Research papers

Building climate resilience in degraded agricultural landscapes through water management: A case study of Bundelkhand region, Central India

ICRISAT Development Center, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 502 324 Hyderabad, Telangana, India

Indian Council of Agricultural Research-Central Agroforestry Research Institute, Jhansi (ICAR-CAFRI), Uttar Pradesh, India

Swedish University of Agricultural Sciences, Uppsala, Sweden

Former Research Program Director-Asia, ICRISAT, India

International Center for Research in Agroforestry (ICRAF), New Delhi, India

ARTICLE INFO

This manuscript was handled by Emmanouil Anagnostou, Editor-in-Chief

Keywords:

Rainfall variability and water scarcity continue to hamper the food and income security of smallholder farming systems in poverty-affected regions. Innovations in soil and water management, especially in the drylands, are critical for meeting food security and water productivity targets of Agenda 2030. This study analyzes how rainfed agriculture can be intensified with marginal impact on the landscape water balance. The impact of rainwater harvesting structures on landscape hydrology and associated agricultural services was analyzed in the semi-arid Jhansi district of Bundelkhand region in central India. The Parasai-Sindh pilot watershed was subjected to a 5-year (2012–2016) monitoring of rainfed system improvements in water availability and crop intensification due to surface water storage (haveli system), check dams, and field infiltration structures. Hydrological processes were monitored intensively to analyze the landscape's water balance components. Rainwater harvesting (RWH) structures altered the landscape's hydrology, limiting average surface runoff from 250 mm/year to 150 mm/year over the study period. Groundwater levels increased by 2–5 m, alleviating water scarcity issues of the communities in recurring dry years. Nearly 20% of fallow lands were brought under cultivation. Crop yields increased by 10–70% and average household income increased from US$ 960/year to US$ 2700/year compared to that in the non-intervention landscape. The combined soil–water–vegetation efforts strengthened water resilience and environmental systems in agricultural landscape.

1. Introduction

Increasing population pressure, change in food habits, and expanding urbanization are driving the increase in demand for freshwater globally (De Fraiture and Wichelns, 2010; Gerten and Heinke, 2011; Wiltshire et al., 2013; Davis et al., 2017). There is increasing competition among different anthropogenic sectors such as domestic, agriculture, industries and also for the biosphere (Garg et al., 2012; Molle and Berckoff, 2006; Niu et al., 2019). This led to increasing stress among different sectors/stakeholders for their share on the available water resources (Al-Saidi, 2017; Punjabi and Johnson, 2019). Mekonnen and Hoekstra (2016) reported that globally about 4 billion people live under severe water scarce conditions for at least one month of the year; 3.3 billion for at least three months; and 1.8 billion for at least half a year. Climate change has also created more uncertainty in water availability, increased risk, and production and economic losses (Wiltshire et al., 2013; Mekonnen and Hoekstra, 2016; Singh et al., 2017; Sishodia et al., 2018; Malek et al., 2018; Lu et al., 2019; Aggarwal et al., 2019). As agriculture is the largest consumer of freshwater, its declining availability has a direct impact on food security, sustainability, and livelihoods for millions of rural households, especially in developing countries like India (Berchoux et al., 2019; Garg et al., 2020; Zarei et al., 2020).

There is limited potential left for crop intensification and also to enhance agricultural productivity in irrigated systems; while a relatively large untapped potential exists in rainfed systems, if existing challenges are addressed (DeFraiture and Wichelns, 2010; Tilman et al., 2011; McLaughlin and Kinzelbach, 2015). The large yield gap in rainfed systems could be bridged by implementing natural resource management (NRM) interventions (Rockström et al., 2009a, 2009b;
logical studies (Garg et al., 2011, 2012; Singh et al., 2014; Karlberg (Glendenning et al., 2012), with the exception of a few agro-hydro- have gone into monitoring and understanding the impact of rainwater
Mondal et al., 2017; Reena and Singh, 2019). However, limited efforts improve rural livelihoods (Kerr, 2002; Hope, 2007; Garg et al., 2011; country address land degradation, water scarcity, food insecurity, and
scale watershed management programs (Hope, 2007). The Government
2019).

coincide with high poverty hotspots (Harris and Orr, 2014). Integrated
landscape management (also called watershed management) has re-
cently gained enormous traction and interest as an approach to con-
junctively address water-soil-crop production and livelihood bound-
aries (Mondal et al., 2020). Watershed interventions help enhance
resource availability by conserving/protecting land and water resources
that catalyze crop intensification, production gains, and build resilience
(Singh et al., 2014; Dile et al., 2016; Reddy et al., 2017; Kroeger et al., 2019).

India is one of the leading countries that have implemented large-

scale watershed management programs (Hope, 2007). The Government
of India along with several international donor agencies have invested
more than US$ 14 billion since 1990 (Mandal et al., 2020), helping the
country address land degradation, water scarcity, food insecurity, and
improve rural livelihoods (Kerr, 2002; Hope, 2007; Garg et al., 2011;
Mondal et al., 2017; Reena and Singh, 2019). However, limited efforts
have gone into monitoring and understanding the impact of rainwater
harvesting interventions on hydrological processes, water balance
components, upstream water utilization versus downstream water
availability, land use change, agricultural productivity, and income
(Glendenning et al., 2012), with the exception of a few agro-hydro-
logical studies (Garg et al., 2011, 2012; Singh et al., 2014; Karlberg et al., 2015) at meso-scale watersheds (5–50 km²). Most of the
watershed planning has been based on assumptions and a lack of under-
standing of upstream–downstream trade-offs that would facilitate re-
source optimization. Together, these lacuna have impeded planning
and resource prioritization as well as led to unclear assessments of the
resilience building necessary for environment and livelihood improve-
ments.

To address these gaps, a meso-scale watershed monitoring scheme
was designed and developed to inform adaptive management and re-
lience building. This case study evaluates the hydrological, agricul-
tural, and economic impacts monitored in paired meso-scale wa-
tersheds in Bundelkhand region of central India for five years. It
analyzes the impact of low-cost rainwater harvesting structures on (i)
landscape hydrology, specifically on surface runoff and shallow
groundwater recharge; (ii) upstream–downstream water availability; and
(iii) crop intensification, agricultural productivity, and household
income.

2. Material and methods

2.1. Bundelkhand region, Central India

Bundelkhand region of Central India lies between the Indo-Gangetic
Plains to the north and the Vindhya range to the south. It is a gently
sloping upland (mean slope = 3%, which ranges between 1% and 5%)
distinguished by an unproductive hilly terrain with sparse vegetation,
although it was historically forested (Tyagi, 1997). The region com-
prises parts of Uttar Pradesh and Madhya Pradesh states in India. Most
inhabitants in the region are dependent on agriculture/livestock-based
activities and approximately 33% of the area is covered by degraded
forest, grazing land, and degraded wasteland (Gupta et al., 2014).

Bundelkhand has a high incidence of poverty (30–55% in different
districts); low literacy rate (57% overall, 43% in women); and highly
vulnerable women and landless people (Varua et al., 2018; Mitra and
Rao, 2019; Padmaja et al., 2020).

Mean annual rainfall in the region is 750 mm and unevenly dis-
tributed throughout the year. The wet season (called kharif) between
July and September has 85% of the annual rainfall and the remaining
15% is distributed throughout the remaining nine months. This has had
an adverse impact on regional water balance, especially on ground-
water recharge (Singh et al., 2014). The wet season has a higher mean
temperature (35 °C) while the dry season (rabi) has a lower mean
temperature (10 °C). Based on long-term data analysis (1971–90 and
1991–2004), Rao et al. (2013) observed that about 581,000 ha under
semi-arid moist climate in Bundelkhand region of Uttar Pradesh have
shifted to semi-arid dry and arid climates.

Bundelkhand is largely dependent on shallow groundwater re-
sources for domestic and agricultural uses. Due to the hard-rock
geology, groundwater recharge mainly occurs in shallow and un-
confined aquifers characterized by poor specific yield (1–3%). The
water level in open/dug wells (4–8 m deep) is depleted rapidly after the
monsoon, with communities having to endure water scarcity, especially
during the summer (Singh et al., 2014). The region’s undulating topo-
graphy, high temperature, poor and erratic rainfall, and low soil ferti-
liity have led to poor agricultural productivity (0.2–2.0 t/ha) and food
insecurity (Shakeel et al., 2012). Farmers in the region grow low water-
consuming crops like groundnut, black gram, sesame, and millets
during the Kharif (wet season), and wheat, chickpea, barley, mustard,
and lentils during the rabi (dry) season (Table 1). Crops grown during
the wet season (e.g., groundnut) may require supplemental irrigation
during dry spells, whereas most of the crops grown in the dry season
(chickpea, barley, and wheat) require irrigation support.

Almost every village in Bundelkhand region has a traditional rain-
water harvesting tank system called haveli. The haveli system evolved
over 300–500 years ago and consists of a 50–150 m length of earthen
embankment 4–10 m wide and 1–3 m high across the slope depending
on the extent of catchment (Prakash et al., 1998; Shah, 2003; Sabu et
al., 2015; Meter et al., 2014, 2016). Traditionally, communities
would maintain tank bunds, desilt, repair water outlets, and schedule
water release (Meter et al., 2016). Normally, the catchment of the haveli
system ranges from 0.2 to 2.0 km². Runoff generated from the catch-
ment is harvested during the monsoon and used for multiple purposes
(Prakash et al., 1998). The groundwater recharge during the monsoon and
harvested rainwater provide supplemental irrigation to nearby
fields during dry periods. Once the monsoon recedes, the impounded
rainwater is drained out and the tank bed is prepared to cultivate rabi
crops using residual soil moisture (Prakash et al., 1998; Sabu et al.,
2015). Drained water from the haveli is used in pre-sowing irrigation
by downstream farmers and surplus water is released through drainage
networks (Prakash et al., 1998). The productivity of crops fed by the
haveli in the rabi season is 15–25% higher than that from fields nearby
due to the deposited silt and organic matter (Sabu et al., 2015). The
haveli system that once used to meet the freshwater demand in the re-

gen, gradually became defunct mainly due to the disintegration of
water user groups and rural institutions (Shah, 2003; Niti Ayog, 2012;
Reddy et al., 2018).

Realizing the importance of the haveli structures, public welfare
programs have made significant efforts towards their repair and main-
enance since 2000. In addition, other rainwater harvesting structures
such as check dams (masonry structures across drainage networks to
harvest surface runoff), gully plugs (low-cost structures across drainage
networks to lessen the speed of surface runoff), and farm ponds (small
water storage structures within fields used for supplemental irrigation)
have been constructed as drought mitigation measures (Gupta et al., 2014; TERI, 2018). However, the average life of these structures is relatively short (2–5 years) due to their poor design and construction quality. Therefore, the region has not realized the full
potential of groundwater recharge (TERI, 2018). It is reported that about 30% of earthen structures have collapsed due to seepage and failure in piping and sloughing (Foster, 1999; Foster et al., 2000; Foster and Fell, 2000a, 2000b; Fell et al., 2003; Mansuri and Salmasi, 2013).

2.2. Parasai-Sindh watershed: an overview

The Parasai-Sindh watershed located in Babina block of Jhansi district in Uttar Pradesh covering 12.46 km², was chosen to develop a study site between 2012 and 2016. It comprises three villages, namely Parasai, Chhatpur, and Bachauni located between 25°23′56″ to 25°27′9″′′ N and 78°19′45″ to 78°22′42′′ E (Fig. 1). Simultaneously, a neighboring watershed of 11.0 km² (in Hatlab village) was identified as a control, with no soil–water-crop interventions. A baseline survey was conducted in the identified villages to gain an understanding of their biophysical, social and economic conditions (Table 2).

The majority of farmers in both the watersheds were generating about 80% of agricultural income from crop production and 20% from milk production. Daily wage labour was also a source of income for small and marginal farmers. These paired watersheds (Parasai-Sindh and Hatlab) have a demographic details of both the watersheds are shown in Table 2. The study involved analyzing the impact of RWH interventions on water resource availability and crop intensification, for which the interventions implemented are described in Section 2.3., followed by the methods and instruments used to monitor hydrological data in Section 2.4. Results on upstream vs. downstream water availability from generated surface runoff (Figs. 4 and 5) and reservoir water balance (Fig. 6) under the haveli system in the treated watershed are discussed in Sections 3.1 and 3.2 respectively. The impact of the interventions on groundwater availability calculated by comparing pressure head in the treated and control (paired) watersheds is discussed in Section 3.3 (Fig. 7), and their impact on cropping intensity, crop yield, and average annual household income before and after the project is dealt with in Section 3.4 (Figs. 8 and 9 and Table 3).

2.3. In-situ and ex-situ rainwater harvesting measures

2.3.1. Rejuvenating a rainwater harvesting tank (haveli)

One of the defunct havelis was located at the most upstream location of the landscape with a catchment area of 0.8 km² (S1 in Fig. 1). Its traditional design was improved. The diameter of the existing outlet was expanded to dispose-off the excess runoff during very heavy rainfall events. The mud embankment wall that would breach during heavy inflows was replaced with a cement concrete core wall. This rejuvenation undertaken in 2012 created nearly 73,000 m³ of water storage capacity. Fig. 2 shows the masonry outlet of the haveli structure and the concrete core wall (> 100 m) built as well as the wheat crop grown using residual soil moisture and supplemental irrigation during rabi season.

2.3.2. Construction of check dams

Constructing check dams is very common in watershed projects (Abbasi et al., 2019). To enhance groundwater recharge, a series of check dams were constructed along the drainage line following the ‘ridge-to-valley’ approach (Fig. 1). Structures S1, S2, S3, S4, S5, and S10 were constructed in 2012; structures S9 a,b,c,d (grouped as S9) in 2013; and structure S6, S7, S8 in 2015. These are reinforced stone masonry structures with nearly 1.5–2.0 m crest height having rectangular weirs to dispose of excess surface runoff during flood events. Their storage capacity varies between 1500 m³ and 8000 m³ depending on drainage density, topographical features, and stream width. A total storage capacity of 23,200 m³ was created through check dams.

Table 1

<table>
<thead>
<tr>
<th>Season</th>
<th>Crops</th>
<th>Crop duration (days)</th>
<th>Irrigation status</th>
<th>Jun</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kharif</td>
<td>Black gram</td>
<td>70-75</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sesame</td>
<td>70-75</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Millet</td>
<td>90-100</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td>Rabi</td>
<td>Groundnut</td>
<td>110-120</td>
<td>1-2 irrigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mustard</td>
<td>110-130</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lentil</td>
<td>110-130</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chickpea</td>
<td>120-130</td>
<td>1-2 irrigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barley</td>
<td>120-130</td>
<td>2-3 irrigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wheat</td>
<td>120-140</td>
<td>3-5 irrigations</td>
<td></td>
</tr>
</tbody>
</table>

Note: The kharif season coincides with the monsoon period whereas the rabi season coincides with the winter period.
2.3.3. In-situ rainwater harvesting measures and crop management interventions

In-situ rainwater harvesting (e.g., contour/graded bunds) enhances soil moisture availability and crop productivity, and controls land degradation and soil erosion (Sharda et al., 2007; Naik et al., 2015). Large fields (20,000–30,000 m²) were divided into relatively smaller areas (3000–5000 m²) to reduce runoff velocity while harvesting a fraction of runoff from across the field bunds. Nearly 25,000 m long field bunds with the cross section of 1–1.5 m² were constructed. Field outlets were stone pitched for guided disposal of excess runoff. Teak (*Tectona grandis*) saplings were planted at the base of the field bunds at 3-m intervals to strengthen the bunds and to serve as an additional source of income to farmers in the long run. Farmer participatory field demonstrations were conducted on soil test-based fertilizer application, improved crop cultivars and integrated weed and disease management between 2012 and 2015 along with capacity building initiatives.

2.4. Data monitoring and impact analysis

2.4.1. Runoff gauging

Of the nine rainwater harvesting structures constructed in the study watershed, runoff gauging stations (Fig. 1) were installed at four locations (S1, S3, S5, and S7) in two phases; S1, S3, and S5 were constructed in 2012 and S7 in 2015. Hydrological data (inflow, outflow and volume) was monitored during the project period. Runoff data from the control watershed could not be retrieved as loggers were lost from gauging stations.

A stilling well was constructed upstream of the check dam. An automatic pressure transducer, i.e., DIVER (with pressure head capacity of 10 m) was placed at the bottom of the stilling well (Fig. 3) programed to record pressure head at 15-minute intervals, to estimate inflow and spillover. The relationship between depth vs. storage capacity and depth vs surface area was established for each of the check dam sites by undertaking a topographic survey.

Runoff data generated at different check dam sites were analyzed (Sections 3.1 and 3.2). The quantity of inflow and spillover were calculated on a daily, monthly and seasonal basis and the data compared...
with that in dry, normal, and wet years. The relationship between rainfall and runoff was also compared.

2.4.2. Groundwater monitoring

The depth of the water table in all the 388 dug wells was monitored manually at monthly intervals during 2011–2017 using a water level indicator, an electronic device (Solinst: 101B Water Level Meter). The groundwater levels were converted into pressure head (hydraulic head at a given time) by deducting the measured depth from the well depth. Similarly, 150 dug wells in the control watershed were monitored during 2014–2017. A ‘t’ test was performed to study the different impacts on groundwater availability (pressure head difference and functioning status) in both the watersheds.

2.4.3. Crop intensification and agricultural productivity

Data on the cultivated area in individual fields in both kharif (wet season) and rabi (dry season) seasons were recorded to capture changes in cropping pattern and crop intensification due to watershed interventions. Crop cutting estimates were captured from 50 farmers’ fields to measure crop yields and the cost of cultivation. Groundnut and black gram in kharif (wet season) season and wheat, chickpea, mustard, and barley in rabi (dry) season were selected for crop cutting studies between 2011 and 2016. An area of 9 m² from two representative locations in designated fields was marked and crop produce was collected. The harvested produce was sun-dried for 2–3 days; grain and straw weight were recorded separately and crop yields were estimated per hectare. The data was then used to estimate the total agricultural production in the entire watershed in the respective years. Total net income for kharif (wet season) and rabi (dry season) was estimated taking

Table 2

The topography, land use and demographic details of Parasai-Sindh watershed.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Treated watershed</th>
<th>Control watershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villages</td>
<td>Parasai, Chhatpur</td>
<td>Hatlab</td>
</tr>
<tr>
<td>Bachhauni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (km²)</td>
<td>12.46</td>
<td>11.0</td>
</tr>
<tr>
<td>Altitude (m above mean sea level)</td>
<td>270–315</td>
<td>270–310</td>
</tr>
<tr>
<td>Land use (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>88.4</td>
<td>86.4</td>
</tr>
<tr>
<td>Degraded forest</td>
<td>0.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Wasteland (scrubland)</td>
<td>5.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Others</td>
<td>5.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Demographic details (based on 2011 census)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of households</td>
<td>417</td>
<td>395</td>
</tr>
<tr>
<td>Average holdings (ha/household)</td>
<td>3.12</td>
<td>3.1</td>
</tr>
<tr>
<td>Number of dug wells</td>
<td>388</td>
<td>296</td>
</tr>
<tr>
<td>Depth of wells</td>
<td>9.2 (Std ± 1.5)</td>
<td>9.5 (Std ± 1.6)</td>
</tr>
</tbody>
</table>

Fig. 2. (Top) A view of the water harvested during the wet season (kharif) taken from the outlet of the haveli structure and (bottom) the crop cultivated in the haveli bed using residual soil moisture during post-monsoon/rabi season taken from upper side of the haveli field.

Fig. 3. A schematic diagram of a runoff gauging station.
in the wet year. Data further showed that inflows and outflows at S1 were 288,000 m³ (356 mm) and 180,000 m³ (222 mm), respectively. A total 108,000 m³ of runoff was harvested at S1 in 2013, which is 1.47 times its storage capacity. The inflows into structures downstream (S2, S3, S4, and S5) were much higher than their storage capacities.

During the dry year of 2014, the runoff received at different monitoring stations was less than 2% of the total rainfall. Inflows received at S1 was 12 mm (i.e., 10,000 m³) and all the runoff was harvested within the structure. Similarly, a small quantity of surface runoff was locally harvested and negligible runoff was observed downstream. No surface runoff could be recorded due to deficit rainfall in 2015 (50% deficit compared to the long-term average seasonal rainfall).

During 2016, the inflow measured at different monitoring stations was between 124 mm and 210 mm, indicating that the runoff coefficient varied from 16% to 27%. The highest runoff coefficient of 27% was recorded at S1, which gradually fell to 16% in the downstream location (S5). Data showed that 170,000 m³ of inflow was received at S1, which was fully harvested into the haveli tank with no spillover water from S1 during monsoon 2016. This shows that the haveli tank harvested 2.32 times more runoff than its storage capacity between June and October 2016. The year 2017 was a partial deficit year with 631 mm of total rainfall received during the monsoon (22% less than the long-term average). Inflows recorded at S1, S3, S5, and S7 were 102 mm, 44 mm, 15 mm, and 5 mm, respectively, clearly showing that runoff was harvested by the upstream structures. Runoff coefficients at various locations ranged from 2 to 16% (Fig. 5).

The inflow received at S1 represents the non-intervention stage as there was no structure built above it, whereas other sites were subject to intensive rainwater harvesting measures. More than 90% of the runoff generated when rainfall was up to 600 mm was captured by various rainwater harvesting structures, and very little was left for the downstream ecosystem. On the contrary, about 40% of the generated runoff was harvested during normal rainfall years (about 800 mm rainfall). Significant difference in runoff reduction was observed at S1 and S5 ($p = 0.02 < 0.05$).

However, there was no significant reduction in inflows during wet years (rainfall > 1200 mm) at downstream sites as the runoff generated...
was much higher than the storage capacity created upstream.

3.2. Reservoir water balance

Fig. 6a–e show the components of the haveli’s (S1) reservoir water balance (inflow, outflow and storage) and rainfall at daily intervals between 2013 and 2017. In order to maintain uniformity in measuring units, inflow, outflow and reservoir storage are represented in volumetric terms (cubic meter). In 2013, the inflow received up to 15 August 2013 was harvested within the structure and no outflow was measured. After filling the structure, both inflow and outflow volumes were found to be almost the same after 15 August as the haveli was at its full capacity and all the generated runoff was disposed of downstream (Fig. 6a). On the other hand, in 2014, 2016, and 2017, the inflows generated by different rainfall events was not sufficient to fill the haveli to its full capacity and no outflow was recorded. Inflow in 2014 was negligible (Fig. 6b) and no inflow was recorded in 2015 (Fig. 6c). Hydrographs of 2016 (Fig. 6d) and 2017 (Fig. 6e) show that inflows received with 50 mm or higher intensity rainfall events were harvested entirely. As farmers do not directly pump the water from the structure, harvested runoff infiltrated into the underlying shallow aquifer. Cumulative inflow received at S1 between 2013 and 2017 was 0.551 MCM (million m3), of which 0.371 million m3 was harvested.

3.3. Groundwater dynamics

Pressure head measurements in dug wells in the two watersheds showed that RWH interventions led to significant infiltration and greater retention of water for a longer period in the improved watershed, thereby enhancing water security both for domestic and agricultural purposes. Fig. 7 shows the pressure head in dug wells in the treated (2011–2017) and control (2014 and 2017) watersheds against
monthly rainfall. As 80% of the annual rainfall falls between July and October, the pressure head increased during the monsoon season, with its magnitude depending on the amount of rainfall received. The pressure head in the post-monsoon season (between Nov and May) declined as groundwater was withdrawn for irrigation use. The average depth of dug wells in treated and control watersheds were 9.2 m and 9.5 m and the maximum well depth recorded were 14 m and 14.5 m, respectively. Fig. 7a compares the average pressure head in treated and control watersheds and also the pressure head before project implementation (2011–12) and after (2013–17).

Pressure head in dug wells was sensitive to rainfall received during the monsoon and water use during the post-monsoon season. Pressure head in the treated watershed was always higher than that in the control watershed (p = 0.02 < 0.05). The average pressure head in treated and control watersheds varied from 0.5 to 7.5 m and 0.3–6.0 m, respectively. On an average, an additional 2.0 m pressure head was recorded in the treated watershed compared to that in the control watershed. This difference was found significant, especially during dry years. Fig. 7b shows the maximum pressure head recorded in different months in the studied watersheds, which varied from 5 m to 16 m in the treated watershed and from 2 m to 9 m in the control watershed.

A remarkable difference in pressure head was noted in the Parasai-
A major change was recorded by the end of March 2019, as were dry in the treated watershed compared to 37% in the control watershed. After the end of the monsoon, 30% of the wells dried up in the treated watershed during the monsoon season in 2015 (June–October) due to deficit rainfall. As indicated earlier, 2015 was one of the driest years before project implementation (2011–12) and after the interventions. No significant change was observed in the status of dug wells between April and May 2016, as there were many agricultural activities except fodder cultivation in less than 5% of the fields. Subsequent to high rainfall in July 2016, all the dug wells in the treated and control watersheds were rejuvenated.

3.4. Impacts of RWH on crop intensification, crop yield and household income

Increased groundwater availability led to a shift in cropping pattern in Parasa-Sindh watershed during kharif (wet) and rabi (dry) seasons. Unproductive fallow land was rehabilitated and brought under cultivation; assured supplemental irrigation in dry seasons increased crop yields between 10% and 70%; and farmers grew higher value crops than before. Fig. 8 shows changes in cropping patterns during kharif (wet season) and rabi (dry) seasons. Nearly 80–100 ha that used to be sown with sesame and black gram were converted to groundnut; and about 110 ha of fallow land came under cultivation after the watershed interventions. Fig. 8 shows average crop yields before and after project implementation. No significant change was observed in the yields of groundnut, sesame and black gram cultivated in the kharif season under rainfed conditions, as supplemental irrigation was provided for rabi (dry season) crops. The average pod yield of groundnut was 1100 kg/ha, and those of black gram and sesame ranged between 300 and 400 kg/ha and 250–300 kg/ha, respectively.

The impact of various rainwater harvesting interventions was more tangible during the rabi (dry) season both in terms of change in cropping pattern and increased crop yields. About 300 ha had been left fallow before the watershed intervention; this came down to less than 30 ha following the interventions. The area under mustard (cultivated as a rainfed crop on residual soil moisture) decreased from 120 ha to about 30 ha and that of chickpea from 80 ha to about 20 ha, while a substantial increase in area was observed in barley (5 ha to about 50 ha) and wheat (550 ha to 950 ha) after the interventions (Fig. 9). With increased groundwater availability, most of the rainfed and fallow lands were converted into barley and wheat-based cropping systems. There was a 50–70% increase in yields of wheat (1700 kg/ha to 2700 kg/ha) and barley (1900 kg/ha to 2600 kg/ha) and chickpea while that of mustard increased by 10–15% (100 kg/ha to 150 kg/ha). This increase in cropped area and yields had a positive impact on total agricultural production. Increased groundwater availability also had a positive impact on green fodder availability and vegetable cultivation, as the area under cultivation during the summer increased from 5 ha to 70 ha. With increased fodder availability (both dry and green), farmers made investments in livestock (specifically buffaloes). This promoted diversification besides aiding farm families with stable incomes from household dairies.

Table 3

Changes in household income from agriculture and livestock before and after the watershed interventions.

<table>
<thead>
<tr>
<th>Details</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kharif (wet season) area under cultivation (ha)</td>
<td>968</td>
<td>1057</td>
</tr>
<tr>
<td>Net income generated in kharif (wet season) (Million US$)</td>
<td>0.26</td>
<td>0.38</td>
</tr>
<tr>
<td>Rabi (dry season) area under cultivation (ha)</td>
<td>797</td>
<td>1083</td>
</tr>
<tr>
<td>Net income generated in rabi (dry season) (Million US$)</td>
<td>−0.05</td>
<td>0.35</td>
</tr>
<tr>
<td>Total Net income from agriculture (Million US$)</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Buffalo population</td>
<td>950</td>
<td>1300</td>
</tr>
<tr>
<td>Milk yield (L/day/animal)</td>
<td>6</td>
<td>8.5</td>
</tr>
<tr>
<td>Annual Income from Livestock (Million US$)</td>
<td>0.19</td>
<td>0.40</td>
</tr>
<tr>
<td>Total net income (Million US$ /year)</td>
<td>0.40</td>
<td>1.13</td>
</tr>
<tr>
<td>Number of households (HHs)</td>
<td>417</td>
<td>417</td>
</tr>
<tr>
<td>Average increase in income (US$/HH/Year)</td>
<td>960</td>
<td>2700</td>
</tr>
</tbody>
</table>

* 1 US$ = 52.83 INR (2012 as base year).

Sindh watershed before project implementation (2011–12) and after (2013–17). The years 2011 and 2013 experienced rainfall of more than 1100 mm. Average pressure head during Oct 2011 and Oct 2013 were 1.0 m and 8.0 m, respectively, showing an additional 2.0 m gain. Average pressure head during May 2012 and May 2014 were 1.0 m and 6.0 m, respectively (a 4.0 m difference) indicating the positive impact of rainwater harvesting interventions on building groundwater resilience. P value (p = 0.011) also indicated that the average pressure head from both the watersheds are significantly different.

Fig. 7c compares the percentage of wells that dried up in treated and control watersheds (data for the control watershed was only available after April 2014). As indicated earlier, 2015 was one of the driest years with a total rainfall of 404 mm and 2016 was close to a normal year (768 mm). Results showed that about 5% of the dug wells in the treated watershed and 10% of them in the control watershed were dry even during the monsoon season in 2015 (June–October) due to deficit rainfall. After the end of the monsoon, 30% of the wells dried up in the control watershed compared to 6% from the treated watershed by November 2015. By the end of February 2016, 17% of the dug wells were dry in the treated watershed compared to 37% in the control watershed. A major change was recorded by the end of March 2019, as about 40% and 57% of wells were dry in treated and control watersheds, respectively. Shallow perched groundwater is mainly pumped between November and March for farmers towards supplemental irrigation for rabi (dry season) crops. No noticeable change was observed in the status of dug wells between April and May 2016, as there were not many agricultural activities except fodder cultivation in less than 5% of the fields. Subsequent to high rainfall in July 2016, all the dug wells in the treated and control watersheds were rejuvenated.

4. Discussion

4.1. Landscape approach for sustainable water resource availability

Decentralized rainwater harvesting helped enhance water security and human well-being in a degraded watershed. Rainwater harvesting to improve water retention and storage capacity helped quick recharge of the aquifer and provided useable water for agriculture. Unlike...
surface storage leads to evaporative losses during summer when the maximum temperature in the region reaches 40–47 °C with pan evaporative demand of 12–20 mm/day, diverting runoff in a shallow perched aquifer through water harvesting allowed freshwater availability for a long period. This eliminated drought in Parasai-Sindh watershed despite recurring dry years (Figs. 7 and 8). Filling the shallow aquifer once in a rainfall surplus year came in handy for two consecutive dry years. Given climate variability and the increasing frequency of drought, this landscape approach promises to achieve sustainable water resources use in degraded landscapes.

The renovation of traditional rainwater harvesting structures in the region has huge untapped potential. Thousands of such defunct structures exist that require modification in design to function under new rainfall regimes. The haveli in Parasai village used 0.08 km² under submergence out of 4.0 km² (i.e. 2%) over which the village is spread. The unit cost of rainwater harvesting in the haveli system is far cheaper compared to other measures such as building check dams or farm ponds. The cost of renovating the haveli in the current study came to US $ 15,000, providing a storage capacity of 73,000 m³. This is in comparison to the average investment of US $ 6600 made on a check dam with a storage capacity of 3000 m³. The unit cost of renovating the haveli was US $ 0.21 /m³ compared to US $ 2.2 /m³ for a check dam.

4.2. Upstream benefits vs downstream water availability

Runoff and groundwater recharge are highly influenced by rainfall variability in the semi-arid agricultural landscapes of India (Garg et al., 2011; Singh et al., 2014). About 450–500 mm rainfall was found to be the minimum threshold to initiate runoff and enable groundwater recharge. The current study showed that in the absence of RWH structures, the quantity of runoff in dry years would have had negligible impact at downstream sites while no significant reduction in water availability was observed during the wet year. In a normal year (700–900 mm), these structures harvested nearly 40% of runoff, significantly reducing water availability at downstream locations. Since water in downstream locations was used for domestic, agriculture and industrial purposes, scaling-up such interventions may require incentive mechanisms to compensate downstream water users.

While watershed interventions negatively affect downstream water availability only during normal years, they assure supplemental irrigation in the uplands, which are most vulnerable to mid-season droughts and hence also to climate change (Rockström et al., 2009a, 2009b; Rockström and Karlberg, 2009; Shah, 2009). Due to poor infrastructure and degraded landscapes, upland areas are largely cultivated by poor and deprived communities (including tribes) who often struggle for food and basic amenities (Ahmed et al., 2007). It is possible to build groundwater resilience under a declining rainfall situation in Bundelkhand region by diverting a fraction of surface runoff into shallow aquifers through various soil and water conservation measures. During the wet year, RWH structures facilitated groundwater recharge to its full potential, helping build resilience to face the consequences of two consecutive dry years. Increased groundwater availability enhanced cropping intensity and crop production. Availability of supplemental irrigation helped plan for rabi (dry season) cultivation and about 20% of the total area in the watershed, including a significant portion of permanent fallow, was brought under cultivation. This enhanced land and water use efficiency, food security, and incomes of the resource-poor communities. Such efforts towards the equitable distribution of resources like rainwater across terrains that consist of fertile lowlands and unproductive uplands, can bridge income gaps within a community (Rao et al., 2017).

4.3. Future scope

Extensive data monitoring and impact analysis are essential to design a rainwater management strategy and plan on a regional scale, as well as to follow up on impacts of implementation. The dearth of systematic monitoring in rapidly transforming agricultural landscapes in developing economies hampers water management and its long-term sustainability. Similar efforts are needed in other districts of Bundelkhand region which has large variability in terms of rainfall, topography, soil types, and cropping systems. Data from the current study could provide the basis for regional scale simulation modeling, as not much data is available for model calibration and parametrization. A thorough analysis of climate variability and remote sensing techniques could be used for water resources planning and management at river basin and regional scales.

5. Conclusion

A meso-scale watershed of 12.46 km² was developed between 2012 and 2016 in Bundelkhand region of Central India to improve water availability and transform agriculture. The major interventions included the renovation of traditional rainwater harvesting structures called haveli, building check dams, field bunding, and farmer participatory crop demonstrations. The interventions led to the creation of about 100,000 m³ capacity of rainwater storage which significantly enhanced groundwater recharge. Water balance analysis showed that agricultural water management interventions reduced surface runoff by 40% during normal years but without significant reduction during wet years. The recharge of shallow groundwater aquifers once in a wet year helped sustain groundwater availability in subsequent years. Groundwater levels in dug wells increased by 2–5 m, bringing into cultivation about 20% of the total cultivable area which had been left fallow before the project. In addition, the availability of an assured source of supplemental irrigation prompted farmers to replace low-income generating crops like mustard and chickpea with barley and wheat, thereby enhancing their income and food security. With increased water availability, the risk of crop failure diminished. Yields of wheat and barley increased by 50–70% and those of chickpea and mustard by 10–15%. Crop intensification along with productivity enhancement initiatives increased total crop production multifold. Increased water availability also triggered diversification of livelihood sources into dairying. Average household income saw a jump from US$ 960/year to US$ 2700/year within four years of the project period. This study underlines the scope of scaling-up the renovation of traditional havelis to address water scarcity and build resilience to climate change.

CRediT authorship contribution statement

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors thank Coca-Cola India Foundation for funding the watershed activities in Parasai-Sindh watershed, Jhansi, Uttar Pradesh,
under their Corporate Social Responsibility initiatives. Our thanks also go to the Government of Uttar Pradesh and the village community for their support in implementing the project. The support from the CGIAR

References

Environ. 679, 683–691.

Congress on Large Dams, Beijing, Question 76 (1): 237–260.

Eng. Urban. 3 (3), 114–121.

