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Abstract
Crop yield estimation is important to inform logistics management such as the prescription of nutrient inputs, financing,

storage and transport, marketing as well as to inform for crop insurance appraisals due to loss incurred by abiotic and biotic

stresses. In this study, we used a suite of methods to assess yields at the village level (\ 5 km2) using remote sensing

technology and crop modeling in Indian states of Telangana, Andhra Pradesh and Odisha. Remote sensing products were

generated using Sentinel-2 and Landsat 8 time series data and calibrated with data collected from farmers’ fields. We

derived maps showing spatial variation in crop extent, crop growth stages and leaf area index (LAI), which are crucial in

yield assessment. Crop classification was performed on Sentinel-2 time series data using spectral matching techniques

(SMTs) and crop management information collected from field surveys along with ground data. The locations of crop

cutting experiments (CCEs) was identified based on crop extent maps. LAI was derived based on the SAVI (soil-adjusted

vegetation index) equation were using Landsat 8-time series data. We used the technique of re-parametrization of crop

simulation models based on the several iterations using remote sensing leaf area index (LAI). The data assimilation

approach helps in fine-tuning the initial parameters of the crop growth model and improving simulation with the help of

remotely sensed observations. Results clearly show a good correlation between observed and simulated crop yields (R2 is

greater than 0.7) for all the crops studied. Our study showed that by assimilation of remotely sensed data in to crop models,

crop yields at harvest could be successfully predicted.

Keywords Yield assessment � Crop classification � Leaf area index (LAI) � Remote sensing � Crop cutting experiments

(CCEs) � Sentinel-2 � Landsat 8 and India

Introduction

In India, rice, maize and groundnut are the main rainy

season crops that contribute significantly to India’s econ-

omy. Most of this cropped area is rainfed and these areas

have low grain yields due to poor distribution of monsoon

rainfall in many years. Though rainfed areas have low

grain yields, they hold a lot of potential to increase pro-

duction (Aggarwal et al., 2008; Lobell et al., 2009; Stuart

et al., 2016). Timely and accurate estimation of crop yields

is essential for effective agricultural land management,

policy-making and sustainability of agricultural food pro-

duction (Masson-Delmotte et al., 2018). The precise and

timely monitoring of potential yields is crucial for decision

making as it influences markets, export–import decisions

and farm income budgeting (Zhao et al., 2020). Yield
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estimation also plays a critical part in the pricing of

insurance premiums and serves as a promising financial

risk management solution for smallholder farmers

(Choudhury & Jones, 2014). In recent years, several

methods are used for prediction of crop yields at a range of

scales such as empirical equations, remote sensing and

simulation models. Although there are studies validating

the use of remote sensing data in estimating crop yields,

most have used empirical methods for specific locations,

crops, cultivars and crop growth stages. Similarly,

researchers used crop models to simulate crop growth and

yields at a regional scale. Every technology has its

advantages and limitations. For example, the use of remote

sensing for temporal crop analysis is limited by the avail-

ability of cloud-free time series remote sensing data and

difficulties in accurately estimating LAI (Batchelor et al.,

2002; Quarmby et al., 1993). Similarly, the adequate sim-

ulation of cropping systems is often hindered by lack of

sufficiently accurate input data such as parameter values

for soil, management, cultivar and meteorological inputs.

However, combination of these two approaches has the

potential to update and, where necessary, rectify cropping

system model simulations for more certain outcomes.

(Lobell et al., 2015; Pitman, 2000; Potgieter et al., 2014;

Schut et al., 2009; Nearing et al., 2012).

Remote sensing data assimilation methods with various

levels of complexity have been tried, either by directly

using remote sensing satellite data in simulation models

(Doraiswamy et al., 2003; Olioso et al., 2005), by updating

state variables or by re-parametrization of the model using

remote sensing satellite data (Fang et al., 2011; Jin et al.,

2017). Biophysical parameters are very important for

environmental analysis as leaf area index (LAI) is one of

the important parameters that reflects crop growth stages of

vegetation and is widely used in quantitative analysis of

crop models (Parker, 2020; Yan et al., 2019). LAI shows

the amount of leafs area per unit in two dimensions and is a

key parameter for biophysical modeling (Asner et al.,

2003; Ren et al., 2014; Stark et al., 2012; Yan et al., 2019).

Several studies have extracted biophysical parameters from

satellite imagery (Hui & Yao, 2018; Yu et al., 2019) and

assimilated them in simulation models. Kang and Özdoğan

(2019) successfully assimilated Landsat-derived LAI time

series into crop model simulations using ensemble Kalman

filter for individual fields or pixels. In this study, we used

the technique of re-parametrization of crop simulation

models through several iterations using remotely sensed

LAI estimates; this technique is supposed to best integrate

crop growth conditions. The data assimilation approach

helps with initializing parameters of the crop growth model

and improves simulations with the help of remotely sensed

satellite observations.

The Government of India’s Pradhan Mantri Fasal Bima

Yojana (PMFBY) program aims at supporting sustainable

production in the agriculture sector by providing financial

support, stabilizing farmers’ incomes and encouraging

farmers to adopt modern techniques. The scheme provides

insurance to indemnify farmers against crop losses. The

Mahalanobis National Crop Forecast Centre (MNCFC) in

New Delhi, India, estimates the acreage, yield of crop and

crop conditions across the country which helps insurance

companies set crop premiums. As a part of this initiative,

MNCFC has supported pilot studies to assess quickly and

accurate yield estimations throughout India using tech-

niques such as remote sensing and crop simulation

modeling.

To contribute to this initiative, we adopted the

methodology developed by Fang et al. (2011) for crop yield

assessment at the village level (Gram Panchayat) using

remote sensing, field data and crop simulation models. Our

major objectives are (i) to identify suitable locations for

CCEs using crop type mapping and to conduct CCE; (ii) to

perform crop yield assessment by assimilating the remote

sensing data into crop simulation models; and (iii) to val-

idate the simulation results with CCE yield data and

statistics from agriculture departments.

Study Area

The selected study areas are located in the states of Andhra

Pradesh, Telangana and Odisha in the southern and eastern

(Fig. 1). The following districts were chosen for this study:

Anantapur, Krishna and Kurnool in Andhra Pradesh;

Mahbubnagar in Telangana; and Puri in Odisha. The study

areas are located in two distinct agro-climatic zones such as

semiarid regions (Anantapur, Kurnool and Mahbubnagar)

and humid and dry sub-humid regions (Krishna and Puri).

Most areas in the semiarid regions depend on rainfall for

agriculture. Mahbubnagar and Anantapur districts receive

an average annual precipitation of 650 mm, whereas other

districts receive more than 1000 mm.

In the humid districts Krishna and Puri, rice was

selected as the crop occupies a major area, whereas in the

semiarid regions of Anantapur, Kurnool and Mahbubnagar

districts, groundnut and maize were considered for this

study. In each district, five mandals (small administrative

units) were selected for CCEs (Table 1).
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Datasets

Satellite Imagery

We used Sentinel-2 and Landsat 8 data for crop type

classification and LAI estimation. Landsat tiles were

downloaded from the US Geological Survey (USGS) glo-

bal land cover facility website (https://earthexplorer.usgs.

gov/) for the 2019–20 rainy season (June to October).

Sentinel-2 satellite data were downloaded from the Euro-

pean Space Agency (ESA), i.e., Copernicus open access

hub (https://sentinel.esa.int/web/sentinel/). Landsat 30 m

16-day cloud-free imagery and Sentinel-2 10 m 12-day

processed satellite images were downloaded from cloud

computing Google Earth Engine (GEE) for rainy 2019–20.

Multispectral data from the Sentinel-2 satellite constel-

lation, which is part of the European Copernicus program,

were used in this study. It comprises a set of two satellites

Sentinel-2A and 2B—that provide high-resolution data,

with a high combined revisit time of 5 days at the equator,

for monitoring land surface conditions.

Sentinel-2 satellite provided high spatial resolution

(optical bands at 10 m) images over a large swath

(290 km), high spatial resolution (optical bands at 10 m),

and provide data in the optical, near-infrared (NIR) and

Fig. 1 Location of the pilot study sites and their Climatic zones

Table 1 Crop-wise information for selected study districts

State District Type of irrigation Crop Crop varieties Season

Andhra Pradesh Krishna Canal irrigation Rice Medium to long duration cultivars of 135–150 days June–November

Anantapur Rainfed/groundwater Groundnut K-6, JL-24 and Dharani July–November

Telangana Mahbubnagar Rainfed/groundwater Maize DHM-117; Dekalb9144 July–October

Odisha Puri Canal irrigation Rice Medium to long duration cultivars of 135–150 days July–November
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short-wave infrared (SWIR) regions of the electromagnetic

spectrum.

Ground Data for Crop Classification

Ground data for crop classification were collected during

the 2019–20 rainy season (August–October) for 725 sam-

ple data points covering about 5000 km of road travel in

the selected districts (Fig. 2, Table 2). A stratified sys-

tematic sample design was adopted to select the location by

considering croplands and road network; data were col-

lected every 3–5 km (Thenkabail et al., 2004, 2005).

Ground data samples were acquired within large homoge-

nous areas of a particular land use/land cover (LULC).

Ground data were collected based on preliminary crop

classification and near real-time satellite imagery, i.e.,

Sentinel-2 false color composites with tracking GPS using

image processing software. The ground data were collected

in a 30 m 9 30 m plot and included location, LULC cat-

egories, crop type and cropping pattern, methods of irri-

gation, farmers’ interviews (wherever possible), etc. Crop

name and location data were collected at each point to

validate crop type classification.

Two independent datasets were collected: one for

training and another for validation. Table 1 shows sample

size of training data for classification and validation data

for accuracy assessment in each study sites. Of 725 loca-

tions, we used 311 samples for crop classification as

training data and 414 samples for validation.

Crop Cutting Experiments (CCEs) for Yield
Verification

In the current analysis, we assisted the Government of

India in identifying potential locations to conduct CCEs in

Krishna, Anantapur and Kurnool districts in Andhra Pra-

desh, Puri district in Odisha and Mahbubnagar in Telan-

gana to test the methodology. The crop type map overlaid

with the NBSSLUP soil map was used to identify the CCE

locations. GPS location, date of sowing, irrigated vs rainfed

and other crop management details were collected at the

locations.

Landsat 8 LAI Data Processing

Leaf area index and soil-adjusted vegetation index (SAVI)

were calculated using Eqs. (1) and (2) using Landsat 8 time

series surface reflectance data (Schmidt et al., 2013)(Huete,

1988; Qi et al., 1994; Reyes-González et al., 2019; Ron-

deaux et al., 1996; Thenkabail et al., 2000) downloaded

from GEE. In this study, we used the unique spectral

response of leaves compared to other parts of the plant. We

integrated SAVI and LAI calculated using the following

empirical equations.

LAI ¼
�ln 0:69�SAVI

0:59

� �

0:91
ð1Þ

For Landsat images used in this study, SAVI was

computed using the formula:

SAVI ¼ 1þ Lð Þ B5� B4ð Þ
Lþ B5þ B4

ð2Þ

Fig. 2 Location of ground data

sample points for crop

classification and validation
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(where L is a soil factor, taken to be 0.1, B5 is the

spectral reflectance in near infrared, and B4 is spectral

reflectance in red.)

Soil Data

Soil data for each CEE location used to parameterize the

biophysical crop simulation models were obtained from a

set of soil profile data available from the International

Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) data repository and the National Bureau of Soil

Survey and Land Use Planning (NBSSLUP) databases. Soil

properties such as hydraulic conductivity, bulk density and

soil texture were extracted from these soil profile data

repositories. Additional parameters such as drained upper

limit, lower limit and saturation limits were estimated

based on soil texture using the generic soil database

available in the DSSAT models using pedo-transfer func-

tions. We also used certain parameters such as soil fertility

factor (SLPF) in soil as free variables, meaning that they

could be modified as required.

Weather Data

Weather data such as daily maximum and minimum tem-

perature, rainfall and solar radiation were collected from

the Andhra Pradesh Development Planning Society

(APSDPS) and Telangana State Development Planning

Society (TSDPS) automatic weather station network

available near by the testing sites. Weather parameters for

Odisha sites were collected from Odisha State Agriculture

Department. Weather data were collected for the period

June to December 2019.

Methods and Approaches

The overview of methodology starts with three major input

parameters (Fig. 3), mainly present daily weather data,

crop management data and remote sensing products (crop

classification and leaf area index (LAI).

Crop Type Maps

The methodology for mapping the rainy cropping pattern

using Sentinel-2 time series and ground data was taken

from Gumma et al. (2020b). Crop type classification starts

with time series data composition, ideal spectral generation

and class identification based on spectral matching tech-

niques (SMTs). Ideal spectra profiles of each crop class

were generated using the Sentinel-2 normalized difference

vegetation index (NDVI) temporal data. The basis for

SMTs is the generation of ideal temporal NDVI (Tucker,

1979) spectra for each LULC class from the ground survey

data. The ground data used for ideal spectra generation

were collected from homogeneous patches along with in-

depth information about the cropping system and irrigation

methods. Differences in the phenological growth stages of

different plants are reflected in the temporal NDVI profiles,

since NDVI can measure growth conditions (greenness of

vegetation) (Belgiu & Csillik, 2018; Croitoru et al., 2012).

In the present study, GEE was used for satellite data

processing and classification (Gumma et al., 2020a). The

Sentinel-2 (S2) collection of GEE is a set of UINT 16-bit

images having 13 spectral bands with top-of-atmosphere

(ToA) reflectance values scaled by 10,000, as well as three

quality assurance (QA) bands. These data are available

from 23 June 2015 to the present. Out of the 13 spectral

bands, 4—B2, B3, B4 and B8 had a spatial resolution of

10 m; 6—B5, B6, B7, B8a, B11 and B12 had a spatial

resolution of 20 m; and 3—B1, B9 and B10 had a spatial

resolution of 60 m. GEE was chosen to process and clas-

sify the S2 data because the quality of data is assured with

cloud masks and user-friendly functions for image pro-

cessing and classification. Moreover, the main advantage

of GEE is its cloud computing capability which reduces the

need for the client to have hardware and software

capabilities.

Sentinel 2 images for the 2019 rainy cropping season for

the months August to December were used for the analysis.

The monthly maximum value composites (MVCs) of

NDVI were computed and stacked. A time series NDVI

MVCs were used to detect phenological stages of vegeta-

tion, thus made it, possible to identify the type of vegeta-

tion/crop. The stacked NDVI composites were passed

Table 2 Ground data for training and validation of crop classification along with ground data and CCEs collection

District Training data Validation data Major crops sampled Ground data collection (week) CCEs (week)

Krishna 43 69 Rice 2nd week of September 2nd week of November

Anantapur 44 91 Groundnut 1st week of September 1st week of November

Mahbubnagar 44 99 Maize 3rd week of September 3rd week of October

Puri 39 23 Rice 2nd week of September 2nd week of November
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through an unsupervised classifier. The K-means classifier

of GEE was used to generate 70 clusters or classes of

similar pixels using machine learning algorithm. The

NDVI MVC time series spectra of these classes were

plotted and compared. Classes with similar spectra were

grouped using spectral similarity values (SSVs). Lower

SSVs indicate high similarity between two classes. The

classes were then identified and labeled using SMT.

Intensive ground truth data were used for class identi-

fication. The ideal NDVI MVC spectra for each crop were

identified with 90 samples selected from the ground survey

data. The sample data helped to effectively identify all the

major crop types of the region, and to represent a homo-

geneous area large enough to avoid confusion while

determining the crop type using the time series spectra. The

ideal spectra for each class were taken as the average of the

spectral curves of all locations of that class. Class spectra

were matched with the ideal spectra and labeled with the

land use of the matching spectra. Ground data and Google

Earth high-resolution images were used to improve class

identification.

A large and fragmented landscape dominates almost all

parts of India, leading to mixed classes due to unsupervised

classification. Such mixed classes were reclassified by

masking out and relabeling them using SMT.

Accuracy Assessment of Crop Type Maps

Accuracy assessment of the maps was performed based on

validation data. A total of 414 ground survey sam-

ples(Table 2) were used to assess the accuracy of the

classification map (Jensen, 2004), by generating a confu-

sion matrix, wherein columns represent field-plot data

points, and rows represent results of classified rice maps in

the confusion matrix (Congalton, 1991). The confusion

matrix contains corresponding class changes in a multidi-

mensional table. The statistical approach of accuracy

assessment shows multivariate statistical analyses such as

Kappa (Cohen, 1960) to relate results from different clas-

sifications and regions; it is a degree of agreement between

user and reference ground data with a score of homo-

geneity, or consensus.

Crop Cutting Experiment Procedure

CCEs were carried out based on optimization techniques.

The optimization of CCE points was carried out with the

help of NDVI, climatic zones, soil data and related clas-

sification maps (Fig. 4). Firstly, the strata of NDVI, cli-

matic zones and soil were prepared and combined to

identify homogeneous strata. Then collected random sam-

ple plots over the homogeneous strata with proportion to

sample size PPS (probability proportion to the sample size)

such that each stratum contains minimum 30 plots. Based

on multiple regression-based model, the numbers of sam-

ples were reduced up to significance level. Thus, the

optimal number of sample points was selected.

Locations for CCEs were selected using crop type maps,

and experiments were conducted in a 5 m 9 5 m (as per

NSSO Guidelines) homogenous area identified in the

selected crop field. The entire harvested crop or subsample

weight was recorded. Weight of the biomass and grains by

threshing the harvested crop was recorded. Photographs

and GPS location of the experiment plot were taken for

reference and validation purposes. Crop management data

were also collected by interacting with the farmers.

Fig. 3 The data assimilation

approach combines remote

sensing data with crop growth

models to estimate crop yield
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The cropping system model

The cropping system models (CSM) CERES for rice,

maize; PEANUTGRO for groundnut, available in the

Decision Support System for Agrotechnology Transfer

(DSSAT), were used for yield simulations (Jones et al.,

2003). Daily biophysical crop information (e.g., LAI, bio-

mass) was generated with the help of the crop growth

model. Input data such as soil conditions, weather and

management data (planting date, seed rate and fertilizer

application rates) were prepared for each CCE location.

The most common cultivar types representing a major part

in the CCE location were used. Cultivar parameters were

sourced from the ICRISAT data bank and from published

literature. If the required cultivar parameters were not

available, they were matched with cultivar of a similar

duration. Nutrient supply, mainly nitrogen, was set as a free

variable. The basal application dose was matched with

planting date, and the remaining application rates and times

were set as free variables.

The optimization process starts with initial model

parametrization by adjusting the free parameters so that the

model-simulated LAI is in agreement with the Landsat 8

LAI observations (Eq. 3). The simulated LAI values

depend on the values of the free variables (e.g., planting

date, nitrogen dose, soil profile parameters) that are gen-

erated by minimizing the value of the following cost

function (Myneni et al., 2002). The remote sensing LAI

data were collected for six times during the crop growth

period.

Xm
i¼1

abs LAIS tið Þ � LAIM tið Þ½ �=LAIM tið Þ ð3Þ

(where LAIM and LAIS are the leaf area index measured

and leaf area index simulated at time ti, respectively.)

By adjusting the free input variables in order to mini-

mize the residuals between Landsat 8 LAI and simulated

LAI at each corresponding period (six observations), an

optimized set of input parameters were obtained. The free

variables were adjusted sequentially based on the cost

function (Eq. 3) for each village location. After completing

the maximum number of iterations with minimum merit

function value, the free parameters were finalized. Finally,

with the optimized parameters, the model was executed to

update the crop yields. Crop yields were estimated for each

CCE location and compared with the observed yields of

that particular CCE yield data.

Results

Spatial Distribution of Crops

Figure 5 shows the spatial distribution of the various crops

across the selected districts. Groundnut observed to be the

major crops in Anantapur district, whereas groundnut

occupies nearly 75% of the total crop area. Groundnut was

considered for yield assessment in Anantapur district.

Sorghum and rice are the major crops in Kurnool district.

Maize, millet, pigeonpea and cotton are the four major

crops in Mahbubnagar district. Maize and pigeonpea were

Fig. 4 Flow diagram of the

optimization of CCEs
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widely spread across the chosen mandals, occupying nearly

60% of the total crop area. Maize was considered for yield

assessment in Mahbubnagar district. Rice is the major crop

across the Krishna and Puri districts occupying nearly 75%

and 80% of total crop area, respectively. Most of the

selected crops in this study were irrigated crops. Rice was

considered for yield assessment in both Krishna and Puri

districts.

An assessment of the accuracy of crop type classifica-

tion showed an overall accuracy of more than 80% in each

district (Table 3). In Kurnool, major crops sorghum and

rice achieved 86% accuracy, whereas crop type maps

achieved more than 90% in both user’s and producer’s

accuracies. In Mahbubnagar, of the major crops cotton and

pigeonpea assessed for accuracy maize achieved over 85%

in both accuracies. In Puri, rice is the dominant crop and

achieved 78% accuracy. In Krishna district, irrigated rice

achieved nearly 86% accuracy, whereas in Anantapur, of

the two crops chosen to assess accuracy, groundnut

achieved more than 88% in both accuracies.

Crop Cutting Experiments

Crop cutting experiments were conducted based on the

finalized crop type map. The location of the CCE sites was

determined using crop type map information, rain gauges’

availability, soil types and area statistics of each crops in

particular location. Using this information, a representative

set of CCE locations was finalized (Figs. 6 and 7). The

crop type map contains information about crop type as well

as crop growth periods. Based on crop growth periods and

the crop, harvesting windows were identified, based on

which CCEs were carried out from October to December

with the help of local agriculture staff.

Crop Yields and Limitations

The mean, variance, standard deviation and coefficient of

variation were calculated for CCEs collected for crops in

their respective districts (Table 4). However, CCE plots

were identified using remote sensing techniques along with

various parameters such as crop area extent, proximity to

roads and accessibility. The CCEs could not be conducted

in the proposed locations as farmers were unwilling to

harvest the crop in their fields. Neither could we collect

information on crop management such as cultivar sown,

date of sowing, fertilizer application and dates of irrigation

from all the locations.

Fig. 5 Crop classification maps of Mahbubnagar, Anantapur, Krishna and Puri districts
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Rice Yields

In Krishna district, CCEs were performed in 94 locations.

Observed yields were compared with simulated yields from

the crop model with Landsat 8 LAI assimilated data. The

observed yields were scattered between 3560 and 7123 kg/

ha and the simulated yields clustered between 3697 and

6,213 kg/ha. Observed yields of rice were found to be in

proximity to the simulated grain yield over the several CCE

locations (Fig. 7). Similarly, observed yields in various

CCE locations across Puri district were clustered between

260 and 7684 kg/ha, while simulated yield was scattered

between 1154 kg/ha and 6514 kg/ha. It was also observed

that yield simulations in rice improved with greater number

of LAI observations. Figure 8 compares observed rice

yields with yields simulated under different locations with

Landsat 8 derived LAI data assimilation methods. The

predictions were strong with a R2 value of 0.76 in Puri

district and R2 value of 0.71 in Krishna district. The root-

mean-square error (RMSE) of the yield was 696 kg/ha Puri

district and 386 kg/ha, respectively, in Krishna districts

(Table 5). The accuracy of simulations was significantly

higher in Krishna district than in Puri district mainly due to

lack of information on soil and cultivars information for

Puri district.

Table 3 Accuracy assessment

of the study sites based on

ground reference data

District Crops User’s accuracy Producer’s accuracy Overall accuracy

Kurnool Chickpea 0.93 0.93 0.87

Sorghum 0.76 0.76

Rice 0.84 0.84

Mahbubnagar Maize 0.96 0.86 0.85

Cotton 0.71 0.75

Pigeonpea 0.74 0.87

Puri Rice 1.00 0.78 0.78

Krishna Irrigated-SW—rice 0.60 1.00 0.87

Irrigated-GW—rice 1.00 0.83

Anantapur Groundnut 1.00 0.88 0.87

Millet 0.67 0.80

Chickpea 0.33 1.00

Note: SW = surface water; GW: Groundwater

Fig. 6 Locations of the crop

cutting experiments (CCEs)

suggested, using remote sensing

and other ancillary data
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Maize and Groundnut Yields

Observed maize and groundnut yields were compared with

simulated yields under different crop management options

in each CCE location (Fig. 9). Observed yields in various

CCE locations across maize growing locations in Mah-

bubnagar district ranged between 212 and 5180 kg/ha, and

simulated yields between 399 and 4,533 kg/ha. The

descriptive statistics are presented in Table 6. It was

observed from the yield predictions that assimilation of

LAI data from remote sensing products improved yield

predictions, especially under rainfed conditions, as the

model could simultaneously improve both extreme yields

in all the crops studied.

Discussion

This study investigated the potential of combining high-

resolution LAI data with crop modeling to assess crop

yields at field scale. In the approach used, the initial step

involved mapping different crops using high-resolution

images with high accuracy. These crop extent maps were

very useful in identifying crop types as well as in under-

standing the crop conditions. We also used crop masking as

the base map to identify proposed locations to perform

CCEs. The study area mainly comprised smallholder

farmers, the sowing dates differed among them. The crop

extent map enabled us to identify crop growth stages using

NDVI decision tree algorithms and plan the timely

Fig. 7 An illustration of CCEs on the rice crop in Puri district, Odisha

Table 4 Statistics computed from CCEs in four districts

District Crop Mean (kg/ha) Variance Standard deviation Coefficient of variation (%)

Krishna Rice 5539 360,218.1 600.2 0.11

Puri Rice 3555 2,559,211 1599.7 0.45

Mahbubnagar Maize 2189 1,025,800 1012.8 0.46

Anantapur Groundnut 1187 70,347.36 265.2 0.22
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harvesting of crops in different CCEs. Timely harvesting is

key for enhanced accuracy in yield assessments.

Various methodologies have been used to estimate LAI

in wheat, rapeseed and potato using remote sensing prod-

ucts (Clevers et al., 2017; Li et al., 2017; Wei et al., 2017)

and to estimate LAI and biomass in corn and soybean using

remote sensing multispectral data (Kross et al., 2015). This

study investigated the potential of assimilating time series

Landsat 8-LAI data into the DSSAT crop growth model for

better prediction of crop yields at each CCE location.

Fig. 8 A comparison of simulated rice yields and observed yields in Puri and Krishna districts

Table 5 Descriptive statistics of the performance of CERES-rice model assimilated with remote sensing LAI data in Puri and Krishna districts

Districts Variables

CCE locations Observed (kg/ha) Simulated (kg/ha) RMSE (kg/ha) RRMSE MAE ME

Puri 101 3555 3537 696 0.19 541 0.76

Krishna 94 5539 5307 386 0.08 307 0.71

RMSE root-mean-square error, RRMSE relative root-mean-square error, MAE mean absolute error, ME modeling efficiency

Fig. 9 A comparison of the simulated yields and observed yields of Maize and Groundnut crops
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Using a cost function measuring the distance between the

simulated state variables and observed ones, the method

employed automatically adjusts the set of model input

parameters until the difference between the Landsat 8 LAI

and the crop model-simulated LAI is minimized(Fang

et al., 2011). Finally, using this optimization algorithm,

crop yields were predicted at each CCE location by

obtaining a new set of parameters or initial values and

allowing a simulation that resembles better observations.

The technique we used was a frequently applied re-cali-

bration methodology that enabled us to estimate the yields

of rice, maize and groundnut successfully and compare

them with observed yields with significant accuracy at each

CCE location. The data assimilation approach proved to be

reliable and shows great potential in providing yield pre-

diction data at the village level. In this study, since LAI is

the only link between the crop growth model and remotely

sensed data, the accuracy of the model and final predictions

with optimized datasets depends on the quality of remotely

sensed LAI data. This study also refined various input

parameters, especially nitrogen application rates and tim-

ing, by performing various iterations of matching model-

simulated LAI with remote sensing outputs as LAI is sig-

nificantly influenced by nitrogen levels.

With recent advances in remote sensing LAI, this

research illustrates the importance of LAI and its use in

crop models for yield assessment. The study used 16 days’

temporal resolution of LAI which may not adequately

characterize crop productivity when the LAI in critical

growth stages is hampered by smoothing algorithms. As

the study assessed yield in the rainy season, the availability

of LAI was affected by climatic conditions. This does not

happen in the post-rainy season as remotely sensed LAI

very often suffers due to cloud cover. Further LAI alone

may not be providing accurate yield assessment as best

results have been reported when both LAI and vegetation

indices were assimilated in to crop models (Fang et al.,

2011). Soil moisture along with remotely sensed LAI

assimilated into the DSSAT-CERES model showed

promising results for yield estimation in wheat.

Several input parameters were modified one at a time

and in combination, to present an accurate description of

the environment where the crop has been growing. This

provided an opportunity to predict crop yields with rea-

sonable accuracy, particularly rainfed crops such as maize

and groundnut. However, the methodology has a few

drawbacks as re-calibration and re-setting of the free

variable may result in an unreliable parameter setup and it

also requires multiple re-runs that need high computational

facilities for larger-scale applications. Further, there are

potential uncertainties in the remotely sensed products,

needing further investigation on improvements in Landsat

8-derived LAI. Depending on Landsat 8 LAI alone may not

always be effective, therefore assimilation of multi-objec-

tive variables such as evapotranspiration, soil moisture and

fraction of absorbed photosynthetically active radiation

(FAPAR) is needed to accurately simulate crop yields

using multi-objective optimization algorithms (Ma et al.,

2013).

Conclusions

With assimilation of remotely sensed satellite data, we

could effectively predict crop yields under both irrigated

and rainfed conditions at each CCE location. The estimated

yields of rice, maize and groundnut in selected districts of

Andhra Pradesh, Odisha and Telangana, respectively,

during 2019 correlated well with the observed yields

obtained from CCE locations The study illustrated the great

potential of the data assimilation approach in estimating

crop yields. A more rigorous evaluation will be necessary

to investigate the model’s efficiency for various climatic

and atmospheric conditions, and other parameters.

This study demonstrated of the use of crop extent maps

in yield assessment by conducting CCEs, mapping crop-

lands during rainy season using NDVI time series and

exploiting the SMT approach along with ground survey

data. Major crop extents were mapped with higher accu-

racy during rainy season for the five study sites with

ground data. The study showed the potential of high-

Table 6 Descriptive statistics illustrating the performance of CERES-maize and PEANUTGRO groundnut model assimilated with remote

sensing LAI data

Crops Variables

CCE locations Observed (kg/ha) Simulated (kg/ha) RMSE (kg/ha) RRMSE MAE ME

Maize 105 2245 2580 608 0.23 486 0.75

Groundnut 148 1191 1290 157 0.08 134 0.69

RMSE root-mean-square error, RRMSE relative root-mean-square error, MAE mean absolute error, ME modeling efficiency
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resolution temporal images and ground data for mapping

cropland at field scale. Mapping crop types is the first step

toward characterizing important crop-growing environ-

ments in order to understand crop condition and homo-

geneity, leading to sustainable use of resources and

improvement in farming systems. Future studies include

yield estimation using satellite data and comparing crop

yield simulated from the standalone model.
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