches for increased grain quality (Fig. 8) and nutri-
tional potential. For instance, wheat Gpc-B1 (Grain protein 
content-B1) encodes a NAC protein NAM-B1, with acceler-
ated senescence in flag leaves. NAM-B1 is closely related to 
Arabidopsis ANAC025, ANAC018, and ANAC056 proteins. 
At the grain filling stage, NAM-B1 (Gpc-B1) mediates nutri-
ent redistribution from flag leaves to ears and accelerates 
senescence (Uauy et al. 2006). RNA interference (RNAi) 
mediated knockdown of NAM-B1 resulted in senescence 
delay, leading to lower nutritional and protein contents in 
the grain but increased nutritional contents and residual N 
in the flag leaf. Similarly, HvNAM-1 and HvNAM-2 genes, 
(Gpc-B1 homologs) were identified in barley (Hordeum 
vulgare) (Uauy et al. 2006). Spikelet initiation and growth, 
along with leaf senescence subsequent to floral transition, 
were influenced by barley GPC locus (Lacerenza et al. 2010; 
Parrott et al. 2012). The near-isogenic line with high GPC 
expression exhibited faster development and earlier flower-
ing. (Lacerenza et al. 2010). Additionally, several genes were 
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up-regulated in the senescing near-isogenic barley line, and 
hence could be involved in senescence regulation (Jukanti 
and Fischer 2008; Jukanti et al. 2008). These findings signify 
that NAM TFs are necessary for nutrient distribution not just 
in wheat but in other cereal crops as well.

Sorghum bicolor is extensively grown for food, forage, 
sugar, and biomass. The sorghum Dry Stalk (D) locus con-
tains NAC TF SbNAC074a, and co-localizes with sugar 
yield-related QTL (Xia et al. 2018). SbNAC074a is associ-
ated with a premature stop codon that disrupts the NAC 
domain in the recessive parent (dd) and is responsible for 
alterations in the biomass. Thus, the near-isogenic lines 
(NILs) of Green midrib (dd) displayed decreased stalk lignin 
contents but increased soluble sugar levels and grain yields 
under normal field situations. (Xia et al. 2018).

An important yield related NAC gene example is Pod 
shattering resistance by SHAT1-5, (SHATTERING1-5). 
SHAT1-5 from soybean which causes fiber cap cell sec-
ondary walls thickening when they are over-expressed at 
15-fold, thereby causing disruption of an upstream repressor 
(Dong et al. 2014). The critical cellular function of the shat-
tering-resistant feature exists is the excess of lignification of 
fiber cap cells while the abscission layer is unaltered in the 
pod ventral suture. The subsequent loss of seed dispersal 
is a crucial agronomical trait that is a keystone feature in 
crop cultivation. The tissue development and differentiation 
control by NAC family TFs are therefore important factors 
that remain underexplored though they hold potential for 
improving future crops.

Lateral root development regulation by NACs

Lateral root formation is a vital root developmental feature 
related to the phenotypic adaptation to salinity and drought 
stress. NAC TFs have been found to be directly linked to 
lateral root initiation (Fig.  8), with AtNAC2 being per-
haps the best example of this (He et al. 2005). AtNAC2 is 

preferentially expressed at high levels in roots and flowers. 
Notably, AtNAC2 expression is up-regulated in ethylene and 
auxin overexpressing mutants when exposed to salt stress 
(He et al. 2005). Under salt stress and heavy metal stress, lat-
eral root development is promoted, while taproot growth is 
inhibited to reduce stress effects (Bhati et al. 2016; He et al. 
2005). However, salt induction of AtNAC2 expression was 
not linked to the ABA signaling pathway (He et al. 2005).

AtNAC1 is also well known for its involvement in lateral 
root development, so its closest homolog (MtNAC1) was 
analyzed to determine its role in the lateral root formation 
in M. truncatula (D’haeseleer et al. 2011). It was found that 
MtNAC1 expressed a different pattern in response to auxin 
than did AtNAC1. Plants with MtNAC1 expression displayed 
no changes in the lateral root number, whereas the nodule 
number was reduced due to miR164 over-expression. The 
NAC1 regulation by miRNA is not limited to M. trunca-
tula. Maize (Zea mays) ZmNAC1 (TC258020) expression is 
regulated by miR164 and thus influences the development 
of lateral roots in maize inbred lines, 87-1 and Zong3 (Li 
et al. 2012). Zong3 inbred line showed a 1.8-fold higher 
expression level of ZmNAC1 in its roots than did the 87-1 
line. Additionally, Zong3 inbred lines showed higher lateral 
root density than 87-1. Over-expression of ZmNAC1 in trans-
genic Arabidopsis had showed enhanced lateral root growth 
compared to their WT (Li et al. 2012). Higher expression of 
mature and miR164 precursors (trans-element) was observed 
in 87-1 than in Zong3, which is opposite to ZmNAC1 expres-
sion patterns, thereby contributing to differences in lateral 
root phenotype (Li et al. 2012).

Increase in lateral root number was reported in Arabi-
dopsis, when they are over-expressed with the soybean 
GmNAC004 gene. Basal expression levels in the GmNAC004 
homolog (ANAC017) were induced in roots, leaves, and 
flowers by water deficit stress. The GmNAC004 gene works 
upstream of the key auxin regulators and increases the lateral 
root development in Arabidopsis through the auxin signaling 

Fig. 8  Pictorial representation 
of different NAC roles associ-
ated with lateral root develop-
ment and yield related traits
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pathway (Quach et al. 2014). GmNAC20, another soybean 
NAC TF, was induced to varying levels in response to plant 
hormones and abiotic stresses (salt and frost). Transcripts 
of GmNAC20 were more abundant in cotyledons and roots. 
Over-expression of GmNAC20 promoted the formation of 
lateral roots in transgenic Arabidopsis plants by altering 
genes related to auxin signaling (Hao et al. 2011). Simi-
larly, over-expression of GmNAC109 (ATAF1 homolog) 
increased the formation of lateral roots in transgenic Arabi-
dopsis plants by upregulating DREB1A, DREB2A, RD29A, 
COR15A, AREB1 (Abscisic acid-responsive element-bind-
ing protein 1) and AREB2 genes (Yang et al. 2019). The 
GmNAC109-overexpressing transgenic plants showed supe-
rior salt and drought tolerance than did WT Col-0 plants. 
ABA-responsive genes ABI1 (ABA insensitive 1) and ABI5 
(ABA insensitive 5) were up-regulated in transformed Arabi-
dopsis lines and were found hypersensitive to ABA (Yang 
et al. 2019). Downstream gene Auxin-induced in root cul-
tures 3 (AIR3) expression was increased, whereas Auxin 
response factor 2 (ARF2) showed reduced expression in 
these transformed lines and helped to regulate the formation 
of hairy root via the auxin signaling pathway (Yang et al. 
2019). In summary, these findings laid the foundation for 
the development of soybean lines with improved tolerance 
to abiotic stresses via genetic modification.

ROS signaling, leaf senescence, and programmed 
cell death

Reactive oxygen species (ROS) and oxides such as  H2O2 
serve as important signal mediators that triggers plant 
responses against various biotic and abiotic stresses, includ-
ing heavy metal stress (Bhattacharjee 2005; Davletova 
et al. 2005; Petrov et al. 2015). ROS signaling is a criti-
cal component of senescence and programmed cell death 
(PCD). Leaf senescence is necessary for the translocation 
of nutrients to other plant parts such as developing tissues 
and storage organs (Lim et al. 2007). Some of the NAC 
family genes reported to be linked with leaf senescence in 
various plants include AtNAP, NTL4 in Arabidopsis (Guo 
and Gan 2006; Lee et al. 2012) and MtNAC969 (de Zéli-
court et al. 2012) in M. truncatula. Additionally, several 
other reports have emphasized the involvement of NAC 
proteins in leaf senescence in crops (Fig. 9). These include 
SoNAP in sugarcane (Carrillo-Bermejo et al. 2020), GhNAP 
in cotton (Fan et al. 2015), OsNAC106 in rice (Sakuraba 
et al. 2015), Os07g37920 in rice, and wheat GPC (Dis-
telfeld et al. 2012, 2014). Podzimska-Sroka et al. (2015) 
and Kim et al. (2016) have extensively reviewed the role 
of NAC proteins in leaf senescence and identified various 
NAC-centered senescence-related gene regulatory networks 
(GRNs). Pimenta et al. (2016) reported GmNAC81 mediated 
age-dependent senescence by endoplasmic reticulum (ER) 
stress-induced PCD through GmNAC81/VPE (vacuolar 

Fig. 9  Diagram showing senescence-related NAC regulation and 
associated phenotypic response. Blue arrows indicate up-regula-
tion; red arrows indicate down-regulation. VPE vacuolar processing 
enzyme, RBCS rubisco small subunit gene, SAG senescence-asso-

ciated gene, Pao pheide a oxygenase; NYC non-yellow Coloring1; 
NCED nine-cis-epoxycarotenoid dioxygenase3, GDH glutamate 
dehydrogenase, GS1 glutamine synthetase
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processing enzyme) regulatory circuit. In barley, HvNAC005 
positively controls early senescence and causes stunting and 
delay in developmental processes. HvNAC005 binding to 
cis-elements of putative target genes caused up-regulation 
of several genes related to secondary metabolism and hor-
mone metabolism, including those related to development, 
stress, and transport (Christiansen et al. 2016). Therefore, 
targeting HvNAC005 in future attempts, to fine-tune gene 
expression related to the senescence process in barley, would 
be an obvious strategy for improving crop yields (Christian-
sen et al. 2016). Chlorophyll degradation and compromised 
photosynthetic efficiency are typical during leaf senescence, 
allowing embryos to bleach, buds to break, and fruit to ripen. 
In Arabidopsis, ANAC046 has been identified to regulate the 
expression of Chlorophyll catabolic genes, namely, NON-
YELLOW COLORING1, STAY -GREEN1 (SGR1), SGR2, 
and PHEOPHORBIDE a OXYGENASE (Oda-Yamamiz 
et al. 2016). ANAC046 overexpressing transgenic Arabi-
dopsis plants showed an early-senescence phenotype and 
reduced chlorophyll contents compared to WT plants. This 
revealed that both senescence-associated genes and Chloro-
phyll catabolic genes were positively regulated by ANAC046 
(Oda-Yamamiz et al. 2016).

The r ice NAC gene,  OsY37  (Oryza sativa 
Yellow37/ONAC011) accelerated heading time and promoted 
senescence during the terminal phase (Mannai et al. 2017). 
OsY37 over-expression displayed early heading and preco-
cious senescence in rice flag leaves, whereas knockdown 
of OsY37 expression resulted in delayed heading time and 
leaf senescence, along with higher chlorophyll accumula-
tion during the vegetative stage (Mannai et al. 2017). Simi-
larly, OsNAC2 is involved in promoting leaf senescence via 
ABA biosynthesis (Mao et al. 2017). Over-expression of 
OsNAC2 resulted in up-regulation of OsSGR and OsNYC3 
genes, which are responsible for chlorophyll degradation, 
and hence, in an accelerated leaf senescence. Interestingly, 
OsNAC2 is up-regulated by a lower ABA but down-regu-
lated by higher ABA levels, showing that reduced expres-
sion of OsNAC2 resulted in 10% increased grain yield in 
knockdown lines (Mao et al. 2017). Foxtail millet (Setaria 
italica) is another crucial food, fodder, and potential energy 
crop, but little is known about the functional roles of the 
senescence-related NAC genes of this crop. Foxtail millet 
NAC1 (SiNAC1), an ortholog of Arabidopsis NAP (NAC-
like, ACTIVATED BY AP3/PI), is involved in promoting 
natural and dark-induced leaf senescence by upregulating the 
NCED3 gene related to ABA biosynthesis (Ren et al. 2018).

Programmed cell death (PCD) is an inherently encoded, 
positively controlled cellular suicide pathway that is required 
for the growth and survival of life forms under a compro-
mised environment. In plants, PCD occurs during stress 
responses and is also involved in regular plant development. 
Under environmental stress, cells, tissues, or even entire 

organs are sacrificed to enhance the survival probabilities 
of the whole plant (Gadjev et al. 2008). Two NAC genes, 
ANAC087 and ANAC046 have been reported to control the 
expression of cell death-related genes for inducing ectopic 
PCD in Arabidopsis columella root cap cells (Huysmans 
et al. 2018). ANAC087 regulates chromatin (nuclear) deg-
radation via the nuclease BFN1 in lateral root caps. How-
ever, the genesis of cell death regulation in root caps was 
linked to both ANAC087 and ANAC046 in the course of its 
fall from the root tip (Huysmans et al. 2018). According 
to Yang et al. (2015), the XND1/ANAC014 gene regulated 
SCW biosynthesis in Arabidopsis via PCD in xylem vessels, 
whereas PvNAC1 and PvNAC2 caused leaf senescence in 
annual plant species.

The findings summarized above show that NAC TFs play 
crucial roles in ROS signaling, leaf senescence, and PCD 
(Fig. 9). These reports involving various plant species have 
shed light on the application of NAC genes to improving 
plant stress responses.

Conclusions and future prospects

Understanding the diverse mechanisms involved in stress 
adaptation in plants is the first step in designing suitable 
future-ready crops. In particular, TFs are the first line master 
regulators that work upstream of the gene sets responsible 
for the commencement of multi-omics shifts. This review 
highlights the NAC genes involved in the primary and sec-
ondary phases of stress adaptive responses in plants (Fig. 1). 
Various functional genomics approaches employed by these 
genes in model plants proved quite successful. Potentially, 
NAC genes could be great candidates for targeted engineer-
ing to develop resistance across various aspects of stress 
coping mechanisms, as discussed above (Table 2; Figs. 5, 
6, 7, 8, 9). There remain several challenges, including the 
phylogenetic classification of NAC members. The C-ter-
minus complexity and possible functional redundancy are 
both challenges to be overcome but both offer opportuni-
ties for exploitation. Before NAC related approaches can 
be integrated into breeding programs, their functional 
validation must be undertaken. Modern multigene/protein 
targeting approaches such as CRISPR-Cas9 and synthetic 
microProteins could help rule out the challenges of func-
tional redundancy by identifying the NAC members with 
desirable functions. The growing threats of climate change-
induced drought and high-temperature stresses increase the 
importance of identifying the specific NAC genes that can 
be used to construct stress-tolerant crops. It may also be 
possible to design and commercialize other transgenic plants 
that overexpress NAC genes with different stress tolerance 
abilities, though there have been no such reports so far. In 
summary, there remains great potential for the use of NAC 
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genes as a biotechnological tool (as mentioned in Table 2) 
in years to come.
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