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Abstract
Finger millet (Eleusine coracana (L.) Gaertn. subsp. coracana) is the most important

millet in eastern Africa and perhaps the oldest domesticated cereal grain in Africa.

One of the major factors limiting finger millet production is blast disease caused by

the fungus Magnaporthe grisea. Crop wild relatives and landraces present a poten-

tial source of novel genes. This study investigated the response of cultivated and wild

relatives of finger millet to an isolate of blast disease from western Kenya. Previous

germplasm collections were purified through two generations of single-seed descent

before screening alongside improved and farmer-preferred varieties (FPVs) under a

screen house across three seasons. Farmer-preferred varieties were identified through

participatory varietal selection (PVS). The plants were inoculated twice during each

growth period using hand-spraying method and data on disease incidence recorded at

grain-filling stage. Genotypic data was generated using diversity arrays technology

(DArT) sequencing and data analysis done using Genstat 18.2 and TASSEL 5.2.58.

We observed high heritability (81%), indicating that the variation observed was pre-

dominantly genetic. Wild accessions were generally more resistant to the disease in

comparison to the cultivated accessions. Preliminary genome-wide association study

(GWAS) using general linear model with principal component analysis led to the

identification of 19 markers associated with blast disease that will be be developed

into assays for genotype quality control and trait introgression. Wild accessions and

landraces of finger millet present a good reservoir for novel genes that can be incor-

porated into crop improvement programs.

1 INTRODUCTION

Finger millet (Eleusine coracana (L.) Gaertn. subsp. cora-
cana) is a nutrient-dense tetraploid (2n = 4x = 36) cereal

Abbreviations: DArT, diversity arrays technology; FPV, farmer-preferred

variety; GeRRI, Genetic Resources Research Institute; GWAS,

genome-wide association study; KALRO, Kenya Agricultural and Livestock

Research Organisation; PVS, participatory varietal selection; SNP, single

nucleotide polymorphism.
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crop grown mainly in the marginal and medium agricul-

tural zones of the developing world (Dida, Srinivasachary,

Ramakrishna, Bennetzen, Gale, & Devos, 2007; Odeny

et al., 2020). It belongs to the family Poaceae, genus Eleu-
sine in the tribe Eragrostideae and is believed to have

been domesticated in the east-African region from wild fin-

ger millet (Eleusine coracana (L.) Gaertn. subsp. africana
(Kenn.-O’Byrne) Hilu & de Wet) (Dida et al., 2007). Fin-

ger millet is currently grown predominantly in eastern Africa

250 wileyonlinelibrary.com/journal/csc2 Crop Science. 2021;61:250–262.

https://orcid.org/0000-0002-3629-3752
mailto:D.Odeny@cgiar.org
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/csc2


DIDA ET AL. 251Crop Science

and India. It is adapted to a wide range of environments and

can withstand harsh environmental conditions including high

temperature (Yogeesh, Naryanareddy, Nanjareddy, & Gowda,

2016), moisture deficit, and water stagnation (Lenné et al.,

2007). The grains are superior to major staple cereals in terms

of nutrition, as they are a good source of quality protein and

various minerals (Gupta et al., 2017). Finger millet straws

are greatly valued and used as feed for animals (Wolie &

Dessalegn, 2011).

Finger millet production is challenged by a number of

biotic and abiotic factors that affect the ultimate yields.

Among the biotic factors is finger millet blast disease caused

by Magnaporthe grisea (teleomorph: Pyricularia grisea)

(Ramakrishnan et al., 2016). The same pathogen parasitizes

rice (Oryza sativa L.) and is arguably the most devastating

disease in rice (Gupta et al., 2017). The disease affects

finger millet at all growth stages but neck and finger blast

are the most destructive forms (Takan et al., 2012) capable

of causing up to 100% reduction of biomass and average

yield per year (Lenné et al., 2007; Nagaraja et al., 2007).

Pathogen genetic groups have been reported within finger

millet blast populations (Shanmugapackiam, Ragupathi, &

Raguchander, 2015; Takan et al., 2004), making management

of the pathogen complex. The most effective and practical

solution to finger millet farmers, the majority of whom are

women, is to develop blast resistant finger millet varieties.

Several blast-disease-resistant lines have been developed in

rice through the introgression of genes from landraces (Yadav

et al., 2019) and wild relatives (Amante et al., 1992; Devi

et al., 2015; Jeung et al., 2007). Wild finger millet relatives,

as well as landraces that are abundant in eastern Africa, can

be used to improve blast-disease resistance in finger millet,

as they are generally more diverse and have coevolved with

the pathogen over time under nonintensive cultivation condi-

tions. The genus Eleusine is comprised of 10 annual or peren-

nial grasses, some of which are commonly found in Africa.

The species E. coracana (AABB) (with two subspecies: cora-
cana and africana) and E. kigeziensis S. M. Phillips (AADD)

are mainly tetraploids while E. floccifolia (Forssk.) Spreng.

(BB), crabgrass [E. indica (L.) Gaertn.] (AA), American yard

grass [E. tristachya (Lam.) Lam.] (AA), E. jaegeri Pilg. (DD),

and E. intermedia (Chiov.) S. M. Phillips (AB) are diploids,

although some autotetraploids of the known diploids have

also been reported. With the exception of subsp. coracana, all

other taxa are considered wild. All the cross-compatible wild

species, which consist mainly of subsp. africana (Agrawal &

Maheshwari, 2016) are a major resource for prebreeding in

finger millet.

One of the major concerns in prebreeding is the poten-

tial linkage drag (Zamir, 2001), which defines the non-

desirable traits from wild relatives that cosegregate with

the traits of interest during trait introgression. The use of

genomics-assisted breeding provides an opportunity for over-

coming linkage drag (Dempewolf et al., 2017). Until recently,

genomic resources have been limited in finger millet and

breeding has been undertaken mainly using conventional

methods. Two draft reference genomes have been published

recently (Hatakeyama et al., 2017; Hittalmani et al., 2017),

and an improved chromosomal-level genome is underway

(unpublished data, 2020). These resources provide an excel-

lent opportunity for genomics-assisted breeding that would

enhance the success of trait introgression from wild rela-

tives. Recent genomic studies in finger millet include the char-

acterization of germplasm (Gimode et al., 2016; Manyasa,

Tongoona, Shanahan, Mgonja, & De Villiers, 2015; Lule

et al., 2018), association mapping (Kalyana, Agrawal, Pandey,

Jaiswal, & Kumar, 2014; Lule et al., 2018; Sharma et al.,

2018), as well as linkage mapping (Qi et al., 2018). Breeding

for blast resistance in finger millet remains traditional, espe-

cially in eastern Africa, and there are no markers developed

so far for more efficient crop improvement.

A participatory varietal selection (PVS) enables skilled

farmers to select, both on-farm and on-station, the best per-

forming varieties from a group of pre-evaluated seed selected

by breeders (Witcombe, Gyawali, Sunwar, Sthapit, & Joshi,

2006). A PVS study done in Uganda revealed that finger mil-

let farmers preferred high yielding, brown seed color, and

medium height as the top most important attributes in an

ideal variety, which should also harbor some resistance to

major biotic and abiotic stresses (Owere, Tongoona, Derera,

& Wanyera, 2014). Similar preferences have been observed

among finger millet farmers in western Kenya, but would

need to be confirmed in order to ensure farmers’ needs are

addressed during crop improvement. Involving farmers in the

selection of preferred genetic material has been reported as a

promising method for increasing adoption of improved vari-

eties (Ojulong et al., 2017) and refining elite landraces (Roy

et al., 2017).

The present study was conducted using 101 finger mil-

let genotypes that included wild relatives, landraces, and

improved genotypes popularly grown in Kenya. An initial

PVS was done using 26 cultivated genotypes that had been

preselected by breeders to establish farmer preferences and

engage them in the varietal development process. All the 101

diverse genotypes were screened across three seasons under

controlled environment for their response to finger millet

blast disease following artificial inoculation. Genotypic infor-

mation from the germplasm was used to correctly identify

germplasm collections, assess the extent of genetic diversity,

and develop a promising set of functional molecular markers

for blast resistance in finger millet.

2 MATERIALS AND METHODS

2.1 Assembling germplasm

Seeds of 52 finger millet accessions (Supplemental Table S1)

that were landraces, wild, or hybrids between wild and
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T A B L E 1 A set of 26 popular genotypes in Kenya that were assembled for participatory varietal selection and their unique attributes

Genotype Unique attributes
1. KACIMMI72 Striga and lodging resistant; blast and drought tolerant; high yielding; brown grain color

2. KACIMMI22 Blast tolerant; high yielding

3. GBK043065 Blast tolerant; high yielding

4. KACIMMI42 Blast, Striga, and lodging resistant; drought tolerant; brown grain color; high yield; large open panicles

5. P-224 High yielding; easy to thresh; tolerant drought, Striga and blast; brown grain color; medium maturing

6. GBK011044 Blast tolerant; high yielding

7. KACIMMI21 Resistant to crown rot; high yielding; tolerant to blast

8. OKHALE-1 Tolerant to Striga and blast; good malting quality; lodging resistant; brown grain color; high yielding

9. KACIMMI49 Striga and lodging resistant; blast and drought tolerant; high yielding; brown grain color

10. GBK043145 High yielding; resistant to blast

11. KAL-ATARI High yielding; good malting quality; tolerant to blast; brown colored grains preferred by farmers

12. EKAMA-WHITE High yielding, good malting quality; tolerant to blast; brown colored grains preferred by farmers; easy

to thresh; lodging resistant

13. KAC65 Striga and lodging resistant; blast tolerant and drought tolerant; high yielding; brown grain color

14. IE4115 Blast, Striga, and lodging resistant; drought tolerant; brown grain color; released variety

15. GBK043254 High yielding; resistant to blast

16. GBK043258 High yielding; tolerant to Striga
17. GBK008301A High yielding

18. IKHULULE Resistant to blast, Striga and lodging; drought tolerant; dark brown grain color; high yielding

19. GBK000494 High yielding; tolerant to blast

20. KNE1034 High yielding; early maturing; drought tolerant; tolerant to blast; resistant to lodging

21. GBK000451 High yielding

22. KAL (Millet) High yielding; resistant to blast and Striga; brown grain color; early maturing; resistant to lodging

23. GBK036800 High yielding; tolerant to blast

24. IE2872 High yielding; highly susceptible to blast

25. U15 Early maturity; resistant to blast, Striga and lodging; drought tolerant; released variety

26. Maseno60D Extra early flowering and maturity; drought tolerant; released variety

cultivated genotypes were obtained from previously collected

germplasm that had been maintained at ICRISAT–Nairobi,

Maseno University, or at the Kenya Agricultural and Live-

stock Research Organisation (KALRO)–Genetic Resources

Research Institute (GeRRI) (http://www.kalro.org/Genetic_

Resources_Research_Institute) located in Muguga, Nairobi

(Supplemental Table S1). The collections from ICRISAT and

Maseno University were mainly from a previous Bioinno-

vate (www.bioinnovate-africa.org)-funded project. The seeds

of the 52 accessions were multiplied in Kiboko (ICRISAT

Field Station, Kenya) under a polyhouse to ensure no escape

of weedy material into the farmers’ fields. Plants were bagged

at flowering and seeds harvested per plant. Two rounds of

single-seed descent were done to ensure seed purity and

uniformity per genotype. In addition, finger millet breed-

ers assembled 49 improved varieties, inbred lines, and pop-

ular landraces in Kenya, making the total number of all

accessions used in the study as 101 (Supplemental Table

S1). More details on the genotypes used in the current

study can be found in the Germinate3 website (https://ics.

hutton.ac.uk/cwr/fingermillet) (Raubach et al., 2020).

2.2 Participatory varietal selection

Twenty-six out of the 49 genotypes assembled by breed-

ers (Table 1) were used for PVS. The 26 varieties for PVS

were planted in a triple five-by-five lattice design on farm

at Nyancheki (Kisii) and on KALRO stations at Kakamega,

Alupe, and Kisii. Each plot consisted of three rows, each

measuring 4 m with spacing of 0.5 m between rows and a

1-m path between replications. The trials were planted fol-

lowing recommended cultural practices. To collect data on

farmer preferences, 20 farmers (13 male and seven female)

from Nyancheki village were invited to rank the performance

of the genotypes at grain-filling stage. The farmers’ partic-

ipation was purely based on their availability. The farmers,

segregated by gender, rated the genotypes and selected top

http://www.kalro.org/Genetic_Resources_Research_Institute
http://www.kalro.org/Genetic_Resources_Research_Institute
http://www.bioinnovate-africa.org
https://ics.hutton.ac.uk/cwr/fingermillet
https://ics.hutton.ac.uk/cwr/fingermillet
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preferred 10 based on yield, effect of blast disease, grain color,

and earliness (days to maturity). The top 10 farmer-preferred

varieties (FPVs) were selected for use as potential recurrent

parents in blast disease introgression.

2.3 Blast inoculum preparation

A field isolate of M. grisea was collected from Maseno Uni-

versity Field Station from finger millet plant tissues (neck tis-

sue) showing typical symptoms of blast. The collected dis-

eased sample was refrigerated upon arrival in the lab at 4 ˚C

for subsequent pathogen isolation. Blast-infected samples

obtained from the neck were cut into small pieces (∼2 by

2 cm), surface sterilized using 10% sodium hypochlorite

(NaOCl) for 30 s, and rinsed in autoclaved double distilled

water twice. The sterilized infected plant tissues were then

suspended on toothpicks and placed on wet Whatman paper

in petri dishes to induce sporulation for 24–48 h at room tem-

perature under artificial light. Single conidia were identified

under the microscope from sporulating lesions and asepti-

cally transferred into petri dishes with malt extract agar and

incubated at room temperature for 10 d to get pure mono-

conidial isolates. Inoculum was prepared by flooding 10-d-

old monoconidial isolate cultures with 20 ml of autoclaved

double distilled water, followed by filtering the conidial sus-

pension through a two-layer cheesecloth. The concentration of

spore suspension was adjusted using distilled water to 1 × 106

spores ml−1 before inoculation. Pathogenicity of the isolated

culture was confirmed by Koch’s postulate.

2.4 Screening Eleusine spp. against blast
disease

We used 101 accessions (Supplemental Table S1) com-

prising of FPVs, wild genotypes, landraces, inbred lines,

improved varieties, and some interspecific crosses (coracana
× africana) to screen against the blast isolate at Maseno

University (0˚01′00.0″ S, 34˚36′00.0″E) in 2016, 2017, and

2018. The genotypes were planted in 20-L pots in a screen-

house, with each pot containing five plants and arranged in

a completely randomized design. Inoculation was done using

the hand-sprayer method (Hayashi, Kobayashi, Vera Cruz, &

Fukuta, 2009) at 3 wk after emergence (leaf blast) and at

maturity (neck blast). The percentage disease incidence (PDI)

was scored for every genotype at grain filling stage using the

following formula:

PDI = (𝑁𝑜. 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠)

∕ (𝑇 𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑑) × 100

2.5 Correct identification of wild accessions
and landraces, genotyping, and genetic diversity

We used both morphological and molecular analysis to

correctly classify the new germplasm collections obtained

from KALRO–GeRRI, ICRISAT, and Maseno University.

Morphological identification was done using seed size, seed

color, and inflorescence. To undertake molecular analysis of

the landraces and wild accessions, seeds of previously single-

seed advanced genotypes were planted at the World Agro-

forestry Centre (Nairobi, Kenya) for the purpose of DNA

extraction alongside known genotypes classified as E. cora-
cana subsp. coracana, E. coracana subsp. africana, and E.
kigeziensis. Leaf tissues were collected at seedling stage and

genomic DNA extracted using ISOLATE II Genomic DNA

extraction kit (Bioline Pty Ltd.) according to manufacturer’s

instructions. Purity and quantity of the extracted DNA was

determined using gel electrophoresis and a Qubit 2.0 Fluo-

rometer (Life Technologies), respectively, with final dilution

to 50 ng μl−1. The DNA was sent to the Integrated Geno-

typing Service and Support at the Bioscience eastern and

central Africa–International Livestock Research Institute hub

for library construction and DArT sequencing (https://www.

diversityarrays.com/products-and-services/applications/) as

previously described (Wójcik-Jagła, Fiust, Kościelniak, &

Rapacz, 2018). The resulting raw reads were mapped to a pre-

viously assembled finger millet genome (https://phytozome-

next.jgi.doe.gov/info/Ecoracana_v1_1) and raw SNP mark-

ers called for minimum depth coverage of five and maxi-

mum mismatch of three. Raw SNPs were filtered for a minor

allele frequency of ≥.05 and maximum missing data of 30%

for GWAS and 10% for genetic diversity analysis using the

genotyping-by-sequencing pipeline of the TASSEL 5.2.58

(Bradbury et al., 2007) program. We generated a neighbor-

joining cladogram of the 52 accessions (Supplemental Table

S1) alongside six genotypes of known classification as refer-

ence using TASSEL 5.2.58.

2.6 Developing a set of functional markers
for blast resistance

To develop a putative set of functional markers for

marker-assisted selection of blast resistance, we undertook a

preliminary association analysis using all the 101 genotypes

phenotyped for resistance to blast. The DNA extraction and

genotyping was done as already described. Association map-

ping based on general linear model with principal compo-

nent analysis was conducted in TASSEL 5.2.58 software. We

selected the top SNP markers located within genes with a

maximum P-value cut-off of ≤9.08 × 10−4 and distributed

across the 18 chromosomes.

https://www.diversityarrays.com/products-and-services/applications/
https://www.diversityarrays.com/products-and-services/applications/
https://phytozome-next.jgi.doe.gov/info/Ecoracana_v1_1
https://phytozome-next.jgi.doe.gov/info/Ecoracana_v1_1
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(a) (b) (c) 

F I G U R E 1 Pictures showing the difference in color between (a) the cultivated Eleusine coracana subsp. africana seed, (b) the cultivated Eleusine
coracana subsp. coracana and (c) Eleusine kigeziensis. The seeds of wild accessions are generally black (a and c) while those of cultivated species

range from light brown to dark brown

2.7 Data analysis

Analyses of variance across seasons was determined using

Genstat 18.2. Variance components were estimated by follow-

ing linear model Yijk = μ + Gi + Sj + εijk, where Yijk was the

phenotypic performance of the ith genotype at the jth season,

μ was the mean, Gi was the genetic effect of the ith genotype,

Sj was the effect of the jth season, and εijk was the residual.

Genotypes were treated as fixed effects and the other effects

as random. Broad-sense heritability was estimated from the

variance components as the ratio of genotypic to phenotypic

variance.

3 RESULTS

3.1 Correct identification of wild and
landrace germplasm

We used both morphological (Figure 1) and molecular meth-

ods (Figure 2) to correctly identify the 52 wild and lan-

drace accessions that were collections from previous projects

or from GeRRI. Wild accessions bore smaller, dark-colored

seeds as opposed to larger brown to light-colored seeds of

cultivated accessions (Figure 1). The cultivated accessions

also had more compact heads than the wild accessions.

For molecular identification, we used 63,010 SNPs after

filtering for a minor allele frequency of ≥.05 and maximum

missing data of 10%. Neighbor-joining clustering of the 52

accessions revealed three major clusters comprising of E.
coracana subsp. coracana, E. coracana subsp. africana, and

E. kigeziensis (Figure 2). The dendrogram also revealed that

some of the genotypes were hybrids between cultivated and

wild accessions (Figure 2).

3.2 Participatory Varietal Selection

Twelve out of the 26 improved varieties (∼46%) were selected

by men and women farmers (Table 2). Eight (GBK043254,

IE4115, KACIMMI72, KACIMMI42, KACIMMI49,

KNE1034, U15, and Okhale1) of the 12 genotypes were

selected by both men and women. KACIMMI72 was the

top preferred variety by both men and women (Table 2).

Most of the top 10 ranked varieties were also among the

top yielding varieties (Figure 3). Despite being the highest

yielder, GBK043145 was not ranked by either gender group

among the top 10 preferred varieties. Given the low numbers

of farmers that participated in this PVS, the results provided

here were exclusively used in the current study to choose

a subset of recurrent parents for the blast introgression

program.

3.3 Genetic variation for response to blast
disease and new sources of resistance

The ANOVA across seasons revealed significant variations

among the 101 genotypes in their reaction to blast disease

(Table 3). The estimate of broad-sense heritability was

81% (Table 3), indicating that the variability observed was

predominantly genetic. Twelve of the 101 genotypes

(Figure 4) screened across the 3 yr consistently showed high

resistance to blast disease with no (0%) disease incidence.

The 12 most resistant genotypes were either wild relatives

(E. floccifolia, E. kigeziensis, or E. coracana subsp. africana)

or landraces, with only one improved variety (KACIMMI22)

(Figure 4) appearing among the top 12. Only one out of the

10 most susceptible genotypes was a wild relative (Figure 4).

None of the top-ranked FPVs made it to the top 12 most

resistant genotypes. Box plots drawn also showed that the

wild accessions were, on average, more resistant than their

cultivated counterparts (Figure 5).

3.4 Development of putative functional
SNP markers for blast resistance

Because of the low number of 101 genotypes used in the

current study, which limits the power for a full GWAS,
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F I G U R E 2 A dendrogram showing clustering of the 52 wild and landrace finger millet accessions. Three clusters are visible: the cultivated

genotypes (Blue), E. coracana subsp. africana (Green), and E. kigeziensis (Orange). Admixtures can be seen stretching along the major clusters

T A B L E 2 The ranking of most popular varieties by male and

female farmers in western Kenya

Men Women
Variety Rank Variety Rank
KACIMMI72 1 KACIMMI72 1

U15 2 KNE1034 2

KACIMMI49 3 Okhale1 3

KNE1034 4 KACIMMI42 4

Okhale1 5 GBK043254 5

KACIMMI42 6 U15 6

GBK000494 7 GBK043258 7

IE4115 8 IE4115 8

Maseno60D 9 KACIMMI65 9

GBK043254 10 KACIMMI49 10

the preliminary association analysis undertaken was purely

to aid in the development of putative functional markers

for future introgression activities. We filtered from a raw

dataset containing 63,010 SNPs to a final number of 14,306

confident SNPs. A quantile–quantile plot was drawn (Fig-

ure 6) for the three seasons of data and the means revealed

that the data generated was reliable. We selected 19 func-

tional SNPs that were associated with blast resistance at a

P-value threshold of ≤9.08 × 10−4 and were located within

genes, some of which are known to play important roles

in disease resistance (Table 4). The candidate genes iden-

tified included a leucine-rich repeat receptor-like protein

(Chr 1A), two receptor-like protein kinases (Chr 2A and

3A), two AP2-like ethylene responsive transcription factors

(Chr 6B and 9B), and two F-box family proteins (Chr 9B)

(Table 4).
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F I G U R E 3 Yield of improved varieties used in participatory varietal selection highlighting the genotypes selected by both men and women

(Brown), men only (blue), and women only (pink). Data shown is average yield across three environments

T A B L E 3 Analysis of variance among the genotypes

Source of variation Incidence
Season 549.58***

Accession 2314.9***

Season × accession 502.9***

σ2
g 711.3

Broad sense heritability (H2) .81

***Significance at p < .001.

4 DISCUSSION

This study has exploited the abundant finger millet germplasm

present in eastern Africa, which is the center of domestica-

tion. As a result of frequent hybridization between wild and

cultivated accessions, it was important to undertake proper

identification of the recent collections before integrating them

into prebreeding programs. Both morphological and molecu-

lar characterization was done to ensure purity and integrity

of the germplasm. Although morphological characterization

could have been sufficient to identify some of the accessions,

we exploited the use of DArT sequencing (Kilian et al., 2012).

This technology has been used successfully to characterize

several crops with ranging ploidy levels including species

from tribe Triticeae (Edet, Gorafi, Nasuda, & Tsujimoto,

2018), common bean (Phaseolus vulgaris L.) (Valdisser et al.,

2017), snake melon [Cucumis melo L. subsp. melo var. flex-
uosus (L.) Naudin)] (Zaitoun et al., 2018), and tea [Camellia
sinensis (L.) Kuntze] (Malebe, Mphangwe, Myburg, & Apos-

tolides, 2019). In the current study, SNPs resulting from DArT

sequencing distinctly clustered cultivated finger millet acces-

sions from the wild subsp. africana and from E. kigeziensis. A

number of genotypes that had hybridized between the differ-

ent taxa were also distinguished. The clustering pattern was

largely similar to a previous study (Gimode et al., 2016).

Screening of the new collections alongside improved

material and FPVs revealed that the wild and landrace acces-

sions were more resistant to the blast isolate used. Wild rel-

atives have been used in several crops to introduce novel

disease resistance alleles into cultivated material (Mam-

madov et al., 2018; Zhang, Mittal, Leamy, Barazani, &

Song, 2017). Wild relatives have been reported as reser-

voirs of useful genes for rice improvement (Brar & Khush,

2018), and several blast resistance genes have been intro-

duced from wild accessions (Das et al., 2012; Kumari et al.,

2013; Rama Devi et al., 2015). Previous concerns on link-

age drag (Zamir, 2001) when wild accessions were used as

donor lines for introgression of traits, are now being overcome

in many crops by the availability of dense genetic maps fol-

lowed by marker-assisted selection (Dempewolf et al., 2017;

Migicovsky & Myles, 2017). Despite finger millet not hav-

ing much genomic resources currently, the progress in next-

generation sequencing and the falling costs of genotyping

globally will make it possible to utilize the identified wild

sources of resistance in breeding programs. We also identi-

fied one improved variety (KACIMMI22) and four landraces

(TZ1637, BKFM0031, ACC214988, ACC203544) with high

resistance to the blast isolate that can be deployed immedi-

ately in breeding programs. The recently funded prebreed-

ing programs in Uganda, Tanzania, and Ethiopia by the Tem-

pleton World Charity Foundation (https://www.croptrust.org/

project/the-templeton-pre-breeding-project/) will especially

benefit from deploying the resistant landraces and wild geno-

types identified in this study.

https://www.croptrust.org/project/the-templeton-pre-breeding-project/
https://www.croptrust.org/project/the-templeton-pre-breeding-project/
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F I G U R E 4 A contrast of the top 12 most resistant accessions with the 10 most susceptible accessions. There was only one wild accession among

the most susceptible. The highly resistant genotypes were mostly wild accessions and landraces. The letters in brackets indicate whether a genotype is

cultivated (C) or wild (W)

F I G U R E 5 Box plots showing differences in the mean disease incidence between wild and cultivated accessions. All hybrids between coracana
and africana were considered wild for the sake of making the comparisons. The box plots show an overall low disease incidence among the wild

accessions in comparison to the cultivated accessions
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F I G U R E 6 A quantile–quantile plot of general linear model plus principal component analysis genome-wide association study analysis for blast

incidence in 2016 (red), 2017 (blue), 2018 (green), and means (yellow)

The resistant wild accessions and landraces will form a

strong basis for future allele mining and full characteriza-

tion of blast resistance in finger millet. Future studies will

also need to characterize additional blast isolates in order to

establish the rate of evolution of corresponding genes in the

case of gene-for-gene interaction. Similar studies have been

undertaken in rice for various geographical regions (Fukuta

et al., 2019; Pagliaccia et al., 2018; Zhang et al., 2017) and

will be important in finger millet to ensure relevant vari-

eties are developed and deployed in strategic locations, which

may have different blast pathotypes. In the current study, we

used a blast isolate from the neck tissue but future studies

will need to establish whether there are variations between

blast isolates affecting various plant tissues. Differences in the

aggressiveness of blast isolates from different tissues of the

same plant have been reported (Ghatak, Willocquet, Savary, &

Kumar, 2013) in rice, and there is evidence suggesting tissue-

adapted fungal infection strategies (Marcel, Sawers, Oakeley,

Angliker, & Paszkowski, 2010). Similar studies in finger mil-

let will aid in understanding any tissue specialization strate-

gies by the pathogen.

The observed high heritability across the three seasons

reflects a high genetic control for resistance to blast in fin-

ger millet, which might suggest the involvement of a major

gene in the resistance observed. Two major types of disease

resistance, qualitative–horizontal–complete and quantitative–

vertical–partial, have been exploited in plants. Qualitative

resistance is modulated by a major disease resistance gene

and an avirulence gene (Miah et al., 2013), while quanti-

tative resistance involves several genes with minor effects

(Corwin & Klieberstein, 2017). In several studies, both major

and minor disease resistance genes controlling a particular

disease or multiple diseases have been reported to colocal-

ize in the genome (Ali, Pan, Chen, Zahid, & Yan, 2013; Geb-

hardt & Valkonen, 2001). Although our study did not have the

optimum genotype numbers to provide the needed power for a

good association analysis, our preliminary GWAS results sug-

gest the likely involvement of both major and minor genes but

will need to be validated in the future.

The putative functional markers identified here were colo-

calized in majority of genes that have been reported to play

significant roles in resistance to fungal pathogens in cereals.

Receptor-like kinases have been reported to play a role in

the resistance to fungal pathogens in cereals including barley

(Avena sativa L.) (Karre, Kumar, Dhokane, & Kushalappa,

2017) and rice (Fan et al., 2018; Takahashi, Murano, &

Ishikawa, 2018). There is evidence showing the involvement

of ethylene responsive transcription factors in disease resis-

tance in Arabidopsis thaliana (L.) Heynh. (Sun et al., 2018),

soybean [Glycine max (L.) Merr.] (Zhao et al., 2017), and bar-

ley (Djemal, Mila, Bouzayen, Pirrello, & Khoudi, 2018). F-

box family proteins, including Kelch repeat-containing family

proteins, have been reported to be involved in disease resis-

tance in Brassicaceae (Poveda, Hermosa, Monte, & Nicolás,

2019), wheat (Triticum aestivum L.) (Li et al., 2020), and

maize (Zea mays L.) (Li et al., 2019). Despite the low
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T A B L E 4 Associated functional single nucleotide polymorphism markers after preliminary genome-wide association study analysis and their

corresponding chromosomal locations and candidate genes

Linkage
group Variant Position P-value R2 Candidate gene Position range

bp bp

1A C/G 46,738,970 5.45 × 10−4 .20 Leucine-rich repeat receptor-like protein

kinase family protein

46,737,995–46,739,422

1A T/C 46,069,153 4.58 × 10−4 .17 Tryptophan aminotransferase 46,068,865–46,070,739

2A A/G 1,629,966 8.00 × 10−4 .16 Receptor-like protein kinase 1,628,200–1,631,642

2B T/C 55,615,722 9.08 × 10−4 .22 F-box domain containing protein 55,614,859–55,615,872

2B C/T 59,973,963 8.97 × 10−4 .15 Hexosyltransferase 59,969,697–59,974,158

3A C/T 43,338,102 7.06 × 10−4 .22 Receptor-like kinase 43,337,936–43,340,940

3B G/C 1,190,087 6.25 × 10−4 .15 Kelch repeat-containing family protein 1,184,856–1,190,100

4B T/C 17,239,984 8.26 × 10−4 .17 Short-chain dehydrogenase/reductase

family protein

17,238,055–17,240,024

5A C/A 19,465,261 8.51 × 10−4 .16 Chaperone protein DnaJ 19,464,480–19,465,485

6A A/G 18,000,182 1.91 × 10−4 .18 Isoflavone reductase 17,999,945–18,002,150

6A T/A 40,049,534 8.34 × 10−4 .16 Bromodomain-containing protein 40,048,755–40,054,168

6A G/T 50,715,487 4.45 × 10−4 .25 Basic helix-loop-helix transcription factor 50,715,350–50,716,886

6B G/A 70,331,237 1.86 × 10−4 .25 AP2-like ethylene-responsive

transcription factor

70,329,371–70,331,714

6B T/C 66,546,058 5.22 × 10−4 .16 Hydroxyproline-rich glycoprotein 66,546,087–66,551,222

6B T/C 11,124,272 6.22 × 10−4 .19 Protein kinase family protein 11,117,047–11,131,460

7B C/G 53,831,328 5.86 × 10−4 .16 Zinc finger protein Sdr4 53,830,526–53,831,497

9B A/G 8,237,901 2.39 × 10−4 .26 F-box family protein 8,236,911–8,237,819

9B A/T 20,357,997 3.37 × 10−4 .19 AP2-like ethylene-responsive

transcription factor

20,355,486–20,360,563

9B C/T 60,068,955 9.25 × 10−6 .25 F-box family protein 60,067,953–60,069,524

numbers of germplasm used in the current study, the strong

evidence of involvement of the putative candidate genes in

disease resistance calls for further studies to confirm their role

in blast resistance in finger millet. The markers identified can

be immediately validated in diverse and biparental popula-

tions existing with breeders. Most finger millet breeders in

eastern Africa use conventional breeding in their programs,

which is slow and laborious. Once validated, the identified

markers will form the first molecular toolkit for the blast resis-

tance breeding in the region.

The preliminary PVS results will need to be repeated and

validated using larger numbers of farmers. The gender dif-

ferences revealed in the farmer-preferences calls for regular

engagement of both male and female farmers during the vari-

etal development process. The fact that none of the top 12

FPVs appeared resistant to the blast isolate used in the current

study will require the immediate introgression of the identi-

fied resistance into the FPVs to reduce crop losses that the

farmers regularly face resulting in food and nutrition insecu-

rity. Such introgression programs will also need to take into

account preferences of both male and female farmers to ensure

that the varieties developed are relevant to both gender groups.

More studies will be necessary to fully understand the trait

preferences of each gender group.

Our investigation demonstrates the value of crop wild rel-

atives as a major reservoir for favorable alleles for crop

improvement. The use of molecular markers developed will

speed up germplasm characterization and verification pro-

cess and enhance the process of superior variety develop-

ment. More studies will need to be done involving more

germplasm alongside a larger collection of blast isolates to

fully understand the nature of blast resistance. Multiparent

populations will also need to be developed to ensure future

genomic selection and characterization of major traits of

interest.
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