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A B S T R A C T   

Ecosystem Services (ESs) are bundles of natural processes and functions that are essential for human well-being, 
subsistence, and livelihoods. The ‘Green Revolution’ (GR) has substantial impact on the agricultural landscape 
and ESs in India. However, the effects of GR on ESs have not been adequately documented and analyzed. This 
leads to the main hypothesis of this work – ‘the incremental trend of ESs in India is mainly prompted by GR led 
agricultural innovations that took place during 1960 - 1970’. The analysis was carried out through five successive 
steps. First, the spatiotemporal Ecosystem Service Values (ESVs) in Billion US$ for 1985, 1995, and 2005 were 
estimated using several value transfer approaches. Second, the sensitivity and elasticity of different ESs to land 
conversion were carried out using coefficient of sensitivity and coefficient of elasticity. Third, the Geographically 
Weighted Regression model was performed using five explanatory factors, i.e., total crop area, crop production, 
crop yield, net irrigated area, and cropping intensity, to explore the cumulative and individual effects of these 
driving factors on ESVs. Fourth, Multi-Layer Perceptron based Artificial Neural Network was employed to esti
mate the normalized importance of these explanatory factors. Fifth, simple and multiple linear regression 
modeling was done to assess the linear associations between the driving factors and the ESs. During the 
observation periods, cropland, forestland and water bodies contributed to 80%–90% of ESVs, followed by 
grassland, mangrove, wetland and urban built-up. In all three evaluation years, the highest estimated ESVs 
among the nine ES categories was provided by water regulation, followed by soil formation and soil-water 
retention, biodiversity maintenance, waste treatment, climate regulation, and greenhouse gas regulation. 
Among the five explanatory factors, total crop area, crop production, and net irrigated area showed strong 
positive associations with ESVs, while cropping intensity exhibited a negative association. Therefore, the study 
reveals a strong association between GR led agricultural expansion and ESVs in India. This study suggests that 
there should be an urgent need for formulation of rigorous ecosystem management strategies and policies to 
preserve ecological integrity and flow of uninterrupted ESs and to sustain human well-being.   
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1. Introduction 

Ecosystem Services (ESs) refer to benefits that humans freely gain 
from natural environment and ecosystems, and these add to the human 
well-being (Fisher et al., 2009; Costanza et al., 1997; Braat and Groot, 
2012; MEA, 2005). Whereas the term ecosystem function denotes a 
bundle of ecological processes operating within an ecosystem that may 
or may not contribute to human well-being (Odum, 1956; Braat and 
Groot, 2012). Ecosystem Service Values (ESVs) are the values assigned 
to goods and services derived from ecological processes and can be used 

to assess the impact of anthropogenic activities on different ecosystems 
(e.g., MEA, 2005; Adekola et al., 2015). The estimation of ESVs aims to 
comprehensively appraise environmental-human development in
teractions to enhance sustainable natural resource management (Braat 
and de Groot, 2012; Potschin and Haines-Young, 2013; Pandeya et al., 
2016; Sannigrahi et al., 2020a; Adekola et al., 2015). The focus on ESs 
has grown in importance as it can help improve cost-benefit analyses by 
incorporating both negative and positive effects of human development 
activities, such as Land Use and Land Cover (LULC) change, on diverse 
ecosystems (Sannigrahi et al., 2020b; Wang et al., 2018, 2019, Zhang 

et al., 2018, 2019; Yi et al., 2017). 
In India, agricultural ecosystems provide enormous valuable goods 

and services that are essential for human well-being and livelihoods 
(Power, 2010; Swinton et al., 2007). Through the introduction of 
modern agricultural technologies, including high yielding variety seeds, 
irrigation facilities, farm machinery, chemical fertilizers and plant pro
tection measures, the ‘Green Revolution’ (GR) has helped farmers 
become financially stable by increasing their farm production (David 
and Otsuka, 1994). The GR has not only raised many people out of 
deprivation but has also increased economic growth and prevented 
many forested areas, wetlands, and other fragile ecosystems from being 
converted into agricultural land (Spielman and Pandya-Lorch, 2010). As 
a result of the GR, the entire cropping system in India changed during 
1967–1977. This led to a tripling of agricultural production from 1965 
to 1966 to 1998–1999. At the same time, the cultivated land area for 
food grain crops increased from 115.1 × 106 in 1965–1966 to 127.84 ×
106 in 1990–1991 (Singh, 2000), which has positively impacted India’s 
economy and changed the way of life in rural areas (David and Otsuka, 
1994). 

The GR led cultivation system has transformed India from a food- 
deficient country to one of the leading agricultural countries in the 
world (Pingali, 2012). However, the impact of the GR on multiple ESs in 
India has not been adequately documented and analyzed. Few studies 
have focused on creating agricultural-based sustainability indicators 
(Rao et al., 2018). Additionally, no prior study has attempted to analyze 
ESVs dynamics in a predominantly agricultural country, like India, 
where the GR has significantly changed the country’s production. To fill 
these knowledge gaps, this paper quantified the impact that the suc
cessful agricultural expansion has had on the delivery of critical ESs in 
India. Specifically, India’s changes in ESVs (Billion US$) during 30 years 
from 1985 to 2005 were estimated using multiple value transfer ap
proaches (Costanza et al., 1997, 2014; de Groot et al., 2012; Xie et al., 
2008). The specific objectives of this study were to (1) estimate the ESVs 
of different ecoregions of India, and (2) assess the impact of agricultural 
expansion on the nation’s ESVs. 

2. Materials and methods 

2.1. Calculation of LULC dynamics 

Time series LULC data were used to estimate per unit ESVs of each 
ecosystem type for the three reference years. The LULC data were 
derived from the study of Roy et al. (2015), which has produced detailed 
LULC information for India with the finest spatial resolution available 
for a national database and a temporal interval of 10 years (1985, 1995 
and 2005). Overall classification accuracy of 94.4% was achieved for all 
LULC categories for 2005 (evaluated using ~12606 sample points). In 
this study, the original 17 LULC classes were reclassified into eight major 
biomes, i.e., forest land, cropland, urban built-up, grassland, fallow 
land, water bodies, mangrove and wetland, that correlated with some of 
Costanza et al. (2014) equivalent biomes (Table 1). Since some mis
calculations (only in 2005 LULC) were detected for the Sundarbans 
mangrove region, a further adjustment was made in this study using the 
author’s estimates (Sannigrahi et al., 2019a). Afterward, the spatio
temporal dynamics and conversion of LULC categories were quantified 
for two decadal periods (i.e., 1985–1995 and 1995–2005), and the 
entire 20-year period (i.e., 1985–2005). The following analyses were 
performed corresponding to these three periods. The reason for adding 
the whole period is that it can provide complementary information on 
the overall long-term trend that may not be directly revealed by the two 
sub-periods. The spatiotemporal LULC change dynamics were assessed 
as follows: 

CP LULCk =
LULCend − LULCstart

LULCstart
× 100 (1)  

Abbreviation description 

ANN Artificial Neural Network 
CI Cropping Intensity 
CP Crop Production 
CY Crop Yield 
ESs Ecosystem Services 
ESVs Ecosystem Service Values 
GR Green Revolution 
GWR Geographically Weighted Regression 
LULC Land Use and Land Cover 
LCI LULC change intensity 
NIA Net Irrigated Area 
TCA Total Crop Area  

Table 1 
The original and modified land use/land cover classification in India.  

Final 
code 

Modified 
LULC 

Value Original LULC Value 

1 Forestland 1,4,15,16,19 Deciduous Broadleaf Forest 
(DBF) 

1    

Mixed Forest (MF) 4    
Evergreen Broadleaf Forest 
(EBF) 

15    

Deciduous Needleleaf 
Forest (DNF) 

16    

Evergreen Needleleaf 
Forest (ENF) 

19 

2 Cropland 2,10,11 Cropland 2    
Plantations 10    
Aquaculture 11 

3 Urban built- 
up 

3 Built-up Land 3 

4 Grassland 5,14 Shrubland 5    
Grassland 14 

5 Fallow land 6,7,8,13,18 Barren Land 6    
Fallow Land 7    
Wasteland 8    
Salt Pan 13    
Snow & Ice 18 

6 Waterbodies 9 Water bodies 9 
7 Mangrove 12 Mangrove Forest 12 
8 Wetland 17 Permanent Wetlands 17  
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where CP LULCk is the change in the area of LULC type k; LULCend and 
LULCstart are the area of LULC type k at the past and current years, 
respectively. A transpose matrix was developed to quantify spatiotem
poral changes of different LULC categories. The LULC categories for the 
start and end years were assigned a specific code to calculate the area 
transferred among classes between the two reference years. 

2.2. Calculation of ecosystem service value (ESV) 

The benefit transfer approach by Costanza et al. (1997, 2014) was 
employed in this study to estimate ESVs of each LULC category as 
follows: 

ESVk =
∑

f
Ak × VCkf (2)  

ESVf =
∑

k
Ak × VCkf (3)  

ESV =
∑

f

∑

k
Ak × VCkf (4)  

where ESVk is ESVs of each LULC categoryk; ESVf is ESVs of each 
ecosystem function f , and ESV indicates the total estimated ESVs; 
Akrefers to the area (ha) of each LULC typek; VCkf is the equivalent value 

coefficient (US $ ha− 1 year− 1) of each LULC type k and ecosystem 
function f , respectively (Richmond et al., 2007; Kindu et al., 2016; 
Sannigrahi et al., 2018, 2019b). The changes in ESVs were calculated as 
follows: 

ΔESV =
ESVend − ESVstart

ESVstart
×

1
t
× 100 (5)  

where ΔESVrefers to the change of ESVs of a particular LULC type 
k;ESVend and ESVstart exhibit ESVs of the past and current years, 
respectively, and t represents the time period. 

Additionally, the Equivalent Value factor approach proposed by Xie 
et al. (2008) was used to estimate the ESVs of the key ESs of India 
(Tables 2 and 3). A preliminary study was conducted to select the most 
suitable ESs for Indian ecosystems. Hence, to address the uncertainties 
and biases involved in the valuation process, multiple valuation 
methods (Costanza et al., 1997; Xie et al., 2008; De Groot et al., 2012) 
were adopted in this study. Thereafter, the selected ESs were grouped 
and categorized to obtain the biome/LULC specific ESVs of India. Ulti
mately, a total of nine ESs were selected and grouped in four broad 
categories as follows: food production and production of raw materials 
are included in the provisioning services; greenhouse gas regulation, 
climate regulation, water regulation, and waste treatment are included 
in the regulating services; soil formation, conservation and retention, and 
biodiversity maintenance are included in the supporting services; 

Table 2 
Equivalent weight of different ecosystem services per area (ha).  

Ecosystem Service Functions Ecosystem Service Value coefficient for different biomes 

Forest land Cropland Urban built- up Grassland Fallow land Water bodies Wetlands 

C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 

Gas regulation 0 4.32 0 0.72 0 0 0.13 1.5 0 0.06 0 0.51 2.46 2.41 
Climate regulation 2.65 4.07 0 0.97 0 0 0 1.56 0 0.13 0 2.06 0.08 13.55 
Water regulation 0.09 4.09 0 0.77 0 0 0.06 1.52 0 0.07 0.14 18.77 0.35 13.44 
Soil formation and retention 8.65 4.02 0 1.47 0 0 0.56 2.24 0 0.17 0 0.41 0 1.99 
Waste treatment 1.61 1.72 0 1.39 0 0 1.61 1.32 0 0.26 12.31 14.85 0.08 14.4 
Biodiversity maintenance 0.33 4.51 0.89 1.02 0 0 0.89 1.87 0 0.4 0 3.43 5.63 3.69 
Food production 0.8 0.33 1 1 0 0 1.24 0.43 0 0.02 0.76 0.53 4.74 0.36 
Raw material provision 2.56 2.98 0 0.39 0 0 0 0.36 0 0.04 0 0.35 1.96 0.24 
Recreation and cultural, and aesthetics 1.26 2.08 0 0.17 0 0 0.04 0.87 0 0.24 4.26 4.44 26.94 4.69 
Total 17.95 28.12 1.7 7.9 0 0 4.53 11.67 0 1.39 17.47 45.35 42.24 54.77 

C97b = Costanza et al. (1997), X08 = Xie et al. (2008). 

Table 3 
ESV (US$ ha− 1 year− 1) per area (ha) in India, according to five units of valuation.  

Ecosystem Service 
Functions 

Forest land Cropland Urban built- 
up 

Grassland Fallow land Water Wetlands 

C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 C97b X08 

Gas regulation 0.00 245.79 0.00 40.97 0.00 0.00 7.40 85.34 0.00 3.41 0.00 29.02 139.96 137.12 
Climate regulation 150.77 231.57 0.00 55.19 0.00 0.00 0.00 88.76 0.00 7.40 0.00 117.21 4.55 770.94 
Water regulation 5.12 232.70 0.00 43.81 0.00 0.00 3.41 86.48 0.00 3.98 7.97 1067.94 19.91 764.68 
Soil formation and 

retention 
492.15 228.72 0.00 83.64 0.00 0.00 31.86 127.45 0.00 9.67 0.00 23.33 0.00 113.22 

Waste treatment 91.60 97.86 0.00 79.09 0.00 0.00 91.60 75.10 0.00 14.79 700.39 844.91 4.55 819.30 
Biodiversity 

Maintenance 
18.78 256.60 50.64 58.03 0.00 0.00 50.64 106.40 0.00 22.76 0.00 195.15 320.32 209.95 

Food production 45.52 18.78 56.90 56.90 0.00 0.00 70.55 24.47 0.00 1.14 43.24 30.15 269.69 20.48 
Raw material Provision 145.65 169.55 0.00 22.19 0.00 0.00 0.00 20.48 0.00 2.28 0.00 19.91 111.52 13.66 
Recreation and cultural, 

and aesthetics 
71.69 118.34 0.00 9.67 0.00 0.00 2.28 49.50 0.00 13.66 242.38 252.62 1532.78 266.84 

Total 1021.3 1599.92 96.72 449.48 0 0 257.74 663.98 0 79.09 993.97 2580.23 2403.29 3116.19 
Costanza (2014) 1997 

Unit value (C97a) 
2769 126  0  321 0  11727 20404 

Costanza (2014) 2011 
Unit value (C11) 

5382 5567  6661  ‘4166 0  12512 140174 

de Groot (2012) 2007 
Unit value (D12) 

5264 5567a  0  2871 0  4267 25682  

a Chosen Costanza et al. (2011) unit values for cropland. C97b = Costanza et al. (1997), X08 = Xie et al. (2008). 
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aesthetic, cultural and recreation are included in the cultural services. 
The food production Equivalent Value for cropland ecoregions was first 
estimated using the valuation approaches from Costanza et al. (1997) 
and Xie et al. (2008). Consequently, the equivalent values of the other 
ESs were retrieved from the cropland equivalent factor. In the cropland 
valuation process, Liu et al. (2012) and Xie et al. (2008) have proposed 
that the projected food production service could be 1/7th of the real 
food production. This approximation was used to estimate equivalent 
value for multiple key ESs in India. Information on crop production, crop 

price, crop yield, net irrigated area, and cropping intensity of the major 
crops of India were extracted from Directorate of Economics and Sta
tistics, Department of Agriculture, Cooperation, and Farmers Welfare, 
Govt. of India,1 Open Government Data Platform, Govt. of India,2 and 

Fig. 1. The spatial distribution of different land use/land cover categories in 2005 in India.  

1 http://eands.dacnet.nic.in/latest_20011.htm.  
2 https://data.gov.in. 
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Ministry of Statistics and Programme Implementation.3 The average 
food production and crop price in India during 1985–2005 were valued 
as 1495.21 kg ha− 1 and 0.27 US$kg− 1 (1 US$ = 44.3 INR in 2005), 
respectively, and subsequently, the ESV of cropland food production 
service was estimated (1 × 1495.21 × 0.266/7 US$/ha). 

2.3. Elasticity of ESV to LULC change 

The coefficient of elasticity (CES) measures the sensitivity of the 
outcome variable to the change of a explanatory variable (Song and 
Deng, 2017). The specified weights of resistance and resilience depend 
on the probability of external forces (land use modification and associ
ated alternation) surpassing the self-adjustment capability of any given 
ecosystem (Liu et al., 2017a,b). In this study, the spatiotemporal elas
ticity of ESVs to LULC changes is evaluated to identify the most sensitive 
and disturbing ecosystems of the country. This is estimated as follows: 

CES =

((
ESVj − ESVi

)

ESVi
× 100

)/

LCI (6)  

LCI =

∑n

k=1

⃒
⃒
(
LULCjk − LULCik

)⃒
⃒

∑n

k=1
Ak

×
1
t
× 100 (7)  

where CES is the coefficient of elasticity; ESVj and ESVi are the ESVs of 
the current and past years, respectively; LCI is the LULC change in
tensity; LULCjk and LULCik is the area of land use type k at the current 
and past years, respectively; t is the length of the research period; Ak is 
the area of land use type k. 

2.4. Estimating relationship between ESV and cropping pattern 

2.4.1. Geographically weighted regression (GWR) 
The geographically weighted regression (GWR) approach, an 

extension of conventional ordinary least square method, was used in this 
study for its capability to capture the spatial variation that helps assess 
the spatial association, spatial non-stationarity, and coefficient of 
determination (local R2) between explanatory and response variables 
(Fotheringham et al., 2002). We fitted the GWR model to show how 
spatial variation of cropping pattern determines the ESV pattern. 
Therefore, the spatial weight was described based on its proximity to the 
location of observation (Su et al., 2014). However, the weight estimate 
of GWR is always sensitive to the selection of the kernel size and 
bandwidth parameterization. In addition, the observation with higher 
proximity to the location of neighbouring features exhibits more 

significant influence than that of the distant elements on parameter 
estimation (Fotheringham et al., 2002; Su et al., 2014). Additionally, the 
improper (coarser) parameterization of bandwidth and kernel selection 
would generate a global relationship and spatial stationarity, while a 
local estimate of spatial association and spatial non-stationarity is pro
duced when bandwidth was set too small (Zou et al., 2016; Su et al., 
2014; Sannigrahi et al., 2020c). In this study, an adaptive kernel type 
was chosen for model parameterization (Mollalo et al., 2020; Song et al., 
2020). The basic GWR equation is: 

y(ui, vi)= β0(ui, vi) + β1(ui, vi)x + ε(ui, vi) (8)  

where y is the dependent variable (ESVs); β is the intercept; β1 is the 
coefficient; vi, ui are the coordinates of sample i; x is the independent 
variable, including Total Crop Area (TCA), Crop Production (CP), Crop 
Yield (CY), Net Irrigated Area (NIA), and Cropping Intensity (CI); εis the 
error. 

The required weight matrix can be retrieved as follows: 

wij = exp

(
− D2

ij

B2

)

(9)  

where wijis the weight of sample j for samplei; B is the kernel bandwidth; 
Dijis the distance between the samples i andj. The bandwidth specifica
tion generally controls the degree of smoothness of local regression es
timates (Fang et al., 2015). If the specified distance exceeds the specified 
bandwidth, the spatially varying weight reduced to zero. Therefore, the 
cross-validation method, Akaike Information Criterion, was performed 
for the selection of optimal bandwidth by minimizing the Akaike In
formation Criterion value (Fang et al., 2015). 

2.4.2. Artificial Neural Network (ANN) for estimating relative effects of 
cropping factors on ESVs 

Artificial Neural Network (ANN) was used as a machine learning 
algorithm that enables a system to predict human learning processes 
through establishing and strengthening of the internal self-adjustment 
linkage system (Were et al., 2015; Wen et al., 2014; Qiang and Lam, 
2015)). The ANN algorithm can efficiently predict, classify, make a 
decision, and solve new problems through the trained parameters when 
the information is limited. An ANN architecture is comprised of an input 
layer, a set of hidden nodes, and an output layer, which are connected by 
a number of neurons (Chakraborti et al., 2018). In this study, we have 
adopted multilayer perceptron neural networks with a backpropagation 
algorithm to predict and simulate the ESVs pattern based on the afore
mentioned cropping factors. In this network, 30 hidden layers were 
chosen to generate optimum weights for predicting ESVs, wherein 70%, 
15%, and 15% samples were approximated for training, testing, and 
validating the model estimates. Additionally, we have performed simple 
and multiple linear regression analysis to examine the single and joint 

Table 4 
Summary statistics of temporal LULC dynamics from 1985 to 2005.  

LULC 1985  1995  2005  1985–1995 1995–2005 1985–2005 

Area (ha) % Area (ha) % Area (ha) % Changes 
(ha) 

Changes 
(%) 

Changes 
(ha) 

Changes 
(%) 

Changes 
(ha) 

Changes 
(%) 

Forest land 75933445 23.02 74118935 22.47 72495713 21.98 − 1814510 − 2.39 − 1607822 − 2.17 − 3422332 − 4.51 
Cropland 164880992 50.00 164532601 49.89 170477103 51.69 − 348391 − 0.21 5944502 3.61 5596111 3.39 
Urban 

built-up 
3429106 1.04 4038952 1.22 4719281 1.43 609846 17.78 680329 16.84 1290175 37.62 

Grassland 23738211 7.20 23812022 7.22 24247304 7.35 73811 0.31 435282 1.83 509093 2.14 
Fallow 

land 
50049972 15.18 51004593 15.47 46200639 14.01 954621 1.91 − 4803954 − 9.42 − 3849333 − 7.69 

Water 
bodies 

11064694 3.36 11568986 3.51 10860343 3.29 504292 4.56 − 708643 − 6.13 − 204351 − 1.85 

Mangrove 380895 0.12 378669 0.11 403422 0.12 − 2226 − 0.58 9353 2.47 7127 1.87 
Wetlands 313315 0.10 335872 0.10 386825 0.12 22557 7.20 50953 15.17 73510 23.46 
Total 329790630 100.00 329790630 100.00 329790630 100.00        

3 http://www.mospi.gov.in. 
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effects of the explanatory factors on ESVs. 

3. Results and discussion 

3.1. LULC changes in India during 1985–2005 

The spatial distribution of different LULCs for 2005 is presented in 
Fig. 1. Cropland areas are mainly distributed along the Indo-Gangetic 
Plain (Uttar Pradesh, Bihar), Godavari (Maharashtra, Telangana, 

Andhra Pradesh, Chhattisgarh) Krishna (Karnataka, Telangana, Andhra 
Pradesh, Maharashtra) and Cauvery basins (Tamil Nadu, Karnataka, 
Kerala) and part of Narmada (Madhya Pradesh, Maharashtra), Tapi 
(Maharashtra, Madhya Pradesh, Gujarat), and Mahanadi basins 
(Chhattisgarh and Odisha) (Fig. 1). The highest proportion of forest 
cover is found in Central India, Eastern Himalayan region and part of 
Gujarat, and is scattered in Western Himalayan states (Uttarakhand and 
Himachal Pradesh). 

The conversions of LULC were reported for the three research pe
riods, i.e., 1985–1995, 1995–2005, and 1985–2005 (Fig. S1). Between 
1985 and 1995, the increasing trend of cropland areas at the expense of 
fallow land and forest land was documented predominantly in the 
western parts (Rajasthan, Gujarat) of India. The incentives for compre
hensive watershed management and sustainable irrigation management 
practices for this arid region had stimulated agricultural productivity, 
and hence the cultivated agricultural areas increased dramatically 
(Davidar et al., 2010). The destruction of evergreen pine and deciduous 
broadleaf forest areas, especially in the parts of Odisha, Eastern Hima
layan region, and over the Western Himalayan states, have also been 
documented in this period. These damages can be attributed to natural 
causes (landslide, wildfire, climatic anomalies) and human appropria
tions (deforestation, shifting cultivation, grazing, and human-made 
fire). In addition, the following activities are listed as being respon
sible for forest degradation in India: (1) extraction of fuelwood, forest 
residual, and biomass products including wooden furniture, and timber 
products; (2) livestock cultivation including cattle, dairy, and leather 
products; (3) villagers involving mining and quarrying activities; and (4) 
industrial set-up and development of nearby forest landscapes 
(Meiyappan et al., 2017). During 1995–2005, substantial areas of 
cropland were reclaimed from fallow land, especially in the western 
parts of the country (comprising the dry regions of Gujarat, Rajasthan), 
and from forested and grassland regions in the southern (Tamil Nadu) 
part of India (FSI, 2003). Additionally, the exponential growth of urban 
built-up areas is documented in this period. Research results have shown 
that during this period, significant areas of grassland were converted to 
forest cover in the Western Himalayan (Himachal Pradesh, Uttarakhand, 
Jammu, and Kashmir), Eastern Himalayan (Arunachal Pradesh, Assam, 
Meghalaya, Mizoram), Central (part of Madhya Pradesh), and 
South-Eastern (in a scattered way in Odisha) parts of India (Fig. S1). 
However, over the entire research periods (1985–2005), a net expansion 
of cropland and urban areas was documented at the expense of forest 
land, grassland, and fallow land, respectively (Fig. S1, Table 4). 

3.2. Impact of LULC on spatially explicit ESVs during 1985–2005 

Using the five unit values (Costanza et al., 1997a, Costanza et al., 
1997b, Costanza et al., 2014; de Groot, 2012, and Xie, 2008), the mean 
ESVs (Billion US$ year− 1) of India was estimated for 1985, 1995 and 
2005 (Fig. 2a and b). Forest and cropland ecosystems provided the 
maximum (200–400 Billion US$ Year − 1) ESVs for all three reference 
years, with the maximum share (30–50%). Grassland, wetland, and 
water bodies shared 5–15% of total ESVs. The magnitude of ESVs 
changes during the first period (1985–1995), and the second period 
(1995–2005) was found markedly different for most of the LULC cate
gories. This advocates the reason for performing a separate change 
analysis, considering the entire period (1985–2005), to add comple
mentary information to the two sub-periods instead of overlapping with 
them. Except for the first reference period (1985–1995), cropland ESVs 
have increased throughout the research period (Fig. 2c). The maximum 
increase was observed during 1995–2005, followed by the 1985–2005 
period. Whereas the forest ESVs has decreased substantially during the 
study period (Table. S1, S2). 

The coefficients of elasticity of ESVs to LULC changes are docu
mented for three different time periods, i.e., 1985–1995, 1995–2005, 
and 1985–2005 (Fig. 3). During 1985–1995, negative elasticities were 
documented for cropland, forestland, and mangrove eco-regions, 

Fig. 2. (a) The mean ESV (Billion US$ year) derived from the five unit values, 
(b) percentage contribution to total ESVs by seven LULC categories, and (c) 
changes in ESVs (Billion US$) during the research period (1985–2005). 
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indicating a negative impact of LULC changes on ESVs. During 
1985–1995, the highest negative elasticity was observed for the forest 
eco-region, indicating a negative impact of forest degradation and 
deforestation on the country-level natural capital formation (Fig. 3). The 
negative elasticity resulted from any unwanted changes reflects the 
decreasing status of a particular ecosystem, calling for special attention 
and consideration for the improvement of natural resource management 
and preservation (Song, 2018; Sannigrahi et al., 2018, 2019a). Consid
ering the last half (1995–2005) and the whole research period 
(1985–2005), the cropland eco-region exhibits moderate to high 

elasticity to LULC changes (Fig. 3). The outcomes reveal a cumulative 
impact of agricultural expansion on the total ESVs in India. The value of 
positive elasticity of cropland was found significantly lower than that of 
the negative elasticity of forest land. This indicates a higher capacity of 
natural forest ecosystems to produce green capital than any anthropo
genic inputs (Costanza et al., 1997, 2014). Water bodies exhibited the 
second largest negative elasticity of ESVs to the LULC changes, which is 
higher than the cropland elasticity. 

Fig. 3. Coefficient of elasticity of ESVs to LULC changes in India during 1985–1995, 1995–2005, and 1985–2005, respectively.  
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3.3. Impact of GR on changing ESV patterns in India 

During the research period (1985–2005), the total estimated ESVs 
have increased mainly due to a substantial expansion of cropland and 
wetland areas in India. Considering the total estimated ESVs in India, the 
cropland shares the major amount of mean ESVs (30–40%) during the 
observation period. This shows an enormous impact of agricultural 
productivity and subsequent food production on green economy of 
India. India has a predominantly agriculture-based economy, which 
contributes almost 20–50% to the total national Gross Domestic Product 
(GDP). However, the contribution of agriculture-based economies to the 
formation of national GDP gradually decreased, as it accounted for 39% 
in 1983 and only 24% in 2000–2001 (Mall et al., 2006). However, its 
contribution to the total employment generation during the same period 
reduced only slightly (63–57%) (Mall et al., 2006). While the global 
ESVs show a decremental trend (Costanza et al., 2014; Sannigrahi et al., 
2018), the total estimated ESVs of India show an incremental tendency. 
The fast-tracked expansion of cropland areas in India, particularly dur
ing the period of 1995–2005 had happened due to the following: (1) 
climatic favourability, normal to excess monsoon rainfall received dur
ing 1995 and 2005, as till now the national average of 40% of the total 
cropped area in India is under the coverage of major and minor irriga
tion programmes, but almost 60% of the cultivated land is still rainfed 
and depends on seasonal monsoon rainfall (Mall et al., 2006; Guiteras, 
2008; Roy et al., 2015). The two major cropping seasons of India, i.e., 
Kharif (June–September, monsoon or autumn crops) and Rabi (Octo
ber–November, winter crops), provide the major productions of food 
grains and oilseeds of the country. The increasing trend of net primary 
production of the country has also been documented during this period, 
aligned with the rainfall anomalies and resulting cropping patterns of 
India (Nayak et al., 2013); (2) Several major and minor irrigation pro
jects such as Indira Gandhi Canal System, Narmada Project and Accel
erated Irrigation Benefit Programme were initiated in this period for 
boosting the crop production and resulting in an increase of net irrigated 
area. Additionally, this initiative has significantly increased the total 
cropped area at the expense of fallow land and forest land, especially in 
the western parts of India (Roy et al., 2015, Fig. 4). These programmes 
collectively increased the national irrigation potential of 5.44 million 

hectares under various major/medium irrigation projects and also 
generated 0.45 million hectares of potential irrigation land under the 
multiple minor/small irrigation schemes up to 2009.4 Furthermore, the 
Ministry of Land Resource and the Ministry of Rural Development 
jointly adopted several area-specific watershed management pro
grammes: the ‘Drought Prone Areas Programme,’ the ‘Desert Develop
ment Programme,’ and the ‘Integrated Wasteland Development 
Programme’ to eradicate land degradation that successfully epitomizes 
the ecosystem as well as agricultural productivity5; (3) The area under 
plantation and aquaculture has increased substantially during the 
research periods (these LULC categories were merged into cropland 
types in this study, see Table 1), especially in Southern India (Kerala, 
Tamil Nadu), and Western Himalayan region is also responsible for 
increasing observed cropland area in India (Roy et al., 2015). A signif
icant amount of forest ESV (9–19 Billion US$ year− 1) was lost during this 
period. This can be attributed to the substantial decrease in forest cover, 
specifically in the Central and Eastern Himalayan part of India (Roy 
et al., 2015). Different anthropogenic activities (biomass collections, 
including fuelwood, fodder, and green leaves harvesting by local com
munities), mining (including coal, iron, and aluminium ores), extensive 
shifting cultivation (especially in Eastern Himalayan region), population 
pressure and associated demand for agricultural land, construction of 
major dams and reservoirs; extraction of raw materials (cutting, 
burning, grazing, and re-cutting), and natural degradation (erosion, 
aggradation, landslides, wildfires, drought, climate change etc.) are the 
major reasons for depleting forest resources in India (Ramachandran 
et al., 2018;Davidar et al., 2010; Munsi et al., 2010; ,; Giri et al., 2011; 
Reddy et al., 2013; Roy et al., 2015; Semwal et al., 2004). 

3.4. Impact of cropping factors on ESVs in India 

Fig. 5 shows the local estimates of GWR, which demonstrate the total 
explained variance and predictive power of the explanatory variables 
(TCA, CP, CY, NIA, and CI) that estimate and predict ESVs. Among the 
five explanatory variables, the TCA, CP, and NIA are highly associated 
with ESV compared to CY and CI for 1985, 1995, and 2005 (Fig. 5). In 
1985, 1995, the estimated ESV for Gujarat, Rajasthan, Haryana, 

Fig. 4. Temporal changes of total food grains, total crop area, and the net irrigated area in India during 1950–51 to 2005–06.  

4 http://www.archive.india.gov.in/sectors/water_resources/index.php?id 
=8.  

5 http://www.archive.india.gov.in/sectors/agriculture/index.php?id=7. 
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Fig. 5. The local GWR R2 approximation between the explanatory variables (total crop area, crop production, crop yield, net irrigated area, and cropping intensity) 
and ESVs. 
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Uttarakhand, and Uttar Pradesh were entirely dependent on TCA factors 
reflected by very high local R2 approximation. High to moderate local R2 

was observed in Punjab, Himachal Pradesh, Maharashtra, Karnataka, 
Kerala, Tamilnadu, Chhattisgarh, and Bihar. In 2005, a very high local 
R2 was documented for the Central part of the country due to the 
phenomenal increase in total crop area and resulting ESVs (Fig. 5). 
Additionally, in 1985 and 1995, this study found that the CI factor does 
not have a significant impact on ESVs; however, in 2005, the entire 
Eastern Himalayan states have produced a very low correlation between 
CI factor and ESV (Fig. 5). In addition, the CP factor has a notable impact 
on ESVs. The entire Indo-Gangetic Plain regions and the Eastern Hi
malayan states characterized by high to a very high local R2 approxi
mation for 1985, 1995, and 2005. Whereas, the Central, Western, and 
Northern states of India exhibit low to moderate association between CP 
and ESVs. Additionally, the CY factor shows a negligible to no coefficient 
of association with ESVs (Fig. 5). Considering the total effects, the 
Central (Madhya Pradesh, Chhattisgarh), Eastern (West Bengal, Odisha, 
Tripura, Mizoram, Manipur), and Southern (Andhra Pradesh, Tamil 
Nadu, Karnataka, Kerala, Telangana) states of India are earmarked by 
high to very high local R2 during the research periods. While inspecting 
the normalized importance and weights of each input derived from the 
ANN approximation, the TCA factor was found to be the most important 
to predict ESVs, followed by CP, CY, NIA, and CI, respectively (Fig. 6). 

The linear effects of each explanatory factor on different ESs were 
examined and presented in Fig. 7. For the greenhouse gas regulation 
service, the highest coefficient of determination value was observed for 
TCA, followed by CY, NIA, CP, and CI, respectively. The TCA factor has 
attributed the highest coefficient of determination value for the climate 
regulation service, followed by CP, CY, NIA, and CI. For water regula
tion, the coefficient of determination values was ranging from R2 = 0.59 
(TCA) to R2 = 0.002 (CI) during the observation period. Concerning the 
soil formation and retention service, the TCA factor has explained the 
maximum model variances with high R2 = 0.66 approximation, fol
lowed by NIA, CY, CP, and CI. For the waste treatment service, the 
highest R2 value was observed for TCA, followed by NIA, CP, CY, and CI. 
While accounting for the model performances between the biodiversity 
maintenance service and the explanatory factors, the TCA factor was 
able to explain the maximum model variances, followed by CY, NIA, CP, 
and CI. All the explanatory variables performed most accurately with the 
least unexplained bias and estimates for the food production service. The 
highest coefficient of determination was estimated for TCA, followed by 
NIA, CP, CY, and CI, respectively. For the raw material production ser
vice and recreation, culture, and aesthetic service, the percentage of 
model variances ranges from 44% (TCA) to 0.2% (CI) (Fig. 7). 

Step-wise multiple linear regression was performed to examine the 
individual and cumulative effects of the five explanatory variables on 

ESV (Table 5). A total of 15 pairs of models were constructed to identify 
the best pair of models for predicting ESVs. Among all models, model 1 
explained the maximum model variances (85%) and was found to pro
vide the best prediction of ESVs with the highest R2 = 0.85, followed by 
model 2 (R2 = 0.45), model 6 (R2 = 0.43), model 13 (R2 = 0.43), model 
3 (R2 = 0.24), model 10 (R2 = 0.19), model 11 (R2 = 0.14), model 14 
(R2 = 0.12). Among the explanatory factors, TCA (model 1) is exhibiting 
the most significant influence on ESVs. Model 9 (P = 0.24), model 12 (P 
= 0.14), and model 15 (P = 0.4) were found statistically insignificant in 
explaining corresponding model variances. This indicates that the 
explanatory factors used for the model construction do not have cu
mulative effects on ESVs, except TCA. Model 10 and model 15 exhibited 
negative correlations with ESVs (Table 5). 

The pairwise correlation matrix performed between the driving 
factors and ESVs is shown in Fig. 8. All the pairs exhibited statistically 
significant correlations except the CI factor. The regulating services are 
highly associated with the other services and produced statistically 
significant estimates at p ≤ 0.001. A negative association was observed 
between CY and the other factors, except CP. It can be seen in Fig. 9 that 
all the driving factors except CI have produced significant associations 
with the ESVs. This shows that almost all the explanatory factors that 
reflect the GR led cropping scenarios in India have strong positive effects 
on the formation of natural capital and ESs. After evaluating the indi
vidual effects of the driving factors on the total ESVs, the TCA factor has 
produced the highest coefficient of determination (R2) and least Root 
Mean Square of Error value, followed by the NIA, CP, and CY (NIA, CP, 
CY have produced negative associations with ESVs) (Fig. 10). While 
considering the cumulative effects of all the driving factors (except the 
CI factor) on multiple ESVs, the highest association was observed be
tween the food production service and the driving factors, followed by 
waste treatment, soil formation, and retention, water regulation, climate 
regulation, biodiversity management, greenhouse gas regulation, rec
reation, and raw material production services (Fig. 11). The strong 
positive association between the food production and cropping factors 
indicate that the GR led agrarian expansion had significantly improved 
the agricultural ESs of the country. 

3.5. Limitations and future scope 

The present study aims to provide evidence of ESVs change due to 
agricultural expansion led by the GR in India in a spatially explicit way 
with satellite data and quantification methods. Although this study has 
incorporated several valuation approaches and unit values to estimate 
the per unit ESVs for different key ecosystem services, still it needs to be 
acknowledged that some limitations exist in the quantification and 
valuation process as the cause-effect relationship examines in this study 
requires more socioeconomic data and more rigorous analysis, which is 
beyond the scope of this study and can be included in the future work. 
The direct benefit transfer method proposed by Costanza et al. (1997, 
2014) was based on the assumption of spatial homogeneity and invari
ability of unit values specified for an equivalent biome. The direct 
linkages of existing unit values to corresponding land units without 
considering the local and regional landscape variability and 
socio-ecological diversity may produce under- (or over-) estimates. 
Apart from this, equivalent value coefficients (Xie et al., 2008) were 
adopted for estimating the cropland equivalent factor, which was 
mainly calculated for the Chinese landscape. Since a country-level 
assessment was considered, it was assumed that the equivalent 
weights for the selected ESs would be spatially invariant. Additionally, 
not only the cropped area and crop production but several other factors, 
i.e., the changes of cropping structure, plantation types, landscape 
composition, and configuration, etc. can also be responsible for the 
changes in ESVs (Cai et al., 2013; Qiu and Turner, 2015). Liu et al., 
2017b revealed that due to the changes in plantation types, an estimated 
359.44 × 104 USD cropland ESs has increased, which contributed to 
22.97% of the total increase. Our study also indicates that the most 

Fig. 6. Normalized importance of the explanatory variables derived from ANN.  
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Fig. 7. Simple linear regression model between driving factors and ESs.  
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important feature of a cropland ecosystem is producing multiple key 
ESs, which creates natural capital. However, this study does not consider 
the tradeoffs and synergies among the major ESs due to LULC changes. 
This could help track the overall complementary nature of many inter
dependent ESs. For instance, the factors (expansion of cropping area, 
uses of chemical fertilizer, irrigation), which are responsible for the 
increase of food production service in any given ecosystem, was found to 
be detrimental for water quality and supply of freshwater services in 

many cases across the world (Keesstra et al., 2018; Awasthi et al., 2016; 
Grizzetti et al., 2016; Holt et al., 2016). Finally, the efficacy of emerging 
approaches, including machine learning-based spatially explicit models, 
linear and non-linear optimization needs to be assessed under different 
agro-climatic and geographical conditions, before adopting it as a gen
eral solution mechanism for real-world problems. Future research will 
be directed in this direction to resolve the methodological uncertainties 
and biases that exist in this valuation study. 

Table 5 
Stepwise coefficient of determination (R2), Pearson correlation coefficient (r) test between control variables and ESV.  

Model Control variables r Sig. (1-tailed) R2 Sig. (1-tailed) R2 Change F t Std. Error Durbin-Watson 

1 TCA 0.92 0.000 0.85 0.000 0 402.45 20.06 19.91 1.58 
2 TCA/CP 0.67 0.000 0.45 0.000 − 0.4 57.54 7.59 38.33 1.98 
3 TCA/CP/CY 0.49 0.000 0.24 0.000 − 0.21 22.2 4.71 45.08 1.84 
4 TCA/CP/CY/NIA 0.36 0.001 0.13 0.002 − 0.11 10.5 3.24 48.25 1.76 
5 TCA/CP/CY/NIA/CI 0.29 0.007 0.08 0.140 − 0.05 6.29 2.51 49.56 1.7 
6 CP 0.65 0.000 0.43 0.000 0 52.06 7.22 39.18 1.85 
7 CP/CY 0.32 0.003 0.1 0.007 − 0.33 7.75 2.78 49.09 1.75 
8 CP/CY/NIA 0.31 0.004 0.097 0.008 − 0.003 7.51 2.74 49.17 1.73 
9 CP/CY/NIA/CI 0.09 0.240 0.01 0.480 − 0.087 0.51 0.72 51.55 1.68 
10 CY − 0.43 0.000 0.19 0.000 0 16.16 − 4.02 46.63 1.62 
11 CY/NIA 0.38 0.001 0.14 0.010 − 0.05 11.49 3.39 47.95 1.71 
12 CY/NIA/CI 0.13 0.141 0.02 0.280 − 0.12 1.18 1.09 51.3 1.68 
13 NIA 0.66 0.000 0.43 0.000 0 53.1 7.29 39.01 1.59 
14 NIA/CI 0.34 0.002 0.12 0.004 − 0.31 9.08 3.01 48.68 1.59 
15 CI − 0.03 0.402 0.001 0.810  0.6 − 0.248 51.71 1.67 

TCA: Total Crop Area, CP: Crop Production, CY: Crop Yield, NIA: Net Irrigated Area, CI: Crop Intensity. 

Fig. 8. Correlation matrix between the nine ESs (GR = Greenhouse gas Regulation, CR = Climate Regulation, WR = Water Regulation, SFR = Soil Formation and 
Retention, WT = Waste Treatment, BDM = Biodiversity Maintenance, FP = Food Production, RMP = Raw Material Production, and RCA = Recreation, Culture, and 
Aesthetic), and five explanatory factors (TAC = Total Crop Area, CP = Crop Production, CY = Crop Yield, NIA = Net Irrigated Area, and CI = Cropping Intensity). 
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Fig. 9. Correlation matrix between the five explanatory factors (TAC = Total Crop Area, CP = Crop Production, CY = Crop Yield, NIA = Net Irrigated Area, and CI =
Cropping Intensity) and ESVs. 

Fig. 10. Coefficient of Determination (R2) and correlation between the driving factors and ESVs.  
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4. Conclusion 

This study examined Indian agrarian ESs at the expense of forests and 
other natural areas and land reclamation through irrigation pro
grammes. The ESVs of different ecoregions of India were estimated from 
1985 to 2005 using remote sensing-based LULC products and crop 
production statistics. The overall summary and main findings of this 
study are listed as follows.  

1) Using the five unit values, the mean total ESVs (Billion US$ year− 1) 
of India were estimated 829, 830, and 845 for 1985, 1995, and 2005, 
respectively.  

2) Under GR led agricultural expansion, the average cropland ESVs has 
increased from 389.32 Billion US$ year in 1985 to 402.54 Billion US 
$ year in 2005 (a net increase of 13.22 Billion US$ cropland ESVs 
during 1985–2005). Additionally, cropland has increased substan
tially during 1995–2005, mainly due to excess monsoon rainfall, and 
due to the major/minor/small irrigation programs which were 
launched at different times as the outcome of the GR.  

3) Among the five explanatory factors, total crop area has explained the 
maximum model variance, followed by net irrigated area, crop 
production, crop yield, and cropping intensity. The crop yield factor 
was found negatively associated with ESVs, whereas the cropping 
intensity factor is not significantly correlated with ESVs.  

4) A significant forest cover was lost during 1985–2005, mostly due to 
deforestation, shifting cultivation, timber and fuelwood collection, 
and wildfires. The alarming rate of forest cover loss, especially in the 
Eastern and Western Himalayan states of India forms a serious 
environmental threat for sustainable natural resource management.  

5) Among the nine ESs, the strong positive association between the food 
production service and cropping factors indicates that GR led 
agrarian expansion has significantly improved the agricultural ESs of 
the country.  

6) While considering the elasticity of ESVs, wetlands, water bodies, and 
forest land were found to be the most sensitive ecosystems to LULC 
change. 

Therefore, land degradation prevention policies should be imple
mented for the reclamation of cropland from fallow land and to reduce 
the over-consumption of agricultural land by intensifying the cropping 
practices, instead of expanding crop area at the expense of removing 
forest and natural green cover. The findings of this study also provide 
beneficial information for farmers, agronomists, environmentalists, 
planners, land administrators, managers, and decision-makers for sus
tainable agricultural management as well as natural resources and 
conservation of the ecosystems of the region. 

Fig. 11. Coefficient of Determination (R2) and correlation between the driving factors and 9 ESs.  
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