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A B S T R A C T   

Does the provision of weather and climate information services (WCIS) enhance farmer’s use of forecasts in 
informing farm decisions? This paper assesses the effectiveness of the Multi-disciplinary Working Group (MWG) 
– a WCIS co-production initiative in Senegal in influencing farmers uptake of weather and climate information 
(WCI). WCIS are increasingly gaining importance and widely touted as critical in helping farmers adapt to 
climate variability. While there have been various WCIS initiatives producing and translating climate data into 
tailored information and knowledge in different parts of the world, there is hardly any rigorous evidence 
assessing their effectiveness in improving uptake. In this assessment, we use innovative survey methods and 
apply rigorous analytical approaches that control for self-selection bias to establish causal linkages between the 
MWG and use of WCIS. Our findings indicate that MWGs are positively associated with farmers’ awareness, 
access and uptake of WCI resulting in farm management responses depending on the type of information used. 
The presence of MWGs generally increases farmer’s awareness of WCI by 18%, access by 12% and uptake by 
10%. Furthermore, use of seasonal forecasts is generally associated with a higher proportion of farmers using 
improved seed, fertilizers and manure, but negatively with crop diversification within MWG locations. This 
suggests that participatory approaches in the provision of tailored climate information and advisory services can 
lead to higher uptake and use among farmers in informing farm management responses for better adaptation to 
climate change. We highlight lessons for improved evaluations of WCIS in future.   

Practical implications  

In recent years, much attention has been paid to improving the 
provision of weather and climate information services (WCIS) i.e. 

the packaging and dissemination of down-scaled and actionable 
weather and climate information (WCI) that meets the needs of 
end users1. Robust weather and climate information can be vital in 
helping users mitigate, adapt and build resilience to climate 
variability and change. As a consequence, there have been 
increasing implementation of various structured participatory 
models in producing WCI in sub-Saharan Africa (SSA). However, 
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1 Consistent with Hansen et al. (2019), we distinguish between weather and climate in that weather is the fluctuating state of the atmosphere around us, char

acterized by temperature, wind, precipitation, clouds and other elements. It is a simple concept that people experience and try to understand and factor into decision- 
making on a daily basis. Therefore, in this study, examples of weather information are forecasts with shorter lead times e.g., 10 day, 3-4 days and daily forecasts. 
Climate, on the other hand, is much more complex concept referring to the average weather and its variability over a certain time span. Climate is therefore 
inherently probabilistic. Examples of climate information includes seasonal forecast on onset and cessation of rainfall. 
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there is still a lack of rigorous evidence that show the causal effects 
of such models in improving the usability of climate information 
services. A well-designed evaluation study should be able to not 
only measure the changes in impact indicators between the group 
that benefit but also determine the extent to which those changes 
can be directly attributed to the intervention or program being 
evaluated. 

There are two broad factors that make impact evaluation of WCIS 
particularly challenging relative to other agricultural in
terventions. First, climate information epitomizes two inherent 
characteristics of a global public good, that of being non-rivalrous, 
and non-excludable in consumption (Gunasekera, 2010; Tesfaye 
et al., 2018; Vaughan et al., 2019). The non-rivalrous nature of 
WCI means that once generated, the marginal or additional cost of 
replicating and supplying the same information to other users is 
very low and uptake by one user does not infringe or diminish use 
by others. The non-excludable nature of WCI emanates from the 
fact that once generated, it is practically impossible and poten
tially expensive to prevent anyone from benefiting from the ser
vice (Gunasekera, 2010). This makes it difficult to distinguish 
between those who benefit from the intervention and those who 
do not, complicating efforts to identify a control sample that does 
not have access to the information (Tall et al., 2018; Vaughan 
et al., 2019). In impact evaluation literature, this is referred to as 
contamination or spill-over effect of the treatment. Second, the 

link between WCI uptake and livelihood impacts is not a direct 
one. As Hansen (2005) argues, WCI has no intrinsic value on its 
own, but rather the value is derived from improved farm decisions 
made based on the information received resulting in positive 
livelihood outcomes. 

While there is an emerging body of empirical studies that assess 
the benefits of different WCIS programs (e.g., Clarkson et al., 
2019; Dayamba et al., 2018; Stats4SD, 2017; West et al., 2018), 
most of them identify and measure impact through general asso
ciations between uptake of WCI and changes in various behaviours 
and outcomes. There is still a gap in evidence for evaluations that 
use more rigorous methods for establishing and validating the 
causal links between uptake of WCI and changes in behaviour and 
welfare of users. More specifically, there is a lack of evidence that 
(i) compare treatment and control groups as most resort to 
assessing and drawing conclusions based only on participants or 
beneficiaries of the program precluding the counterfactual case: 
what would have happened had the beneficiaries not received the 
treatment?; (ii) use more rigorous analysis that control for self- 
selection bias from observed and unobserved factors and; (iii) go 
beyond focussing on farmers’ perceived changes and consider plot 
level farm management responses on input use and crop outputs. 

This study assesses the effectiveness of the Multi-disciplinary 
Working Group (MWG) — a structured WCIS in Kaffrine Senegal 
— that co-produces actionable weather and climate information to 

Fig. 1. Conceptual schematization of the MWG co-production model.  
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respond to the needs of farmers in informing their decision. The 
MWG is centred around continuous and sustained interactions 
across multiple actors in ensuring that WCI is appropriately 
tailored to make it more usable for farmers. More specifically, the 
study looks at the impact of the MWG on farmers’ awareness, 
access and uptake of WCI. The study addresses some of the chal
lenges in impact evaluation of WCIS in three ways. First, we use an 
innovative survey design approach that enables us to have two 
sub-sample of farmers, one that is exposed to the MWG (treat
ment) and another without exposure (counterfactual). This ability 
to have a counterfactual enables us to consider the case: what 
would have happened in the absence of the intervention? The 
study was conducted in two districts; i) Kaffrine where MWGs had 
been established and operational since 2015 constituting the 
treatment group and ii) Kaolack region where there was no 
functional MWG and hence the control group. This means within 
each of these groups, we are able to further categorize sampled 
farmers into users and non-users of WCI, which are: seasonal 
forecasts on the amount of rainfall, onset and cessation; weather 
forecasts for 10-days, 2–3 days; and instant forecasts for extreme 
events. Second, we use rigorous econometric approaches (the 
Local Average treatment effect (LATE) model) to minimize the 
bias in estimation caused by unobserved factors due to self- 
selection of participants or program design. Third, this study 
goes beyond eliciting farmers’ perceptions of how they used 
climate information to inform farm decisions by considering plot 
level crop production data. Empirical evidence in assessing WCIS 
using rigorous impact evaluation techniques, as we do in this 
study, is hardly available. 

The CGIAR Research Program on Climate Change, Agriculture and 
Food Security (CCAFS) has worked closely with Senegal’s National 
Meteorological Agency (ANACIM) since 2011 to develop locally 
relevant climate information services and enhance the capacity of 
partners to communicate this information to end users. The na
tional MWG is composed mainly of the Department of Agriculture 
(DA), the Institute of Agricultural Research of Senegal (ISRA), the 
Ecological Monitoring Center (CSE), the National Agricultural and 
Rural Council Agency (ANCAR), the National Agricultural Insur
ance Company of Senegal (CNAAS), and ANACIM (Ndiaye et al., 
2013). The aim was; 1) developing WCIS that are tailored to the 
needs of the users; 2) enhancing the capacity of partners who were 
tasked to communicate climate information to farmers; and 3) 
enhancing the transmission of WCI and agricultural advisories for 
farmers (see Fig. 1). 

We find that the presence of an MWG has a positive and significant 
effect on farmers’ awareness, access, and uptake of seasonal 
forecasts, daily weather forecast, and instant forecasts. In addi
tion, exposure to the MWG also positively influences the behav
iour changes made by farmers that use WCI.   

1. Introduction 

Weather and Climate Information Services (WCIS) refer to the 
transformation of climate and weather related data into tailored infor
mation and knowledge that help users make informed decisions across 
different sectors. It involves the sustained engagement of diverse actors 
in the production, translation and transfer of Weather and Climate In
formation (WCI) products such as forecasts, projections, and agricultural 
advisories that are responsive to the needs of users (Hansen et al., 2019; 
Tall et al., 2018). Provision of tailored WCIS is widely regarded as a 
potential strategy that can help smallholder farmers in SSA in managing 
the risks associated with climate variability and change through 
informed farming decisions (Hansen et al., 2011; Roncoli et al., 2009; 
Roudier et al., 2014; Vaughan and Dessai, 2014)2. Yet, in reality, despite 

continuous advances in climate modelling and prediction and im
provements in seasonal lead time, Africa’s capacity for climate obser
vation is insufficient and marked with a decline in the quantity and 
quality of weather stations (Dinku et al., 2016). Further compounding 
this problem, particularly in SSA, is a general lack of awareness, un
derstanding, access and capacity in using this unfamiliar information, 
reluctance to integrate climate information into decision making, and 
poor understanding of scientific uncertainties (Dinku et al., 2014; 
Hansen et al., 2011). 

The field of WCIS is emerging, and in recent years, a lot of attention 
has been paid to improving the quality of weather and climate infor
mation by ensuring that it is tailored to meet the needs of end users. 
Considerable amount of climate change research has been conducted 
and decision-makers at the local and resource management level are 
actively seeking to increase their climate information uptake. However, 
there is a persistent gap between climate knowledge production and its 
subsequent use (Lemos et al., 2012). This gap may largely be due to a 
disconnect between the needs of users and the information produced by 
scientists. Scientists may assume that the knowledge they are producing 
is useful when they engage in research, but without a complete under
standing or appreciation of what users need, this knowledge may not be 
actionable to decision makers. Users in turn, may not know or may have 
unrealistic expectations of how knowledge fits their decision-making 
and may choose to ignore the information, despite its usefulness 
(Lemos et al., 2012; Porter and Dessai, 2017). It has thus become 
increasingly important for climate scientists and purveyors of climate 
information to deliberately co-develop climate knowledge with users to 
improve practical use and hence its uptake (Briley et al., 2015; Meadow 
et al., 2015). Such efforts aim to narrow down the climate information 
usability gap; that is, if users of climate information can explain more 
clearly what makes it usable, then scientists can deliver exactly what is 
needed (Lemos et al., 2012; Porter and Dessai, 2017; Prokopy et al., 
2017). Mauser et al., 2013 suggested a framework of interdisciplinary 
and transdisciplinary co-creation of knowledge in which diverse actors 
(producers, purveyors and end-users) are involved in the co-design, co- 
production and co-dissemination of climate knowledge and information 
products. The co-design phase often starts with the development of a 
shared framing of the problem, which places scientific knowledge within 
the social, cultural, and political contexts. The co-production phase in
volves conducting integrated research that taps into the diverse exper
tise of all actors involved. The last phase involves co-dissemination of 
the knowledge to all intended beneficiaries. This iterative approach 
involves bottom-up and inclusive interaction of diverse actors that hold 
different knowledge, experience and expertise along the climate infor
mation value chain. It helps in bridging the communication and 
knowledge gap and builds stronger relationships based on trust and 
respect across the different actors. One of the criticisms of why tradi
tional models of knowledge production often fail is because they tend to 
be very ‘top down’ and linear in nature (Cash et al., 2003). Structured 
participatory communication processes help in creating a conducive 
environment for co-learning among farmers, researchers and climate 
information providers resulting in better understanding and more will
ingness by end users to use of climate information in informing decisions 
(Carter et al., 2019; Vaughan and Dessai, 2014). 

According to Cash et al. (2003), climate information is likely to be 
effective in influencing decision making if it is perceived by stakeholders 
to be credible, salient and legitimate. A commonly cited approach to 
ensure that climate information services meet this criteria and hence 
useful to decision-makers is through co-production, an integrated and 
iterative approaches that leverages on the expertise of different actors to 
ensure that climate science is appropriately tailored into services that 
meet the needs of end-users (Bremer et al., 2019; Dilling and Lemos, 
2011; Lemos and Morehouse, 2005; Vedeld et al., 2019). Examples of 
participatory WCIS that enable end-users, like farmers, to integrate 
climate information into their decision making within SSA include; the 
Enhancing National Climate Services initiative (ENACTS) implemented 

2 Throughout the paper, we refer to WCIS and weather and climate services 
interchangeably 
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in countries like Ethiopia, Tanzania and Mali (Dinku et al., 2016), the 
Participatory Integrated Climate Services for Agriculture (PICSA) (Dor
ward et al., 2015) implemented in countries such as Zimbabwe, Malawi, 
Rwanda, Tanzania, Mali and Senegal (Dayamba et al., 2018) as well 
other efforts under the Global Framework for Climate Services Adap
tation Program in Africa (GFCS-APA) in various parts of Africa (Pathak 
and Lúcio, 2018). While the theoretical underpinnings of participatory 
approaches are well understood, there is still a lack of rigorous evalu
ations assessing their effectiveness in enhancing users’ uptake (Vincent 
et al., 2018). 

This study makes two contributions to the existing evidence base on 
use of WCI. First, a methodological one in that we use an innovative 
survey design approach in combination with rigorous econometric 
methods that minimize self-selection bias, a ubiquitous problem in ex- 
post evaluation. Empirical evidence in assessing the benefits of WCIS 
using rigorous impact evaluation techniques, as we do in this study, is 
hardly available. Second, an empirical one in that our study is framed to 
rigorously evaluate the effectiveness of a large-scale, nationwide WCIS 
co-production model in the diffusion of WCI, something that is also very 
rare in existing literature. To the best of our knowledge, there is no peer- 
reviewed study that has carried out a rigorous quantitative assessment of 
a WCIS program while controlling for self-selection bias between the 
beneficiaries and non-beneficiaries of the program. 

We assess the effectiveness of the Multi-disciplinary Working Group 
(MWG)— a participatory co-production model that fosters interactions 
between different actors that produce, translate, transfer, and use WCI, 
ensuring that they are appropriately tailored to meet the needs of end- 
users. Two broad types of weather and climate information are pro
duced and transmitted through the MWGs; i.e. seasonal information 
(forecasts on total rainfall amount, its onset and date of cessation) and 
weather information (10-day forecasts, 2–3 days forecasts and instant 
forecasts for extreme events) as well as other complementary informa
tion such as agricultural advisories. Specifically, we analyse the effect of 
the MWGs in improving farmers’ awareness, access and uptake of 
weather and climate information, as well as how this information is used 
to improve decision-making by the farmers. We use primary data 
collected in Senegal and apply instrumental variable approach to ac
count for selection bias3. Given data limitations, we do not claim to 
provide unassailable evidence based on this one case study, but offer 
preliminary insights on rigorous evaluation of WCIS from a demand side 
or user perspective which is a vital component in the general discourse 
on assessing the costs and benefits of WCIS to society. 

2. Review of empirical studies on the development of WCIS 

Several studies have documented the processes, barriers and suc
cesses of uptake of climate information for decision making and these 
have mainly focused in Europe and the USA (e.g., Dilling and Lemos, 
2011; Kirchhoff et al., 2015; McNie, 2007; Meadow et al., 2015; Prokopy 
et al., 2017). Most of these studies find that WCIS proved to be efficient 
in educating potential users about the strengths and limitations of 
climate science and improving the production, dissemination, and use of 
climate information. Despite the outlined benefits, there is not much 
empirical evidence showing the benefits of WCIS programs. However, 
over the last 5 years a number of WCIS models have been designed and 
implemented in several countries in Africa and the progress documented 
(e.g., Clarkson et al., 2019; Dayamba et al., 2018; Dinku et al., 2017; 
Dorward et al., 2015; Pathak and Lúcio, 2018; West et al., 2018). Evi
dence from these studies, has mostly been through qualitative means 

limited to subjective opinions of beneficiaries on the benefits of WCIS 
without counterfactual evidence from non-beneficiaries. 

For instance, a qualitative study by Clarkson et al. (2019) showed 
that PICSA has been successful in influencing farmers’ behaviour in 
Ghana. However, quantitative evidence of the effect of these co- 
production models in SSA is still missing. Use of weather and climate 
information services, specifically seasonal forecasts, has been shown to 
affect farmers’ practices and behaviors (Hassan and Nhemachena, 2008; 
Ingram et al., 2002). Behavior changes among farmers include; planting 
early maturing and drought tolerant crops or varieties, crop diversifi
cation, varying the planting and harvesting dates, diversifying to non- 
farm activities, uptake of soil and water conversation techniques and 
use of irrigation (Hassan and Nhemachena, 2008; Ingram et al., 2002). 
Other farm management responses that were observed across different 
countries in SSA in response to information on seasonal forecasts 
include; adjusting the use of fertilizers, increasing post-harvest storage, 
intercropping, changing or mixing crop types, adjusting crop densities, 
reducing herd sizes, changing planting time and sometimes relocating to 
other places (Ziervogel et al., 2005; Luseno et al., 2003; O’Brien et al., 
2000). In addition, Roudier et al. (2012) notes that benefits from sea
sonal forecasts mostly depends on the type of season, whether it is good 
or bad. 

There have been a few quantitative studies on the effect of WCIS in 
SSA. For example, Maggio et al. (2019) use longitudinal data and pro
pensity score matching to compare farmers use of seasonal forecasts in 
informing on farm management responses, before and after the El-Niño 
Southern Oscillation among farmers in Zambia. Lo and Dieng (2015) 
assessed the impact of seasonal climate forecasts on yields in Senegal 
using test plots. In this case, various WCI were used to adjust manage
ment decisions regarding a specific treatment plot throughout the sea
son, after which yields from the test plot would then be compared to 
those of control plots where more traditional practices were employed. 
If well designed, test plots have the advantages of providing a coun
terfactual, capturing decision-making and potentially overcoming 
challenges of farmer recall and the elicitation of sensitive economic 
information (Vaughan et al., 2019). A major challenge with using test 
plots is that real life management decisions that small-scale farmers 
make may not compare with decisions that agronomists make in the test 
plots, where conditions can be controlled. Patt et al. (2005) used a two- 
year dataset and a control group to estimate the impact of farmer 
participation in participatory climate information workshop on yields in 
Zimbabwe. The methodology was based on a multivariate regression 
analysis that controls for use of forecast and locations. Although the 
study found that farmers who participated in the workshops had 
significantly more yields, no strong connection could be made between 
management responses to the forecast and increased in yields. 

Roncoli et al. (2002) used a combination of household surveys and 
focus group discussions on farmers’ decisions and local knowledge on a 
sample of 23 farmers in Burkina Faso and found that capacity to respond 
adequately to climate forecasts was hindered by their poor access to 
necessary inputs and by risk aversion. Other studies that estimated the 
benefits of using WCI based on household surveys include; Ouedraogo 
et al. (2018) who assessed the effects of using seasonal climate forecasts 
on yields in Burkina Faso; Rao et al. (2015) who assessed the effect of 
climate communication strategies on farmers yields in Kenya; Anuga 
and Gordon (2016) who estimated the effects of use climate information 
on yields in Ghana; Stats4SD (2017) who estimated the impact of use of 
WCI in Malawi and Tanzania. Most of these studies have shown positive 
effects of using WCI on different livelihood outcomes. However, these 
studies do not control for self-selection bias between groups that are 
exposed to WCIS and those not exposed. Additionally, these studies as
sume a direct link between use of WCI and livelihood outcomes, yet in- 
fact, uptake of WCI influences livelihood outcomes through other 
pathways such as the adoption of certain seed varieties or different farm 
management responses. Climate information has no intrinsic value, but 
rather the value comes from improved farm decisions made based on the 

3 The rest of the paper is as follows; section 2 presents a brief review of co- 
production of climate information and the effect of WCIS on farmers’ behav
iour. Section 3 presents the methodology section; Section 4 presents the results 
and discussion while section 5 concludes the paper with some policy recom
mendations and areas of further research. 
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information received resulting in positive livelihood outcomes (Hansen, 
2005). A few studies have highlighted some of the empirical and prac
tical challenges when evaluating causal impacts of access and use of WCI 
on farmers’ livelihoods (see Chiputwa et al., 2019; Tall et al., 2018; 
Vaughan et al., 2019). 

3. Methods 

3.1. The MWG co-production model and its hypothesized impact 
pathways on farmers in Senegal 

The MWGs were first initiated by the AGRHYMET Regional Centre as 
a response mechanism to a devastating drought in the early 1980s 
among Permanent Interstate Committee for Drought Control in the Sahel 
(CILSS) countries in West African Sahel. The MWGs were a platform for 
engagement where meteorologists and stakeholders from different sec
tors such as agriculture and water would collaborate and develop early 
warning information (Hansen et al., 2019). The MWGs being assessed in 
this study were first piloted in 2011 in Kaffrine district with partnership 
from CCAFS, ANACIM and were piloted with the collaboration of As 
shown in Fig. 1, the MWGs in Senegal operate at both the national and 
local levels. They constitute a decisive and inclusive body that translates 
weather and climate information into downscaled and actionable in
formation for farmers. Local MWGs which consist of farmers, climatol
ogists, agricultural scientists, extension and technical service agents, 
local farmers’ organizations, media, NGOs, women-based organizations 
and other relevant local entities within the districts, are set up to closely 
monitor climatic events and phenomena, and translate climate forecasts 
into timely advisory services that help guide farmers into making 
informed decisions (Ouedraogo et al. 2018)4. Seasonal forecasts are 
updated between June and August of each year and translated into 
agricultural advice by the multidisciplinary working group (MWG). 
Once produced, information is disseminated directly through short 

message services (SMS) to a number of farmers within ANACIM’s SMS 
database, the MWGs, community radios, the Rural Department for 
Development Services (SDDR), and local administrative authorities 
(CCAFS, 2015). In the department of Kaffrine, the MWG includes rep
resentatives of the de- centralized administrative services (Ministry of 
Agriculture, Livestock, Environment, etc.), NGOs and Union des Radios 
Associatives et Communautaires du Senegal (URAC). This group meets 
every 10-days and discusses how climate information related to agro
nomic advice can be translated into actionable information for farmers. 
The outcomes of these discussions are delivered to relais farmers through 
radio, cell phone calls, SMS or word of mouth. Relais farmers are pro
gressive farmers, or leaders of farmers’ organizations, or farmers with 
strong influential power (for example religious leaders, community 
leaders) who are in charge of delivering the information to other 
farmers. They are selected by the district SDDR to convey climate in
formation in their villages but not all villages have a relais farmer. Relais 
farmers share the information with fellow farmers through SMS, phone 
calls and by word of mouth. Farmers also receive the CIS directly by 
listening to the community radios or from the SDDR agent. Local MWGs 
also manage an early warning system (EWS) based on climate infor
mation received from ANACIM. They meet every 10 days and produce a 
report with agricultural advice that is shared with policymakers and 
farmers through a special program broadcast on community radios. The 
interactive radio programming allows listeners to share feedback, 
including additional information, views and requests for clarification. 
Fig. 2 shows focus group discussion with women on the use of weather 
and climate forecasts in one of the MWG communes in Kaffrine being 
facilitated by local extension agent. 

Fig. 3 conceptualizes the hypothesized impact pathways through 
which uptake of CIS under the MWG model in Senegal occurs5. We start 
by distinguishing and highlighting the linkages between activities of the 
MWGs, the outputs generated, the outcomes which result from use of 
outputs and the resulting impacts on the the livelihoods and welfare of 

Fig. 2. A focus group discussion on use of weather and climate information among women in Kaffrine, Senegal.  

4 For a more in-depth discussion on how the MWGs in Senegal operate and 
are set up (see CCAFS, 2015; Ndiaye et al., 2013; Ouedraogo et al., 2018). 

5 This is a simplified version of the impact pathways based on key informant 
interviews and focus group discussions. 
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farmers. As highlighted in Fig. 1, the MWGs are participatory and iter
ative models consisting of multiple actors that co-produce downscaled 
WCI on seasonal forecasts (total amount of rain, onset and cessation) and 
weather forecasts 2–3 days, 10 days, and instant EWS. For example, 
seasonal forecast is translated (from its scientific form) and communi
cated to farmers with an indication of its probability, in easily 

understandable language, giving farmers the capacity to make informed 
farm management responses (Ndiaye et al., 2013). The different fore
casts and agricultural advisories are then disseminated to end-users 
through various channels that include community radio, SMS, exten
sion and lead farmers. Based on the bottom-up approach and inclu
siveness of the MWG approach, the assumption is that downscaled WCI 

Fig. 3. Hypothesized impact pathways of weather and climate information under the MWG model in Senegal.  
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disseminated are credible, salient and legitimate which drives increased 
interests of end users like farmers. This results in greater awareness of 
and access to WCI which is instrumental in increasing their uptake and 
use in informing farm decisions, which we refer to as direct outputs of 
the project6. The uptake of WCI and advisory services by farmers 
changes their knowledge and skills and leads to behaviour changes in 
farming management decisions. These behaviour changes enable 
households to buffer their agricultural production and other livelihood 
activities against climate risks and are referred to as outcomes. Some of 
these include adjustment in the timing of farm decisions, inputs used, 
livelihood diversification, uptake of climate index-based insurance and 
adoption of climate-smart technologies. These outcomes may contribute 
to a reduction in crop failure and livestock losses, as well as reduction in 
farm income fluctuations which in turn translate into short-term impacts 
e.g., improved agricultural productivity and improved incomes. Finally, 
these short-term impacts result in longer term impacts, such as improved 
livelihood resilience and reduced poverty levels. 

3.2. Survey data 

We used primary data collected from the sampled sites in Senegal 
through individual household surveys using structured questionnaires. 
The questionnaire was first set up in English and French; and then 
translated and administered by carefully trained enumerators using the 
local language, Wolof. The questionnaire captured various indicators 

that included household information (e.g., demographics, education, 
asset ownership, income generating activities); farm characteristics and 
agricultural production (e.g., plot characteristics, crop and livestock 
data, crop varieties grown); other off-farm crop production livelihood 
strategies7. In addition, the questionnaire also collected detailed infor
mation on household’s awareness of, access to and use of weather and 
climate services such as seasonal forecasts on rainfall onset and cessa
tion and short-term weather services such as weekly and daily forecasts. 
All questions on uptake of WCI and the farm management responses 
informed at plot level were in reference to the agricultural season for 
2016, which was just prior to the household survey. We use the Margalef 
index as a proxy for crop diversification. It measures the species richness 
of crop diversity by simply counting the number of different crop species 
in a given area. It is defined as the number of species S recorded, cor
rected for the total number of individual N summed over species 
(Magurran, 2004; 1988). In this study, we define S as the number of 
crops grown in the season prior to the household survey and N as the 
total hectares of crops grown in that season. Empirical studies that have 
used this index include (Di Falco and Chavas, 2009). The sampling 
strategy was built on a stratified random sampling design. First, we 
purposively selected districts that met the following two criteria, i) 
having access to a functional MWG that had been established and 
operational since 2011 as well as receiving tailored WCI and agricultural 

Fig. 4. Map of Senegal showing the sampled districts (circled) and presence of functional MWGs.  

6 Effective uptake and use of climate services is also influenced by other 
factors such as socio-economic status, assets, and institutional support such as 
access to credit, seeds and fertilizer. 

7 The questionnaire was very broad and here we only highlight some sections 
that are relevant to this paper. 
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advisories from a local radio station, and ii) having no exposure to an 
MWG but having access to WCI through e.g., local radio stations8. Fig. 4 
spatially maps the occurrence of functional MWGs by district in Senegal. 
Within Kaffrine region, we purposively selected two districts i.e. Kaffr
ine (with access to MWG) and Birkilane (with no access to MWG). 
Within Kaffrine district, the rural communes of Kahi, Kathiote and 
Mbignick were selected on the basis that they had been more exposed to 
WCIS compared to the other communes. Within each of these 

communes, two to four villages were randomly selected, and 30 farmers 
randomly selected from a list of households provided by the village 
head. The district of Guinguineo in Kaolack region was selected as an 
additional control group as having no access to a functional MWG but 
receiving WCIS from a local radio station. In Guinguineo district, eight 
villages were randomly selected from Panal Wolof commune, followed 
by a random selection of 30 households per village. The Kaffrine and 
Kaolack regions both lie in livelihood zone SN 10: Rainfed Groundnuts 
and Cereals, as classified by the Famine Early Warning System Network 
(FEWS-NET) based on households having similar livelihood patterns and 
access to markets (http://fews.net/livelihoods). The survey targeted 
heads or the second most important decision maker in each household. 
In the end, a total of 795 households were selected and interviewed 
during the survey; 577 households in Kaffrine region and 218 house
holds in Kaolack region. The reason for over-sampling Kaffrine region 

Fig. 5. Composition of sampled households by MWG and use of WCI.  

Fig. 6. Map showing the distribution of sampled households in a specific cluster location within Kaffrine district.  

8 This sampling criteria was informed by spatial mapping of functional MWGs 
as outlined in Ouedraogo et al. 2018 based on their performance. Fig. 4 in 
Ouedraogo et al. (2018), shows that the MWGs in the Kaffrine district (our 
treatment group) had held on average up to 6 meetings in 2017 alone, while the 
control group region Birkilane and Guinguineo did not have any functional 
MWGs. 
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was because it consisted of two sub-groups of farmers (i) those with 
access to the local MWGs that are functional and hold regular meetings 
based on the characterization in Ouedraogo et al. (2018)9. As shown in 
Fig. 5, a total of 438 farmers in Kaffrine districts had access to MWGs 
while the remaining 139 in Birkilane did not have access as shown in the 
sample composition. Fig. 6 shows the distribution and geo-referenced 
locations of some of the sampled households in one of the clusters 
within Kaffrine district. 

3.3. Modelling the adoption decision and empirical estimation using the 
counterfactual ATE framework 

In general, adoption of a technology is normally defined as a binary 
or dichotomous choice, taking the value of one for adopters and zero for 
non-adopters. This can be further extended, depending on the type of 
technology being considered, to include the extent or intensity of 
adoption. In this study, we consider the impact of uptake and use of 
different weather and climate information. More specifically, we 
consider the impact of using six types of weather and climate informa
tion products i.e. total amount of rainfall for the season; onset of rains; 
cessation of rains, daily weather forecasts (2–3 days and 10 days); and 
instant forecasts of extreme events. First, an individual can only access 
or receive a particular weather and climate information if they are 
already aware of it. A household is considered to be aware of an inno
vation when their information level on the technology exceeds a mini
mum threshold (Adegbola and Gardebroek, 2007). Therefore, awareness 
of and having the ability to receive or access a particular WCI are 
necessary but not sufficient conditions that the individual will be able to 
use this information to influence their farming decisions. Second, an 
individual can only uptake and use weather and climate information for 
decision making if they are simultaneously aware and have the means to 
access or receive the information. Hence, we combine uptake and use as 
one decision, which is defined as a binary variable and for each indi
vidual and takes the value of 1 for a household that uses a particular 
forecast to inform their farm management responses, and 0 if they do 
not. This implies that for each household, we are able to observe 
whether they used any one or a combination of the six weather and 
climate information products. A household is classified as a WCI user if 
in the 2016 agricultural season, used at least one of the six types of WCI 
to adjust their on-farm decisions. Non-users, on the contrary, are 
households that used neither of the six WCI to inform their farming 
decisions. 

In addition to these six individual WCI use decisions, we also 
consider an integrated binary measure, which takes the value one, if the 
household uses at least one of the six WCI, and 0 if not. The farm 
management responses informed by use of WCI depend on the type and 
timescale of the information provided. For example, while seasonal 
forecasts provide a general overview of the season, they can not elabo
rate on day-to-day weather fluctuation. It is important that the uptake 
decision is conditional on (i) the household being aware of at least one 
type of weather or climate information, its attributes and the potential 
net benefits (utility); and (ii) the household having the means to receive 
this information. Awareness is expressed as a dummy variable for each 
WCI and takes a value of 1 if the household is knowledgeable of a 
particular weather and climate service and 0 if otherwise. Access is 
measured as a binary variable that takes the value of 1 for each weather 
and climate service that the household is able to receive from one or 
more sources like radio, extension workers, or from fellow farmers, and 
0 if otherwise. The use decision is a function of the expected benefits 
from the uptake of WCI, which depends on the attributes of the WCI in 
question such as source and accuracy, as well as other socioeconomic 
factors (e.g., age and education level of farmer, farm size) and 

institutional factors (e.g., access to extension, inputs and outputs 
markets). 

The impact of a given WCI is difficult to assess because information 
alone has no intrinsic value. The value is only realized when this in
formation is translated into farming decisions that result in positive 
benefits or utility for the user. We model a household’s decision to up
take and use a WCI product based on a random utility framework on 
household decision-making under imperfect information.. Under this 
framework, we assume that a household makes the choice to use a 
particular WCI based on the maximization of an underlying utility 
function, U , which is determined by a set of farm and household vari
ables, X and can be represented in the form: 

MAXU = f (X) (1) 

We assume that household i will use one or a combination of WCI 
types j, where j(j = 1,…6), if the utility Uij derived is greater than the 
utility Uim of not using WCI. Since the utilities cannot be observed, they 
can be expressed as a function of observable elements and can be rep
resented by latent variable model as: 

I* = Uij > Uim ∀m ∕= j (2) 

If a linear relationship is assumed, I* can be written as: 

Iij = βjXi + uij (3)  

where Iij the indirect utility level associated with the jth WCI and 
determined by a broad set of observed household and farm character
istics, and institutional factors Xi, as well as unobserved factors affecting 
the uptake decision contained in uij. 

To estimate the causal effects of a the MWG program, we follow the 
theoretical framework of the Average Treatment Effect (ATE), also 
known as the potential-outcomes model (Rubin, 1974)10. The ATE 
framework is based on the idea that every subject has different potential 
outcomes depending on the group they are assigned. In this case, the 
potential outcomes of a household that use WCI will be different from 
those of a household that does not use WCI. Under the potential- 
outcomes framework, we estimate the average treatment effect (ATE), 
the average treatment effect on the treated (ATT), the average treatment 
effect on the untreated (ATU) by comparing the expected values of the 
outcomes of users and non-users in actual and counterfactual scenarios, 
hence the importance of having treatment and control groups in the 
survey design. This allows measuring the change in the outcome that is 
attributable to the MWG. However, it is not possible to simultaneously 
observe the with and without treatment scenarios since the same indi
vidual or household cannot be in the two states at the same time. While 
it is not possible to estimate the difference in observed outcomes for the 
same individual at a given point in time, an average difference can be 
calculated for different households in these two scenarios. 

To illustrate this mathematically, for a population of N households a 
farmer i has two hypothetical potential outcomes: Io

ij is the observed 
outcome variable if they use one or a combination of j WCI, and I1

ij is the 
observed outcome variable if they do not use WCI. The ATE can be non- 
parametrically identified from the joint distribution of I, X conditional 
on MWG exposure (w = 1) and can be represented as: 

E(I|X,w = 1 ) = f (Xβ), (4)  

where f is a known function of the vector of covariates determining WCI 
uptake, X, and β are the unknown parameter vectors that can be esti
mated by maximum likelihood estimation (MLE) procedures using 

9 Kaffrine department has one of the 21 MWGs that were most operational 
and held at least six regular meetings. 

10 Outcomes under Rubin’s potential-outcomes framework refers to the con
dition or circumstance of a subject with and without treatment. This should not 
be confused with outcomes in the MWG impact pathways as presented in Fig. 3, 
which refer to behavioral changes resulting from uptake of WCI. 

B. Chiputwa et al.                                                                                                                                                                                                                               



Climate Services 20 (2020) 100203

10

observations I and X from the exposed sub-sample with I as the depen
dent variable. With the estimated parameters β, the predicted values are 
computed for all observations in the sample, including the sub-sample of 
the non-exposed. The average of these predicted values, f(Xβ̂), for 
values i = 1,2,⋯,n, to compute ATE for the pooled sample, ATT for the 
exposed sub-sample and ATU for the non-exposed sub-samples. These 
can be presented as: 

(i) the ATT which measures the change in the probability to adopt 
WCI for those who had access to MWG; 

ÂTT =
1

Nw

∑
wf (Xβ̂) (5) 

(ii) the ATU which measures the potential impact on farmers in the 
control group that were not exposed to the MWG if in fact they are 
exposed to the MWG; 

ÂTU =
1

N − Nw

∑
(w − 1)f (Xβ̂) (6) 

(iii) is the weighted average of ATT and ATU and measures the 
impact of being exposed to the MWGs on the entire population of users 
and non-users of WCI. 

ÂTE =
1
N
∑

f (Xβ̂) (7) 

To analyze the impact of the MWG on use and uptake of WCI as well 
the resulting impact on farmers’ behavioral changes, we use the 
instrumental variable approach based on the local average treatment 
estimator (LATE) (Angrist and Imbens, 1995). As already highlighted, 
not all individuals that were aware or had access to a particular WCI 
would actually translating into farm management responses. In such a 
case, it is reasonable to measure the impact of MWG only in the group of 
compliers. Following Abadie (2003), we estimate the treatment effect 
only in the sub-group of compliers using the local average treatment 
effect “LATE”. Our estimation method is as follows: 

L̂ATE =
1

P̂(w = 1)

∑n1

i=1
k̂ i⋅h(Ii,X, θ̂)|w = 1, (8)  

withk̂i, the complier weight, h, the Local Average Response Function 
(LARF) and θ̂, a vector of parameters to be estimated. w = 1 is the 
treatment indicator in the sub-group of farmers exposed to access or 
awareness and X is a vector of control variables consisting of farmer 
characteristics (e.g., age, education and sex of household head); farm 
factors (e.g., farm size, altitude, location dummies, access to MWG) and 
institutional factors (e.g., distance to markets, access to extension). We 
first estimated the probability of adoption in the sub-group of farmers 
with exposure to access or knowledge P̂(w = 1) as well as the complier 
weight,k̂i. In a second stage, compute ̂LATE by simply applying above- 
mentioned formula. Since we use a two-stage procedure with some pa
rameters in the second stage estimated in the first stage, we adopt a 
bootstrap procedure to consistently estimate the ̂LATE’s standard errors. 
Both the ATE and the LATE are typically estimated using a two-stage 
least squares regression approach. The first-stage involves a probit 
specification that includes all observable factors that affect uptake of 
WCI. 

4. Descriptive statistics 

4.1. Differences in WCI use and farm management responses 
disaggregated by MWG and province 

Table 1 presents differences in awareness, access and use of WCI as 
well as farm management responses between farmers with access to 
MWGs versus those without access. Farmers with access to MWGs were 
more aware, had better access and used a significantly higher number of 

WCI in making farming decisions than those in without MWGs. Simi
larly, farmers that had access to MWGs had implemented significantly 
more farm management responses. Use of improved seeds and chemical 
fertilizers was also significantly higher among farmers with access to 
MWGs. However, the use of manure was more common among farmers 
without access to the MWGs. We use the Margalef index as a proxy for 
crop diversity and find that farmers that had access to the MWGs were 
less likely to diversify crops compared to those without MWGs. 

Table 2 presents the mean differences between WCI users and non- 
users disaggregated by region. . Generally, users in the two regions 
were more aware and had better access to different WCI than non-users. 
This could have been due to lack of knowledge on the value and net 
benefits derived from using WCI. In addition, WCI users in both regions 
were more likely to apply chemical fertilizers and use improved seeds 
compared to non-users. The relative proportions are however higher in 
Kaffrine region (with access to MWGs) compared to Kaolack region 
(with no access to MWGs). Similarly, comparing the two regions, 
farmers in Kaffrine who used WCI implemented significantly more farm 
management responses compared to WCI users in Kaolack, which can be 
attributed to the presence of MWGs. 

Fig. 7 shows the link bewteen behavioral changes made at the farm 
level for the 2016 agricultural season among sampled farmers and the 
number of WCIS products used. The results point to a positive correla
tion between the number of WCI products used and behavioral changes 
made , but more interestingly that the intensity is highest among farmers 
with access to MWGs. For illustration purposes, the same figure illus
trates that a farmer using two different WCI forecasts will on average 
implement; (i) four behaviour changes if they are in Kaffrine and have 
access to the MWGs; (ii) three behaviour changes if they are in Kaffrine 
and do not have access to the MWGs; and (iii) one behaviour change if 
they are in Kaolack and have no access to the MWG. 

The descriptive statistics in this sub-section show that exposed to 
MWGs tend to be more aware, have better access, use more WCI prod
ucts and implement more behaviour changes than their non-exposed 
counterparts. However, there may be systematic differences (in e.g., 
resource endowment and risk preferences) that exist between WCI users 
and non-users, consequently making these correlations non-causal. In 
order to properly analyse the link between WCI use, the presence of an 
MWG and implications on behaviour changes, we have used the treat
ment effects model that accounts for the observed and unobserved dif
ferences among sampled farmers in the next section. 

Table 1 
Differences in awareness, access and use of WCI and behaviour changes among 
sampled farmers disaggregated by their exposure to the MWG.   

Without MWG With MWG  

Mean Std. dev Mean Std. dev 

Awareness, access and use of WCI 
Number of WCI known 4.45 1.74  4.93***  1.35 
Number of WCI accessed 4.11 1.80  4.53**  1.54 
Number of WCI used 3.60 1.88  4.18***  1.65 
Number of behaviour changes made 4.74 4.25  8.46***  4.95 
Behaviour changes made 
Number of crops grown in 2016 3.22 1.47  3.33  1.29 
Use of improved seed (dummy) 0.25 0.43  0.33  0.47 
Use of manure (dummy) 0.52 0.50  0.36***  0.48 
Use of chemical fertilizers (dummy) 0.34 0.48  0.72  0.45 
Crop diversificationa 2.18 0.42  2.06***  0.34 
Observations 357 438 

Notes: Std. dev: Standard deviation; *, **, *** denotes significance level at 10%, 
5% & 1%, respectively. 

a Measured as the Margalef Index. 
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5. Econometric results and discussion 

5.1. The effectiveness of the MWG model in influencing farmers’ 
awareness, access and use of WCI 

In this section, we present the causal impacts of access to the MWGs 

on awareness, access, and uptake of different WCI based on the 

Table 2 
Differences in awareness, access and use of WCI and behaviour changes among sampled farmers disaggregated by district.   

Kaffrine (n = 577) Kaolack (n = 218)  

Non-users (n = 116) Users (n = 461) Non-users (n = 133) Users (n = 85)  

Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev 

WCIS awareness and use 
Number of WCI known 3.87 1.71 4.93*** 1.35 3.23 2.05 4.45*** 1.74 
Number of WCI accessed 3.40 1.58 4.53*** 1.54 2.57 1.79 4.11*** 1.80 
Number of WCI used 0.00 0.00 4.18*** 1.65 0.00 0.00 3.60*** 1.88 
Number of behaviour changes 0.00 0.00 8.46*** 4.95 0.00 0.00 4.74*** 4.25 
Farm management responses 
Number of crops grown in 2016 3.20 1.80 3.33 1.29 3.70 1.52 3.22* 1.47 
Use of improved seed (dummy) 0.19 0.39 0.33** 0.47 0.09 0.29 0.25** 0.43 
Use of manure (dummy) 0.31 0.47 0.36 0.48 0.32 0.47 0.52** 0.50 
Use of chemical fertilizers (dummy) 0.57 0.50 0.72** 0.45 0.25 0.44 0.34 0.48 
Crop diversificationa 2.03 0.30 2.06 0.34 2.31 0.41 2.18* 0.42 
Institutional factors 
Access to extension (dummy) 0.16 0.37 0.33*** 0.47 0.07 0.26 0.15 0.36 
Exposure to MWG 0.66 0.48 0.79** 0.41 0.00 0.00 0.00 0.00 

Notes: Std. dev: Standard deviation; *, **, *** denotes significance level at 10%, 5% & 1%, respectively. 
a Measured as the Margalef Index. 

Fig. 7. Correlation between use of WCI and number of behaviour changes made.  
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potential-outcome ATE framework as outlined in Equations (5), (6) and 
(7)11. For brevity, we suppress the first-stage selection model and only 
present the impact estimates of the second stage. We start with Table 3, 
which present the impact estimates of exposure to the MWGs. Columns 
(1), (2) and (3) present the ATE, ATT and ATU, respectively. The results 
show that the presence of an MWG has causal impacts on awareness, 
access, and uptake of different WCI. All the estimates presented are 

positive and significant at the 1% level, albeit with varying degrees in 
magnitude. 

Starting with the greatest impacts in the awareness model (rows 
2–6), results reveal that the presence of MWGs significantly increase 
farmers’ awareness of EWS by 27% for the entire population (ATE), 28% 
for farmers already exposed to the MWG (ATT) and 24% for farmers 
without access to the MWG if they decide to adopt (ATU). Similarly, the 
expected increase in awareness of seasonal forecasts is 23% and 24% for 
farmers in the whole population and for farmers exposed to the MWGs, 
respectively. If farmers in the control locations were exposed to the 
MWG, the predicted increase in awareness of seasonal forecasts is about 
22%. We also see that access to the MWGs has very similar effects on 

Table 3 
Treatments effects estimates of the impact of existence of an MWG and use of WCI on farmer’s awareness, access and use of WCI.   

Whole population (ATE) With MWG (ATT) Without MWG (ATU) 

Variables Estimate Std. error Estimate Std. error Estimate Std. error 

Awareness of WCI 
Awareness of any one type of WCI (dummy) 0.155*** 0.0035 0.173***  0.0046  0.133***  0.0051 
Awareness of all 6 types of WCI 0.176*** 0.0006 0.174***  0.0007  0.179***  0.0010 
Awareness of seasonal forecasts 0.230*** 0.0027 0.237***  0.0030  0.223***  0.0048 
Awareness of daily forecasts 0.191*** 0.0030 0.223***  0.0033  0.152***  0.0043 
Awareness of EWS 0.266*** 0.0020 0.283***  0.0019  0.244***  0.0034 
Access to different types of WCI 
Access to any one type of WCI (dummy) 0.147*** 0.0034 0.162***  0.0046  0.127***  0.0047 
Access to all 6 types of WCI 0.116*** 0.0007 0.114***  0.0009  0.118***  0.0012 
Access to seasonal forecasts 0.149*** 0.0029 0.160***  0.0039  0.136***  0.0041 
Access to daily forecasts 0.158*** 0.0024 0.180***  0.0030  0.130***  0.0031 
Access to EWS 0.107*** 0.0016 0.109***  0.0021  0.105***  0.0024 
Use of different types of WCI 
Use of any one type of WCI (dummy) 0.104*** 0.0048 0.089***  0.0057  0.125***  0.0079 
Use of all 6 types of WCI 0.091*** 0.0010 0.093***  0.0013  0.088***  0.0015 
Use of seasonal forecasts 0.053*** 0.0031 0.039***  0.0036  0.074***  0.0048 
Use of daily forecasts 0.177*** 0.0052 0.176***  0.0065  0.179***  0.0085 
Use of EWS 0.245*** 0.0011 0.249***  0.0012  0.240***  0.0018 
Observations 795 438 357 

Notes: n = 795; Std. error: Standard error; *, **, *** denotes significance level at 10%, 5% & 1%, respectively. The observed behaviour changes are modelled using a 
two-stage least squares regression approach, starting with a probit specification that generates a predicted probability for each farmer with and without access to the 
MWG. 

Table 4 
Treatments effects estimates of the impact of existence of an MWG and use of WCI in informing farmer’s management responses.   

Whole population (ATE) With MWG (ATT) Without MWG (ATU) 

Farm management responses from use of: Estimate Std. error Estimate Std. error Estimate Std. error 

Seasonal forecast: Total amount of rainfall 
Type of crop variety to grow 0.248*** 0.0009 0.251*** 0.0011 0.246*** 0.0015 
Field location to plant crops 0.220*** 0.0017 0.218*** 0.0023 0.223*** 0.0024 
Decision on intercropping 0.129*** 0.0009 0.132*** 0.0012 0.125*** 0.0014 
Type of crop to grow 0.124*** 0.0006 0.126*** 0.0007 0.122*** 0.0009 
Crop mix (proportion) 0.128*** 0.0004 0.127*** 0.0006 0.129*** 0.0006 
Soil and water conservation 0.102*** 0.0018 0.105*** 0.0025 0.099*** 0.0026 
Seasonal forecast: onset of rains 
Timing of planting 0.225*** 0.0009 0.229*** 0.0010 0.221*** 0.0016 
Timing of land preparation 0.187*** 0.0017 0.199*** 0.0016 0.173*** 0.0031 
Seasonal forecast: cessation of rainfall 
Timing of crop sales 0.219*** 0.0033 0.214*** 0.0039 0.225*** 0.0054 
Timing of harvesting 0.089*** 0.0011 0.084*** 0.0015 0.095*** 0.0016 
Weather forecast: for 2–3 days 
Application of inorganic/chemical fertilizer 0.302*** 0.0028 0.305*** 0.0035 0.298*** 0.0044 
Timing of weeding 0.217*** 0.0011 0.218*** 0.0014 0.216*** 0.0017 
Timing of harvesting 0.152*** 0.0015 0.151*** 0.0021 0.153*** − 0.0022 
Use of organic fertilizer (manure/compost/mulch) 0.140*** 0.0019 0.148*** 0.0026 0.130*** 0.0028 
Weather forecast: for 10 days 
Application of inorganic/chemical fertilizer 0.270*** 0.0027 0.276*** 0.0034 0.263*** 0.0043 
Soil and water conservation 0.157*** 0.0026 0.154*** 0.0036 0.160*** 0.0038 
Use of organic fertilizer (manure/compost/mulch) 0.041*** 0.0040 0.044*** 0.0006 0.037*** 0.0006 
Observations 795 438 357 

Notes: n = 795; Std. error: Standard error; *, **, *** denotes significance level at 10%, 5% & 1%, respectively. The observed behaviour changes are modelled using a 
two-stage least squares regression approach, starting with a probit specification that generates a predicted probability for each farmer with and without access to the 
MWG. 

11 The probabilities for seasonal rainfall are usually presented as tercile 
probabilities of rainfall falling on the upper (wet), middle (normal), or bottom 
(dry) categories of the historical distribution in that region 
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awareness of daily forecasts, which are expected to increase by 19% for 
the whole population, 22% for farmers exposed to the MWG, and 15% 
for farmers not exposed to the MWG under the scenario that they got 
access. Lastly, the presence of an MWG increases the probability that a 
household is aware of at least one WCI type by between 13% and 17% 
across the three scenarios: ATE, ATT and ATU. 

We now consider the impact of exposure to the MWGs on farmers’ 
access to WCI (rows 8–12), for which we see relatively lower magnitudes 
compared to the awareness model. The existence of the MWGs show the 
highest impacts on farmers’ access to daily and seasonal forecasts, where 
access to WCI increase by between 13% and 18% across the ATE, ATT 
and ATU models. For example, the presence of an MWG is expected to 
significantly increase farmers’ access to seasonal forecasts by 15% for 
the entire population, 16% for farmers with access to MWG and 14% for 
farmers without access to the MWG. Interestingly, the least impact of 
MWG can be seen on the access of EWS, which the results show to be 
around 11%. This trend is in contrast with that shown in the awareness 
model. More specifically, the presence of an MWG increases the pro
portion of farmers with access to seasonal forecasts by approximately; (i) 
15% for the whole population, (ii) 16% for the sub-sample of farmers 
with access to MWG and, (iii) 14% for the counterfactual case of having 
MWG established in areas where they do not exist. 

We now focus on the uptake of WCI displayed in rows (14–18) of 
Table 3. The presence of an MWG is expected to significantly increase 
the use of seasonal forecasts by 5% for the whole population, 4% for the 
sub-sample of farmers exposed to the MWG and a 7% increase for con
trol farmers if they were to be exposed to the MWG. The existence of an 
MWG is also expected to increase the use of daily forecasts for the three 
scenarios by about 18%. 

Results in this sub-section show that the MWGs can be effective in 
stimulating awareness access and uptake of WCI. 

5.2. The effectiveness of the MWG in influencing farmers’ decision 
making when using WCI 

We build on the previous analysis which revealed that MWG im
proves farmers’ awareness, access and use of WCI. Again for brevity, we 
suppress the first-stage selection model and only present the impact 
estimates from the second stage. We start by looking at the behavior 
changes that result from the use of seasonal forecasts on; (i) total 
accumulated rainfall, (ii) onset of rains, and (iii) cessation of rains. The 
results in Table 4 of the ATE, ATT and ATU are all positive and signifi
cant, which generally points to the importance of the MWG in farmers 
use of WCI in informing farm management decisions. A closer look at the 
results reveal that exposure to the MWGs (ATT) among farmers using 
seasonal information on rainfall total (rows 2–7) increased the use of 
this information on (i) choice of crop varieties grown (i.e., for ground
nuts, maize and millet)12 by 25%; (ii) the field location to plant different 
crops by 22%13; (iii) whether to intercrop or not by 13%, and (iv) the 
type of crops to grow and crop mix by about 13%. The model predicts 
similar trends in terms of impact of the MWGs, for farmers randomly 
selected in the population (ATE) and also in the for farmers in the control 
locations in case they are exposed to the MWG (ATT). The ATE results 
reveal very similar trends (in terms of proportional increase) to the re
sults of the ATT. For example, the presence of an MWG leads to 25% and 
22% more farmers in the population using information on total accu
mulated rainfall to inform the crop variety to grow and the field location 
to plant crops, respectively. On the counterfactual scenarios (ATU), we 
also find the same proportional increase in these farming management 

decisions that would be influenced by introducing MWGs in control 
areas where they are currently not functional. These results are some
what in line with some earlier studies that conclude that seasonal 
forecasts are instrumental in informing farmers to consider the crop type 
to grow (Tarhule and Lamb, 2003); crop varieties to consider (Maggio 
et al., 2019), adjust the crop density and crop mix (Luseno et al., 2003; 
Tarhule and Lamb, 2003; Ziervogel et al., 2005), and change field lo
cations where they grow crops (O’Brien et al., 2000). Hansen et al. 
(2011) also contend that the accumulated rain for the season, which is 
predicted by probabilities of whether it will be wet/humid, normal or 
dry, is one of the most common forecasts parameters for farmers that is 
forecast in West Africa (WA). 

Focusing on results in rows 9 and 10, we find that exposure to the 
MWGs increased farmers use of rainfall onset in informing timing of 
planting by 23% and land preparation by 20%. The results of the ATU 
predict that scaling out of MWGs into locations where they are non- 
existent will increase use of rainfall onset forecasts to inform timing of 
planting by 22% and land preparation by 23%. A significantly higher 
proportion of farmers exposed to the MWG used seasonal forecasts on 
cessation to inform timing of crop sales (21%) and timing of harvesting 
(8%). The ATU results also suggest that in the presence of an MWG, 
farmers in control locations will increase use of information on cessation 
of rains to inform farmers’ timing of selling their produce to the market 
by 22% and timing of harvesting by 10%. Our results are in line with 
other studies like Hassan and Nhemachena (2008), who found that in 11 
countries in Africa, farmers tend to use seasonal forecast to vary the 
harvesting dates, while Ingram et al. (2002) report that farmers in 
Burkina Faso use the information to decide on whether to sell or store 
their grain stores. However, the shift in behavior brought about through 
active consideration of WCIS will then contribute to the realization of 
the higher order impacts, such as improved yields, food security and 
nutrition, and better household welfare. The intermediary outcomes 
that we model in this section are behavior changes as reported by the 
farmers (and not measured by the researcher) and hence results should 
be interpreted with some caution due to measurement errors14. 

A closer look at the results in rows 15–22, shows that farmers use 
weather forecasts, which have shorter lead times, to inform decisions 
that are very different from those of seasonal forecasts. The ATT results 
show that a significantly higher proportion of farmers already exposed 
to the MWG use 2–3 days weather forecasts to make informed decisions 
on application of inorganic fertilizers (31%), timing of weeding (22%), 
timing of harvesting (15%) and use of inorganic fertilizers (15%) such as 
manure, compost or mulch. Similarly, there are 28%, and 15% more 
farmers exposed to the MWGs that use 10-day forecasts to inform de
cisions on application of inorganic fertilizers and on the choice of soil 
and water conservation practices. Considering the counterfactual sce
nario of introducing MWG into locations where they are non-existent 
would lead to proportionally similar percentage increases in the use of 
2–3 days and 10-day weather forecasts. In addition, there is also a 
significantly higher proportion of farmers in MWG locations that use 
information on cessation of rains to inform the timing of crop sales 
(21.4%) and timing of harvesting (8.4%) compared to those without an 
MWG. These results are also consistent with findings in Moeletsi et al. 
(2013), who observed that distributing daily weather forecasts, three 
times a week influenced farmers in Limpopo Province of South Africa to 
adjust decisions on timing of weeding and application of chemicals such 
as pesticides and nitrogen fertilizer. 

5.3. Impact of use of seasonal forecasts on observed farm management 
responses by MWGs 

The previous analysis focused on the impact of MWGs in influencing 12 These are the main crops grown in the study area.  
13 Change crop locations (for example, depending on forecast, farmers can 

chose to grow the less drought tolerant crops on parts of their fields which 
retain moisture better like down slopes or crops that require more nutrients to 
be grown on fields that are more fertile.) 

14 Measurement error is then the difference between the value of a response 
provided by the respondent and the true (but unknown) value of that response. 
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the behavior of farmers with respect to farm management responses 
based on the type of WCI received. In this sub-section, we extend this 
analysis to model the impact of access to the MWGs on farmer’s man
agement responses when they use WCI, based on plot level data as re
ported by farmers during the 2016 agricultural season. More 
specifically, we model the link between the use of WCI and exposure to 
the MWGs with use of improved seeds, chemical fertilizers, manure use, 
and crop diversification as outlined in Equation (8)15. According to re
cords from ANACIM, probabilistic forecasts for the Central region 
(which includes the Departments of Kaolack and Kaffrine for the year 
2016 was that of a dry tercile (i.e., below normal) at the beginning of the 
season to wet tercile (above normal) towards the end of the season. 

We again suppress the first-stage selection model and only present 
the impact estimates from the second stage. Table A1 in the appendix 
shows the impacts disaggregated by each of the individual seasonal 
forecasts. We will however focus our attention on Table 5, which pre
sents the LATE estimates for seasonal forecasts on observed farm man
agement responses using joint access and awareness as instrumental 
variables. First, we start by considering farmers that jointly used all 
three seasonal forecasts (column 2 and 3) to prepare their farming 
season in 2016 (i.e. total amount, onset and cessation of rainfall). The 
results reveal that farmers that were exposed to the MWGs and using all 
three seasonal forecasts had a 22% higher probability that they used 
improved seed, 11% higher probability of using manure and a 9% higher 
probability of using chemical fertilizers than users in non-MWG loca
tions. Second, we consider farmers that combined the use of both sea
sonal and weather forecasts (column 3 and 4). Results show that farmers 
with access to the MWGs had a 23% higher chance of also using 
improved seed varieties, a 16% higher chance of using manure and a 
24% higher chance of using chemical fertilizers. Interestingly though, 
we find use of WCI for the two categories we consider above, to be 
negatively and significantly associated with crop diversification. This 
implies that farmers in MWG locations that used all three seasonal 
forecasts or both seasonal and weather forecasts had a 0.4% and 0.6% 
chance of having lower crop diversity compared to farmers in the lo
cations without MWGs. Given that the seasonal forecast for 2016 indi
cated a relatively bad year, reducing the number of crops and focusing 
resources on a few crops is a plausible adaptation strategy that farmers 
exposed to the MWGs may choose to undertake. Similarly, diversifying 
to more crops can also be a reasonable adaptation strategy that farmers 

may consider to spread out the risk of crop failure. As expected, there 
was a uniform trend in the impact of forecasts on the total amount of 
rainfall and onset of rainfall since farmers receive both set of informa
tion simultaneously at the beginning of the planting season. Zougmoré 
et al. (2016) recently showed that the use of climate information 
resulted in increased yield of crops as farmers used seasonal forecasts to 
make strategic decisions such as the timing of land preparation, 
planting, selection of crop varieties, and timing of application of manure 
or chemical fertilizer. 

6. Conclusions and policy recommendations 

The provision of tailored WCIS is increasingly gaining importance 
and has been widely touted as a vital adaptation and mitigation strategy 
against the adverse effects of climate change and variability. This is 
particularly true in SSA, where risk and insurance systems are not well 
developed and inaccessible to the majority of farmers. Tailoring WCIS 
ensures that information disseminated to users, meets their needs in 
three criteria: saliency, credibility, and legitimacy. While there have 
been many participatory initiatives that have been used to tailor WCI in 
different parts of the world, there is hardly any rigorous evidence testing 
the effectiveness of these models. A key challenge in evaluating the 
benefits of WCIS is trying to establish the link between an individual 
receiving and using WCI and the effects it has on behaviour changes due 
to the complex decision-making process farmers go through. This eval
uation uses data generated from an innovative survey design approach 
collected from 795 households in Senegal and applies contemporary 
impact evaluation techniques that account for selection bias to establish 
causal links between WCI use and their impacts. The survey approach 
capitalized on the unique sampling design that enables us to reconstruct 
the counterfactual scenario and apply the ATE framework, but this time 
using an instrumental variable approach. Based on the econometric re
sults, we highlight two main findings from this case study and draw 
some evidence-based recommendations for policy and the design and 
development of WCIS. We also highlight some methodological limita
tions with our study and lessons for future evaluations of WCIS. 

In general, results of this study have shown that the existence of the 
MWGs have a positive effect on farmers’ awareness, access and use of 
different WCI products, as well as behaviour changes in terms of farm 
management responses. This suggests that participatory approaches in 
the provision of tailored WCI and advisory services can lead to higher 
uptake and use among farmers in informing farm management re
sponses for better adaptation to climate change. Our findings also 
corroborate Ndiaye et al., (2013)’s assertion on the MWGs: 

‘Our project explaining seasonal forecasting to farmers in central Senegal 
built common ground between scientific forecasting and traditional 
knowledge. It helped farmers understand and use seasonal forecasts to 
improve crop strategies, and let farmers explain to meteorologists what 
seasonal climate information they most needed, in turn improving the 
forecasts’ usefulness.’ 

Our contribution to the existing literature is twofold. First, we pro
vide rigorous evidence on the potential benefits of WCIS programs that 
prioritize sustained and iterative collaborations that blend knowledge 
and perceptions of multiple actors (producers, purveyors and users). 
Second, we provide some methodological insights based on the novel 
survey methods and rigorous analytical approaches in evaluating the 
benefits of WCI with respect to users. These contributions offer some 
lessons to researchers and development practitioners involved in the 
design, implementation, monitoring and evaluation, and scaling of 
similar initiatives to the rest of the Sahel and other regions SSA and 
beyond. 

While we have used a rigorous ex-post evaluation design to assess the 
effectiveness of the MWGs, we highlight four main limitations of our 
study. First, our analysis is built on cross-sectional data implying that we 

Table 5 
LATE estimates of the impact of presence of MWGs on use of seasonal forecasts 
on farm management responses.   

All seasonal forecasts Both seasonal and 
weather forecasts 

Farm management responses Estimate Std. 
error 

Estimate Std. 
error 

Use of improved seed 
(dummy) 

0.217*** 0.002 0.234*** 0.002 

Use of manure (dummy) 0.114*** 0.002 0.157*** 0.002 
Use of chemical fertilizers 

(dummy) 
0.092*** 0.002 0.237*** 0.002 

Crop diversificationa − 0.004*** 0.002 − 0.006*** 0.002 
Observations 795 795 

Notes: n = 795; Std. error: Standard error; Bootstrapped standard errors in 
parenthesis (300 replications) *, **, *** denotes significance level at 10%, 5% & 
1%, respectively. The observed behaviour changes for dummy variables are 
modelled using a probit specification, and a linear regression for crop 
diversification. 

a Measured as the Margalef Index. 

15 We purposely focus on these types of WCI based on the results of the 
descriptive statistics and hypothesized were instrumental in affecting decisions 
on the four management practices that we explore in this analysis. 
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could only observe a snapshot of household decision making on use of 
WCI based on the 2016 agricultural season, which limits the generaliz
ability of our findings especially given the stochastic nature of weather 
conditions. Second, farmers in the control group may have directly or 
indirectly been exposed to downscaled WCI and agricultural advisories 
from the MWG program, something referred to in impact evaluation as 
spill-over effect or contamination effects. This could have emanated 
from the fact that WCI and other climate related knowledge exhibit 
characteristics of public goods, thus are more often disseminated 
through public means such as national radio, television and extension 
services making it unrestricted when it comes to access for all potential 
users. Furthermore, WCI can easily be passed between individuals, 
through informal channels such as social and family networks, making it 
difficult to completely isolate intended beneficiaries of the MWGs from 
non-beneficiaries. In this case, spill-over effects will actually diminish or 
deflate the size of the estimated treatment effects thereby threatening 
significance and/or internal validity of our findings. Third, observa
tional studies like ours , generally suffer from respondent bias i.e., errors 
in data recorded resulting from respondents’ inability or unwillingness 
to provide accurate and objective answers to questions. For example, the 
fact that the MWG model in Kaffrine is a well-known and publicized 
program within the communities they operate, one might argue that 
respondents might not provide honest answers. In responding to ques
tions on WCI, a respondent may choose to either understate, overstate or 
honestly answer about their awareness, access, and use of WCI, 
depending on how the respondents perceive the objectives of the study. 
This is a common problem which is not unique to this study. We have 
minimized this type of bias through careful selection and training of 
enumerators. Based on these shortcomings, we do not claim to provide 
conclusive evidence, but rather offer some preliminary insights based on 
innovative methods for assessing the benefits of WCIS. Fourth, in
terviews in this study were administered with the main decision makers 
and/or their spouses, who answered all household related information 
on behalf of other members, thereby evoking Becker’s unitary approach 
model also known as the common preference model (Becker, 1976). 
Under this model, a household is assumed to be a single unit that pools 
all its productive resources under a well-defined uniform welfare func
tion headed by an altruistic or benevolent head. Yet several studies have 
shown that household members neither pool resources (Haddad and 
Hoddinott, 1995; Quisumbing and Maluccio, 2003) nor do they behave 
as single unit and that individual preferences differ (Chiappori et al., 
1993; Doss, 1999) supporting the idea that a household is a more 
complex unit made up of individuals with differences in preferences. 
Consequently, our findings should be interpreted with some degree of 
caution. 

In-light of the above shortcomings, follow-up research with long- 
term seasonal data may help capture and track farmer’s uptake of WCI 
in informing farm management decision making, under variable 
weather patterns may help in improving the robustness and external 
validity of estimates. This point has been emphasized previously in 
Hansen et al. (2011), Patt et al. (2005) and Tall et al. (2018). In addition, 
a useful extension that may benefit future assessments would be to use 

mixed-methods research designs that blend quantitative approaches 
with more specialized qualitative approaches such as the Livelihoods as 
Intimate Government (LIG) approach that develops ethnographic un
derstandings of livelihood decision-making (Carr, 2013; Carr et al., 
2019; 2015); outcome harvesting approaches that elicit impact path
ways of complex system-wide initiatives such as the MWGs (Douthwaite 
et al., 2003; Faure et al., 2018). Ensuring that all information e.g., up
take of WCI, plot level agricultural information and asset ownership are 
gender disaggregated (see Doss, 2013; Doss and Morris, 2000) may be 
useful in considering households not as unitary in decision making, but 
rather diverse depending on individual preferences of each member. 
Incorporating these extensions in future research, will contribute in 
building a more nuanced and comprehensive evidence base for under
standing the benefits of WCIS. 
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