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Genome-wide transcriptome and 
physiological analyses provide 
new insights into peanut drought 
response mechanisms
Sailaja Bhogireddy1,7, Abishek Xavier2,7, Vanika Garg1,7, Nancy Layland3, Renee Arias4, 
Paxton Payton5, Spurthi N. Nayak   6, Manish K. Pandey1, Naveen Puppala2* & 
Rajeev K. Varshney   1*

Drought is one of the main constraints in peanut production in West Texas and eastern New Mexico 
regions due to the depletion of groundwater. A multi-seasonal phenotypic analysis of 10 peanut 
genotypes revealed C76-16 (C-76) and Valencia-C (Val-C) as the best and poor performers under deficit 
irrigation (DI) in West Texas, respectively. In order to decipher transcriptome changes under DI, RNA-
seq was performed in C-76 and Val-C. Approximately 369 million raw reads were generated from 12 
different libraries of two genotypes subjected to fully irrigated (FI) and DI conditions, of which ~329 
million (90.2%) filtered reads were mapped to the diploid ancestors of peanut. The transcriptome 
analysis detected 4,508 differentially expressed genes (DEGs), 1554 genes encoding transcription 
factors (TFs) and a total of 514 single nucleotide polymorphisms (SNPs) among the identified DEGs. 
The comparative analysis between the two genotypes revealed higher and integral tolerance in C-76 
through activation of key genes involved in ABA and sucrose metabolic pathways. Interestingly, one 
SNP from the gene coding F-box protein (Araip.3WN1Q) and another SNP from gene coding for the lipid 
transfer protein (Aradu.03ENG) showed polymorphism in selected contrasting genotypes. These SNPs 
after further validation may be useful for performing early generation selection for selecting drought-
responsive genotypes.

Peanut or groundnut (Arachis hypogaea L.) is the second most important legume in the world, generally grown 
as a rain-fed crop, ranking next to soybean in production. The United States is the third largest peanut producer, 
after China and India (FAO, 2018) and the highest peanut producing state is Georgia followed by Texas. In terms 
of acreage, among the four commercial types of peanut, the runner type is the most cultivated crop with 80% 
coverage, followed by Virginia (15%), Spanish (4%), and Valencia (1%) in the United States. Being a rainfed crop, 
peanut experiences drought stress in the cultivated regions of United States, including Texas, with an estimated 
annual loss of approximately $520 million1,2. The relatively low yield in the West Texas and eastern New Mexico 
regions may be due to the inability to provide sufficient irrigation by farmers to supplement the low rainfall 
received during the season. The flowering and pegging stages of the peanut life cycle are considered to be more 
sensitive to water deficit stress which pose adverse impact, leading to reduced yield3,4. Therefore, it is essential to 
breed improved varieties that can produce higher yield under water deficit conditions.

Being sessile, plants employ different pathway mechanisms to cope with different types of stressful environ-
ments. In particular, drought stress affects the plant’s architecture by triggering a wide range of physio-biochemical 
processes5. Plants adopt diverse strategies to combat drought stress like by reducing the stomatal conductance, 
decreased photosynthetic rate, accumulation of different osmoprotectants, activation of stress responsive genes 
and transcription factors etc.6,7. The level of stress tolerance in agricultural crops is generally evaluated based 
on the considerable loss of yield with respect to optimal growing conditions. The differences in the type of 
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physiological response facilitate the plant either to be tolerant or sensitive towards the stress conditions. The yield 
of peanut among different genotypes under drought stress was screened to assess the variation of tolerance8,9. 
Different studies have reported drought-tolerant peanut genotypes, however, it is essential to check the perfor-
mance of these genotypes in target locations such as West Texas and eastern New Mexico regions which faces 
frequent problem of limited water resources.

In West Texas and eastern New Mexico, the most widely cultivated Valencia-type peanut cultivar, Valencia-C 
(Val-C), is considered as standard reference, and an industrial standard variety that has been used as a con-
trol to compare yields and flavor of newly released varieties. Because of the gradual depletion of groundwater 
levels in these regions due to climate change, and Val-C being a low-yielding variety, it is necessary to screen 
different genotypes of peanuts to provide better yields for the West Texas region10. In peanut, related to drought 
there are very limited reports regarding the identification of candidate genes/genomic regions11–13 and transcrip-
tome studies14,15. But none of these studies explored the drought tolerance mechanisms in Valencia-type pea-
nuts; so a correct understanding of its underlying genomics will facilitate the genetic improvement of Valencia 
peanuts. Therefore, this study reports the identification of drought tolerance sources in the genetic background 
of Valencia-type peanuts. Furthermore, in recent years, the RNA-seq approach has been successfully used to 
understand the mechanisms behind various biotic and abiotic stresses in different crop species16,17. The availa-
bility of genome sequence information of diploid progenitors of cultivated peanut18,19 facilitates to understand 
the genomic complexity of the different traits in peanut. Therefore, the current study was aimed to identify the 
candidate genes and their molecular mechanisms involved in drought tolerance using RNA-seq approach. The 
results obtained from this study provide a better understanding of the tolerance mechanisms and the potential 
candidate genes can be utilized in breeding programs.

Results
Genotypic variation for pod yield and physiological features.  In order to study the phenotypic var-
iations and its associated physiological responses for pod yield among the 10 peanut genotypes (Supplementary 
Table S1), field level experiments were conducted in three consecutive years from 2013–2015 by imposing deficit 
irrigation (DI) stress. Adequate irrigation (100%) was based on the farmer’s well capacity, while deficit irrigation 
was achieved by reducing irrigation use by 50%. In the field experiments in different seasons, the observed pre-
cipitation varied greatly (Supplementary Fig. S1). The annual total precipitation and precipitation intervals also 
varied significantly. However, the average maximum and minimum temperatures were significantly consistent 
(Supplementary Figs. S2 and S3). Further, relative humidity and evapotranspiration rates were also recorded 
(Supplementary Fig. S4). Compared to other years, this result was consistent with the least rainfall in 2013. In 
addition, soil moisture content was also collected, where fully irrigated soil was very moist at 48 cm for most of 
the growing season and at 12, 24 cm, the soil moisture had a smaller interval of dampness and dryness due to 
irrigation and precipitation events (Supplementary Figs. S5 and S6).

Based on the phenotyping results from the annual analysis of variance, the irrigation treatment (T) was signif-
icant in the years 2013 and 2014 (P-value <0.0001) and in 2015 (P-value <0.01)). These results indicate that each 
year the yield was significantly different depending on the T, genotype (G) and T × G (Supplementary Table S2). 
In 2013, the fully irrigated (FI) plot produced about 2828 kg/ha−1, while the deficit irrigated plot generated about 
1879 kg/ha−1, a reduction of about 34% compared to the fully irrigated plot. Further, yield reduction in the 
deficit-irrigated plots was about 67% and 13% in 2014 and 2015, respectively (Supplementary Table S3). Overall, 
in three years, the best genotypes obtained under full irrigation conditions in West Texas were Tamspan-90, 
ICGS 76 and C76-16 (C-76) and poor yielders were Valencia-C (Val-C), ICGV 86388 and TMV-2. On the 
other hand, under the conditions of water deficit, C-76 showed better response accounted by its mean yield 
3278 kg ha−1, higher among the other genotypes followed by Tamspan-90, ICGS 76, COC-041, ICGV 86051 and 
Val-C (Table 1).

Genotype

2013 2014 2015 Average

Full 
irrigation

Deficit 
irrigation

Full 
irrigation

Deficit 
irrigation

Full 
irrigation

Deficit 
irrigation

Full 
irrigation

Deficit 
irrigation

1 ICGS 76 3667 2410 5719 1423 4978 3777 4788 2537

2 C76-16 3856 3827 4761 1715 5431 4292 4683 3278

3 COC041 3244 1673 4279 1246 3623 4354 3715 2424

4 ICGV 86051 2652 1667 4537 1818 4412 3574 3867 2353

5 Serenut-5R 3085 1379 2972 1194 3636 2965 3231 1846

6 Serenut-6T 2808 1513 4856 1478 4011 3075 3892 2022

7 TMV-2 2882 1719 4273 1075 3512 3512 3556 2102

8 ICGV 86388 1487 873 4738 972 3043 3168 3090 1671

9 Tamspan-90 3472 2598 4951 2083 4838 3621 4420 2767

10 Valencia-C 1131 1131 3982 1692 3824 3792 2979 2205

Mean 2828 1879 4507 1469 4131 3613 3822 2320

LSD 487.78 827.32 886.45 748.53

Table 1.  Yield (Kg ha-1) of different peanut genotypes under contrasting irrigation treatments during 2013–
2015.
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Net photosynthesis at the leaf level was measured during the water deficit treatment to monitor the impact of 
deficit irrigation (DI) stress on the plant metabolism. In 2013, the water deficit treatment resulted in a moderate 
decrease in net photosynthesis for most of the genotypes, but no significant differences were observed during 
stress, recovery, or complete irrigation among the genotypes. In 2014, treatment resulted in a significant decrease 
in net photosynthesis (ranging from 18 to 38 µmolesm−2s−1) compared to the full irrigated treatment (ranging 
from 20 to 40 µmolesm−2s−1) but again no statistically significant differences could be observed between the 
genotypes. General trends emerged in both the years for photosynthetic responses, but in this case, net photo-
synthesis was used to guide the collection of leaf material for transcriptome studies (Fig. 1a,b). Further, SLA and 
chlorophyll content were also measured in 2014 but the values obtained were not statistically significant between 
the treatments of the same genotypes (Fig. 1c,d).

Sequencing and mapping statistics using reference guided assembly.  Based on the observed phe-
notypic variations from our previous9 and present drought studies, two genotypes- C76-16 (C-76, runner type) 
and Valencia-C (Val-C, Valencia type) were identified as the contrasting genotypes towards drought response 
and thus selected for transcriptome studies. Leaf samples for the RNA-seq were collected from C-76 and Val-C 
genotypes in 2014 in three biological replicates for transcriptome profiling and generated ~369 million raw reads. 
The raw reads were filtered to obtain high-quality reads which were then further used in the downstream analysis 
and for mapping on A (A. duranensis) and B (A. ipaensis) diploid ancestor genomes18 of peanut separately.

A total of 329.2 million (90.2%) and 329.4 million (90.3%) filtered reads were mapped to A and B genomes, 
respectively. In C-76, on an average, 30 and 26 million reads per replicate were mapped under FI and DI con-
ditions, respectively on A and B genomes. Whereas in Val-C genotype, it was observed that approximately ~25 
and ~27 million reads per replicate were mapped under FI and DI conditions, respectively on A and B genomes 
(Table 2). About 81.2% of the filtered reads were mapped to the exonic regions of the A and B genomes, while 
~6% were mapped on the intronic region, and ~12.8% were mapped on the intergenic regions (Supplementary 
Table S4 and Fig. 2A). Expression analysis was performed for the four samples, namely C-76_FI, C-76_DI, Val-C_
FI and Val-C_DI. The level of gene expression was calculated in the four samples using fragments per kilobase 
of transcript per million mapped reads (FPKM) values. A total of 28,524 and 29,490 genes were observed to be 
expressed on A and B genomes, respectively. Further, in dendrogram constructed based on expression values, 
individual replicates of C-76 and Val-C were falling in two different groups, one belonging to the Val-C group and 
the other to the C-76 group consisting of their respective FI and DI samples. In A genome, the replicates of C-76 
and Val-C genotypes were grouped separately. Similarly, for the two conditions- FI and DI, the replicates were 
also grouped separately under their respective genotypes (Fig. 2B). However, for the B genome, there is a little 
deviation from the A genome, where the irrigated samples of Val-C were falling under the C-76 but these were 
not grouped together (Fig. 2B).

Differential gene expression analysis.  Differential gene expression analysis revealed 2,037 and 2,471 
differentially expressed genes for C-76 and Val-C genotypes, respectively on comparison of their corresponding 

Figure 1.  Physiological observations from fully irrigated and deficit irrigation plots at different time intervals: 
(a,b) Mean gas exchange measurements in the years 2013 and 2014. (c) Mean specific leaf area (SLA) during 
irrigated and deficit irrigation conditions in selected genotypes. (d) Mean chlorophyll content during irrigated 
and deficit irrigation conditions in selected genotypes.
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Sample 
label

Raw reads generated
(millions)

High-quality reads
(millions)

Total reads mapped 
on A genome
(millions)

Total reads mapped 
on B genome
(millions)

C-76 -FI-1 28.18 27.79 25.13 25.18

C-76 -FI-2 37.24 36.68 33.38 33.32

C-76 -FI-3 38.35 37.73 34.04 34.03

C-76 -DI-1 31.66 31.26 28.10 28.19

C-76 -DI-2 28.14 27.75 25.19 25.25

C-76 -DI-3 27.83 27.42 24.86 24.83

Val-C-FI-1 30.03 29.59 26.73 26.81

Val-C-FI-2 28.86 28.41 25.44 25.49

Val-C-FI-3 27.65 27.26 24.73 24.78

Val-C_DI-1 30.82 30.41 27.16 27.16

Val-C-DI-2 32.49 32.07 28.99 28.96

Val-C-DI-3 28.55 28.19 25.40 25.4

Total 369.8 364.6 329.2 329.4

Table 2.  Summary of the RNA-seq data generated under FI and DI conditions. *FI-Full irrigation; DI-Deficit 
irrigation.

Figure 2.  Mapping statistics and dendrogram showing correlation among the different samples: (A) An 
overview of the mapped reads on (A,B) genomes of Arachis progenitors: The distribution of fragments 
represented as the percentage of reads that map onto exons, introns and intergenic regions on A and B genomes 
of peanut (B) Dendrogram constructed based on the expression values in fully irrigated (FI) and deficit 
irrigation (DI) samples in two different genotypes- C-76 and Val-C with biological replicates on two genome 
clades.
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DI samples with respect to their FI samples. Genes with a P-value ≤ 0.05 and ≥log fold change( ) 22  were consid-
ered as differentially expressed genes (DEGs). The identified DEGs were studied for their distribution on the 
pseudomolecules of A and B genomes. The highest number of DEGs were present on pseudomolecules A03 (118) 
and B04 (119) while the minimum were observed on pseudomolecules A02 and B02 (Fig. 3a). The number of up 
and downregulated genes in C-76 and Val-C during DI with respect to FI on A and B genomes were identified 
(Fig. 3b). Differentially expressed genes in three combinations (C-76_DI vs C-76_FI; Val-C_DI vs Val-C_FI; 
C-76_DI vs Val-C_DI) revealed that more DEGs were upregulated in Val-C (599) than C-76 (7) during DI com-
pared to FI and 3 DEGs were found in common on A genome. Similarly, the number of downregulated genes were 
248 in the case of Val-C and 138 in C-76 during DI compared to FI, and 2 genes were common in both the geno-
types on A genome and similar is the case with the B genome (Fig. 3c). In addition, the DEGs of four different 
combinations [C-76 vs Val-C (FI); C-76 vs Val-C(DI); C-76 (FI vs DI); Val-C(FI vs DI)] were compared to identify  
common and unique DEGs (Fig. 3d), where 19 (A genome) and 24 (B genome) DEGs were common across all 
four comparisons (Supplementary Table S5; Fig. 3d).

Differentially expressed genes during deficit irrigation (DI).  Differential expression analysis in DI 
revealed the expression of drought stress-responsive genes in the two selected genotypes. Interestingly, the com-
mon DEGs (19 on A genome) showed fairly contrasting expression in C-76 and Val-C (Fig. 3d; Supplementary 
Fig. S7). The common DEGs encode for Gcn5-related N-acetyltransferase (GNAT) gene, BON1- associated pro-
tein, the lateral organ boundary (LOB), and the late embryogenesis abundance (LEA) genes etc., (Fig. 3d and 
Supplementary Table S5). Especially, genes related to osmoprotectants, photosynthesis, abscisic acid, secondary 
metabolites and other gene families that are responsive during drought stress showed distinct expression patterns 
in C-76 and Val-C (Fig. 4).

In C-76 under DI with respect to FI, the induced expression of plant protease inhibitor genes such as trypsin 
inhibitors and cystatin, as well as the ATP- binding cassette (ABC) transporter and the lectin precursor genes and 
LOB was noted. While in Val-C, induced DEGs include genes related to cell wall and membrane-bound genes 
such as ureide permease 2, expansin A10, xyloglucan endotransglucosylase hydrolase, and expansin-A8 when 
compared DI versus FI. On the other hand, highly upregulated genes include the genes encoding cysteine endo-
peptidase, asparticase oryzasin-1 and ubiquitin-E3ligase in Val-C. Similarly, other drought-responsive DEGs are 
aquaporin PIP-2, abscisic acid (ABA) insensitive 5, ethylene-responsive transcription factor, expansin 2, L-ascorbate 
oxidase, LEA, peroxidase, glutathione S-transferase, thioredoxin reductase and trehalose-phosphate phosphatase, 
heat shock proteins (HSP) encoding genes such as Dnaj/HSP40, Class II HSPs and heat shock factor (Hsf)30 and 
genes involved in secondary metabolism like isoflavonoid and flavonoid synthesis, were induced under DI in 
Val-C with respect to DI in C-76 (Supplementary Table S6).

When FI samples from two genotypes were compared, expression of genes for drought stress response path-
ways such as photosynthesis-related genes-accumulation of photosystem one1 (APO1) and photosystem II family 
protein-coding genes (D2 protein), osmoprotectant genes like abscisic acid 8-hydroxylase, proline imino-peptidase, 
peroxidase genes and other genes encoding for ethylene-responsive transcription factor (ERF) and lipid transfer 
protein genes showed high expression levels in C-76, indicating its higher level of tolerance (Supplementary 
Table S7).

Gene ontology.  The gene ontology of DEGs revealed their functional annotation by categorizing them into 
cellular, molecular, and biological components (Fig. 5A). The majority of genes have been annotated on biologi-
cal processes followed by cellular component and molecular function. In total, 38.7% (A genome) and 38.0% (B 
genome) genes were falling under 12 categories of cellular components while 37.66% (A genome) and 38.2% (B 
genome) genes were falling under 21 categories of biological process, 23.7% (A genome) and 23.8% (B genome) 
genes were falling in molecular function under 11 categories.

Pathways associated with deficit irrigation (DI).  Differentially expressed genes were analyzed to study 
their association with different metabolic pathways. The significant role was noted for 104 pathways representing 
biosynthesis, metabolism and degradation process. Pathways related to the biosynthesis of antibiotics (23 genes), 
starch and sucrose metabolism (15), biosynthesis of aromatic amino acids (11), metabolism of amino and nucle-
otide sugars (9), metabolism of sulfur amino acids (7), biosynthesis of flavonoids (7), etc., showed an association 
with DEGs (Fig. 5B and Supplementary Table S8). Different genes in the antibiotic synthesis pathway encoding for 
bifunctional aspartate aminotransferase, aspartate prephenate-aminotransferase, glyceraldehyde-3-phosphate dehy-
drogenase, pyrophosphate-fructose 6-phosphate 1-phosphotransferase, acetyl coenzyme A, 3-dehydroquinate dehy-
dratase shikimate, methylecgonone reductase, chorismate mutase, etc. were found to be expressed (Supplementary 
Table S9). Similarly, genes related to starch and sucrose metabolic pathway include, endo-1,3-beta-glucosidase, 
alpha-amylase, glucomannan 4-beta-mannosyltransferase 2, beta lysosomal glucosidase, hexokinase, endoglucanase 
6 and cellulose synthase, etc., which were found differentially expressed. Secondary metabolic pathways such as 
flavonoids and alkaloids were also found to be affected by drought stress. In both genotypes, the amino acid and 
nucleotide pathways followed by the carbohydrate and lipid metabolic pathways were found associated with water 
deficit stress.

Identification of transcription factors (TFs) during deficit irrigation.   The differential expression 
of genes encoding transcription factors (TFs) were identified in the peanut under DI. A total of 715 and 839 TF 
genes belonging to 58 classes were differentially expressed in the peanut A and B genomes, respectively. Among 
the differentially expressed TF encoding genes, the highest number of genes were from MYB family for both A 
and B genomes followed by WRKY, and ERF during DI (Supplementary Fig. S8). The MYB, bHLH, WRKY, ERF, 
NAC and C2H2 transcription factor family encoding genes were abundantly expressed in both genotypes during 
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the DI conditions (Fig. 6A,B). In addition, the analysis revealed that ABC-2 type transporter and LBD (LATERAL 
ORGAN BOUNDARY DOMAIN) TF were found to be upregulated during DI conditions with respect to FI in 
C-76. Similarly, in Val-C during DI versus FI, the ABC transporter, other TF genes, such as NAC, the bHLH fam-
ily, cytochrome P-450, WRKY, and NF-Y, were found to be induced.

Figure 3.  Differential gene expression analysis in C-76 and Val-C genotypes during deficit irrigation 
conditions: (a) Number of differentially expressed genes (DEGs) during deficit irrigation (DI) across 10 
pseudomolecules on A and B genomes (b) Bar graph representing number of induced/upregulated and 
repressed/downregulated genes in C-76 and Val-C during DI with respect to fully irrigated (FI) conditions 
(numbers on the bars representing the number of up and downregulated genes) (c) Venn diagram representing 
the common and unique upregulated and down-regulated genes during deficit irrigation on A and B genomes 
of C-76 and Val-C (d) Venn diagram depicting the common and specific DEGs in different combinations of 
C-76 and Val-C genotypes during DI and FI on A and B genomes of peanut.
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Validation of DEGs from RNA-seq using quantitative real-time PCR (qRT-PCR).  The expression 
of RNA-seq was also validated by qRT-PCR. For this study, a total of 10 DEGs, five genes each from A genome 
and B genome were selected and primers were designed (Supplementary Table S10). These include- ubiquitin- 
ligase, NHL domain-containing, peptidyl- prolyl cis-trans isomerase, LRR receptor serine- threonine kinase, vinorine 
synthase, LEA, DNA mismatch repair MSH6, ATPase alpha partial, laccase-14 and plastid movement impaired 2. 
Although there was a small variation in the degree of expression, almost all of the 10 genes selected for validation 
showed the same pattern of expression as displayed in RNA-seq data (Fig. 7) confirming the results achieved 
through RNA-seq analysis.

SNP marker identification and validation.  A total of 514 SNPs were identified between C-76 and Val-C, 
occurring in DEGs when aligned with A (190) and B (324) genomes. The identified SNPs were present on 270 
DEGs collectively, where 95 genes were present on the A genome and 175 genes on the B genome. The SNPs 
were identified in four different combinations and were divided into missense, 3′UTR, 5′UTR, splice region, 
stop gained, start lost and stop loss variants (Table 3). The distribution of SNP variants in pseudomolecules on 
different DEGs has been shown in Fig. 8. Several missense variants on A and B genomes in four combinations 
were 116 and 225, respectively. A total of 23 sets of allelic specific primers were designed for 23 genes to validate 
polymorphism in C-76 and Val-C (Supplementary Table S11) using qRT-PCR. Homozygous and heterozygous 
alleles were detected based on the variations obtained in the cycle threshold (Ct) values. If the Ct value is <30.0 
for the set of allelic primers of one gene in one genotype but not in the other, this is considered to be the pres-
ence of two different alleles and vice versa. Of the 23 allelic primers designed, 21 sets of allelic primers did not 
show any polymorphism (Table 4), while two SNPs representing two genes exhibited polymorphism. The first 
SNP (Ct > 30 in C-76 and Ct <30 in Val-C) was from the gene coding the F-box protein (Araip.3WN1Q) while 
another SNP (Ct value of <20 in C-76 and Ct> 25.0 in Val-C) was from the gene coded for the lipid transfer 
protein (Aradu.03ENG). These validated SNPs from the genes Araip.3WN1Q and Aradu.03ENG can be used for 
performing early generation screening of the breeding material arising from crosses involving source parent for 
good performance under water deficit stress.

Figure 4.  An overview of differentially expressed genes in drought stress-responsive pathway mechanism: Heat 
maps demonstrating the expression profiles of differentially expressed drought stress-responsive genes during 
fully irrigated (FI) and deficit irrigation (DI). Color scale represents normalized FPKM values. Corresponding 
reference gene ids (with suffix XLOC) falling have been given on the right side. The color scale on the top 
represents normalized FPKM values.
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Discussion
Cultivated peanut is an important legume and comprises of allotetraploid genome (type AABB; 2n = 4x = 40) 
with a total size of about 2.7GB. The availability of genome sequence information of the diploid progenitors (A. 
duranensis and A. ipaensis) of cultivated peanuts18,19 allows us to study the genome wide transcriptome variations 
in different peanut lines. More recently, the high-quality reference genomes for both the subspecies of cultivated 
peanuts have become available (was not available at time of this study), which will further enhance the precision 
of future genomics and transcriptomics studies in peanut20–22. This study is a combined approach to physiological 
and transcriptomic responses of peanut genotypes or breeding material under water deficit conditions. Yield and 
physiological attributes were measured in 10 selected peanut genotypes and further RNA-seq was performed in 
two different genotypes to study the transcriptome changes that occur during deficit irrigation (DI) and fully irri-
gated (FI) conditions. In addition, this is a unique study, where the samples from our study were collected in the 
field to facilitate natural environmental conditions rather than using growth chambers for controlled conditions.

Among the ten different genotypes selected for this study C-76-16 (C-76) showed better performance in terms 
of mean yield under DI conditions. While on the other hand, check cultivar Valencia-C (Val-C) showed lesser 
yield. These results are well synchronizing with our earlier study on the pod yield performance of different peanut 
genotypes under different soil and regional conditions9, where C-76 produced more than Val-C in rainfed condi-
tions without irrigation but there is a considerable reduction in C-76 yield by 15–20% compared to Val-C, which 
was up to 50–70% reduction in yield compared to complete irrigation9. Another study in peanut23 showed a lower 
yield of Valencia-type pods (PI 536121) under drought conditions. Since Val-C is considered standard control for 
West Texas and eastern New Mexico regions, there is a need to improve the genetic potential of Val-C in terms of 

Figure 5.  Gene ontology and pathway analysis: (A) Functional categorization of drought-responsive genes 
under different gene ontology (GO) categories-cellular component, biological process and molecular function. 
(B) The top 15 different pathways involved in deficit irrigation stress of C-76 and Val-C genotypes including the 
representation of percent of genes involved in each pathway.
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yield in case of water deficit conditions. This facilitates the realization of transcriptomic study on genotypes C-76 
(runner type) and Val-C (Valencia type) to understand the underlying genetic mechanisms. Although the geno-
types selected belong to different market classes and several factors are added, the comparison of the responses 
in the transcriptome of the leaf is adequate because the two genotypes represent the same species. Transcriptome 
analysis in C-76 and Val-C revealed the expression of 28,524 and 29,490 genes on A and B genomes of peanut, 
where more number of expressed genes hitting to B genome described the direct effect on the progeny of A. ipaen-
sis from the same population that contributed to the B genome of the cultivated peanut18. Further, the analysis 
showed the expression of a very less number of DEGs in C-76 under DI versus FI. The number of induced genes 

Figure 6.  Heat maps representing the expression profiles of highly expressed transcription factor (TF) gene 
families: Expression of genes encoding (A) MYB and WRKY (B) ERF and bHLH TFs during fully irrigated 
(FI) and deficit irrigation (DI) conditions of C-76 and Val-C genotypes on A and B genomes of peanut. 
Corresponding reference gene ids (with suffix XLOC) falling under each TF family have been given on the right 
side. The color scale on the top represents normalized FPKM values.

Figure 7.  Validation of RNA-seq results using quantitative real-time PCR (qRT-PCR): Expression correlation of 
genes using qPCR and RNA-seq data. Validation of gene expression patterns of 10 genes during deficit irrigation 
(DI) in comparison with their respective fully irrigated (FI) samples. The y-axis represents the relative gene 
expression during DI versus FI.
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Genome SNP type

C-76- FI
Vs
Val-C-FI

C-76-FI
Vs
C-76 -DI

Val-C-FI
Vs
Val-C-DI

C-76-DI
Vs
Val-C-DI Total

A

3‘UTR’ variant 17 0 13 22 52

5,‘UTR’ variant 11 0 4 5 20

Missense variant 43 1 21 51 116

Stop gained 1 0 0 1 2

B

3‘UTR’ variant 15 0 8 24 47

5‘UTR’ variant 13 0 17 15 45

Missense variant 81 1 55 84 221

Splice region variant 1 0 0 0 1

Stop gained 3 0 1 4 8

Start lost 0 0 0 1 1

Table 3.  SNPs distribution in different combinations across A and B genomes of peanut.

Figure 8.  Circos representing the distribution of transcription factors (TFs), differentially expressed genes 
(DEGs) and SNPs across the different pseudomolecules of reference genomes of peanut: Concentric circles 
in the circos plot from inside to outside (a) orange color representing the expression profiles of transcription 
factors (b) blue color representing differentially expressed genes (DEGs) (c) green color representing the SNP 
density and (d) outer most track (in multicolor) representing pseudomolecules of peanut on two genomes of A 
and B.
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was very less in C-76 is a rather interesting phenomenon. These results are consistent with those of the sorghum 
study where more DEGs were expressed in drought-sensitive than drought-tolerant subjects24.

Differential expression of functional and regulatory genes responsive to drought stress was induced 
in Val-C relative to C-76 on comparison of their corresponding DI samples with respect to their FI samples 
(Supplementary Table S6). This shows that C-76 showed a significant level of tolerance in DI and may not be 
experiencing water deficit stress, unlike Val-C. This can also be explained in the other direction, as the stress 
imposed was not sufficient for the C-76 to express more number of drought stress responsive genes during DI ver-
sus FI. However, in Val-C for the same level of imposed stress, various genes related to drought stress-responsive 
mechanisms/pathways were activated robustly to combat stress. Comparatively, Val-C showed the activation of a 

S.
No Gene Id Locus Allele Primer set C-76 Val-C

1 Araip.1ZJ86 Araip.B05:9584285–9586662 T/A
Allele1 + +

Allele2 − −

2 Araip.XI9UR Araip.B01:121358660–121360450 C/G
Allele1 − −

Allele2 + +

3 Araip.L4UC8 Araip.B04:128351613-128357097 G/A
Allele1 − −

Allele2 + +

4 Araip.J8WWD Araip.B05:149331140-149333249 C/G
Allele1 − −

Allele2 + +

5 Araip.AD1F5 Araip.B05:149331140-149333249 T/G
Allele1 − −

Allele2 + +

6 Araip.9WJ7K Araip.B07:7841693-7846317 A/T
Allele1 − −

Allele2 + +

7 Aradu.XF675 Araip.B07:7841693-7846317 G/A
Allele1 − −

Allele2 + +

8 Aradu.03ENGI 
(1 & 2) Aradu.A02:84440367-84441960 T/A

Allele1 ++ +

Allele2 − −

9 Aradu.03ENG 
II(3 & 4) Aradu.A02:84440367-84441960 T/A

Allelle1 − −

Allele2 + +

10 Araip.G4DKZ Araip.B03:109942672 C/T
Allele1 − −

Allele2 + +

11 Aradu.77ZLW Aradu.A10:5944901-5947659 C/T
Allele1 + +

Allele2 − −

12 Araip.3WN1Q Araip.B01:23319799-23321171 A/T
Allele1 − +

Allele2 − −

13 Araip.26ZIU Araip.B01:123879553-123882176 T/A
Allele1 + +

Allele2 − −

14 Araip.6FC6W Araip.B09:115020963-115024147 G/T
Allele1 + +

Allele2 − −

15 Araip.982E5 Araip.B06:1022422-1025983 T/G
Allele1 − −

Allele2 + +

16 Aradu.96ASX Aradu.A02:1911658-1916520 T/A
Allele1 − −

Allele2 + +

17 Aradu.CVI2N Aradu.A03:28240-34249 A/G
Allele1 − −

Allele2 + +

18 Aradu.618YE Aradu.A10:95832914-95833751 A/C
Allele1 − −

Allele2 + +

19 Aradu.S1EHV Aradu.A04:30101833-30104322 G/T
Allele1 + +

Allele2 − −

20 Aradu.AGI8J Aradu.A08:34838458-34855099 G/A
Allele1 + +

Allele2 − −

21 Aradu.R479P Aradu.A05:18360103 A/G
Allele1 − −

Allele2 + +

22 Araip.JH8FI Araip.B04:127200939-127205614 C/G
Allele1 + +

Allele2 − −

23 Araip.JH8FI Araip.B04:127200939-127205614 C/G
Allele1 − −

Allele2 + +

Table 4.  SNPs validation using qRT-PCR. *** “+” CT Value <30.0; “++” CT Value <20.
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maximum number of drought-responsive pathways than C-76 during DI versus FI conditions, which could form 
the basis of the contrasting response of both genotypes. The adaptation to different environmental conditions 
varies according to the genotypes of solitary plant species, which can be explained by the phenomenon of natural 
variation25 and the level of tolerance to any type of stress varies from one genotype to another26.

It is interesting to note that the contrasting expression profiles of common DEGs, such as trypsin inhibitors, 
late embryogenesis abundant (LEA), ABC transporter and LOB containing domain, etc. in both genotypes dur-
ing DI, suggest that there are significant differences between genotypes in terms of irrigation and water defi-
cit conditions (Supplementary Fig. S7). In maize, the reciprocal expression of DEGs that responds to drought 
between two contrasting inbred lines, causing under water deficit stress reveals drought tolerance mechanisms27. 
In Arabidopsis a strong accumulation of trypsin inhibitor genes in water deficit periods was reported28. Similarly, 
LEA proteins are known to accumulate during water stress to prevent intracellular water loss. The increased 
expression of cellular LEA proteins shows tolerance to drought stress in sorghum29, and foxtail millet30.

Phytohormones, also play a crucial role in water deficit stress in plants. The accumulation of abscisic acid 
(ABA) can lead to stomatal closure, which reduces water loss and subsequently stops cell growth and eventually 
results in increased concentration of reactive oxygen species (ROS)31,32. Genes such as abscisic acid 8 hydroxylase, 
proline imino-peptidase and sucrose synthase, which play a crucial role in drought stress response, shown the 
decreased expression in Val-C during DI. On the other hand, the increased expression of these genes was noticed 
in C-76 compared to Val-C under FI. The increased abscisic acid can be catabolized in the cell by the abscisic acid 
8-hydroxylase acid to form 8′-OH abscisic acid to maintain cellular homeostasis, has been reported in the grape-
vine33. The accumulation33 of ABA is negatively regulated by the plant’s mechanism through the activation of 
catabolic enzymes of ABA during water stress to enhance tolerance34,35. In the present study, the downregulation 
of genes related to abscisic acid 8-hydroxylase and cytochrome p450 (CYP) genes in Val-C implies the downregula-
tion of abscisic acid pathway under DI, which in turn leads to an accumulation of ROS and finally cell damage. In 
addition, reduced expression of sucrose synthase in Val-C could play an important role in yield reduction due to 
the disproportion of the source to sink ratio. The sucrose synthase activity plays a crucial role in the biosynthesis 
of starch and storage proteins36. The increased activity of sucrose synthase leads to increased grain assimilation 
in wheat under water stress37.

In addition, genes related to photosynthesis showed significant discrimination between two contrasting geno-
types especially during FI conditions. The genes related to light reactions of photosynthesis of photosystem I and 
II were found to be downregulated in Val-C versus C-76 during FI conditions (Supplementary Table S12). The 
downregulated genes related to the subunits of photosystems I and II under drought stress conditions, reduced 
plant tolerance levels to drought stress in sorghum24. Decreased expression of genes involved in light-harvesting 
chlorophyll a/b-binding proteins (LHCBs) and photosystems I and II results in decreased drought tolerance in 
plants38,39. During irrigated conditions, the genes encoding P700 apo A1 of photosystem I, and D2 of photosystem 
II exhibited comparatively high expression in C-76 than Val-C. The D2 protein of photosystem II plays a vital 
role in stress tolerance (Supplementary Table S12). Among the different DEGs identified, genes related to pho-
tosynthesis showed a distinct expression in both genotypes. Therefore, it is essential to comprehensively study 
the photosynthetic genes associated with drought stress in peanuts, which gives a better idea in the develop-
ment of drought-tolerant genotypes. In addition, the expression of genes encoding different transcription factors 
(TFs) such as MYB, NF-Y, NAC, WRKY, ERF, bHLH represents the induction of the ABA-dependent signalling 
pathway as a stress response (Supplementary Fig. S8). The involvement of drought-responsive WRKY and NAC 
TFs may be useful in the detoxification of ROS by regulating downstream target genes40. In addition, the SNP 
validation study has provided the information on genetic markers which upon further validation in larger set of 
genotypes can be used in genomic-assisted breeding for enhancing drought stress tolerance.

In summary, this is a combined study of phenotypic, physiological and genome-wide transcriptome analysis in 
diverse peanut genotypes. The germplasm line C-76 yielded the best results among the 10 accessions tested in our 
study. Although demand for the high oleic trait is high, when water resources are limited, processors will contract 
farmers to grow a variety that can provide better performance under limited irrigation conditions. Hopefully, a 
variety of lineages such as C-76 can overcome the challenges where farmers can irrigate less and be able to pro-
duce a decent yield in regions of West Texas and eastern New Mexico. On the basis of yield, C-76 and Val-C were 
selected for transcriptome analysis. Also, this is the first attempt on the genetic improvement of Valencia-type 
peanut to understand the drought tolerance mechanisms. When compared to DI versus FI, the more number of 
DEGs in Val-C genotype than C-76 infers its steep response to water stress. While, for the C-76, the treatment of 
the imposed stress was not sufficient to respond and could not be under stress, which could explain in terms of 
the expression of less number of DEGs during DI versus FI, implies its higher tolerance. Also, the comparative 
transcriptome analysis of both genotypes under FI conditions, the high expression of proline imino-peptidase, 
peroxidase, abscisic acid 8-hydroxylase and photosystem II D2 genes in C-76 reflect its tolerance level and its ability 
to survive under limited water conditions. Although Val-C, is capable of activating different genes and pathways 
responsive to drought stress, decreased expression of key pathway genes related to ABA metabolism may result 
in cellular accumulation of ROS, which in turn may cause the devastating effects of the cell to resist water stress. 
Further, the decreased expression of the photosynthetic related genes, and genes related to sucrose metabolism 
may be one of the reasons for the reduced yield in Val-C. Also, identified SNPs related to F-box protein and lipid 
transfer genes showed polymorphism between C-76 and Val-C genotypes which can be used as linked markers for 
performing early generation selection in genomics-assisted breeding programs. In conclusion, this study revealed 
genotype information appropriate for the regions of West Texas and eastern New Mexico regions and the underly-
ing complex mechanisms associated with contrasting peanut genotypes under water deficit conditions.
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Materials and Methods
Germplasm and details of the experimental setup.  Ten different peanut genotypes used in this 
study were obtained from four different market types, namely Spanish, Virginia, runner type and Valencia 
(Supplementary Table S1). Seven genotypes – ICGV 86388, ICGV 86051, TMV-2, Tamspan-90, Serenut-5R, 
Serenut-6T, and COC 041 belong to the Spanish market type, while ICGS 76 belongs to the Virginia group. While 
C-76-16 (C-76) is a breeding line which belongs to the runner type and Valencia-C (Val-C) belong to Valencia 
market. Detailed information on crop management, weather and meteorological conditions, soil moisture and 
temperature conditions have been provided in Supplementary Information). Field trials were conducted on a pro-
ducer’s peanut field (Delwin Marrow Farm) in Terry County, Brownfield, Texas, USA (33° 18′N, 102° 16′W, ele-
vation 1009 m). Two treatments, one with complete/full irrigation (FI) and the other with deficit irrigation (DI), 
was imposed. Complete irrigation received 100% available water content (AWC) while deficit irrigation received 
50% throughout the growing season, from 2013 to 2015. Adequate irrigation (100%) was based on the farmer’s 
well capacity of the farmer’s wells, and the low irrigation (50%) were treatment was implemented by reducing 
the irrigation rate by 50%. The experiment was conducted on the basis of split-plot design using main plots with 
irrigation as a factor and each genotype was replicated four times. The collection of meteorological data, weather 
data and the total volume of water received (rain + rainfall + irrigation) as a percentage of the ETo (TWRPET) 
were provided in the Supplementary Information.

Crop harvest and yield measurement.  At physiological maturity, the crops were mechanically har-
vested in September in the FI and DI fields using a specialized digging equipment to dig peanuts under the vines 
(Pearman Corporation, GA, USA). Maturity was determined by examining the color of the pod mesocarp along 
the saddle region of the dorsal seed. Black or brown colors were used as indicators of physiological maturity. To 
analyze the color of the pods, 25 plants were randomly selected from the middle of the plot and were extracted 
using a rotating nozzle pressure washer.

Leaf-level net photosynthesis.  Photosynthesis at the leaf-level was measured between 60–90 days after 
sowing. For the fully irrigated control plants, photosynthesis was measured 48 h after an irrigation event. For 
the treatment of the deficit, measurements were taken during the interval of irrigation deficit interval (10 to 12 
days) between the irrigation events. The recovery rates of photosynthesis for deficit treatments were measured to 
the plot after giving an irrigation for 48 h following 2 weeks of without irrigation. The rate of photosynthesis was 
measured using a portable photosynthesis system (Li-6400 XT, LI-COR, Inc.). All measurements were taken in 
between 10:00 and 12:00 h. For each genotype, three measurements per replicate were measured. The leaves of the 
Li-Cor 6400 XT cuvette were maintained and measured under the following conditions: saturated photosynthetic 
photon flux density (PPFD) of 2000 μmolm−2s−1, 40 Pa of CO2 and leaf temperature of 27 °C. When measuring 
gas exchange, carefully fill the sensor head with the leaflets to avoid errors.

Total chlorophyll content and specific leaf area (SLA).  The chlorophyll content was recorded using 
SPAD (502 Minolta Corp., Ramsey, NJ). Measurements were taken every 30 days after emergence (DAE). The 
second or third fully developed tetrafoliate leaf was used to measure the SPAD reading when attached to the plant. 
After recording the measurements, the leaf was detached from the plant, placed in an envelope covered with a 
block of ice in an ice chest for the measurement of leaf area using a leaf area meter (Li 3050 C, LI-COR, Inc.), 
followed by drying in a hot air oven at 60 °C for 48 h to measure the dry weight.

The dry weight was measured to determine the specific leaf area (SLA) in cm2g−1 and determined using the 
formula:

SLA Leaf area (cm )/Leaf dry weight (g)2=

Statistical analysis.  Data for each variable were analyzed using the PROC ANOVA procedure in Statistical 
Analysis System 9.3 (SAS Institute, 2013, https://www.sas.com/en_us/software/sas9.html). Before performing a 
separate analysis per year, the Bartlett variance, homogeneity of variance test was performed. In each year, irriga-
tion and varieties were used as random factors, and appropriate error terms were used to calculate the mean sum 
of squares for each variable factor. If the F value was significant, a mean separation test was performed using the 
LSMEANS procedure in SAS software. In the LSMEANS procedure, additional PDIFF and PDMIX 800 options 
were used to evaluate the probability of significance among various main and interaction effects. Means were 
considered statistically different if P-value ≤0.05.

RNA isolation, quality check, and sequencing.  RNA-seq leaf samples were collected during 2014 from 
the fully developed third leaf of the apex. Three biological replicates were collected for profiling the transcrip-
tome. Total RNA was extracted from 12 leaf tissues (two genotypes × two treatments × three biological replicates) 
of genotypes C-76 (tolerant) and Val-C (susceptible) during FI and DI conditions at the active pegging and fruit 
development stages using the TRIzol reagent (Life Technologies, Carlsbad, CA, USA). RNA purification was per-
formed using the RNeasy Mini Kit (Qiagen, US) and the integrity of the RNA was verified using Bioanalyzer 2100 
(Agilent Technologies, US). cDNA libraries for RNA-seq were constructed using Illumina TruSeq RNA Sample 
Preparation Kit (Illumina Inc., San Diego, CA, USA) following the manufacturer’s instructions. Paired-end 
sequencing (2 × 54 bp) was performed using the Illumina HiSeq 2000 (Illumina, San Diego, CA,USA) system at 
National Genomic Resource Center (NCGR).

Reference-based assembly and annotation.  RNA-seq data was analyzed using the Tuxedo pipe-
line41. The raw reads obtained from the sequencing were subjected to quality control using NGS-QCbox42 and 
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trimmomatic v0.3543. The filtered reads of all samples were aligned to the A and B diploid progenitors of the 
peanut18 with Tophat v2.1.044. The aligned reads of each sample were then used to create a Reference Annotation 
Based Transcript (RABT) assembly using cufflinks45. The resulting assemblies were then merged into a consensus 
assembly using cuffmerge for downstream analysis41 (Supplementary Fig. S9). The relationship between the tran-
scriptomes of two genotypes (C-76 and Val-C) under two conditions (FI and DI) in three biological replicates on 
both A and B genomes was shown by generating a dendrogram by using the cummeRbund package46.

Transcript abundance and identification of differentially expressed genes.  Gene expression was 
estimated as fragments per kilobase of transcript per million mapped reads (FPKM) and differentially expressed 
genes were identified using Cuffdiff. Genes with log fold change( ) 22 ≥  and P-value ≤ 0.05 were identified as 
DEGs. The identified DEGs were scanned against the National Biotechnology Information Center (NCBI) 
non-redundant (taxon. Viridiplantae) protein database using BLASTX with an E-value cutoff of ≤10−5 to deter-
mine their putative function.

Gene ontology (GO) and pathway analysis.  Gene ontology for the expressed genes was performed 
using Blast2GO v 3.347. In parallel, the expressed genes were searched against Plant TFDB with an E-value cutoff 
of ≤10−10 to identify the genes encoding the transcription factors. The pathway analysis was then carried out 
using the KEGG database. Heat maps with expression profiles were generated based on the transformed FPKM 
values using MeV48.

SNP identification.  The identification of SNPs was performed using SAMtools49, followed by their anno-
tation using the SnpEff program50. The BatchPrimer3 tool (https://probes.pw.usda.gov/cgi-bin/batchprimer3/
batchprimer3.cgi) was used to design allele-specific primers between C-76 and Val-C. The information on prim-
ers has been provided in Supplementary Tables S10 and S11. Validation of SNPs was performed by qRT-PCR 
using SYBR green chemistry. Homozygous and heterozygous alleles were detected based on variations in the Ct 
values obtained51.

Quantitative real-time PCR (qRT-PCR).  The real-time qPCR was performed on the Applied Biosystems 
QuantStudioTM7 Flex real-time PCR system (Life Technologies, Carlsbad, CA, USA) using RT2 SYBR Green 
ROX qPCR master mix chemistry (Qiagen, CA, USA). Three biological replicates per peanut genotype (C-76 and 
Val-C) and treatment (FI and DI), and three technical replicates per biological sample were processed by qPCR 
in real-time for each set of SNP primers. Each biological sample was analyzed with three technical replicates with 
the Actin as housekeeping gene. The conditions used for the amplification were as follows: 2 min at 50 °C, 10 min 
at 95 °C, followed by 45 cycles of 15 s at 95 °C, 1 min at 58 °C and analysis of the dissociation curve of 15 s at 95 °C, 
1 min 58 °C, 15 s at 95 °C and 15 s at 60 °C. Expression levels were normalized at actin expression levels for each 
sample52. The relative fold change (log2) of the normalized data was represented by the 2−ΔΔCt method53.

Data availability
Sequencing RNA-seq data described in this article have been published in the National Biotechnology Center 
Archives database with BioProject IDPRJNA498570.
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