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Abstract: This paper presents a comparison of the predictive capability of three hydrological models,
and a mean ensemble of these models, in a heavily influenced catchment in Peninsular India:
GWAVA (Global Water AVailability Assessment) model, SWAT (Soil Water Assessment Tool) and
VIC (Variable Infiltration Capacity) model. The performance of the three models and their ensemble
were investigated in five sub-catchments in the upstream reaches of the Cauvery river catchment.
Model performances for monthly streamflow simulations from 1983–2005 were analysed using
Nash-Sutcliffe efficiency, Kling-Gupta efficiency and percent bias. The predictive capability for each
model was compared, and the ability to accurately represent key catchment hydrological processes
is discussed. This highlighted the importance of an accurate spatial representation of precipitation
for input into hydrological models, and that comprehensive reservoir functionality is paramount
to obtaining good results in this region. The performance of the mean ensemble was analysed to
determine whether the application of a multi-model ensemble approach can be useful in overcoming
the uncertainties associated with individual models. It was demonstrated that the ensemble mean
has a better predictive ability in catchments with reservoirs than the individual models, with Nash-
Sutcliffe values between 0.49 and 0.92. Therefore, utilising multiple models could be a suitable
methodology to offset uncertainty in input data and poor reservoir operation functionality within
individual models.

Keywords: Cauvery; hydrological modelling; VIC; SWAT; GWAVA; ensemble modelling; water re-
sources

1. Introduction

Hydrological models are widely used for the prediction and understanding of hy-
drological processes [1,2]. Models are powerful tools to understand and quantify the
components of the water balance and hydrological fluxes within a catchment [3] by de-
signing simplified conceptual representations of the complex hydrological cycle using
various parameters and sets of mathematical equations [4–6]. The performance [7] and
suitability [8] of a hydrological model can differ between catchments due to catchment
size and dominant catchment processes present. Hydrological models are often developed
for specific purposes (estimation of water demands, understanding of hydrological pro-
cesses, drought and flood risk assessments, etc.) and for different geographic regions [9].
The most reliable models in regions where data is sparse, are ones whose results closely
represent reality with the use of limited model complexity [10]. It is important to note
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that the selection of a suitable model should not be solely based on its ability to address
specific research aims but also data availability [11]. The accuracy of simulations generated
from the model is strongly dependent on the model selected and the quality of input data
and observations [11]. For example, in instances of poor quality input data with high
uncertainties, a simpler model may be more suitable than a highly complex one [12].

Various hydrological models have different strengths when representing hydrological
processes [13]. The use of a single model can lead to simulation uncertainties especially in
catchments of poor input data availability and in large-scale modelling exercises. Ensemble
modelling combines multiple model predictions to create a single prediction that tends
to strongly outperform the individual models [14,15]. Ensemble modelling can be widely
applied in hydrological modelling to utilise the ensemble for reducing errors with an
optimal bias [16]. It is also important to note that a combination of the best performing
individual models do not necessarily provide the best ensemble [17].

The Cauvery has long presented water management challenges at the local, regional
and catchment scales. The increasing competition to meet urban and rural water demands,
which span administrative boundaries, continue to present significant issues for integrated
water management in the catchment. Key gaps remain in the scientific knowledge of
Peninsular Indian hydrology that make it difficult to address these concerns.

Many of the sub-catchments of the Cauvery catchment have been previously modelled
using the SWAT (Soil Water Assessment Tool) model [18,19], the Water Evaluation And Plan-
ning System (WEAP) model [20], remote sensing methods [21], Artificial Neural Network
(ANN) and Support Vector Regression (SVR) models [22], the Soil Conservation Service
Curve Number (SCS-CN) model [23,24] and Variable Infiltration Capacity-Macroscale
Hydrologic Model (VIC-mHM) [25]. Understanding the river flows in headwater catch-
ments is especially relevant for estimating actual water availability across the catchment.
The Western Ghats form the headwaters of the Upper Cauvery catchments. This region
generates the majority of the streamflow with the greater Cauvery catchment. Represent-
ing the catchments using multiple models can provide deeper insight into hydrological
processes across the region and analysing a model ensemble can reduce uncertainty within
the estimation of various components of the water balance. This study attempts to analyse
the capability of the above-mentioned models and a model ensemble to capture processes
in a catchment.

For this study, five sub-catchments within the Upper Cauvery region were selected
to be modelled by SWAT, VIC and GWAVA. The GWAVA (Global Water AVailability
Assessment) model is a gridded large-scale water resources model developed by the UK
Centre for Ecology & Hydrology [26]. It is a relatively simple model that trades off model
complexity for data availability, plus has a strong anthropogenic influences component.
VIC (Variable Infiltration Capacity) model has a much more detailed representation of
hydrological components and is perhaps more suitable for an accurate representation of
soil water dynamics. SWAT is commonly used in India and has a good representation of
agricultural water use with possibly better representation of evaporation.

VIC model has been widely utilised and performs well for a large number of river
catchments across the globe. The model is open-source and has wide acceptance and
utility because of its proven capability in capturing streamflow processes as well as all the
components of the water budget. The model uses complex, widely accepted algorithms for
the simulation of hydrological processes such as evaporation, transpiration and infiltration
which has been validated over many river catchments of the Indian subcontinent. The
model was selected for application in the Cauvery Catchment, as it is a grid-based model
which takes into account the sub-grid variability of the land surface vegetation classes and
soil moisture storage capacity. GWAVA is a useful tool in the Cauvery Catchment as it
allows for the simulation of most of the components of the hydrological cycle as well as
accounting for demands for domestic, agricultural and industrial sectors, reservoir opera-
tion and the inclusion of interventions. The model allows for the tracking of groundwater,
reservoir storage levels and the demands that are not able to be met. The model input and
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output are flexible to the data availability and the output requirements. As Cauvery is a
highly heterogenous catchment concerning the climate, soil composition and land use, it is
important to incorporate these gridded models to capture the extensive regional variability
within the catchment.

SWAT has been widely used across India and around the globe. The model is popular
due to the ability to use the model through an ArcGIS interface and the model can be
set with minimum data and facilitate the user to set the model as per the availability of
their data in terms of LULC, soil, biophysical and its management information. SWAT
does not need grid specific information. In addition, and of high importance within the
Cauvery, small agricultural management interventions can be parameterised, reservoir
operations can be included, groundwater usage can be set, and crop management operation
can be defined.

Ensemble modelling is a process where multiple models are utilised to simulate
an outcome by using many different modelling algorithms. The mean ensemble model
averages the prediction of each model and produces one final simulation of the outcome.
Ensemble modelling can be utilised in hydrology to better simulate components of the
hydrological cycle, the impacts of land use or other environmental changes, provide a
range of possible outcomes and uncertainty [27–29]. In larger catchments with relatively
poor input data availability, the use of a single model can lead to simulation uncertainties.
Ensemble modelling combines multiple model predictions to create a single prediction that
tends to strongly outperform the individual models [14,15]. Ensemble modelling can be
widely applied to utilise the ensemble for reducing errors with an optimal bias [16].

This study investigates the predictive capabilities of GWAVA, SWAT, and VIC when
applied to several sub-catchments in the Cauvery, and the performance of a mean ensemble
of these models. Model performance is assessed using a range of efficiency metrics (Nash-
Sutcliffe efficiency, Kling-Gupta efficiency and percent bias). The comparative strengths
and weaknesses of each model are assessed by analysing model performance in the dif-
ference sub-catchments, this gives insight into the suitability of these models for future
studies under similar conditions. The mean ensemble is analysed to determine whether
an ensemble approach can successfully combine model strengths and compensate for
model limitations.

2. Model Descriptions

It is of importance to evaluate how different hydrological models capture the process
dynamics of various catchments. In this study, three hydrological models were used to
model the Upper Cauvery catchment: Variable Infiltration Capacity model (VIC), Soil Wa-
ter Assessment Tool (SWAT) and Global Water AVailability Assessment model (GWAVA).
SWAT [30] GWAVA [31] and VIC [25,32] have been applied across large regions of India.
The models were selected based on the various theoretical differences and previous ap-
plications in India. VIC and SWAT are popular hydrological models across India and
GWAVA has been successfully implemented in the Narmada and Ganges catchments. VIC
is a large-scale, physically-based gridded hydrological model, GWAVA is a large-scale
semi-distributed hydrological model whilst SWAT is a semi-distributed, physically-based
catchment-scale model. VIC, SWAT and GWAVA are described below and additional
information can be found in Appendix A in Table A1. Each model was calibrated using
different techniques however the calibration parameters utilised in each case pertained to
soil properties and surface-and groundwater routing.

2.1. Variable Infiltration Capacity (VIC) Model

The VIC model [33,34] is an open-source, grid-based macroscale land-atmosphere
transfer model that represents surface and subsurface hydrological processes. It solves
the energy and water balance equations at each time step for spatially distributed grid
cells. The model can be implemented for spatial scales varying from 0.125 to 2 degrees
and with temporal resolutions ranging from hourly to daily. The key features of the
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model include the representation of sub-grid vegetation heterogeneity, non-linear baseflow
computation and inclusion of multiple soil layers with variable infiltration. Each grid
cell can be divided into several tiles based on the land use and each tile generates unique
responses to precipitation based on the land surface properties. The VIC model has been
extensively implemented for numerous studies across the globe to address challenges
related to water resources management such as flood and drought monitoring [35–37],
assessment of the impact of land use and climate change on the hydrologic response [25,32]
and understanding land-atmosphere interactions [38–40]. Meteorological forcings required
to run the model include precipitation, maximum temperature, minimum temperature and
wind speed at the relevant time-scale. This model also requires additional datasets such
as elevation, soil characteristics which consist of soil composition and bulk density, along
with vegetation properties such as land-use type, leaf-area index (LAI), albedo and crop
characteristics. For simulating streamflow at the specified gauge locations, the flux files
are fed into a routing model [41], which uses linear transfer functions for grid cells as well
as river routing and linearised Saint-Venant equation for channel routing. This version of
VIC does not account for any water demands, groundwater pumping or reservoir storage.
The output fluxes from the model are surface runoff, baseflow, evapotranspiration and soil
moisture computed for each grid.

2.2. Soil and Water Assessment Tool (SWAT)

SWAT is an open-source software widely used around the globe to assess the impact
of sediment transport, fertiliser load and different water management practices in an
agricultural catchment [42]. ArcSWAT, a version of SWAT interfaced with ArcGIS, can be
used for continuous simulation of a catchment model operating on different time steps and
at different spatial scales. In SWAT, a catchment is divided into multiple sub-catchments,
which are further divided as Hydrological Response Units (HRUs). HRUs are unique
combinations of a specific soil type, land use/land cover type and slope type within a
sub-catchment for which the water balance components can be simulated. It is important to
note that HRUs vary in size and as a general rule should have between one and ten HRUs
per sub-catchment. SWAT is capable of predicting hourly, daily, monthly and yearly flow
volumes. Climatic inputs include daily precipitation, maximum and minimum temperature,
solar radiation, relative humidity and wind speed. Various hydrologic processes can
be simulated using the SWAT model, including surface runoff, lateral subsurface flow,
groundwater flow, evapotranspiration, snowmelt, transmission losses from streams, and
water storage and losses from ponds [43].

2.3. Global Water Availability Assessment (GWAVA) Model

GWAVA is a large-scale gridded water resources model [26,44]. The model accounts
for natural hydrological processes (taking into account soils, land use and lakes) and
anthropogenic influences (crops, domestic and industrial demands, reservoir operations,
and water transfers). The model estimates surface flows and recharge using a conceptual
rainfall-runoff model, utilising effective precipitation and evaporation estimates, followed
by a demand-driven routine to account for the anthropogenic stresses on the system. The
model can be run at a spatial-scale ranging from 0.125 to 5 degree and either at a daily or
monthly time-scale. The GWAVA model is adaptable to the data availability of the region
and the code is flexible to allow for additional processes and features to be represented.
GWAVA has been updated recently to better represent both groundwater abstraction and
artificial recharge based largely of the principles of the AMBHAS-1D model [45]. Whereby
the groundwater store is recharged from the soil moisture, lakes and reservoirs, leaking
infrastructure and small-scale storage interventions. A further recent update to GWAVA
has been to incorporate a representation of check dams, farm bunds and urban tanks into
the model structure [46].
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3. Model Applications and Comparison
3.1. Site Description

The Cauvery catchment is a heterogeneous, transboundary and highly human-
influenced catchment, in Peninsular India. It is spread across four federal states, namely,
Karnataka, Tamil Nadu, Kerala and Puducherry in Southern India [18]. The four states
have varying water policy, water use prioritisation and cultural value associated with
the natural environment. The catchment is a representative of other large catchments in
Peninsular India, with water resources under increasing pressure from urbanisation, popu-
lation growth and agriculture intensification. Additionally, the Cauvery is a contentious
river with concern over the sharing of water between Karnataka and Tamil Nadu. The
catchment is considered to be highly water-stressed [47] and the current water abstrac-
tion is estimated to exceed the renewable water resources within the catchment [48]. The
catchment has extensive regional variability in water demand. The agricultural activities
within the catchment require approximately 90% of water resources [49,50]. Rapid urban
and industrial development across the catchment are causing increased inter-sectorial
and interstate competition for water [51]. Across the catchment, there is an abundance of
small-scale storage interventions, medium and large reservoirs, and large-scale transfer
schemes. It is essential to have a good understanding of the catchment hydrology and
develop reliable and robust models to ensure improved water resource management in
such highly water-stressed catchments.

The Upper Cauvery catchment drains an area 10,619 km2 in the north-western region
of the Cauvery catchment. The upper reaches of the Cauvery River lie within the Nilgiri
and Anaimalai mountains and act as a critical headwater to the larger catchment [52].
The sub-catchment experiences both the SW (JJAS) and NE monsoon (OND). The mean
annual rainfall in the Upper Cauvery is 2010 mm however; the rainfall distribution varies
temporally and spatially across the sub-catchment. The Western Ghats form a rain-shadow
along the western coastline, decreasing the precipitation gradient during the south-western
monsoon [53]. The mean daily temperatures vary between 9 ◦C and 25 ◦C throughout the
catchment [54]. In the area of the Western Ghats, the soils tend to be very deep, valley
bottoms covered in dense forests and mountain slopes are predominately grassland [55].
Fifty percent of the sub-catchment is under agriculture [56]. The most common crops grown
in the catchment are sugarcane, finger millet, sorghum, groundnut and paddy. Paddy and
sugarcane are found predominantly in the canal command areas.

Five catchments were chosen for the study, namely the catchments upstream of
(Figure 1): Kudige on the Harangi River; K M Vadi on the Lakshmantirtha River; M H
Halli, immediately downstream of the Hemavathy Reservoir; the inflow of the Hemavathy
Reservoir (here forward referred to as Hemavathy); and the inflow to KRS reservoir (here
forward referred to as KRS). More information regarding these catchments can be found in
Table 1. Both Hemavathy inflow and M H Halli were chosen to assess the models’ ability to
simulate the outflow releases from Hemavathy. All five were modelled by VIC and GWAVA
on a daily timestep (and aggregated to monthly) and by SWAT on a monthly timestep, as
monthly timesteps are generally considered most useful for impact assessments. Kudige, K
M Vadi and M H Halli are locations of existing streamflow gauges whilst Hemavathy and
KRS are reservoirs with observed inflows and outflows. These catchments were selected
based on their importance within the Cauvery catchment and observation data availability.
The performance of the individual models as well as the model ensemble was evaluated
against the observation data.
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Figure 1. The location of the five catchments, outlets of the five catchments analysed in this study and three major 
reservoirs within the Upper Cauvery catchment. Inset 1: The location of the greater Cauvery catchment and the Upper 
Cauvery catchment within Peninsula India. Inset 2: A river flow diagram of the Upper Cauvery to demonstrate the flow 
path through gauging stations and reservoirs. 

Table 1. The area (km2), mean annual precipitation (MAP) in mm and the predominant land use of each sub-catchment. 

Sub-Catchment Area (km2) MAP (mm) Predominant Land Use 
Kudige 1934 2430 Forest 

Hemavathy 2810 1423 Forest 
M H Halli 3050 1365 Forest and agriculture 
K M Vadi 1330 1448 Forest and agriculture 

KRS 10,619 1531 Forest and agriculture 
  

Figure 1. The location of the five catchments, outlets of the five catchments analysed in this study and three major reservoirs
within the Upper Cauvery catchment. Inset 1: The location of the greater Cauvery catchment and the Upper Cauvery
catchment within Peninsula India. Inset 2: A river flow diagram of the Upper Cauvery to demonstrate the flow path through
gauging stations and reservoirs.

Table 1. The area (km2), mean annual precipitation (MAP) in mm and the predominant land use of
each sub-catchment.

Sub-Catchment Area (km2) MAP (mm) Predominant Land Use

Kudige 1934 2430 Forest
Hemavathy 2810 1423 Forest
M H Halli 3050 1365 Forest and agriculture
K M Vadi 1330 1448 Forest and agriculture

KRS 10,619 1531 Forest and agriculture
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3.2. Input Data and Model Application

All three models utilised precipitation and temperature forcing data [57] along with
data regarding the soil, land-use and altitude. Additionally, the models made use of many
local datasets which can be found in Appendix A in Table A2. The performance of the
individual models as well as the model ensemble was evaluated against the observed
streamflow data provided by WRIS-India. Hereafter the term virgin simulations refer to
simulations that do not include any forcing with the observed reservoir outflow data.

3.2.1. VIC

VIC-3L (VIC-3 layer); version 4.2.d [58] with the Lohmann routing model [41] was
run in the water balance mode. The water balance model does not solve the surface
energy balance [59]. This mode assumes that the land surface soil temperature equals
the near-surface air temperature and it follows the continuity equation at each time step.
A daily time step was adopted for computational efficiency based on data availability.
Daily simulations were aggregated to monthly estimates for this study. Two versions
of the VIC model were set up for Cauvery catchment (Figure 1) at 0.125◦ grids and the
surface fluxes were computed at daily time scale for the years 1951–2014. The first model
V-VIC did not incorporate any artificial influences or reservoirs. The second F-VIC utilised
the observed reservoir release data to account for two of the major reservoirs within the
catchment by addition the observation data to the V-VIC simulation streamflow (Harangi
and Hemavathy). The V-VIC model was calibrated with respect to observed streamflow at
four stations within the region using model parameters as suggested by Lohmann et al.
(1998). The runoff hydrograph was found to be governed by three parameters related
to the vegetation and soil properties. The overland flow was sensitive to the variable
infiltration curve parameter (B) whilst the baseflow had significant sensitivity concerning
the fraction of maximum velocity of baseflow where nonlinear baseflow begins (Ds) and
the fraction of maximum soil moisture where nonlinear baseflow occurs (Ws) [32,34]. Thus,
these three parameters were chosen for calibration and all the other soil and vegetation
parameters were obtained from the soil [60] and land use land cover datasets (Table A2,
Appendix A). To account for the reservoir operation in VIC, the daily simulated streamflow
was aggregated to a monthly flow and the monthly observed reservoir outflow releases
were added to obtain the F-VIC simulations.

3.2.2. SWAT

This study utilised SWAT2012 [61] on ArcGIS 10.5 platform. The catchment and its
sub-catchments (129 in numbers) were delineated based on the Digital Elevation Model
(DEM) and defining the inflow to KRS reservoir as the catchment outlet. Land use map,
soil map and slope (sources described in Table A1, Appendix A) maps were used in the
creation of 4432 HRUs based on defining the threshold of 20% for each land use, soil and
slope. As far as possible, the soil parameters were either measured or surveyed [62], failing
which they were estimated based on literature. Further, the daily meteorological data of
rainfall, temperature, wind speed, relative humidity and sunshine hours (sources described
in Table A1, Appendix A) were given as input to the model. Penman-Monteith method
was adopted in this study for the estimation of potential evaporation. The Curve Number
(CN) method was selected for the calculation of surface runoff as it was deemed the most
suitable for rainfall data at a daily time step.

The intervention density (in-situ and ex-situ) within these catchments was estimated
based on expenditure reports for the Karnataka Watershed Authority. As the expenditure
spent on each type of intervention was not known, the average cost for constructing each
intervention based on earlier experience was used and then the total cost estimated was
converted in terms of storages capacities. Conceptually, the interventions were considered
to only exist within areas of agriculture (7272 km2; 70% of the total area). The most common
agricultural and water management interventions were considered including check dam
and bunds to represent in-situ and ex-situ intervention, respectively. The aggregated
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district-level catchment interventions storages were all lumped together into a single unit
reservoir along the main channel of sub-catchment. Total storage capacity created due
to interventions over the catchment was estimated to be 5 m3/ha in 2006. The depth of
the check dam and infiltration rate observed during the survey was 1.5 m and 10 cm/day
and that of bunds as 0.3 m and 30 cm/day, respectively [62]. Along with the intervention
storages, the three major reservoirs (Harangi, Hemvathy and KRS) were incorporated at
each sub-catchment as per their actual locations. For these major reservoirs, along with
storage capacities and their surface areas, the monthly outflows were also provided as
inputs to the model. There is the option in SWAT to bypass the simulation of reservoir
outflow and providing the observed outflow time-series. These gauging points were fed
the monthly reservoir outflow data from Hemavathy and Harangi reservoirs. This allowed
the model to potentially better represent the streamflow at the gauges downstream of
the reservoirs. Further, the SWAT model was calibrated for the KRS inflows from 1981
through 2003 using parameters that are related to surface runoff and baseflow. A list of
these parameters can be found in Appendix A, Table A3.

3.2.3. GWAVA

Surface water flows across the Cauvery catchment (to Musiri) on a daily timestep
were estimated utilizing GWAVA 5.0 [46,63]. Similarly, to VIC, GWAVA was set up for
the extent of the Cauvery catchment upstream of Musiri (Figure 1) at 0.125◦ grids for the
years 1986–2005. A grid cell resolution of 0.125◦ was chosen based on data availability for
the region. The model setup is described in detail in Horan et al. (2020) [46] and Keller
et al. (in prep). The model was calibrated, to daily observed streamflow, and validated,
to daily observed streamflow and seasonal groundwater levels at 14 gauging stations
across the catchment from 1980–2005 depending on the period of uninterrupted reliable
observed streamflow available from the gauging station. The model included the improved
groundwater module [46] demands (domestic, industrial, agricultural, livestock and the
associated conveyance losses and return flows), interventions-tanks, check dams and farm
bunds [46]. Five parameters were selected in the calibration. These parameters pertain
to soil characteristics, surface and groundwater routing and water table level at which
baseflow flows. The characteristics of the check dams and field bunds used in the GWAVA
modelling exercise were the same as for the SWAT set up described in Section 3.2 and an
additional description of the implementation of interventions into GWAVA can be found in
Horan et al. (2020) [46].

3.3. Model Performance Criteria

The performance measures used in this study are the Nash–Sutcliffe efficiency (NSE),
Kling-Gupta efficiency (KGE) and percent bias (Bias). NSE is a popular metric to evaluate
hydrological model performance because it aims to normalise model performance into an
interpretable scale [64,65]. An NSE of one represents a perfect correspondence between
the simulations and the observations. An NSE of zero indicates that the model simulations
have the same explanatory power as the mean of the observations. An NSE of less than 0
represents that the model is a worse predictor than the mean of the observations. However,
NSE does not provide an equal benchmark for different flow regimes. Utilising the single
NSE metric is not sufficient for determining the performance of a model, however, can
provide context if utilised in conjunction with additional model performance efficiencies.
For the purpose of this study, an NSE score of less than 0.2 is deemed poor, between 0.2
and 0.6 as fair and above 0.6 as good. The NSE is calculated as:

NSE = 1 − ∑T
t=1
(
Qt

s − Qt
o
)2

∑T
t=1
(
Qt

o − Qo
)2 (1)

where Qt
s and Qt

o are, respectively, the simulated streamflow, and the observed streamflow
at timestep t; Qo is the average observed streamflow over all timestep considered.
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The KGE is based on correlation, variability bias and mean bias [64,66]. The metric
allows some perceived shortcomings with NSE to be overcome and has become increasingly
popular for the evaluation of hydrological model skill. A KGE of one indicates perfect
agreement between simulations and observations. However, there are many opinions as to
where the differentiation of a ‘good’ and ‘poor’ model performance thresholds lies within
the KGE scale. Negative KGE values do not always imply that the model performs worse
than the mean flow benchmark. For the purpose of this study and to be able to compare
model performance, a KGE score of less than 0.2 is deemed poor, between 0.2 and 0.6 as
fair and above 0.6 as good. The KGE is calculated as:

KGE = 1 −

√
(r − 1)2 +

(
σs

σo
− 1
)2

+

(
µs
µo

− 1
)2

(2)

where r is the correlation coefficient between simulated and observed data, σo is the
standard deviation of observation data, σs is the standard deviation of simulated data, µo
is the mean of observation data and µs is the mean of simulated data.

The bias is the average tendency of the simulated data to over-or under-estimate the
observed data. The optimal value for the bias is zero. Positive values indicate a model
under-estimation and negative values indicate an over-estimation.

Bias =
∑T

t=1
(
yo − ys

)
∑n

t=1 yo
× 100 (3)

where yo is the observed data value, ys is the simulated data value and t is the time-step.
The daily streamflow volume from VIC and GWAVA was summed to generate the

monthly streamflow in order for the VIC and GWAVA simulations to be comparable
to the SWAT simulations, and because monthly timesteps are generally preferred for
impact assessments. For the ensemble average evaluation, mean monthly streamflow was
generated by averaging the monthly streamflow from F-VIC, F-SWAT and GWAVA. The
model performance efficiencies were calculated from the monthly observed streamflow
and the mean monthly ensemble streamflow time-series.

Monthly streamflow simulations were undertaken by VIC, GWAVA and SWAT. Virgin
simulations from SWAT (V-SWAT) and VIC (V-VIC) were included in the analysis of results.
The second set of simulations from SWAT (F-SWAT) and VIC (F-VIC) are improvements on
the virgin simulations utilising this observed data. The calibration parameters were kept
consistent between V-SWAT and F-SWAT, and V-VIC and F-VIC respectively.

4. Results
4.1. Reservoir Outflow Evaluation

To establish confidence within the observed reservoir outflow data used to force
F-SWAT and F-VIC, it was compared to streamflow gauges downstream of the reservoir.
Harangi reservoir outflow was compared to Kudige and Hemavathy outflow was compared
with M H Halli. The gauging stations (Kudige and M H Halli) are situated a short distance
downstream of the reservoirs (Harangi and Hemavathy). The Hemavathy outflow and
streamflow observed at M H Halli correspond well, although the reservoir outflow does not
follow a seasonal trend year on year (Figure 2a). The Harangi outflow is significantly less
than the streamflow observed at Kudige (Figure 2b) this is to be expected as Kudige drains
a larger area than the Harangi reservoir. However, the coinciding of the peak streamflow
indicates that the temporal trend of the reservoir release is seasonal.
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Figure 2. The monthly observed streamflow from (a) M H Halli gauging station and Hemavathy
reservoir outflow and (b) Kudige gauging station and Harangi reservoir outflow.

4.2. Individual Model Performance

The calibrated model performance of V-VIC, F-VIC, V-SWAT, F-SWAT and GWAVA
was evaluated using the NSE, KGE and the percent bias at five gauging points in the Upper
Cauvery from 1986 until 2003 (Tables 2–4) The performance of the models used in this
study are compared to existing studies in Table 5.

Table 2. The NSE values obtained from monthly streamflow for the five catchments for each model
from 1986–2003. The values lying in the green shaded area are considered by this study as ‘good’, the
yellow area as ‘fair’ and the red area as ‘poor’.

V-VIC F-VIC V-SWAT F-SWAT GWAVA Ensemble
Kudige 0.81 0.92 0.45 0.71 0.62 0.84

M H Halli 0.15 0.55 −0.66 0.71 −0.11 0.75
K M Vadi 0.37 0.37 0.46 0.46 0.21 0.69

Hemavathy 0.59 0.59 0.79 0.79 0.53 0.94
KRS −0.51 −0.42 0.57 0.82 0.45 0.92
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Table 3. The KGE values obtained from monthly streamflow for the five catchments for each model
from 1986–2003. The values lying in the green shaded area are considered by this study as ‘good’, the
yellow area as ‘fair’ and the red area as ‘poor’.

V-VIC F-VIC V-SWAT F-SWAT GWAVA Ensemble
Kudige 0.78 0.85 0.42 0.56 0.52 0.71

M H Halli 0.33 0.40 −0.50 0.58 0.46 0.79
K M Vadi 0.19 0.19 0.68 0.68 0.36 0.49

Hemavathy 0.64 0.64 0.74 0.74 0.37 0.82
KRS 0.14 −0.31 0.43 0.78 0.38 0.81

Table 4. The percent bias obtained from monthly streamflow for the five catchments for each model
from 1986–2003. The values lying in the green shaded area are considered by this study as ‘good’ and
the red area as ‘poor’.

V-VIC F-VIC V-SWAT F-SWAT GWAVA Ensemble
Kudige −13 8 −60 −42 −45 −20

M H Halli −42 55 −100 −30 −5 −12
K M Vadi 66 66 −6 −6 1 22

Hemavathy 30 30 −24 −24 −60 −18
KRS 84 130 −75 −20 −61 19

Table 5. A comparison of the NSE values obtained by models (F-VIC, F-SWAT and GWAVA) used in this study and the
models (ANN and SVR) used in the Patel and Ramachandran (2015) study. The values lying in the green shaded area are
considered by this study as ‘good’ and the red area as ‘poor’. The catchments that were not considered in the study are
presented as NA.

Study Model
Catchment

Kudige M H Halli K M Vadi Hemavathy KRS

This study

F-VIC 0.92 0.55 0.37 0.64 0.42
F-SWAT 0.71 0.71 0.46 0.74 0.82
GWAVA 0.62 −0.11 0.21 0.37 0.45

Ensemble 0.84 0.75 0.69 0.82 0.92

Geetha et al. (2008) study
SCS-CN NA NA NA 0.84 NA

VSA NA NA NA 0.74 NA
Ensemble NA NA NA 0.94 NA

Maheswaran & Khosa (2012) study WA-ANN 0.74 0.77 NA NA NA
ANN 0.65 0.66 NA NA NA

Patel and Ramachandran (2015) study ANN 0.76 0.61 0.56 NA 0.63
SVR 0.84 0.43 0.03 NA 0.28

Kumar & Nandagiri (2018) SWAT NA NA NA 0.85 NA
SWAT-VSA NA NA NA 0.88 NA

The forcing of the streamflow with the observed reservoir data improves the simula-
tions by F-VIC in the catchments that contain the large reservoirs (Kudige, M H Halli and
KRS). However, the inclusion of this observation data causes the model to over-estimate
the streamflow across these catchments. F-VIC performs well at Kudige, poorly at KRS and
fairly across the remaining catchments (Tables 2 and 3). The performance of both V-VIC
and F-VIC is generally weaker in the monsoon season (Figure A1). VIC produces a low
bias at Kudige but over-estimates at Hemavathy, M H Halli and K M Vadi and severely
over-estimates at KRS inflow (Table 4). F-VIC simulates the monthly average streamflow
well at Kudige (Figure A1). The streamflow is over-estimated in August but the rising
and falling limbs are simulated well. At K M Vadi, F-VIC captures the rising limb of the
hydrograph well, however, over-estimates the streamflow in August and subsequently
over-estimates on the falling limb. At M H Halli, Hemavathy and KRS, F-VIC simulates
the shape of the hydrograph well but significantly over-estimates the streamflow across
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the year (Figure A1). The over-estimation of streamflow by F-VIC downstream of the reser-
voirs could be a reflection of the inability of the model to account for anthropogenic water
abstraction and the uncertainty in the observed reservoir outflow data and methodology
used to incorporate the observed reservoir releases could contribute to poor performances
at KRS.

The V-SWAT simulations under-estimate the volume of streamflow at Kudige, M H
Halli and KRS and provide fair simulations at Kudige and KRS, however, the performance
at M H Halli is very poor (Tables 2, 4 and 5). Following the use of the observed reservoir
outflow data to force the model, the performance at Kudige, M H Halli and KRS are
significantly improved. When utilising the observed reservoir data, SWAT consistently
performs well across the five catchments (Tables 2, 4 and 5).

SWAT simulates the total streamflow volume well at K M Vadi but under-estimates in
the remaining catchments (Table 4). Despite being fed the Harangi outflow data upstream,
SWAT under-estimates the streamflow at Kudige. SWAT simulates the streamflow at M H
Halli and K M Vadi well in July but does not retain the peak flow through August. The
model simulates the second peak in October which corresponds with VIC and GWAVA
but not the observed streamflow data (Figure A1). SWAT simulates the peak streamflow
at Hemavathy well, however, under-estimates both the rise and falling limbs of the hy-
drograph. At KRS, SWAT under-estimates the peak streamflow in July and August but
over-estimates the falling limb of the hydrograph.

GWAVA performs fairly across all the catchments across the modelling period
(Tables 2, 4 and 5) and the monsoon season. However, GWAVA performs less well at
M H Halli. GWAVA under-estimates the total streamflow volume in all the catchments
throughout the year (Table 4) but over-estimates the total streamflow volume at M H Halli
in the monsoon season (Figure A1). The peak simulated streamflow followed the trend
of the observed streamflow but is under-estimated at both Kudige and M H Halli. At K
M Vadi, GWAVA significantly under-estimates the peak flows through July and August,
however, peaks in October. This second peak does not correspond to the observed stream-
flow. At KRS, GWAVA is significantly under-estimating the streamflow throughout the
year. GWAVA is inaccurately representing the outflows from Hemavathy. This is clearly
illustrated by poor simulations and over-estimation of streamflow at M H Halli. The
under-estimations of streamflow by GWAVA at Hemavathy, K M Vadi and downstream of
Harangi could be a reflection of the inability of the model to capture the outflow character-
istics of this reservoir, an over-estimation of the reservoir capacity (due to undocumented
silting), misrepresentation of the interventions, the poor representation of rainfall in the
IMD grids or an over-estimation of the anthropogenic and agricultural water abstraction.

4.3. Ensemble Model Performance

The ensemble model mean was calculated using the simulations from F-VIC, F-SWAT
and GWAVA. The ensemble model simulations are the most consistent with the observation
streamflow. The ensemble mean of the streamflow produced by the three models proved
to better represent the total volume of observed streamflow across the Upper Cauvery
than the individual models (Table 4). The ensemble produced NSE values at Kudige,
M H Halli, Hemavathy and KRS close to the optimal NSE of one which is a significant
improvement than from the individual model NSE values (Table 2). Although the ensemble
performs less well at K M Vadi, it proves to outperform the individual models (Table 2).
The ensemble closely represents the observed data temporally at KRS (Figure 3). Although
the ensemble generally over-estimated the volume of streamflow, and to a greater extent
for the period 1995–1999, it represents the volume of streamflow more accurately than any
of the individual models (Figure 3).
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5. Discussion

The models individually had varying results across the five catchments (Tables 2–5). F-
SWAT tended to perform best; however, the use of observed outflow data from Hemavathy
and Harangi reservoirs cannot be overlooked as a significant reason for the consistent
performance. V-SWAT significantly under-estimates the streamflow at M H Halli, Kudige
and subsequently KRS when the rainfall is used as the only source of hydrological forcing
data. F-SWAT utilises the observed reservoir outflow data to offset the under-estimation
of rainfall within the Western Ghats region. Across the catchments, V-VIC tended to
under-estimate the streamflow in the sub-catchment with the major reservoirs (Kudige
and M H Halli) whilst over-estimating the streamflow in the remaining catchments. F-VIC
over-estimates the streamflow across all the catchments. GWAVA tended to under-estimate
the streamflow at Kudige, Hemavathy and KRS. Although F-SWAT, V-SWAT and GWAVA
produced a low bias, all five model setups struggled to accurately reproduce the observed
streamflow in K M Vadi. Despite the improvement of both V-VIC and V-SWAT utilising
the observed streamflow data, this limits their application for modelling future scenarios.
The fair simulations in V-VIC, F-VIC and GWAVA at K M Vadi suggest that the Upper
Cauvery may not be suitable for large-scale modelling as complex local topography is not
sufficiently represented by the gridded models. However, the fair performance by V-SWAT
and F-SWAT opens the possible sources of uncertainty in this catchment. All five model
setups were set up using the IMD rainfall data, which has been linearly interpolated.

In the Upper Cauvery region, there is a low density of rain gauge stations (about 1
for every 460 km2). Thus, the rainfall spatial variability may not be captured adequately,
especially in the Western Ghats where the rainfall varies from 600 to 5000 mm [67] within a
50–100 km radius. The IMD gridded rainfall dataset makes use of these gauges and a linear
interpolation methodology to estimate a spatial representation of rainfall across the region.
An average annual runoff coefficient was calculated utilising the IMD gridded rainfall and
point gauge rainfall data. An example from this analysis was the average annual runoff
coefficient calculated for Harangi inflow was 1.92 using the IMD gridded data, however,
the runoff coefficient estimated with rainfall obtained from existing rain gauge stations
was only 1.3. This may result from the inability of linear interpolation to capture the high
spatial variability of the rainfall pattern in mountainous regions. Therefore, in the Western
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Ghats region, inaccuracy in the meteorological data is likely to be the most significant
driver of erroneous results.

The hydrological cycle across the Cauvery has been significantly influenced by hu-
mans. These include, but are not limited to, irrigation, reservoir operation and groundwater
pumping. Most hydrological models cannot simulate all of these anthropogenic factors
successfully and in those models that consider human intervention, the data about these
aspects are often not readily available. Models that calibrate without accounting for water
regulation may capture the streamflow, but for the wrong reasons, and will therefore not
be robust against future changes in anthropogenic pressures. In catchments where there
is a high dependence on both streamflow and groundwater to meet demands, it is even
more important to capture the catchment processes, including human influences, correctly.
To address this, many hydrological models are developing anthropogenic modules, for
example, VIC-WUR [64], and more, improved data on human interventions are being
collated (for example on water demands, reservoirs, and groundwater withdrawals).

In the V-SWAT simulations, the model is under simulating the volume of streamflow in
most of the catchments. The volume of water simulated at KRS is more accurate following
the utilisation of the reservoir outflow data. The temporal trend of the observed and
simulated inflow to Hemavathy reservoir (Figure 1) values was well followed; however,
the peaks were consistently under-estimated using the V-SWAT model setup. Within the
V-SWAT and F-SWAT model set-up, a limited cropping system has been represented in
the command areas. The subsequent irrigation and evaporative demands simulated by
the model might not accurately reflect the system that includes multiple cropping systems
and land management techniques. The interventions represented in V-SWAT and F-SWAT
are summarised into one reservoir node for each catchment. In reality, hundreds of small
structures are constructed along various streams within the catchment. This is likely to be
a source of uncertainty as the correct response of the small structures to the hydrological
regime may not be able to be captured accurately. In the SWAT model, the surface and
lateral runoff are solely dependent on rainfall, thus, if the rainfall is under-estimated
the streamflow is likely to be under-estimated. Peak flows are challenging to simulate
accurately on a monthly scale model because short-term rainstorms are represented as
one-day events and thus results in peak flows being under-simulated. This is particularly
prominent in mountainous areas with orographic rainfall such as the Western Ghats. The
under-estimation of peak flows could be a result of the erroneous rainfall data used in the
simulation. Additionally, linear interpolation generally does not well represent the spatial
variation in rainfall in high elevation areas. It is important to understand these limitations
in model structure and rainfall data so that suitable model and data combinations can be
selected for a given study (for instance, this analysis suggests that the SWAT model would
not be well suited for modelling flood risk in mountainous regions).

Although V-SWAT did not perform as well as F-SWAT, V-SWAT would be a more
robust model setup to undertake future climate and socio-economic scenario modelling.
The impact of any applied changes would reflect in the reservoir outflows and streamflow
simulations when using V-SWAT. As future reservoir releases are not available, F-SWAT
would not be suitable to implement future water resource evaluation scenarios and any
changes applied to Kudige and M H Halli would be masked by the forced reservoir
outflows and subsequently, the simulations at KRS would not necessarily reflect the full
extent of the changes applied.

VIC is a useful tool to simulate streamflow on a large scale. Across the catchment,
F-VIC tends to over-simulate the total volume of streamflow. This could be attributed to
human intervention and reservoirs not being accurately captured, under-estimating evapo-
ration due to high water availability in the Western Ghats, lack of a sufficient irrigation
component representing the local/catchment agricultural practice, and poor representation
of baseflow in VIC due to the lack of representation of groundwater storage. In the Cauvery,
the groundwater level is particularly deep and the baseflow is limited. The excess baseflow
VIC is feeding the surface water during low flow condition is accentuated. The model
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performs well in naturalised catchments (V-VIC simulations) and provides a good temporal
simulation without directly accounting for water resource demand. The VIC model used
in this analysis does not include a separate module for the representation of interventions
and reservoirs. The simulations of Harangi and Hemavathy sub-catchments could be
subjected to model structural uncertainties, uncertainty in the observed reservoir outflow
data (Figure 2a,b) and the methodology used to incorporate the effects of the reservoirs
to be contributing factors. The model results may also have uncertainties associated with
the forcing datasets and this could propagate through the representation of hydrological
processes during simulations.

The performance of GWAVA in the selected catchment is inferior to F-VIC and F-SWAT.
However, unlike these other models, GWAVA is the only model which can capture high
levels of anthropogenic alteration. GWAVA allows the simulated flows to be captured for
the right reasons by allowing all the component of the water balance and the demands to
be tracked. Additionally, the tracking of the groundwater levels is critical in catchments
such as the Cauvery. The GWAVA set up utilised in this study provides additional func-
tionality to predict future water availability due to inclusion of water demands, modelling
of reservoir releases and small-scale interventions. A significant challenge in large-scale
hydrological modelling is quantifying and managing the uncertainty of input and val-
idation data and the upscaling of processes. There is a high level of uncertainty with
the application of the GWAVA model in the Upper Cauvery. The poor representation of
reservoir releases at Harangi and Hemavathy is a reflection of the inability of the model
to capture the outflow characteristics of this reservoir and potentially an over-estimation
of the reservoir capacity (due to undocumented silting). An improved reservoir routine,
accounting for downstream irrigation demand would be required to improve the model
performance. The observed groundwater level data used in the setup and validation of the
GWAVA model has low confidence [20] and a limited representation across the catchment.
The water demands could additionally be over-estimated, leading to the unrealistic over-
abstraction of groundwater resources. Due to lack of data, the process of quantifying the
distribution of the interventions across the catchment relies upon many assumptions and
thus generates significant uncertainty. Additionally, the representation and simplification
of the conceptualisation of the interventions within GWAVA is a cause of uncertainty in this
study. The aggregation of the interventions into one composite tank, check dam and farm
bund within the cell skews the surface area to capacity ratio and, subsequently, the larger
conceptual intervention will not fill or spill as frequently as many smaller interventions
and thus the estimation of the effect on streamflow of interventions is uncertain.

The ensemble model mean is the most consistent with the observation streamflow
(Figure 3). Prediction uncertainty emanates from data, model structure and parameter
uncertainty. Ensemble modelling can be utilised to reduce prediction uncertainties [68].
Utilising an ensemble allows for the weaknesses in one model to be shadowed or com-
pensated by the strength of others. The model ensemble accounts for the skill of each
model, maximises the available input data and provide an estimate of the range of possible
outcomes. Ensembles have higher predictive accuracy and have proven successful to
represent non-linear interactions. An ensemble reduces the noise, bias and variance of
simulations and can potentially create a more in-depth understanding of the data. However,
ensemble modelling results can suffer from lack of interpretability and are dependent on
the prediction accuracy of the ensemble members.

In agreement with examples of ensemble modelling literature [13,14,16,17,19], the
ensemble predictions outperformed the individual models across all five catchments. The
NSE values obtained from this study are compared with those found in literature (Table 5).
When the ensemble model performance is compared to that of Patel and Ramachandran
(2015) [22] using ANN and SVR models it would seem that the ensemble of models from
the present study performed better across K M Vadi, M H Halli and KRS. Both the ANN
and SVR models utilised the same IMD gridded precipitation and temperature data as
used in this study. The ANN model and SVR produced maximum NSE values of 0.63
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and 0.28 respectively across these catchments. However, both ANN and SVR were able
to better capture the reservoir operations of Harangi. The high level of complexity within
these models could be well suited to catchments where the risk of overfitting parameters is
limited. Maheswaran & Khosa (2012) [69] improved on the simulation of reservoir releases
using WA-ANN model which improved the simulation of streamflow at Kudige and M
H Halli.

Kumar & Nandagiri (2018) [19] obtained high NSE values for both Hemavathy inflow
and Harangi inflow using the SWAT model by incorporating the Variable Source Area
(VSA) mechanism. This mechanism was successful upstream of major reservoirs, however,
did not have adequate predictive ability downstream. Geetha et al. (2008) [23] modelled
Hemavathy using the SCS-CN lumped conceptual model and VSA lumped conceptual
model. Both these studies utilised observed point rainfall within the catchments opposed to
the IMD gridded rainfall. SCS-CN, VSA and the model ensemble from this study showed
NSE values of 0.84, 0.78 and 0.94 respectively at Hemavathy. VIC and GWAVA produced
similar or better performances compared to the more complex SWAT [19], ANN and SVR
models across the catchments.

These results highlight the strength of large-scale gridded models for modelling the
extent of large catchments but able to represent the processes of headwater catchments
as accurately as in this region as catchment-scale models. Additionally, the importance
of accurate climatic forcing in mountainous regions and the ability to simulate reservoir
outflows is emphasised. An accurate spatial representation of precipitation for input into
hydrological models and comprehensive reservoir functionality is paramount to obtaining
good results in this region [13].

6. Conclusions

Literature highlights that many hydrological models fail to simulate the streamflow
dominating releases from Hemavathy and Harangi reservoirs accurately. The models,
utilised in this study, individually had varying results across the five catchments. V-SWAT
and GWAVA under-estimate the streamflow in catchments with reservoirs when the rainfall
is used as the only source of hydrological forcing data. V-VIC tended to under-estimate
the streamflow in the sub-catchments with the major reservoirs whilst over-estimating
the streamflow in the remaining catchments. F-SWAT can offset the under-estimation of
rainfall within the Western Ghats region utilising the observed reservoir outflow data
whilst F-VIC over-estimates the streamflow across all the catchments. Although F-SWAT,
V-SWAT and GWAVA produced a low bias, all five model setups struggled to accurately
reproduce the observed streamflow at K M Vadi. V-VIC, V-SWAT and GWAVA would be
suitable choices to perform future scenario modelling however, F-SWAT and F-VIC would
be unsuitable as future reservoir release data are not available nor data on how releases
would vary with socio-economic changes.

This study highlights the strength of large-scale gridded models for modelling the
extent of large catchments but additionally able to represent the processes of headwater
catchments as accurately in this region as catchment-scale models. The ensemble model
mean is the most consistent with the observation streamflow. The ensemble predictions
outperformed the individual models across all five catchments. The ensemble mean
has a better predictive ability in catchments with reservoirs than the individual models.
Utilising multiple models could be a suitable methodology to offset uncertainty in input
data and poor reservoir operation functionality within individual models. This study
has highlighted the importance of an accurate spatial representation of precipitation for
input into hydrological models and comprehensive reservoir functionality is paramount to
obtaining good results in this region.
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Appendix A

Table A1. Brief Description of functionality/processes summarised from the model user guidance [58,61,63].
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Table A2. Description and source of the model input data.

Input Data Model Resolution Source

Climate Forcing Data

Precipitation

VIC
0.25 degree, daily, 1951–2017 India Meteorological Department [57]

GWAVA

SWAT
0.25 degree, daily, 1951–2017

0.14 degree, daily
34 rain gauges, monthly

India Meteorological Department [57]
India Meteorological Department [57]
India Meteorological Department [57]

Maximum and Minimum
Temperature

VIC

1 degree, daily, 1951–2016 India Meteorological Department [57]GWAVA

SWAT

Wind speed
VIC 0.25 degree, daily, 1971–2016 Princeton University [67]

SWAT 0.25 degree, daily India Meteorological Department [57]

Relative Humidity SWAT 0.125 degree, daily India Meteorological Department [57]

Sunshine hours SWAT 0.125 degree, daily India Meteorological Department [57]

Hydrological Data

Streamflow gauged data

VIC
Cauvery, daily, 1971—2014 India-WRIS

GWAVA

SWAT Upper Cauvery, monthly India-WRIS

Reservoir inflow and outflow
data

VIC
Cauvery, monthly 1974–2014 India-WRIS

GWAVA

Water transfers
SWAT Upper Cauvery, monthly India-WRIS

GWAVA Cauvery catchment ATREE

Interventions
GWAVA

Karnataka, 2006–2012 Catchment Development Department, Karnataka
SWAT

Land Surface Data

Elevation

VIC
30 m × 30 m NASA Shuttle Radar Mission Global 1 arc second V003 [70]

GWAVA

SWAT 90 m × 90 m Shuttle Radar Topography Mission [71]

Soil type

VIC 250 m International Soil Reference and Information Centre (ISRIC)
world soil information [72]

GWAVA 30 arc second Harmonized World Soil Database v1.2 [73]

SWAT 1: 250,000 National Bureau of Soil Survey and Land Use Planning
(NBSS & LUP).

Land Cover Land Use

VIC
100 m × 100 m, 1985, 1995, 2005 Decadal land use and land cover across India 2005 [74]

GWAVA

SWAT 1:250,000 National Remote Sensing Centre (NRSC)

Crops GWAVA Talak, 2000 National Remote Sensing Centre (NRSC)

SWAT 1:250,000 National Remote Sensing Centre (NRSC)

LAI VIC 1 km resolution MODIS (United States Geological Survey (USGS) Earth
Explorer, 2018)

Albedo VIC 1 km resolution MODIS (United States Geological Survey (USGS) Earth
Explorer, 2018)

Demand Data

Total Population GWAVA Village, 2011 Indian Decadal Census

Rural Population GWAVA Village, 2011 Indian Decadal Census

Livestock GWAVA 5 km × 5 km CGIR Livestock of the World v2 [75]
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Table A3. SWAT model inputs and calibration parameters.

Variable (Unit) Parameter Name Parameter Value Source

Sand content (%) SAND 20 (10–30) NBSS&LUP *
Silt content (%) SILT 28 (20–35) NBSS&LUP *

Clay content (%) CLAY 53 (35–70) NBSS&LUP *
Bulk Density (g cm−3) SOL_BD 1.29 (1.24–1.33) NBSS&LUP *

Available Water Content (mm H2O/mm soil) SOL_AWC 0.14 NBSS&LUP *
Soil Depth (mm) SOL_Z 750 (300–1200) NBSS&LUP *

Saturated Hydraulic Conductivity (mm/hr) SOL_K 6.6 (6.03–7.12) NBSS&LUP *
Curve number CN2 82 (72–92) Calibrated

Groundwater revapcoeff (-) GW_REVAP 0.02 Default
Threshold depth of water for revap in shallow

aquifer (mm H2O) REVAP_MN ** 750 Default

Threshold depth of water in the shallow
aquifer required to return flow (mm H2O) GWQMN 1000 Default

Groundwater delay time (days) GW_DELAY 31 Default
Surface runoff lag coefficient SURLAG 4 Default

Base flow alpha factor ALPHA_BF 0.048 Default
Hydraulic conductivity of the reservoir bottom

(mm h-1)—For ex-situ interventions RES_K 4 Measured

Hydraulic conductivity of the reservoir bottom
(mm h-1)—For in-situ interventions RES_K 12 Measured

* NBSS&LUP: National Bureau of soil Survey and land use planning. Groundwater revapcoeff: Water may move from the shallow aquifer
into the overlying unsaturated zone. As GW_REVAP approaches 0, movement of water from the shallow aquifer to the root zone is
restricted. As GW_REVAP approaches 1, the rate of transfer from the shallow aquifer to the root zone approaches the rate of potential
evapotranspiration. ** REVAP_MN Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur
(mm H2O).
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Figure A1. Monthly average streamflow in million cubic meters (MCM) for each catchment simulated by V-VIC, VIC, V-
SWAT, SWAT and GWAVA superimposed with the monthly average observed streamflow. 
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