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Genome‑wide association study 
uncovers genomic regions 
associated with grain iron, zinc 
and protein content in pearl millet
Mahesh Pujar1,2, S. Gangaprasad2, Mahalingam Govindaraj1*, Sunil S. Gangurde1, 
A. Kanatti1 & Himabindu Kudapa1

Pearl millet hybrids biofortified with iron (Fe) and zinc (Zn) promise to be part of a long‑term strategy 
to combat micronutrient malnutrition in the arid and semi‑arid tropical (SAT) regions of the world. 
Biofortification through molecular breeding is the way forward to achieving a rapid trait‑based 
breeding strategy. This genome‑wide association study (GWAS) was conducted to identify significant 
marker‑trait associations (MTAs) for Fe, Zn, and protein content (PC) for enhanced biofortification 
breeding. A diverse panel of 281 advanced inbred lines was evaluated for Fe, Zn, and PC over two 
seasons. Phenotypic evaluation revealed high variability (Fe: 32–120 mg kg−1, Zn: 19–87 mg kg−1, PC: 
8–16%), heritability  (hbs

2 ≥ 90%) and significantly positive correlation among Fe, Zn and PC (P = 0.01), 
implying concurrent improvement. Based on the Diversity Arrays Technology (DArT) seq assay, 58,719 
highly informative SNPs were filtered for association mapping. Population structure analysis showed 
six major genetic groups (K = 6). A total of 78 MTAs were identified, of which 18 were associated with 
Fe, 43 with Zn, and 17 with PC. Four SNPs viz., Pgl04_64673688, Pgl05_135500493, Pgl05_144482656, 
and Pgl07_101483782 located on chromosomes Pgl04 (1), Pgl05 (2) and Pgl07 (1), respectively were 
co‑segregated for Fe and Zn. Promising genes, ‘Late embryogenesis abundant protein’, ‘Myb domain’, 
‘pentatricopeptide repeat’, and ‘iron ion binding’ coded by 8 SNPs were identified. The SNPs/genes 
identified in the present study presents prospects for genomics assisted biofortification breeding in 
pearl millet.

Pearl millet is a climate-resilient crop that accounts for two-thirds of the global millet production. The crop cov-
ers more than 31 million hectares worldwide and is grown in more than 30 countries in the arid and semi-arid 
tropical as well as subtropical regions of Asia, Africa, and Latin America. In Asia, India is the largest producer 
of pearl millet, where it is grown on 9 million hectares with a production of 8.3 million  tons1. In the African 
region, West and Central Africa has the largest area under the crop—15 million hectares—and has an annual 
production of 14.1 million tons. Pearl millet is a diploid (2n = 14) cross-pollinating crop (> 80%) with a genome 
size of ~ 1.79 GB2. Its domestication occurred in regions with low fertility soils, heat, and drought, making it 
naturally adapted to face the challenges associated with climate change.

Pearl millet grains are naturally nutritious and contain high fiber (1.2 g/100 g) and low starch. They are the 
richest source of grain Fe and Zn compared to other  cereals3. Iron and zinc are two important micronutrients 
that play a vital role in human health. Iron is required for psychomotor development, maintenance of physical 
activity and work capacity, and resistance to  infection4, whereas zinc is required for the growth and maintenance 
of the human immune system; hence it aids in both the prevention of and recovery from various  diseases5. 
Apart from Fe and Zn, pearl millet is also rich in grain protein content (8–19%) that is almost at par with that 
in wheat (11.6 vs 11.8 g/100 g) and considerably higher than that in rice (6.8 g/100 g), sorghum (10.4 g/100 g) 
and maize (4.7 g/100 g)6. High-quality proteins are essential for the physical and mental well-being of humans, 
especially  children7,8.

Diets deficient in Fe and Zn (micronutrient malnutrition) or protein alone or in combination lead to malnu-
trition which is also known as ‘hidden hunger’. It has been estimated that over 2 billion people across the world 
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suffer from micronutrient deficiencies in developing countries like Africa and  India9. Anaemia is alarmingly 
high, especially among pregnant women (40%) and children (42%) below 5  years10. In addition to this, cereal 
proteins deficient in essential amino acids such as methionine, lysine, and tryptophan are a matter of concern in 
developing  countries11. Kwashiorkor, oedema, and marasmus are some of the severe forms of protein  deficiency12. 
To combat hidden hunger, biofortification, wherein grain micronutrients along with grain protein contents 
are genetically enhanced through either conventional or molecular breeding, is gaining popularity. Genomics-
assisted breeding holds potential for the rapid improvement of varieties using diagnostic  markers13,14.

The wide variability for grain Fe and Zn content in pearl millet unveils the great prospect of developing bio-
fortified pearl millet varieties and hybrids. The International Crops Research Institute for the Semi-Arid Tropics 
(ICRISAT) has been working towards developing biofortified hybrids and has successfully delivered high-Fe pearl 
millet varieties and hybrids with high yield potential in India and  Africa15. Biofortification using conventional 
breeding is time-consuming and incurs a high cost in terms of screening hybrid parental lines for micronutrients 
and protein in every generation. Hence, it is important to develop a cost-effective strategy to improve nutritional 
traits in pearl millet breeding programs. Furthermore, Fe and Zn are complex traits governed by additive genes 
and are affected by G × E interactions. Nutritional traits are very complex and governed by a group of genes. It 
is a challenge to track the genomic regions/genes that are either directly or indirectly responsible for Fe and Zn 
loading in the grains. Genome analysis tools provide access to thousands of genomic polymorphisms, consider-
ably broadening the ability to monitor and effectively utilize genetic  diversity16. Quantitative trait loci (QTL) 
mapping based on linkage analysis provides the high power of QTL detection of a trait of interest; it has a very 
low mapping resolution because of the few recombination events that it takes into consideration which would 
ultimately lead to long linkage  blocks17.

Advances in high throughput genotyping technologies such as genotyping-by-sequencing (GBS)18,  DArT19, 
and GWAS have enabled the use of these powerful approaches in dissecting quantitative  traits20. GWAS is a robust 
approach that has been successfully applied in the past to identify genomic regions controlling grain/kernel 
Fe and Zn contents in  maize21,  rice22, and  wheat23. GWAS has been successfully applied in wheat and maize to 
identify grain PC. The availability of the draft genome of pearl  millet2 provides the advantage of single nucleotide 
polymorphism (SNP) and candidate gene discovery. Single nucleotide polymorphism markers are desirable for 
GWAS, genomic selection, and QTL mapping24. GWAS exploits millions of SNPs generated across the whole 
genome through GBS, whole-genome re-sequencing (WGRS), DArT, and DArT seq using a diverse group of 
germplasm lines. GWAS is very effective in pearl millet due to faster LD-decay2. The discovery of SNP markers 
and their validation will help in developing diagnostic markers that can be deployed to develop biofortified pearl 
millet varieties/hybrids with elevated Fe and Zn content. This study aims to evaluate genetic variability for grain 
Fe, and Zn and PC among GWAS panel to discover the genomic regions associated with Fe, Zn, and PC in order 
to develop diagnostic markers for use in the pearl millet biofortification breeding program.

Results
Variability for Fe, Zn, and PC. The analysis of variance recorded significant (P < 0.01) mean squares 
for Fe, Zn, and PC among the inbred lines. Descriptive statistics revealed the presence of significant variabil-
ity (Fig.  1) with high heritability (> 90%  hbs

2) for three traits studied among 281 GWAS panel of pearl mil-
let (Table 1). The Fe content in grains among inbred lines varied from 32 to 120 mg kg−1 with an average of 
74 mg kg−1 (SEm = 2.72). The Zn content in grains varied from 19 to 87 mg kg−1 with an average of 46 mg kg−1 
(SEm = 1.39), whereas the PC varied from 8 to 16% with an average of 11% (SEm = 3.06). Among the 281 inbred 
lines evaluated, 19%, 15%, and 14% of inbred lines belonging to the seed parents whereas, 24%, 18%, and 20% of 
inbreds belonging to restorer parents recorded higher Fe, and Zn, and PC, respectively in comparison with the 
overall trial mean. Furthermore, significant (P < 0.01) G × E interaction was recorded for all three traits. Pear-
son’s correlation coefficient revealed high significant (r = 0.77, P < 0.01) positive association between Fe and Zn, 
whereas PC recorded significant but moderate positive association with Fe (r = 0.38, P < 0.01) and Zn (r = 0.44, 
P < 0.01) (Supplementary Fig. S1). 

Genome‑wide marker profiling. A total of 87,748 DArT seq markers were generated from the 281 GWAS 
panel representing restorer parents (R-lines), seed parents (B-lines), germplasm progenies and population prog-
enies. The DArT seq markers were subjected to filtering and data quality check. All the SNP loci with > 30% 

Figure 1.  Mean, maximum and minimum for iron (Fe), zinc (Zn) and protein content (PC) among 281 inbred 
lines.
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missing data and rare SNPs with < 10% minor allele frequencies (MAF) were filtered and a total of 58,719 high-
quality SNPs (derived from the DArT seq platform) were considered for further analysis (Fig. 2).

Population structure and linkage disequilibrium. Dissection of the population structure of the asso-
ciation panel using SNP markers revealed a total of six (K = 6) genetic groups at the corresponding least cross 
validation error (CV error) of 0.659 (Fig. 3A). Among the six subgroups, group VI (orange) was the largest that 
consisted of 53 inbreds, followed by group I (blue) with 51, group III (red) with 50, group V (yellow) with 48, 
group IV (green) with 47 and the group II (purple) with 32 inbred lines (Fig. 3B).

The linkage disequilibrium (LD) between each pair of SNPs across each chromosome was evaluated by the 
squared Pearson correlation coefficient  (R2). A set of 58,719 SNPs with identified physical positions were used 
for LD analysis (Fig. 4). The pairwise LD across each chromosome showed that the LD  (R2) ranged from 0 to 1 
with the average LD across the genome being 0.116. Furthermore, chromosome-wise average LD varied in the 
order of 0.151 > 0.138 > 0.129 > 0.118 > 0.107 > 0.087 > 0.081 for chromosomes Pgl03, Pgl07, Pgl04, Pgl06, Pgl02, 
Pgl01, and Pgl05, respectively. The LD for 18,80,476 pairwise combinations obtained from 58,719 marker loci 
across the genome showed that 57% of SNP pairs showed < 0.01  R2, whereas 37% of SNP pairs showed 0.01–0.05 
 R2, and only 6% of SNP pairs showed 0.06–0.1  R2. Linkage disequilibrium-decay (LDD) across seven chromo-
somes was determined using the entire set of 58,719 DArT seq markers. The LDD was plotted as LD  (R2) between 
the adjacent pair of markers on the Y-axis against the distance in base pairs (bp) on the X-axis (Fig. 5). The  R2 
threshold level was set to 0.2 and observed rapid LDD across the pearl millet genome with an average LDD of 
2.9 kb (2900 bp). Among the seven chromosomes, the shortest LDD was observed in chromosome 1 with 0.2 kb 
(200 bp,  R2 = 0.2) and the longest LDD was observed in chromosome 6 with 9 kb (9000 bp,  R2 = 0.2).

Table 1.  Estimates of mean, variance, range and heritability for pooled analysis of phenotypic evaluation of 
281 inbred lines across 2017 rainy and 2018 summer, ICRISAT, Patancheru. CV, coefficient of variation; SEm, 
Standard error of mean; * and **, F-values significant at 0.05, 0.01 probability level.

Trait Fe (mg  kg−1) Zn (mg  kg−1) PC (%)

Mean 74 46 11

Range 32–120 19–87 8–16

Heritability  (hbs
2) (%) 93 90 96

CV % 8.24 9.45 5.65

SE(m) 2.72 1.39 3.06

Genotype variance ( σ 2
G) 2075.60** 545.33** 9.39**

G × E variance ( σ 2
GxE) 166** 55.46** 3.66**

GV > GE 83% 85% 2%

Figure 2.  Chromosome wise distribution of 58,719 DArT-seq markers generated from genotyping by 
sequencing (GBS) of 281 pearl millet inbreds.
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Genome‑wide association study. A genome-wide association mapping was performed using 58,719 
high-quality SNPs with less than 30% missing data having a call rate of more than 0.7. These SNPs covered 
around 301 Mb of pearl millet genome and were distributed across the seven chromosomes of pearl millet with 
a minimum of 6534 SNPs on chromosome 7 to a maximum of 10,942 SNPs on chromosome 2. SNP genotyping 
data of 58, 719 SNPs along with information on population structure and kinship matrix were used for genome-
wide association analysis against Fe, Zn, and PC in grains for the pooled data across the 2017 rainy season and 
2018 summer season. Among two models used for GWAS, the general linear model (GLM) considering only 
population structure (Q) showed high genomic inflation (Fig. 6), whereas the mixed linear model (MLM) which 
considers both population structure and family relatedness (K) showed low genomic inflation and thus helped 
overcome the number of false-positive associations for Fe, Zn, and PC. Therefore, significant marker-trait asso-
ciations (MTAs) finalized based only on MLM are presented here. The threshold level of ‘P’ value was set to 3.0, 
above which the SNPs are said to be significantly associated. A total of 78 MTAs were identified based on their 
‘P’ values. Of the 78 MTAs identified across the three traits, 16 MTAs were identified on chromosome 5 followed 
by 14 MTAs each on chromosome 4 and chromosome 7; 13 MTAs on chromosome 1; 10 MTAs on chromosome 
2; and 3 MTAs on chromosome 3 (Supplementary Table S4 for trait-wise and chromosome-wise MTAs).

Genomic regions identified for grain Fe and Zn content. A total of 61 highly significant MTAs for 
grain micronutrients were identified. Of the 61 MTAs, 18 were identified for Fe (Table 2; Fig. 7) with ‘P’ values 
ranging from 1.79 × 10–5 to 9.83 × 10–4 which explained 5.07 to 8.23% of phenotypic variation (PVE). The 18 
markers that were identified for Fe were distributed across chromosome Pgl01 (1), Pgl02 (4), Pgl04 (7), Pgl05 
(3), Pgl06 (2), and Pgl07 (1). No SNPs were found associated with chromosome Pgl03. Pgl05_135500493 was 
identified with the highest phenotypic variation of 8.23% for Fe with a ‘P’ value of 1.79 × 10–5.

However, a total of 43 significantly associated markers were identified for Zn with ‘P’ values ranging from 
2.24 × 10–5 to 9.78 × 10–4. Furthermore, the phenotypic variation explained by these SNPs ranged from 5.09 to 

Figure 3.  The six sub-populations of 281 pearl millet inbred lines using SNP markers (GBS-generated) in 
ADMIXTURE software according (Alexander et al.73). (A) Best K estimation against CV error. (B) Estimated 
population structure of 281 pearl milletinbreds as revealed by 58,719 SNP markers and K = 6. Blue, purple, red, 
green, yellow and brown color represents group I, II, III, IV, V and VI respectively.
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8.00% for Zn. These 43 markers identified were distributed across chromosomes Pgl01 (5), Pgl02 (1), Pg103 
(3), Pgl04 (6), Pgl05 (12), Pg106 (5) and Pgl07 (11), respectively. Pgl07_101483782 for Zn was identified with 
the highest phenotypic variation of 8.00% with a ‘P’ value of 2.24 × 10–5. A total of four SNPs (Pgl04_64673688, 
Pgl05_135500493, Pgl05_144482656 and Pgl07_101483782) located on three different chromosomes (4, 5 and 
7) were found common among grain Fe and Zn contents (Supplementary Table S2).

Grain protein content (PC). A total 17 MTAs were identified for PC with ‘P’ values ranging from 3.46 × 10–

4 to 9.39 × 10–4, which explained 5.11 to 5.68% of the phenotypic variation. The 17 markers that were identified 
for PC were distributed across chromosomes Pgl01 (7), Pgl02 (5), Pgl04 (1), Pgl05 (1), Pgl06 (1), and Pgl07 (2). 

Figure 4.  Linkage disequilibrium (LD) plot representation across each trait among seven chromosomes. (A) 
LD-plot for all the seven chromosomes. (B) LD-plot for only chromosome Pgl04.

Figure 5.  Linkage disequilibrium decay (LDD) plot across seven chromosomes of pearl millet.
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No SNPs were found associated with chromosome Pgl03. Pgl06_71295563 was identified with the phenotypic 
variation of ~ 6% for PC with a ‘P’ value of 3.46 × 10–4.

Candidate genes associated with grain Fe, Zn, and PC. Pearl millet genome sequencing reported a 
total of 69,398 genes and unraveled the involvement of several genes in the control of both agronomically and 
nutritionally important traits. The physical positions of each SNP marker from the present study were com-
pared against the pearl millet genome sequence to determine the function of the gene underlying the respective 
SNP. A total of 18 SNPs associated with Fe were found linked (Table 2 and Supplementary Table S3) to differ-
ent genes viz., Like-Sm ribonucleoprotein (LSM) domain, late embryogenesis abundant protein, zinc finger, 
ankyrin repeat, leucine-rich repeat, pentatricopeptide repeat, oligopeptide transferase, and basic leucine zipper 
which were found to play a significant role in plant metabolism, including iron homeostasis. Similarly, the SNPs 
associated with the genes viz., protein kinase, Myb transcription factor, glycosyl transferase, chalcone/stilbene 
synthase, heat shock protein (HSP70), peptidase, copper domain, male sterility, etc., were found to be unique to 
Zn while protein binding, lipid binding, protein kinase activity, and iron ion binding genes were found associ-
ated with SNPs identified for PC.

Discussion
Developing biofortified hybrids in pearl millet requires high Fe and Zn content in both the parents since it’s 
governed by additive  gene25. It is highly feasible to develop biofortified inbred lines through inbreeding which 
accumulates more of additive variances in subsequent generations. The strong epigenetic influence on these traits 
expression and sample contamination during handling of breeding materials is a challenge for biofortification in 
pearl  millet26,27. The process of identifying molecular markers, preferably SNPs tightly linked to genomic regions 
of Fe, Zn and PC, will enhance the efficiency of biofortification using genomics assisted breeding. Recently, 
several genomic regions controlling the inheritance of Fe and Zn have been identified through QTL  mapping28 
using DArT and SSR markers and also through LD-based association  mapping29 by SSR markers in pearl mil-
let. Though SSRs are preferred markers, their resolution is relatively  low17. None of the previous studies have 
reached the gene level; therefore, the present study aimed to dissect the genetic nature of Fe, Zn and PC in pearl 
millet using GWAS by exploiting the DArT seq markers to discover the genomic regions and candidate genes 
influencing Fe, Zn and PC.

Grain Fe and Zn content are strongly influenced by the available Fe and Zn content in the soil. The avail-
able soil Fe and Zn content in our experimental field was above the critical levels (2.6 to 4.5 mg kg–1 Fe and 0.6 
to 1.0 mg kg–1 Zn) required for normal growth and  development30,31. Three to fourfold significant variations 
for Fe (32–120 mg kg−1), Zn (19–87 mg kg−1) and twofold variation for PC (8–16%) in 281 elite inbred lines 
prospects the breeding feasibility (Supplementary Table S5). Similar variability for Fe/Zn has been reported 
among  germplasm32, breeding  lines15, and commercial  cultivars33. High genetic variance for Fe/Zn indicates 
the least influence of G × E. Population structure along with shared co-ancestry coefficients between individuals 
of subdivisions of a population were estimated using ADMIXTURE 1.2373. A total of six genetic groups were 

Figure 6.  Quantile–Quantile (Q–Q) plots showing inflation of estimated − log10 (P) values versus observed for 
iron (Fe), zinc (Zn) and protein content (PC). (A) Q-Q plot for mixed linear model (MLM) and (B) Q–Q plot 
for general linear model (GLM).
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Trait Marker ID Chromosome Locus position −Log10 P P R2/PVE Gene annotation

Fe Pgl01_157344213 Pgl01 157,344,213 3.12 7.58E−04 5.27 Like-Sm ribonucleoprotein (LSM)

Fe Pgl02_8191 Pgl02 8191 3.26 5.44E–04 5.59 bZIP-1

Fe Pgl02_64976379 Pgl02 64,976,379 3.27 5.39E–04 5.52 DNA-binding domain, Ankyrin 
repeat-containing domain

Fe Pgl02_69249845 Pgl02 69,249,845 3.3 4.97E–04 5.59 Late embryogenesis abundant pro-
tein, LEA-25

Fe Pgl02_233052877 Pgl02 233,052,877 3.05 8.85E–04 5.15 Leucine-rich repeat

Fe Pgl04_190105720 Pgl04 190,105,720 3.14 7.25E–04 5.37 Zinc finger

Fe Pgl04_15506741 Pgl04 15,506,741 3.01 9.83E–04 5.07 –

Fe Pgl04_17259669 Pgl04 17,259,669 3.54 2.86E–04 6 –

Fe Pgl04_23381732 Pgl04 23,381,732 3.14 7.27E–04 5.37 Ubiquitin-conjugating enzyme

Fe Pgl04_32057582 Pgl04 32,057,582 3.15 7.16E–04 5.38 –

Fe Pgl04_32617883 Pgl04 32,617,883 3.18 6.60E–04 5.37 Domain of unknown function

Fe Pgl04_64673688 Pgl04 64,673,688 3.6 2.53E–04 6.1 –

Fe Pgl05_107148808 Pgl05 107,148,808 3.53 2.93E–04 6.06 Cytochrome P450

Fe Pgl05_135500493 Pgl05 135,500,493 4.75 1.79E–05 8.23 –

Fe Pgl05_144482656 Pgl05 144,482,656 4.04 9.03E–05 6.88 –

Fe Pgl06_21219367 Pgl06 21,219,367 3.31 4.87E–04 5.68 Oligopeptide transporter

Fe Pgl06_145237122 Pgl06 145,237,122 3.04 9.16E–04 5.19 –

Fe Pgl07_101483782 Pgl07 101,483,782 3.49 3.22E–04 5.91 Pentatricopeptide repeat

Zn Pgl01_568786 Pgl01 568,786 3 9.93E–04 5.09 Heat shock protein Hsp70

Zn Pgl01_51414126 Pgl01 51,414,126 3.38 4.14E–04 5.72 Protein kinase, catalytic domain, 
Leucine-rich repeat

Zn Pgl01_172878523 Pgl01 172,878,523 3.02 9.52E–04 5.1 –

Zn Pgl01_177992632 Pgl01 177,992,632 3.2 6.37E–04 5.43 Protein kinase, catalytic domain

Zn Pgl01_218681895 Pgl01 218,681,895 3.44 3.65E–04 5.82 Peptidase S16

Zn Pgl02_69256531 Pgl02 69,256,531 3.51 3.08E–04 5.95 Myb transcription factor

Zn Pgl03_180499360 Pgl03 180,499,360 3.06 8.80E–04 5.15 –

Zn Pgl03_4732348 Pgl03 4,732,348 3.31 4.95E–04 5.62 –

Zn Pgl03_13329915 Pgl03 13,329,915 3.61 2.44E–04 6.12 –

Zn Pgl04_1518626 Pgl04 1,518,626 3.2 6.38E–04 5.4 Disease resistance protein

Zn Pgl04_9044259 Pgl04 9,044,259 3.01 9.71E–04 5.11 –

Zn Pgl04_9059217 Pgl04 9,059,217 3.12 7.61E–04 5.3 –

Zn Pgl04_64429980 Pgl04 64,429,980 3.04 9.02E–04 5.14 BTB/POZ-like

Zn Pgl04_64673688 Pgl04 64,673,688 3.37 4.23E–04 5.71 –

Zn Pgl04_74518920 Pgl04 74,518,920 3.45 3.52E–04 5.88 MATH

Zn Pgl05_85608777 Pgl05 85,608,777 3.3 5.04E–04 5.57 Glycosyl transferase

Zn Pgl05_91509511 Pgl05 91,509,511 3.06 8.71E–04 5.19 Oligopeptide transporter|

Zn Pgl05_92617645 Pgl05 92,617,645 3.34 4.62E–04 5.68 –

Zn Pgl05_92926570 Pgl05 92,926,570 3.57 2.71E–04 6.04 Protein of unknown function 
DUF2045

Zn Pgl05_98096070 Pgl05 98,096,070 3.13 7.40E–04 5.32 Domain of unknown function 
DUF828

Zn Pgl05_104608199 Pgl05 104,608,199 3.2 6.35E–04 5.43 Domain of unknown function 
DUF1618

Zn Pgl05_135500493 Pgl05 135,500,493 3.76 1.72E–04 6.43 Glycosyl transferase, family 1

Zn Pgl05_143124835 Pgl05 143,124,835 3.76 1.75E–04 6.41 C-5 cytosine methyltransferase

Zn Pgl05_143702980 Pgl05 143,702,980 3.1 7.91E–04 5.23 Mini-chromosome maintenance, 
DNA-dependent ATPase

Zn Pgl05_143706557 Pgl05 143,706,557 3.53 2.93E–04 5.98 Mini-chromosome maintenance, 
DNA-dependent ATPase

Zn Pgl05_144482656 Pgl05 144,482,656 3.05 8.82E–04 5.18 –

Zn Pgl05_148964458 Pgl05 148,964,458 3.21 6.15E–04 5.42 Ribosomal protein L10/acidic P0

Zn Pgl06_223926259 Pgl06 223,926,259 3.01 9.83E–04 5.1 –

Zn Pgl06_231796045 Pgl06 231,796,045 3.2 6.28E–04 5.44 SANT/Myb domain

Zn Pgl06_18558795 Pgl06 18,558,795 3.48 3.29E–04 5.93 RNA methyltransferase, RsmD

Zn Pgl06_36628895 Pgl06 36,628,895 3.82 1.50E–04 6.53 –

Zn Pgl06_54978917 Pgl06 54,978,917 3 9.98E–04 5.09 Resolvase, holliday junction-type, 
YqgF-like

Continued
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formed among 281 inbred lines with some admixtures indicating common allelic combinations in the genomic 
background of few genotypes. The availability of six subgroups and wide phenotypic variation observed for Fe, 
Zn, and PC indicated that the present GWAS panel is best suited for genome-wide association study to dissect 
the genetic basis of high Fe, Zn accumulation, and PC in pearl millet.

LD is the non-random association of alleles at two or more loci and acts as a critical genetic force in deter-
mining population  structure34,35. The LD of a population is the result of evolutionary changes in a population 
that would help in mapping quantitative traits such as Fe, Zn and PC more precisely while it also gives insights 
into the joint evolution of the linked sets of genes. The pattern of LD across the genome ultimately decides the 
success of association  studies36,37. In the present study, the average pairwise LD  (R2) across the genome decreased 
rapidly against the increasing distance (bp). Rapid LDD has been reported in earlier studies in pearl  millet2,38. 
Chromosomes Pgl01, Pgl02, Pgl03, Pgl05, and Pgl07 showed relatively more rapid LDD (~ 0.64 kb) compared 
to Pgl04 and Pgl06, suggesting that a larger number of markers are required for chromosomes Pgl01, Pgl02, 
Pgl03, Pgl05, and Pgl07 for GWAS. The gene-rich genomic region tends to have a higher rate of recombination. 
Thus the LDD would be higher in such genomic regions, requiring a higher marker density for LD analysis in 
such regions. Of 18,80,476 pairwise LD analysis, 57% of the SNP pairs showed an LD of less than 0.01  (R2 = 1%), 
indicating that the LD in the current GWAS panel is relatively low. This could probably be because pearl millet is 
a highly cross-pollinated (> 80%) species, wherein some portion of the genome is bound to have heterozygosity 
(not every locus is heterozygous) as genetic load by the inbreeding  process39. The low LD is also due to frequent 
recombination and higher inbreeding depression by virtue of being a cross-pollinated crop. The low value of LD 
in turn gives the high resolution of mapping but requires a large number of  markers40.

While performing GWAS, care should be taken to avoid false associations arising from false positives (Type 
I error). In the present study, two extensively used statistical models,  GLM41 and  MLM42,43, were used for the 
MTA. The MLM model is more efficient and superior in reducing false positive associations by correcting for 
both population structure (Q) and kinship matrix (K) which can be further visualized through Quantile–Quantile 
(Q–Q) plots to show low genomic inflation for MLM compared to GLM (Fig. 6). However, sometimes MLM 
tends to overcompensate for both population structure and kinship, which could lead to false negatives, type II 

Trait Marker ID Chromosome Locus position −Log10 P P R2/PVE Gene annotation

Zn Pgl07_9399240 Pgl07 9,399,240 3.24 5.69E–04 5.52 GRAM

Zn Pgl07_19060446 Pgl07 19,060,446 3.91 1.23E–04 6.69 Blue (type 1) copper domain

Zn Pgl07_19133990 Pgl07 19,133,990 3.09 8.12E–04 5.21 Peptidase S8/S53, subtilisin/kexin/
sedolisin

Zn Pgl07_20613468 Pgl07 20,613,468 3.47 3.40E–04 5.91 –

Zn Pgl07_35376984 Pgl07 35,376,984 3.1 8.03E–04 5.26 Male sterility, NAD-binding

Zn Pgl07_101483782 Pgl07 101,483,782 4.65 2.24E–05 8 Pentatricopeptide repeat

Zn Pgl07_101483780 Pgl07 101,483,780 4.55 2.85E–05 7.76 Pentatricopeptide repeat

Zn Pgl07_101517680 Pgl07 101,517,680 3.2 6.33E–04 5.4 Chalcone/stilbene synthase, 
C-terminal

Zn Pgl07_125865145 Pgl07 125,865,145 3.34 4.57E–04 5.68 Disease resistance protein

Zn Pgl07_147179490 Pgl07 147,179,490 4.43 3.70E–05 7.56 –

Zn Pgl07_151365061 Pgl07 151,365,061 3.39 4.10E–04 5.77 –

PC Pgl01_44640725 Pgl01 44,640,725 3.31 4.88E–04 5.6 –

PC Pgl01_44640726 Pgl01 44,640,726 3.17 6.77E–04 5.35 von Willebrand factor, type A

PC Pgl01_177992633 Pgl01 177,992,633 3.13 7.39E–04 5.29 Homeodomain

PC Pgl01_177992634 Pgl01 177,992,634 3.09 8.16E–04 5.21 Protein kinase, catalytic domain

PC Pgl01_250761833 Pgl01 250,761,833 3.04 9.04E–04 5.13 Protein kinase, catalytic domain

PC Pgl01_266542617 Pgl01 266,542,617 3.24 5.80E–04 5.47 –

PC Pgl01_266542615 Pgl01 266,542,615 3.23 5.87E–04 5.46 von Willebrand factor, type A

PC Pgl02_28323518 Pgl02 28,323,518 3.13 7.35E–04 5.29 –

PC Pgl02_182371002 Pgl02 182,371,002 3.42 3.77E–04 5.79 –

PC Pgl02_225493497 Pgl02 225,493,497 3.37 4.24E–04 5.7 –

PC Pgl02_225493495 Pgl02 225,493,495 3.41 3.92E–04 5.76 –

PC Pgl02_241839676 Pgl02 241,839,676 3.07 8.43E–04 5.19 Cytochrome P450

PC Pgl04_32176024 Pgl04 32,176,024 3.08 8.26E–04 5.2 Protein kinase, catalytic domain

PC Pgl05_156574366 Pgl05 156,574,366 3.28 5.21E–04 5.55 –

PC Pgl06_71295563 Pgl06 71,295,563 3.46 3.46E–04 5.86 –

PC Pgl07_124769335 Pgl07 124,769,335 3.03 9.39E–04 5.11 –

PC Pgl07_124769336 Pgl07 124,769,336 3.03 9.39E–04 5.11 Domain of unknown function 
DUF547

Table 2.  Marker trait associations (MTAs) or SNPs identified for the iron (Fe), zinc (Zn) and protein content 
(PC) using mixed linear model (MLM) with annotations of corresponding gene.
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 errors44,45. This means that the identification of some MTAs depends on the model  used46. Therefore, the present 
study used both GLM and MLM and found that > 70% of SNPs from MLM were common in GLM, with some 
additional markers that were absent in GLM. Therefore, the results obtained from the MLM model are presented. 
None of the MTAs met the Bonferroni criteria because of the utilization of 0.058 Million markers generated 
through the GBS method. The Bonferroni correction would be too stringent to use as not all the markers are 
 independent47 and may lead to false  negatives48,49.

Among the significantly associated SNPs for Fe, marker Pgl05_135500493 on chromosome Pgl05 
explained the highest phenotypic variation (8.23%). For Zn, markers Pgl07_101483782, Pgl07_101483780, 
and Pgl07_147179490 exhibited more than 7.5% of phenotypic variation. However, the SNPs identified for PC 
explained the relatively lower phenotypic variation, wherein the highest phenotypic variation was explained by 
the SNP Pgl07_71295563 on chromosome Pgl07 (~ 6%). Interestingly, there were four SNPs discovered to be 
common for both Fe and Zn content on chromosomes Pgl04, Pgl05, and Pgl07 that cumulatively explain about 
27.12% and 25.32% of phenotypic variation for Fe and Zn, respectively. The co-localization of both Fe and Zn 
and highly significant positive correlation between them further suggested some common genes and pathways 
involved in Fe and Zn homeostasis in plants i.e., from root absorption to till deposition in grains. A common 
set of markers for Fe and Zn has been reported in pearl  millet29 on LG 3, LG 5, and LG 7. QTLs responsible for 
Fe and Zn have been co-mapped on LG 1 and LG  728; these probably indicate that chromosome Pgl05 and Pgl07 
are likely to control Fe and Zn transport and accumulation in pearl millet. Though no common MTAs were 
identified for PC with Fe and Zn, the positive significant correlation of PC with both Fe and Zn suggested that 
the selection for high Fe/Zn expected to increase PC as an associated trait.

Figure 7.  Manhattan plot from the Q + K (MLM) model for Fe, Zn, and PC plotted against individual SNPs 
across all chromosomes on the X-axis and − log10 P value of each SNP on the Y-axis. The different colors 
indicate the 7 chromosomes of pearl millet (Pgl01, Pgl02, Pgl03, Pgl04, Pgl05, Pgl06, and Pgl07). The pink 
dotted horizontal line shows the multiple testing threshold − log10 P value of 3 for the present GWAS panel.
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To know the conformity of the identified MTAs in this study, they were compared to previous genetic map-
ping studies for Fe and Zn in pearl millet. SNPs were identified for Fe and Zn in this study were concomitant to 
reported studies in pearl millet (Table 3). For instance, Anuradha et al.29 reported that Fe was highly influenced 
by the genes on chromosomes Pgl05 and Pgl07, whereas Kumar et al.28 identified genomic regions for Zn on 
chromosomes Pgl01 and Pgl04 in pearl millet. Zn content was also influenced by the SNPs on chromosome 
Pgl03, Pgl04, Pgl05, Pgl06 and Pgl07. Similar results were reported earlier by Anuradha et al.29 while Kumar 
et al.28 reported genomic regions on LG 1, 4, 5, and 7. This evidence suggests that the SNPs identified on chro-
mosomes were consistent with the previously reported markers which might have a significant role to play in 
the expression of Fe and Zn content. This calls for fine mapping of these genomic regions that would ultimately 
provide candidate SNPs for use in marker-assisted breeding to improve grain Fe and Zn. Apart from pearl mil-
let, genomic regions were also discovered for grain Fe and Zn content in other millets and cereals such as  rice22, 
foxtail  millet50,  maize21,  wheat23, through genome-wide association mapping. Genetic mapping studies have 
discovered genomic regions for grain Fe and Zn content in  sorghum51,  maize52, and  wheat53. Hence different 
genomic regions in this study can be introgressed for trait improvement in pearl millet based on the targeted 
environment, depending on common MTAs. This is the first report on the discovery of genomic regions using 
GWAS for PC in pearl millet. The findings will generate research interest to further investigate the regulation 
of grain PC in pearl millet. A total of 17 MTAs were identified on six chromosomes (Pgl01, Pgl02, Pgl04, Pgl05, 
Pgl06 and Pgl07) of pearl millet, among which Pgl06_71295563 showed the highest phenotypic variation of 
5.86% with a ‘P’ value of 3.46 × 104. Similar genomic regions have been reported for PC in previous studies in 
 maize54,  rice55,56, and  wheat57.

Gene annotation was performed by comparing the sequence reads of significantly associated SNPs at their 
respective physical positions against the reference genome of pearl millet. The genes identified in the present 
study and their functional roles in Fe and Zn metabolism in plants reported through previous studies are pre-
sented in Table 4. There were several genes identified, among which very few were involved in Fe transportation, 
accumulation, and homeostasis. The SNP Pgl07_147858723 corresponding to glutathione S-transferase plays 
a significant role in iron starvation in roots. In the roots of hexaploid wheat, a significant temporal increase in 
glutathione S-transferase was observed at both transcriptional and enzymatic activity levels, which established 
the foundation for designing breeding strategies to improve Fe nutrition in pearl millet. The SNP Pgl02_69256531 
and Pgl06_231796045 were found in the region of the MYB-domain. Palmer et al.58 observed that the MYB-
domain plays a significant role in plant survival under Fe deficiency conditions, and is the most highly induced 
transcription factor which acted early in the Fe deficiency regulatory cascade to drive gene expression of NAS4. 
Shen et al.59 isolated MYB gene MxMYB1 from Malus xiaojinensis. The expression of MxMYB1 was up-regulated 
by Fe starvation in the roots but not in the leaves, signifying that MxMYB1 likely to play more in iron absorption 
from soil to roots and not likely from root to leaves. The SNP Pgl04_190105720 corresponding to the Zinc finger 
plays a crucial role in preventing toxic ion damage and hence performs an important role in maintaining cellular 
osmotic adjustment and enzyme activities, leading to significantly improved salt stress  tolerance60.

The significant phenotypic variability observed in the association panel coupled with high marker density 
across all chromosomes provided a strong case for whole-genome association mapping of the three (Fe, Zn, 
and PC) important nutritional traits in pearl millet. This GWAS study which identified marker-trait associa-
tions for Fe, Zn, and PC using the genotyping-by-sequencing platform presents greater prospects for utilization 
and traits mainstreaming. Rapid LDD observed in the current GWAS panel indicates that the SNPs identified 
through genome-wide association mapping are more reliable and complement previously reported QTLs in 
pearl millet. Pgl05_135500493 and Pgl05_144482656 SNPs for Fe; Pgl07_101483782, Pgl07_101483780 and 
Pgl07_147179490 SNPs for Zn, and Pgl06_71295563 SNPs for PC were found promising. Significant phenotypic 
correlations between Fe and Zn support simultaneous selection and improvement. This linkage and the identi-
fied co-localized MTA suggest there is a common physiological pathway. These MTAs help to move towards fine 
mapping and discovering a set of diagnostic markers to screen segregating population  (F2/F3s) in order to avoid 
expensive phenotyping and G × E effects in future. Eight MTAs that were identified for Fe and Zn were found to 
be involved in Fe mobilization. Thus, the promising MTAs identified in the present study merit further valida-
tion in different genetic backgrounds of breeding lines and populations. Eleven inbred lines had ≥ 80 mg kg−1 of 

Table 3.  QTLs reported from earlier studies for iron (Fe), zinc (Zn) in pearl millet and co-localized associated 
marker trait associations (MTAs) identified the same genomic region in present study.

SN Genetic mapping Trait Linkage group (LG)/chromosome MTAs on respective chromosomes from current study Author

1 Association mapping Fe LG3, LG5, LG7 Pgl05_144482656, Pgl05_144482654, Pgl05_148774199, Pgl05_148774200, 
Pgl07_101483782 Anuradha et al.29

2 QTL-map Fe LG 1,3,7 Pgl01_157344213, Pgl01_157344211 Kuamar et al.28

3 Association mapping Zn LG3, LG4, LG5, LG6,LG7

Pgl03_180499360, Pgl03_251188374, Pgl03_13329915, Pgl04_1518626,
Pgl04_64429980, Pgl04_64673688, Pgl05_85608777, Pgl05_92617645, 
Pgl05_92926570, Pgl05_135474055, Pgl05_135500493, Pgl05_143124835,, 
Pgl05_143702980, Pgl05_143706557, Pgl05_144482656, Pgl05_148964458, 
Pgl06_12389662, Pgl06_36628894, Pgl06_119701975, Pgl07_19133990, 
Pgl07_20613468, Pgl07_101483780, Pgl07_101517680, Pgl07_147179490, 
Pgl07_151365061

Anuradha et al.29

4 QTL-map Zn LG 1,4,5,7 Pgl01_51414126, Pgl01_97166555, Pgl01_172878523, Pgl01_218681896, 
Pgl01_218681895, Pgl01_256038591, Pgl01_260361246 Kumar et al.28
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Fe, > 60 mg kg−1 Zn, and > 13% of PC that meet global targets and will serve as trait sources in elite backgrounds. 
Such lines will be easily converted into CMS (maintainers) to make hybrids with high-Fe/Zn/PC restorers for 
fast-track product development. The inbred panel studied that is part of hybrid parents at ICRISAT. This will 
enhance the introgression of these traits to develop high-yielding hybrids through marker-assisted back-crossing 
(MABC) in India where hybrid cultivars are dominant, while in Sub-Saharan Africa where open-pollinated 
varieties (OPVs) are predominant, it will be done through marker-assisted recurrent selection (MARS) and 
marker-assisted population improvement (MAPI).

Materials and methods
Plant material. The GWAS panel comprised of 281 inbred lines developed at ICRISAT, Hyderabad, India, 
differing in grain Fe and Zn as well as agronomic traits such as flowering, plant height, tillering, panicle size, 
1000-grain weight, and grain yield. The inbred lines included 112 restorer parents (R-lines), 110 seed parents 
(B-lines), 32 advanced progenies derived from breeding population/composites, and 27 direct derivatives of 
germplasm accessions (Supplementary Table S1).

Field trials and agronomic practices. The trials were planted in alpha lattice experimental design with 
three replications in two contrasting environments, rainy season 2017 and summer season 2018 at ICRISAT, 
Hyderabad (17.53° N; 78.27°E). Each replication comprised of 20 incomplete blocks with 10 entries in each 
block, and every entry planted in two rows of 2 m length. Sowing was done by tractor-mounted 4-cone planter 
(7100 US model) with a spacing of 75 cm between rows during the rainy season 2017 and 60 cm in the summer 
season 2018. Overplanted plots were thinned 15 days after sowing to single plants spaced 15 cm apart within 
each row. A basal dose of 100 kg ha−1 of diammonium phosphate (18% N and 46% P) was applied at the time of 
field preparation and 100 kg ha−1 of urea (46% N) was applied as top dressing within 2 to 4 days of thinning. The 
trial was irrigated at 7–10 days intervals during the summer season 2018 and as required during the rainy season 
2017 to avoid moisture stress. All the recommended agronomic practices were followed for good and healthy 
crop growth. Observations were recorded for five random plants per plot in each replication for Fe, Zn, and PC.

Estimation of grain iron and zinc content. For grain sampling, open-pollinated main panicles from 
five representative plants per plot were harvested at physiological maturity (85–90 days after planting). These 
panicles were stored separately in a cloth bag and sundried for 10 to 15 days, and then hand threshed to produce 
clean grain samples for micronutrient analysis (Fe and Zn). Utmost care was taken to avoid contact with iron 
equipment while threshing and handling of threshed samples. Grain Fe and Zn content were analyzed using 
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) at Flinders University, Australia, fol-
lowing the method described by Wheal et al.61. Grain samples were finely ground and oven-dried at 60 °C for 
48 h before analyzing them for Fe and Zn. A ground sample of 0.2 g was transferred into 25 ml polyprophelene 
PPT tubes with 2.0 ml of concentrated nitric acid  (HNO3) and 0.5 ml of 30% hydrogen peroxide  (H202). These 
samples were wetted and predigested overnight at room temperature. Samples were placed in the digestion block 
and heated at 80 °C for 1 h, followed by digestion at 120 °C for 2 h. After digestion, each sample digest was turned 
into 25 ml using distilled water. The digests were filtered using Whatman no.1 filter paper and the filtrate was 
used to estimate Fe and Zn content using ICP-OES.

Estimation of grain protein content. Grain protein content was analyzed using Near-Infrared Spectros-
copy (NIRS) at ICRISAT. The quantified grain  protein62 content was measured in percentage. The grain samples 
collected were cleaned thoroughly and about two to three grams of whole grain samples were poured in a small 
cup. The cup was then placed in the NIRS machine and the sample was run for a minute. The readings were then 
noted.

Estimation of Fe and Zn content from the soil. The soil samples collected from the top 30 cm layer 
in the field were analyzed for extractable Fe and Zn content by Atomic Absorption Spectroscopy (AAS)63. The 
mean soil Fe and Zn content extractable with Diethylene Triamine Pentaacetic Acid (DTPA) were 3.8 mg kg−1 
and 2.0 mg kg−1 during the rainy season 2017 and 5.0 mg kg−1 and 1.6 mg kg−1 during the summer season 2018, 
respectively.

Table 4.  List of trait wise marker trait associations (MTAs) annotated in the present study and their respective 
role in iron (Fe) metabolism reported earlier in other crops.

Trait Marker Position Annotations Function reported earlier Crop References

Fe Pgl02_69249845 69,249,845
IPR005513; Late embryogenesis 
abundant protein, LEA-25/
LEA-D113

Transport of Fe in Phloem Castor bean (Ricinus communis) Kruger et al.80

Fe Pgl07_101483782 101,483,782 IPR002885; Pentatricopeptide 
repeat Fe homeostasis Higher plants (Schizosccharomy-

ces pombe) Su et al.81

Zn Pgl02_69256531 69,256,531
IPR001005; SANT/Myb 
domain|IPR015495; Myb tran-
scription factor|IPR017930; Myb 
domain, DNA-binding

Iron uptake and homeostasis Arabidopsis (Arabidopsis 
thaliana) Chen et al.82, Palmer et al.58

Iron root nutrition Malus xiaojinensis Shen et al.59
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DNA extraction and genotyping using DArT seq. Genomic DNA was isolated from tender leaf tis-
sues of 30 day-old  seedlings64. The quality and quantity of the extracted DNA were checked on 0.8% agarose 
gel using gel electrophoresis at 80 V using λ-DNA standards. The DNA was subsequently diluted to a volume 
50 μl of concentration 50 ng/μl. The samples were then sent to the Diversity Arrays Technology (DArT) Pty Ltd, 
 Australia65 for genotyping using DArT markers. The DArT seq assay, an efficient genotyping-by-sequencing 
platform was employed in the present study. In brief, the DNA samples were digested and ligated primarily with 
two different adaptors accompanying to overhang by two different restriction  enzymes66. The Illumina flow cell 
attachment sequence, sequencing primer sequence, and varying length barcode regions were included while 
designing the PstI-compatible adapter. The PstI-MseI fragments were amplified for 30 Polymerase Chain Reac-
tion (PCR) cycles using the following reaction conditions: 94 °C for 1 min, followed by 29 cycles of 94 °C for 20 s 
(s), ramp 2.4 °C/s to 58 °C, 58 °C for 30 s, ramp 2.4 °C/s to 72 °C, 72 °C for 45 s. Amplicons were held at 72 °C for 
7 min and then at 10 °C. All PCR amplicons from the 96-well were multiplexed in equimolar amount and kept to 
c-Bot (Illumina) bridge PCR after that sequenced on Illumina Hiseq2000. Single lane sequencing was followed 
for all the amplicons; the single read sequencing was run for 77 cycles. All the generated sequences from each 
lane were subjected to proprietary DArT analytical pipelines. Poor-quality sequences were filtered out from the 
FASTQ files in the primary pipeline. In the barcode region, more stringent selection criteria (≥ Phred pass score 
of 30) were employed in comparison with the rest of the sequence. The sequence assignments are authenticated 
to specific samples. In marker aligning, about 2,000,000 identified sequences per barcode/sample were used. 
Finally, identical sequences were broken into FASTQ call files. In the secondary proprietary pipeline of DArT 
P/L, the FASTQ call files were used to detect presence/absence markers (PAM) through SNP calling algorithms 
(DArTsoftseq)67,68.

SNP filtering and quality control. Whole-genome genotyping data of 87,748 DArT seq markers on 281 
pearl millet inbreds was generated using DArT genotyping platform. DArT seq SNP-derived markers were fur-
ther filtered to remove SNPs of low quality with > 30% missing data and rare SNPs with < 10% MAF using TAS-
SEL v 5.3.1 (Trait Analysis by Association Evolution and Linkage).

Phenotypic data analysis. The analyses of variance was performed over the rainy season 2017 and sum-
mer season 2018 using generalized linear model procedures following a random-effects  model69,70 in SAS Uni-
versity Edition (SAS/STAT, SAS Institute Inc, NC, USA)71.  Heritability72 was determined using the following 
formula:

where σ2g is the genotypic variance, σ2gs is the genotype × season interaction variance, and σ2e is the residual vari-
ance; ‘r’ is the number of replications, and ‘s’ is the number of seasons. Mean and coefficient of variation (CV) 
were also determined using the standard procedure implemented in the SAS University Edition. Pearson’s correla-
tion coefficients among the traits were calculated using the PROC CORR procedure in R version 3.5.1 (R Project 
for Statistical Computing, (https ://www.r-proje ct.org). The standard error of the mean (SEm) was determined 
in a simple excel program using the following formula:

where ‘MSS’ is the Mean sum of square and ‘n’ is the number of samples.

Population structure, kinship and genome‑wide linkage disequilibrium. Population structure 
was determined using ADMIXTURE 1.23  software73. The number of genetic clusters (K) was predefined as 1 
to 10 to explore the population structure of the tested accessions. This analysis provided maximum likelihood 
estimates of the proportion of each sample derived from each of the K populations. The optimum K value was 
selected based on the graph plotted using the respective K value from 1 to10 against cross-validation error 
(CV-error). The optimal number of sub-population (K) was determined with the lowest cross-validation error. 
Genetic relatedness or K matrix was generated from TASSEL V 5.3.1.74. LD was quantified as adjacent pairwise 
 R2 values (the squared allele frequency correlations among alleles at two adjacent SNP markers)75 and was esti-
mated for 58,719 SNPs in TASSEL V 5.3.1.

Genome‑wide association analysis. Marker trait association was performed using two different models, 
GLM and MLM, as given  below76:

where, ‘y’ is phenotype vector, ‘a’ is a marker vector with fixed effects, ‘b’ is a vector with fixed effects, ‘u’ is a vector 
with random effects (kinship matrix), ‘e’ is a residuals vector, X denotes the accessions/genotypes at the marker, 
‘Q’ is the Q-matrix, the result of ADMIXTURE software, and ‘Z’ is an identity matrix.
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https://www.r-project.org
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The GLM principally considers the population structure (Q) while MLM considers both Q and Kinship (K). 
Further, among the different options available within MLM, the widely adapted approach called ‘optimum levels 
of compression in combination with P3D’ for variance component estimation was used for association analysis. 
For the MLM analysis, marker-based kinship matrix (K) obtained using TASSEL was used along with the Q 
matrix generated through ADMIXTURE to correct for both family and population structure and the phenotypic 
variation explained  (R2) by the marker is  reported74,77. Quantile–Quantile (Q-Q) plots were developed by plotting 
observed negative  Log10 ‘P’ values against expected negative  Log10 ‘P’ values for all the available SNPs in R pack-
age  CMplot78. A deviation from ‘P’ values at the initial stage may display the existing population stratification. 
Manhattan plots were used to visualize chromosome-wise SNPs obtained through the marker-trait association 
study performed across the genome. -Log10 of the ‘P’ value for each SNP was plotted against seven chromosomes 
for the respective trait. Based on the SNP distribution, the threshold for significance of associations between 
SNPs and traits was fixed at [− log 10 (p) < 10−03] which gave the optimum number of reliable SNPs. SNP density 
plots, Q-Q plots, and Manhattan plots were generated using R package CMplot v 3.4.078.

The corresponding genes of associated SNPs or marker-trait associations were identified by using the physi-
cal positions of SNPs in gene annotations available in the pearl millet reference genome  sequence2; and thus the 
functions of the respective SNPs were determined.

Candidate genes discovery. The candidate genes corresponding to the significantly associated SNPs were 
identified using the pearl millet  genome2 sequence annotations. The SNP subsiding start and end positions of a 
gene or exons were explored for candidate genes based on their biological function annotation related to the trait 
of interest (Supplementary Fig. S2). It is possible to obtain multiple SNPs on a gene segment which are referred 
to as  haplotypes79.
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