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Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus
Aspergillus flavus and closely related species that infect several agricultural commodities
including groundnut and maize. The consumption of contaminated commodities
adversely affects the health of humans and livestock. Aflatoxin contamination also
causes significant economic and financial losses to producers. Research efforts
and significant progress have been made in the past three decades to understand
the genetic behavior, molecular mechanisms, as well as the detailed biology of
host-pathogen interactions. A range of omics approaches have facilitated better
understanding of the resistance mechanisms and identified pathways involved during
host-pathogen interactions. Most of such studies were however undertaken in
groundnut and maize. Current efforts are geared toward harnessing knowledge on host-
pathogen interactions and crop resistant factors that control aflatoxin contamination.
This study provides a summary of the recent progress made in enhancing the
understanding of the functional biology and molecular mechanisms associated with
host-pathogen interactions during aflatoxin contamination in groundnut and maize.

Keywords: Aspergillus flavus, aflatoxin contamination, host-pathogen interactions, molecular mechanisms,
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INTRODUCTION

Aflatoxins are teratogenic, carcinogenic and immunosuppressive
secondary metabolites produced by several Aspergillus section
Flavi species (Frisvad et al., 2019). The most common aflatoxin-
producing species is A. flavus (Amaike and Keller, 2011) but,
A. parasiticus, A. nomius, and other species may be important
causal agents of contamination in some areas/years (Diedhiou
et al., 2011; Probst et al., 2014; Kachapulula et al., 2017; Kumar
P. et al., 2017). Aflatoxin-producing fungi contaminate several
agricultural commodities such as groundnut, maize, cottonseed,
wheat, rice, tree nuts, and chili peppers (Doster et al., 2014;
Khan et al., 2014; Kumar P. et al., 2017; Sarma et al., 2017;
Ezekiel et al., 2019).

Aflatoxin remains in food and feed even after cooking
and drying of the crop because of its heat and freeze stable
nature. There are four major types of aflatoxins, namely,
AFB1, AFB2, AFG1, and AFG2 which are discernible based
on their blue and green fluorescence under UV light and
migration rate. AFB1, the most potent and toxic, is associated
with hepatocellular carcinoma (Liu and Wu, 2010). Consuming
contaminated commodities may have chronic and/or acute
effects that may lead to mortality (Sarma et al., 2017). In
addition to the large array of negative health effects of the
toxins, the contamination of crops results in large economic
losses to farmers and to countries because of produce rejected
by markets seeking aflatoxin-compliant crops (Wild and Gong,
2010; Bryden, 2012). For instance, India could export only
800,000 tons each year despite being 2nd largest groundnut
producer in the world, and aflatoxin contamination being one
of the major reason behind low export (Suneja, 2019). In
semi-arid and arid regions of the United States, and tropical
and sub-tropical Asia and Africa, aflatoxin contamination of
agricultural products occurs frequently (Cotty et al., 2008;
Razzaghi-Abyanehed, 2013; Bandyopadhyay et al., 2016). In
such affected areas, mitigation of contamination is necessary to
protect the health of consumers, maintain crop competitiveness,
and to harness the full potential of crops to ensure food and
nutritional security.

Deploying pre- and post-harvest genetic resistance in new
crop varieties together with good agricultural practices may
provide a permanent solution to this problem (Ayalew et al.,
2017; Meseka et al., 2018). In this context, it is imperative to
explore and deploy all possible resistance mechanisms/methods
to control aflatoxin accumulation in the field followed by best
practices in the entire value chain. In the case of groundnut,
three different types of resistance mechanisms, namely in vitro
seed colonization (IVSC), pre-harvest aflatoxin contamination
(PAC), and aflatoxin production (AP) have been reported, which
are inherited independently (Nigam et al., 2009). In addition,
genetic resistance is modulated by high soil temperature and
moisture stress which promote higher rates of fungal infection
and contamination. To achieve stable genetic resistance against
A. flavus infection, we believe all three mechanisms should be
examined and integrated to effectively provide resistance under
field conditions, during harvest, and throughout storage (see
Pandey et al., 2019).

Groundnut and maize are among the most aflatoxin-prone
crops. Both are commonly exposed to Aspergillus infection
during pre- and post-harvest stages (Guo et al., 2008). For
example in Ghana, these two crops that are considered as
staples are frequently infected by Aspergillus species, with unsafe
aflatoxin levels (Samson et al., 1981; MoFA, 2011; Agbetiameh
et al., 2018). In Ghana, as in any other country, aflatoxin-
resistant varieties are not commercially available. In addition,
farmers typically do not follow good agricultural practices;
so contamination begins in the field and may continue until
the crops are consumed. Therefore, farmers and traders must
receive training and information on good agricultural practices
such as timely sowing and irrigation, ensuring adequate dry
field conditions before harvest, timely harvesting, and post-
harvest management strategies to limit aflatoxin contamination
(Dorner, 2004; Jaime-Garcia and Cotty, 2004; Hell et al., 2008;
Florkowski and Kolavalli, 2013; Bandyopadhyay et al., 2016).
Although some success has been achieved, good management
practices are neither very cost effective nor always practical
for the resource-poor farmers, or are not effective in reducing
aflatoxin content below tolerance thresholds if not used as part
of a holistic aflatoxin management strategy. Climate change
and frequent extreme weather events, hot and dry conditions,
and erratic rainfall have become more pronounced, allowing
aflatoxin-producing fungi to thrive, exacerbating the frequency
and severity of contamination events (Chen et al., 2015). Heat
and drought stresses are the most important abiotic stresses
that predispose crops to Aspergillus infection and also affect
crop productivity.

A promising strategy is the field application of atoxigenic
A. flavus strains to reduce aflatoxin content in crops. In the
United States and several African countries, driven primarily by
USDA-ARS and IITA, respectively, the application of carefully
selected atoxigenic A. flavus strains as biocontrol agents has
consistently reduced aflatoxin contamination in commercially
produced crops and allowed farmers to enter domestic and
international premium markets (Cotty et al., 2007; Dorner, 2009;
Mehl et al., 2012; Doster et al., 2014; Bandyopadhyay et al.,
2019; Ortega-Beltran and Bandyopadhyay, 2019; Schreurs et al.,
2019; Senghor et al., 2019). When applied at the right stage,
treated crops accumulate over 80% less and sometimes even
100% less aflatoxin than non-treated adjacent crops. In addition,
when biocontrol is used as a centerpiece of a holistic aflatoxin
management strategy, lower aflatoxins accumulate in treated
crops at harvest and throughout storage (Bandyopadhyay et al.,
2019). Research groups in Italy, Argentina, China, Thailand,
and Australia have conducted extensive work on biocontrol in
addition to the United States and Africa (Alaniz Zanon et al.,
2013, 2016; Mauro et al., 2015; Pitt et al., 2015). Although
significant progress has been made, there are many countries
where the biocontrol technology has not yet been developed
and in the meantime other aflatoxin management strategies
need to be employed.

In rainfed areas where farmers are subjected to unavoidable
biotic and abiotic stresses that influence aflatoxin accumulation,
it is paramount to conduct comprehensive genetics and genomics
studies for a better understanding of the genetic behavior, genetic
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architecture, and molecular mechanisms that govern different
types of aflatoxin resistance in groundnut and maize. Several
genetic mapping studies conducted in both groundnut and maize
have concluded that aflatoxin resistance is a quantitative trait
and has complex genetic behavior with high G × E interaction
(Chen et al., 2015; Pandey et al., 2019). Hence, by dissecting
host-pathogen interactions during fungal infection by aflatoxin
producers and aflatoxin contamination, important host-specific,
resistance-related genes/proteins/pathways/resistant factors can
be characterized in both groundnut and maize. This study
focusses on the current status of resistance and molecular
mechanisms in these two major crops using different omics
approaches such as genetics, genomics, transcriptomics, and
proteomics in addition to emphasizing on host-pathogen
interactions. We also discuss the research gaps in global efforts
to understand resistance mechanisms and translational genomics
in developing aflatoxin-resistant groundnut and maize varieties
to provide safe products to consumers as well as safeguard the
multibillion-dollar industries associated with both crops.

GENERAL CHARACTERISTICS OF
AFLATOXIN-PRODUCING FUNGI

Aspergillus is a diverse genus of fungi that contains more than 200
species (Samson, 1992). Among those that produce aflatoxin, the
agriculturally important species belong to section Flavi (Frisvad
et al., 2019). Within section Flavi, A. flavus and A. parasiticus
are the most common causal agents of aflatoxin contamination
and are associated with a large number of crops (Pildain et al.,
2008; Probst et al., 2014). A. flavus produces B aflatoxins and
A. parasiticus produces both B and G aflatoxins. Some A. flavus
strains cannot produce aflatoxin due to deletions or defects
in the aflatoxin biosynthesis gene cluster (Chang et al., 2005;
Adhikari et al., 2016). A. flavus strains may also produce other
toxic compounds such as sterigmatocystin, cyclopiazonic acid,
kojic acid, β-nitropropionic acid, aspertoxin, aflatrem, gliotoxin,
and aspergillic acid (Hedayati et al., 2007); however, their
incidence and frequency in field crops and toxicity to humans and
animals are not clear.

Based on sclerotia size, A. flavus can be classified into two
groups, L and S morphotypes. L morphotype produces few, large
sclerotia (>400 µm), abundant conidia, and variable aflatoxin
levels while S morphotype produces few conidia, abundant
small sclerotia (<400 µm), and consistently high aflatoxin levels
(Cotty, 1989). Some L morphotype strains do not produce
aflatoxin due to lesions in the aflatoxin gene cluster and are
known as atoxigenic (Chang et al., 2005; Adhikari et al.,
2016). In nature, A. flavus produces primarily asexual spores
(conidia) (Amaike and Keller, 2011). The fungus lives in the
soil as conidia and the sclerotia, aggregates of hyphae that serve
as survival structures that germinate to form saprophytically
growing mycelia. Conidia are carried by wind or insects to
host tissues, where they germinate and infect both aerial and
subterraneanly grown organs of agronomically important crops
(Cotty, 2001; Amaike and Keller, 2011); hence, insects may act as
vectors during crop infection. Sclerotia allow aflatoxin producers

to survive in extreme environmental conditions (Wicklow et al.,
1993; Payne, 1998). Certain strains of A. flavus – both aflatoxin
producers and atoxigenic strains – have higher adaptation and
increased competitiveness in diverse cropping systems (Mehl
and Cotty, 2011; Atehnkeng et al., 2016; Agbetiameh et al.,
2019). Further, sexual reproduction has been reported to occur
in A. flavus, A. parasiticus, and A. nomius under highly artificial
laboratory conditions (Horn et al., 2009a,b) and also in the
field after the release of A. flavus sclerotia incubated for
6 months (Horn et al., 2014). However, the significance of sexual
reproduction in nature needs further studies.

FACTORS AFFECTING TOXIGENICITY
AND AFLATOXIN CONTAMINATION

Different biotic factors such as fungal virulence, host
susceptibility, insect damage, and abiotic factors such as
soil moisture, temperature, high humidity, and mechanical
damage while attempting inter-cultivation practices significantly
influence A. flavus invasion and aflatoxin accumulation in
groundnut (Asis et al., 2005). In maize, hot and dry environments
(>32◦C and >70% RH), drought conditions and damage to
kernel seed coat compromise predispose the crop to aflatoxin
contamination. Under drought conditions, drought-tolerant
varieties accumulate lower aflatoxin levels compared to non-
drought-tolerant varieties. High grain moisture increases
post-harvest molding and aflatoxin contamination. Hence,
proper drying of grains after harvest to 7% moisture level in
groundnut and 12% moisture level in maize is ideal to prevent
fungal growth (Liang et al., 2009). Temperature is also an
important factor as A. flavus thrives well in a wide range of
temperatures between 10 and 40◦C. However, the optimum
temperature range for high AP by A. flavus is 25–30◦C (Gqaleni
et al., 1997). Storage conditions largely influence aflatoxin
in crops. Storing pods/grains in jute bags provides favorable
conditions for A. flavus growth. Jute bags can easily absorb
moisture because of high porosity which favors rapid growth and
multiplication of molds. Purdue Improved Crop Storage (PICS)
bags that rely on the principle of hermetic storage have been
used to prevent A. flavus infestation and aflatoxin contamination
during storage (Sudini et al., 2015; Danso et al., 2018, 2019;
Walker et al., 2018). Although aflatoxin contamination is more
severe in the field during pre-harvest stage, contamination may
increase during post-harvest if management practices such
as transportation and storage are deficient. Hence, integrated
management of aflatoxin contamination during pre-harvest,
post-harvest and storage is necessary to reduce aflatoxin
contamination and aflatoxin exposure.

GENETICS OF RESISTANCE
MECHANISMS

The mechanisms of resistance to infection and reduced AP
are quantitative in nature (Warburton and Williams, 2014). In
groundnut, the mechanisms include resistance to infection in
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the pod wall, resistance to seed invasion and colonization of
seed coat, and resistance to AP in cotyledons. At the time of
infection, aflatoxin producers have to penetrate the pod wall and
then the seed coat to reach the cotyledons, from which they
derive nutrients and produce aflatoxin. In groundnut, resistance
to pod infection is attributed to pod shell structure, while
resistance to seed invasion and colonization are mostly physical
and attributed to seed coat thickness, density of palisade cell
layers, and the presence of wax layers (Upadhyaya et al., 2002).
In the case of maize, resistance mechanisms include good husk
coverage, presence of proteins inhibiting fungal growth (Moore
et al., 2004; Chen et al., 2010) wax, and cutin layers (Russin
et al., 1997; Gembeh et al., 2001). Maize with kernel integrity
intact and a living embryo typically accumulates less aflatoxin
(Brown et al., 1993).

Generation mean analysis in maize has shown that additive
and dominant gene action are important for resistance to AP
(Campbell et al., 1997; Busboom and White, 2004). Diallele
mating designs were used to study the inheritance of resistance
to both Aspergillus ear rot and aflatoxin accumulation. These
two studies reported that general combining ability had a
greater effect on aflatoxin resistance in maize than specific
combining ability, suggesting that additive gene effect is more
important than dominant gene effect (Darrah et al., 1987;
Gorman et al., 1992).

A resistant inbred of maize Oh516 was developed from
the cross (B14 × L97) × B14 at Ohio State University
and the hybrid derived from testcross Oh516 × B73 showed
resistance to A. flavus infection and low aflatoxin concentration
in grain (Campbell and White, 1995). The resistant inbred
lines from testcross Oh516 × B73 were not significantly
different from the inbred lines developed from the testcross
Tex6 × B73 (Paul et al., 2003). F1 crosses developed with
inbred lines Oh516 or Tex6 had lower aflatoxin concentration
in grain than crosses without Oh516 or Tex6. The F1 cross
Oh516 × Tex6 had the lowest aflatoxin concentration in grain
of all F1 crosses. These findings indicate that the resistance
mechanism is quantitative in nature and may be governed
by multiple genes.

Types of Resistance Mechanisms
Groundnut has three types of resistance mechanisms, i.e., IVSC,
PAC, and AP (Nigam et al., 2009; Figure 1). Similarly, in
maize, the resistance is a sum of (1) prevention of fungal
infection; (2) prevention of subsequent growth of the fungus
after infection; and (3) inhibition of aflatoxin biosynthesis
after infection (Williams et al., 2015). The extent of aflatoxin
contamination varies with geographical location, cultural and
agronomic practices, storage and processing period.

In groundnut, the majority of contamination occurs in
the field. Hence in the context of developing aflatoxin-
resistant groundnut cultivars, host resistance for PAC is a
preventive approach that is economical and easy to disseminate.
Such strategy does not require extra resources for farmers,
leaves no chemical residues as a result of fungicide usage,
and is an alternative for areas/nations where atoxigenic
biocontrol measures are not available (Garrido-Bazan et al.,

2018). ICRISAT has been deploying genetics and genomics
approaches to understand resistance mechanisms and identify
resistant genes/haplotypes to amalgamate all the three resistance
mechanisms into a single genetic background in groundnut
using genomics-assisted breeding (GAB) (Pandey et al., 2019).
In addition to genetic resistance in groundnut and maize,
reduced aflatoxin accumulation will require multidisciplinary
approaches such as the use of biocontrol agents, good
harvesting practices, appropriate drying, and optimal post-
harvest storage (Logrieco et al., 2018). In the long run,
the development of new breeding lines using introgression
of validated quantitative trait loci (QTLs), single nucleotide
polymorphism (SNPs) associated with resistance at the pre-
harvest and/or post-harvest stages, optimized markers for
marker-assisted selection (MAS), marker-assisted recurrent
selection (MARS), and genomic selection (GS), can help the
farming community grow crop varieties that may accumulate
less/minimal aflatoxin.

Physical and Chemical Barriers to
Infection
In groundnut, seed coat thickness and its permeability confer
resistance against A. flavus infection as a seed coat is the
outermost layer that acts as a physical barrier (LaPrade et al.,
1973). Smaller hila, a more compact arrangement of palisade-
like layer of testa, and thicker waxy surface contribute to
resistance against A. flavus infection (Taber et al., 1973). It
has been reported that higher wax and cutin deposits in
groundnut lead to resistance to A. flavus invasion and AP
in resistant genotypes than in susceptible genotypes (Liang
et al., 2003b). Hence, the seed coat, wax, and cutin are
effective physical barriers to pathogen invasion and colonization.
Groundnut testa is a rich source of tannins that inhibit
A. flavus infection. 5-7-dimethoxyisoflavone (Turner et al., 1975)
and tannins (Sanders and Mixon, 1979) have been reported
as important inhibitors of A. flavus infection. In groundnut,
tannins inhibit A. parasiticus growth by arresting mycelial
growth and reducing AP (Sanders and Mixon, 1979). The
basic composition of testa also contributes to the resistance
to invasion. A study on protein profiling in a panel of 15
groundnut genotypes revealed that resistant genotypes had
higher trypsin content and activity than susceptible genotypes
(Liang et al., 2003a).

In maize, trypsin, ribosome-inactivating protein (RIP), and
zeamatin act as inhibitors to the infection of A. flavus and
A. parasiticus, and many other fungi (Chen et al., 1998).
Resistance to colonization results from a variety of physiological,
biochemical, and molecular factors at different levels of infection.
Elevated levels of chitinases pCh2 and pCh11 were reported in
the aleurone layer of maize in damaged grains colonized by
A. flavus (Moore et al., 2004). Hence, breeding to strengthen
physical features such as thick testa and chemical barriers such
as thick cutin and lignin layers can inhibit A. flavus infection and
aflatoxin contamination. Similarly, improving the aleurone layer
of maize with high chitinase and trypsin inhibitor can reduce
aflatoxin accumulation.
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FIGURE 1 | Aflatoxin resistance mechanisms in groundnut. IVSC, in vitro seed colonization; PAC, pre-harvest aflatoxin contamination; AP, aflatoxin production.

Constitutive and Induced Resistance
Mechanisms
Host plant resistance to biotic stresses has been characterized
into two categories, i.e., constitutive and induced resistance.
Phytoanticipins confer constitutive resistance while phytoalexins
contribute to induced resistance (VanEtten et al., 1994).
Secondary metabolites are known to be involved in controlling
several immune responses, e.g., callose deposition and
programed cell death (Piasecka et al., 2015). Phytoanticipins
are antimicrobial metabolites (Pedras and Yaya, 2015).
For instance, the groundnut plant produces a variety of
phenylpropanoids, such as p-coumaric acid, caffeic acid,
ferulic acid, methoxycinnamic acid, and mucilagin A, a
phenylpropanoid-polyketide-isoprenoid. These metabolites have
been known to have antifungal activities against both A. flavus
and A. parasiticus (Sobolev et al., 2006). These phenylpropanoids
are likely to function as phytoanticipins in specific groundnut
plant tissues (Pedras and Yaya, 2015). Phenylalanine ammonia
lyase (PAL) which is a precursor of lignin and phytoalexins,
has increased rapidly and reached maximum levels in resistant
groundnut genotypes than in susceptible ones (Liang et al.,
2001). In the case of membrane lipid peroxidation, the level
of malondialdehyde (MDA) increased by 8-fold 2–3 days
after inoculation (DAI). Moreover, the generation of O2

−,
H2O2, and lipoxygenase (LOX) also increased markedly at the
early stage after infection in groundnut (Liang et al., 2002).
Resveratrol is an antifungal secondary metabolite or phytoalexin
compound found in groundnut seeds (Wang et al., 2015). In
resistant genotypes, resveratrol levels increased by 30-fold on
the third DAI (Liang et al., 2006). In contrast, the resveratrol
level remained unchanged even on the 4-DAI in susceptible

genotypes. Plants have several inducible defense responses
to pathogens, such as lignification, cell wall cross-linking,
phytoalexins, hypersensitive response, production of reactive
oxygen species (ROS), and pathogenesis-related (PR) proteins
(Liang et al., 2006).

In maize, the first line of defense in response to A. flavus
results in the activation of expression of transcriptional factors
such as WRKY that confer resistance against pathogens (Skriver
and Mundy, 1990). WRKY transcription factors were found to
be significantly upregulated by A. flavus infection in developing
maize kernels of resistant maize line TZAR101 (Fountain
et al., 2015). ZmWRKY53 is highly expressed in response
to a necrotrophic pathogen and also regulates chitinase and
peroxidase gene expression. Lignin cross-linking in the cell wall
contributes to the resistance to A. flavus infection. For instance,
less A. flavus growth was observed in Mp313E, a maize line that
has high cross-linked lignin compared to the susceptible line
SC212 (Magbanua et al., 2013). For breeding aflatoxin resistance,
the genetic transformation or introgression of resistance genes
and transcription factors such as WRKY, PAL, and LOX genes can
improve groundnut and maize varieties and reduce the burden of
aflatoxin contamination.

GENOMIC REGIONS CONTROLLING
AFLATOXIN RESISTANCE

Several QTL mapping studies have been performed leading
to discovery of genomic regions for aflatoxin resistance in
groundnut and maize (Table 1). Each QTL mapping experiment
in groundnut has had at least one QTL with phenotypic
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TABLE 1 | Key bi-parental QTL mapping and GWAS studies for discovery of genomic regions controlling aflatoxin contamination in groundnut and maize.

Population Trait No. of
QTLs/MTAs

LOD/p-value
range

PVE% range References

Groundnut (Arachis hypogaea)

Bi-parental QTL mapping

Zhonghua 10 × ICG 12625 (RIL population) PSII 2 3.1–5.0 8.0–13.0 Yu et al., 2019

AFB1 7 3.1–6.4 7.3–17.9 Yu et al., 2019

AFB2 5 3.5–8.8 8.3–21.0 Yu et al., 2019

Yueyou 92 × Xinhuixiaoli (RIL population) Resistance to
A. flavus

2 2.9–10.5 5.2–19.0 W. Zhuang
(personal communication)

Genome-wide association study (GWAS)

ICRISAT Reference Set 300 Resistance to
A. flavus

1 9.68 × 10−7 24.7 Pandey et al., 2014

Maize (Zea mays)

Bi-parental QTL mapping

M53 × RA (F8 :9 RIL population) Resistance to
A. flavus

8 2.2–5.4 3.6–9.9 Yin et al., 2014

Mp313E × Va35 (F2 :3 population) Aflatoxin content 20 2.4–8.0 0.2–21.6 Willcox et al., 2013

Mp715 × T173 (F2 :3 population) Aflatoxin content 12 1.8–11.5 2.7–18.5 Warburton et al., 2011

NC300 × Mp717 (F2 :3 population) Aflatoxin content 12 − 1.0–11.0 Warburton et al., 2009

B73 × Mp313E (F2:3 population) Aflatoxin content 13 2.9–7.8 5.0–18.4 Brooks et al., 2005

Tex6 × B73 (BC1S1) Aflatoxin content 2 3.8–4.2 16.1–17.8 Paul et al., 2003

Tex6 × B73 (F2 :3) Aflatoxin content 3 2.5–5.2 6.7–15.1 Paul et al., 2003

RA × M53 (RIL population) Amount of Aflatoxin
(AA)

1 major QTL (qAA8) 8.42 18.23 Zhang et al., 2016

6 epistatic QTLs 5.0–5.4 14.05–22.6 Zhang et al., 2016

B73 × CML322 (F2S5) RIL population Afl, ICS, IFS, KSP,
and SSP

10 2.6–6.2 6.0–16.0 Mideros et al., 2014

B73o2/o2 × CML161 RIL population Aflatoxin
accumulation

9 3.0–4.0 8.0–11.0 Mayfield et al., 2011

B73o2/o2 × CML161 RIL population Aflatoxin
accumulation

9 2.7–3.9 7.8–11.3 Bello, 2007

Genome-wide association study (GWAS)

Maize inbred lines (346 line) Aflatoxin resistance 6 5.1–5.5 4.8–6.1 Farfan et al., 2015

Inbred lines (300 line) Resistance to
aflatoxin
accumulation (RAA)

107 9.8 × 10−6 to
2.9 × 10−10

5.4–16.0 Warburton et al., 2015

Maize inbred lines (437 lines) Amount of aflatoxin
(AA)

3 1.1 × 10−8 to
2.1 × 10−7

6.7–10.4 Zhang et al., 2016

Resistance to
A. flavus infection
(RAI)

22 3.7 × 10−22 to
8.7 × 10−6

6.4–26.8 Zhang et al., 2016

Maize inbred lines (287 lines) Grain aflatoxin
levels

298 Maize Cyc
pathways

2.9 × 10−10 to
1.0

6.4 × 10−14 to 0.3 Tang et al., 2015

BC1S1, selfed backcross population; PSII, percent seed infection index; AFB1, aflatoxin B1; AFB2, aflatoxin B2; IVSC, in vitro seed colonization; RIL, recombinant inbred
lines; Chr, chromosome; LOD, logarithm of odds; ICS, infection on silk tissue; IFS, infection frequency on silk tissue; KSP, sporulation on developing kernels; SSP,
sporulation on silk tissue; Afl, aflatoxin accumulation.

variation explained (PVE) > 10% and reaching up to >20% in
some cases. Interestingly in maize, some QTLs were mapped
on same genomic regions in different mapping populations
which indicated that there are some genes underlying similar
function in different studies (Warburton and Williams, 2014;
Parish et al., 2019).

In groundnut, very few genetic mapping studies have
been reported for aflatoxin resistance. Individual QTLs were
identified for AFB1, AFB2, and (percent seed infection index;

PSII) using a recombinant inbred line (RIL) population
Zhonghua 10 × ICG 12625 by Yu et al. (2019). The
study identified two QTLs for PSII, one on chromosome
A03 with 8.0% PVE and another on chromosome A10 with
13.0% PVE. Seven QTLs were identified for AFB1 (Aflatoxin
B1) resistance, of which two major QTLs were detected
on chromosomes A07 and B06 with 17.9 and 16.3% PVE,
respectively. Similarly, five QTLs were identified for resistance
to AFB2, of which chromosomes A07, B05, B06, and B07
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recorded higher PVEs of 12.2, 11.1, 21.0, and 14.5% PVE,
respectively. Two consistent QTLs for AFB1 (Aflatoxin B1)
and AFB2 (Aflatoxin B2) and one for PSII were identified
(Yu et al., 2019). Genetic mapping using a groundnut RIL
population Yueyou 92 × Xinhuixiaoli for IVSC identified two
major QTLs on chromosomes A03 and B04 with LOD of 10.5
and 2.9 and 19.0 and 5.1% PVE, respectively (W. Zhuang,
personal communication). Similarly, genome-wide association
studies using a groundnut reference set identified a marker
associated with IVSC explaining 24.7% PVE (Pandey et al.,
2014). One groundnut MAGIC population using eight genotypes
possessing resistance to Aspergillus infection and reduced
aflatoxin accumulation has been developed at ICRISAT for
genetic dissection of component traits.

In the case of maize, major effect QTLs were identified
in crosses Tex6 × B73 (F2:3) and Tex6 × B73 (BC1S1) on
chromosomes 3, 4, 5, and 10 with 6.7–17.8% PVE (Paul et al.,
2003). Another study (Brooks et al., 2005) conducted in F2:3-
derived maize populations reported two major effect QTLs for
aflatoxin resistance in B73 × Mp313E population that were
significant across environments. Other studies in maize have
identified one stable QTL in NC300 × Mp717 population
which was stable across years. Warburton et al. (2009), three
major effect QTLs explaining PVE ranging from 12.1–21.6%
in Mp313E × Va35 population (Willcox et al., 2013); small
effect QTLs in M53 × Mo17 population (Yin et al., 2014),
and single QTL explaining 18.5% PVE in Mp715 × T173
population (Warburton et al., 2011). Similarly, QTL for log
aflatoxin accumulations were detected on chromosomes 1, 3, 4,
and 9, explaining a total of 17% PVE; while QTL for aflatoxin
were detected on chromosomes 3, 4, and 8, explaining a total
of 15% PVE in RIL population B73o2/o2 × CML161 (Mayfield
et al., 2011). In fact, the same population (B73o2/o2 × CML161)
was used earlier (Bello, 2007). QTLs affecting aflatoxin from
both parents; however, the favorable alleles for the QTL detected
by Bello (2007) were derived mainly from CML161 (Mayfield
et al., 2011). In earlier aflatoxin QTL studies, Brooks et al.
(2005) evaluated their germplasm in four environments, Paul
et al. (2003) used two environments, and Warburton et al.
(2009) used four environments. All these studies reported few
significant QTLs detected in more than one environment.
Warburton et al. (2009) reported the most, with one QTL
present in all four environments and one QTL detected in
two environments. However, Mayfield et al. (2011) reported
three QTLs one on each of chromosomes 1, 4, and 9, across
multiple years and environments. In another study by using
the B73 × CML322 population, ten QTLs with 6.0–16.0% PVE
were found using two QTL mapping methods, six of which
were located on the same chromosome segments using both
approaches (Mideros et al., 2014). By using various sources
of near-isogenic lines (NILs) for selected loci, the resistance
QTL located in bin 4.08 was confirmed using a NIL pair.
Furthermore, the meta-analysis of QTLs using data from 12
populations indicated that the QTL in bin 4.08 has been reported
in four mapping populations. The study showed that the largest-
effect QTL, located in bin 4.08, is a good candidate for further
characterization and use.

In addition to bi-parental QTL mapping studies, many diverse
association panels have been used for genome-wide association
study (GWAS) leading to the identification of markers/genomic
regions for aflatoxin resistance in maize. For instance, Farfan
et al. (2015) identified 6 MTAs for aflatoxin resistance with
4.79–6.06% PVE. In another study (Warburton et al., 2015),
GWAS analysis using 300 maize inbred lines identified 107
SNPs associated with aflatoxin accumulation in one or more
environments in the association panel. Similarly, in another study
using an association panel of 437 maize inbred lines, Zhang et al.
(2016) identified 3 MTAs for AA and 22 MTAs for resistance
to A. flavus infection (RAI). In a comprehensive GWAS analysis
undertaken by Tang et al. (2015), 298 maize Cyc pathways were
reported to be associated with resistance mechanisms, 17 of the
pathways reported high enrichment scores of false discovery
rate (FDR) < 0.2, of which the jasmonic acid biosynthesis
pathway seems to be a major one for aflatoxin resistance. While
these studies are informative, comprehensive efforts are required
to perform high resolution GWAS in maize and especially in
groundnut so that candidate genomic regions/genes can be
identified and validated for breeding applications.

MOLECULAR BASIS OF AFLATOXIN
RESISTANCE MECHANISMS

Identification of Resistance-Associated
Proteins
Proteomics approaches have identified several plant proteins
involved in host-pathogen interaction and in controlling
resistance to fungal invasion and toxin production in
both groundnut and maize. For instance, in groundnut, a
2D-based proteomics study identified pathways/proteins
including resistance-associated proteins (RAPs) which
were associated with pre-harvest aflatoxin resistance under
drought stress conditions (Wang et al., 2010). That study
highlighted the role of iso Ara-h3, oxalate oxidase, PII
protein, trypsin inhibitor, SAP domain-containing protein,
CDK1, L-ascorbate peroxidase, RIO kinase, and heat shock
proteins in reducing aflatoxin accumulation at pre-harvest
aflatoxin resistance. Later, Wang et al. (2012) identified
several RAPs in groundnut which were key controllers of
pathways such as immune signaling, PAMP perception, cell
wall responses, and detoxification. The study on effect of H2O2-
derived oxidative stress on A. flavus isolates discovered
a sub-set of genes that control fungus pathogenicity,
mycelial development, and manage ROS production
(Fountain et al., 2018).

In maize, several proteomic approaches have been used
to understand the molecular mechanisms involved in host-
pathogen interaction and resistance to AP. For instance, RIP and
zeamatin were present in higher concentrations in germinating
maize kernels and led to decreased aflatoxin levels in susceptible
maize kernels and thereby inhibited the growth of A. flavus
under imbibed conditions (Guo et al., 1997). A similar study has
indicated the importance of fungal cell wall degrading enzymes,
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particularly isoforms of beta-l,3-glucanase and chitinase, which
are induced in maturing kernels in response to A. flavus infection
and also in maturing uninfected kernels (Lozovaya et al., 1998;
Ji et al., 2000). Importantly, antifungal proteins chitinase and
zeamatin appear to be associated with the host first and second
layer of resistance (Guo et al., 1997), and their constitutive
expression in maize can provide resistance against A. flavus.
Grains of resistant maize genotypes can accumulate inhibitory
proteins such as 22 and 28kDa which restrict the growth of
the fungus as they are associated key resistant proteins like PR-
5 thaumatin-like proteins and zeamatin (Huang et al., 1997;
Moore et al., 2004). In another study, the proteome analysis
of resistant maize genotypes identified a constitutive expression
of 14-kDa trypsin inhibitor that can cause spore rupture and
abnormal hyphal development in A. flavus (Chen et al., 1998).
Also, the trypsin inhibitor produced by maize can inhibit
fungal-amylase activity that limits pathogen access to the host
food resource (starch) which in turn restrict fungus mycelial
growth and sclerotia development (Woloshuk et al., 1997;
Chen et al., 1998, 1999).

A proteomic examination of maize seeds has identified
several groups of proteins associated with the embryo and
endosperm that were significantly upregulated upon A. flavus
infection. These proteins were grouped into four categories:
storage proteins, water stress-related proteins, PR proteins,
and antifungal proteins (Chen et al., 2002, 2004b, 2006, 2007,
2012). Storage proteins globulin 1 and 2, water stress responsive
related proteins WSI18, aldose reductase, late embryogenesis
abundant (LEA; LEA3 and LEA14) and heat stress related
proteins (HSP16.9) impart kernel resistance (Chen et al., 2002).
Further, glyoxalase I (GLX-I; EC 4.4.1.5), a stress-related protein,
directly controls methylglyoxal levels, an aflatoxin inducing
substrate, thereby contributing to lower aflatoxin levels in
resistant maize genotypes (Chen et al., 2004b). The RAP involves
maize PR-10, which exhibits ribonucleolytic and antifungal
activities (Chen et al., 2006, 2007); and the genes of encoding
PR proteins are usually highly expressed in resistant genotypes
(Chen et al., 2007). A United States–Africa collaborative project
identified resistant maize inbred lines (Menkir et al., 2006, 2008;
Meseka et al., 2018). The project reported the development
of 52 BC1S4 lines from crosses between five African maize
inbreds and five temperate aflatoxin-resistant lines followed by
the identification of RAPs related to antifungal, stress-related,
storage or regulatory protein categories (Chen et al., 2012).
Resistant inbred lines of maize are known to express higher levels
of chitinase and proteins associated with phenylpropanoid
metabolism pathways (Peethambaran et al., 2009;
Pechanova et al., 2011).

Using multiple approaches in groundnut and maize have led
to the identification of several moderate/low/high resistant lines
for A. flavus infection and reduced aflatoxin contamination.
These advances have facilitated the development of aflatoxin-
resistant transgenic groundnut (Sharma et al., 2018) and
maize (Thakare et al., 2017); and it is expected that in
the coming years, farmers may have access to superior and
aflatoxin-resistant varieties. However, the release of transgenic
cultivars is dependent on their acceptance by regulators in

the target countries. To date, the use of transgenic maize
is accepted only in South Africa and Sudan in Africa.
A summary of different proteomic studies in maize and
groundnut is provided in Table 2. Cumulatively, these studies
enhance our knowledge of target proteins in order to identify
protein encoding resistance genes in response to aflatoxin
contamination in these crops.

Identification of Candidate Genes
Functional genomics provides new insights into a wide number
of candidate genes associated with resistance to aflatoxin
contamination in both groundnut and maize (Table 3).
In the case of groundnut, transcriptomics studies have
identified candidate genes, pathways, and the regulatory
networks for the three resistance mechanisms of aflatoxin
accumulation (IVSC, PAC, and AP). Earlier efforts to identify
resistance/differentially expressed genes in groundnut were
based on EST or microarray-based techniques (Luo et al.,
2005; Guo et al., 2011; Wang et al., 2013). The gene expression
profiling approach was deployed by Luo et al. (2005) in
A13 drought-tolerant and pre-harvest aflatoxin-resistant
groundnut genotypes in which a cDNA microarray containing
384 unigenes was selected from two cDNA libraries. Overall,
the microarray-based screening approach identified defense
responsive (Kunitz-type trypsin inhibitor, auxin repressed
protein, cystatin-like protein), signaling component (ethylene-
responsive protein, calcium-binding protein), ion-proton
transporter (aquaporin 1), stress proteins, and secondary
metabolites (lipoxygenase 1) resistance genes in groundnut
in response to A. parasiticus infection under drought stress
(Luo et al., 2005).

To understand the molecular mechanism of host-mediated
resistance, a separate study was conducted in Aspergillus resistant
(GT-C20) and susceptible (Tifrunner) genotypes of groundnut
which identified 52 highly and 126 moderately expressed genes
(Guo et al., 2011). This study reported several important
genes including lipoxygenase, lea-protein 2, proline-rich protein,
cupin//Oxalate oxidase, among others, in response to A. flavus
infection. Some studies have suggested the possible involvement
of LOX pathway in the production of jasmonic acid which
plays hormone-like regulatory and defense-related roles in plants
(Royo et al., 1996; Kolomiets et al., 2001; Yan et al., 2013;
Ogunola et al., 2017).

Studies have reported that LOX genes also play a major role in
plant defense mechanisms, growth, and developmental processes
(Kolomiets et al., 2001, 2018; Gao et al., 2008; Park and Kolomiets,
2010). In this emerging field, more investigations are needed
on host-pathogen cross-talk communication that fungi use to
exploit the plant host in order to meet their biological needs
(Christensen and Kolomiets, 2011). Some LOX genes have been
shown to play an important role in plant defense resistance
and in mediating fungal colonization and toxin production
(Battilani et al., 2018).

A microarray study representing 36,158 unigenes was
used to identify genes associated with aflatoxin resistance in
groundnut (Wang et al., 2013), providing insights into the
co-regulation of multiple pathways such as host defensive
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TABLE 2 | List of key proteins and their functions associated with resistance to aflatoxin contamination in groundnut and maize.

RAPs Function References

Groundnut

Oxalate oxidase Seed storage protein Wang et al., 2010

Trypsin inhibitor Antifungal compound

SAP domain-containing protein Abiotic stress tolerance protein

L-ascorbate peroxidase Regulates antioxidant metabolism

Iso Ara-h3 Seed storage protein

Heat shock protein precursor Regulates heat shock factors

LRR receptor serine/threonine kinase PAMPs perception Wang et al., 2012

Protein phosphatase 2A regulatory B subunit Dephosphorylation

Pentatricopeptide repeat-containing protein RNA stabilization

Esterase_lipase Lipid metabolism

Cytochrome P450 Degrades toxins

Maize

Zeamatin Antimicrobial, fungicide Guo et al., 1997; Huang et al.,
1997; Chen et al., 2002

Ribosome-inactivating protein (RIP) Protein synthesis inhibitor Guo et al., 1997

Chitinase Hydrolytic enzymes that degrade chitin Guo et al., 1997; Ji et al., 2000;
Chen et al., 2002

Glucanase Destroys cell wall of fungi Guo et al., 1997

Beta-1,3-glucanase PR-2 family protein, antifungal Lozovaya et al., 1998; Ji et al.,
2000

PR-5 thaumatin-like protein PR protein Huang et al., 1997

Globulin-1,2 Seed storage proteins Chen et al., 2001, 2002, 2006,
2012

Endochitinase Degrades chitin molecule at random point Huang et al., 1997

14-kDa trypsin inhibitor Spores rupture and cause abnormal hyphal development Chen et al., 1998, 1999

LEA3,14 Stress responsive proteins Chen et al., 2002, 2006, 2012

WSI18 and aldose reductase Osmo-stress responsive and oxidative stress responsive proteins Chen et al., 2002

HSP16.9 (Heat stress related) Stress responsive protein Chen et al., 2002

Glyoxalase I Controls methylglyoxal level as it stimulates the expression of aflR, an
aflatoxin regulatory gene

Chen et al., 2004a

PR-10 Disease resistance Chen et al., 2006

Stress-related-peroxiredoxin antioxidant (PER1) Antioxidants proteins that protect against oxygen species

Heat shock proteins (HSP17.2) Stress responsive proteins

Antifungal trypsin inhibitor protein (TI) Inhibits A. flavus growth

Cold-regulated protein (COR) Inhibits germination of A. flavus conidia and mycelial growth Chen et al., 2006, 2012

Superoxide dismutase Enhances oxidative stress tolerance Chen et al., 2012

Peroxiredoxin Enhances oxidative stress tolerance

Cupindomain-containing proteins Seed storage protein

Putative lipid transfer protein Stress responsive

Eukaryotic translation initiation factor 5A Plays a role in plant growth and development

Abiotic stress responsive proteins PR protein and stress responsive Peethambaran et al., 2009

PRm3 chitinase Fungal cell wall degradation and stress resistance

Chitinase 1 Defense mechanism in response to biotic stress

Chitinase A Suppresses fungal growth

Phenylpropanoid metabolism Secondary metabolite production Pechanova et al., 2011

responses including carbohydrate biosynthesis/metabolism,
transmembrane transport, coenzyme A biosynthesis, oxidation-
reduction, proteolysis metabolism, etc., during aflatoxin
resistance. Modern approaches such as RNA-seq have been
used to identify host resistance associated pathways in different
crops including maize and groundnut. For instance, in case
of groundnut, an integrated IVSC and RNA-seq approach

that analyzed the four different stages of infected seed
samples from J11 (resistant) and JL24 (susceptible) identified
4,445 differentially expressed unigenes (DEGs) that were
involved in multiple pathways such as defense-related, PR
or metabolic pathway targeting genes provided a more solid
understanding of cross-talk between host-pathogen interactions
(Nayak et al., 2017).
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TABLE 3 | A summary of some transcriptomics studies to identify candidate genes involved in aflatoxin contamination in groundnut and maize.

Candidate genes Functions of candidate genes References

Groundnut

Seed maturation protein LEA 4 Stress responsive protein Guo et al., 2008

Serine protease inhibitor Involved in inflammatory responses

Cu/Zn superoxide dismutase II Antioxidant defensive protein

Serine protease inhibitor Involved in inflammatory responses

Lipoxygenase Regulates jasmonic acid signaling pathway Guo et al., 2011

Proline-rich protein Stress responsive protein

Cupin//Oxalate oxidase Seed storage protein

LEA-protein 2 Stress responsive protein

Brassinosteroid Insensitive 1-associated Receptor kinase 1 Defense response Wang et al., 2013

3-ketoacyl-CoA synthase Fatty acid biosynthetic process

Em protein Stress responsive

TIR Defense response

Defensin Defense response

Mitogen-activated protein kinase Signaling cascade gene Wang et al., 2016

PR proteins Disease resistance

Nucleotide-binding site-leucine-rich repeat proteins PAMPs perception

Polygalacturonase inhibitor proteins Inhibit polygalactouronase produced by the fungal pathogen

Abscisic acid insensitive5 Participates in ABA signaling pathway Clevenger et al., 2016

BLH1 Modulates seed development

Respiratory burst oxidase homolog Regulates numerous plant cell responses

13S-lipoxygenases Lipid metabolism

PR-2 Disease resistance in plants

Deoxy-chalcone synthase Synthesizes phytoalexins

Resveratrol synthase Biosynthesis stilbene type-phytoalexins Nayak et al., 2017

Chalcone synthase Involved in the flavonoid biosynthesis pathway

Epoxide hydrolase Detoxification of reactive epoxide

Receptor-like kinases Cell wall signaling

9s-LOX Lipid metabolism

WRKY genes Transcriptional regulators; regulates plant development Korani et al., 2018

Toll/Interleukin-1 receptor-nucleotide-binding site
leucine-rich repeat (TIR-NBS-LRR)

Defense responsive

α-linolenic acid metabolism Lipid metabolism

Hevamine-A Defense protein Zhao et al., 2019

PR proteins Disease resistance

Chitinase Hydrolytic enzymes that degrade chitin

Maize

Kunitz-type trypsin inhibitor Serine protease inhibitor activity Luo et al., 2005

Auxin repressed protein Regulates growth and disease resistance

Cystatin-like protein Defense mechanism

Lipoxygenase 1 Regulates the jasmonic acid pathway

Ion-proton transporter (Aquaporin 1), Accelerates oxidative stress and cell signaling

Glutathione S-transferase Antioxidant

Heat shock protein Defense mechanism; regulates heat shock factors

PR protein 1 Disease resistance

ADP glucose pyrophosphorylase Starch metabolism Luo et al., 2009

1-acyl-glycerol-3-phosphate acyltransferase Lipid metabolism

Lipoxygenase Regulates the jasmonic acid pathway

Oleosin 17 Oil body formation and storage protein

Abscisic acid inducible gene Defense-related genes

Chalcone synthase C2 Involved in the flavonoid biosynthesis pathway

Glutathione transferase Antioxidant gene Luo et al., 2011

Leucine-rich repeat-like protein Biotic stress-related gene

(Continued)
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TABLE 3 | Continued

Candidate genes Functions of candidate genes References

ABI3-interacting protein 2 A transcription factor of the abscisic acid signal transduction pathway
that plays a role in seed development

Beta-1,3-glucanase Classified in PR-2 family of PR proteins, antifungal

Zeamatin-like protein Antimicrobial, fungicide

PR genes PR genes

Phosphoglycerate dehydratase 1 Plays a role in catalysis Luo et al., 2010

Heat shock protein 90 Signal transduction and stress responsive

Glycine−rich protein Stress responsive and signaling

Cytochrome P450 Degrades toxins

Ethylene-responsive element binding factor Regulates jasmonic acid signaling pathway

9-oxylipins Suppresses aflatoxin biosynthesis pathway Fountain et al., 2013

Lipoxygenase-3 (LOX3) Regulates jasmonic acid signaling pathway

PR proteins Disease resistance

NUP85-like genes Transports RNA, R-proteins and macromolecules from the nucleus to
the cytoplasm

Kelley et al., 2012

Heat shock protein (HSP101) Molecular chaperone protein

Molecular chaperones Plays a role in protein folding

Cinnamoyl-CoA Synthesizes lignin compounds

PR-4 Antifungal proteins play a role in pathogenicity Dhakal et al., 2017

Leucine-rich repeat family protein Highly conserved region for disease resistance genes

DEAD-box RNA helicase Defense-related signaling

Fructose-1,6-bisphosphatase Carbohydrate metabolism

Plant receptor protein kinases (RPK) Senses pathogen signals and accelerates defense

Cysteine proteinase inhibitor Stress responsive

PR-1, PR-4, PR-5, PR-10 Disease resistance-related genes

CC-NBS-LRR Conserves disease resistance genes Shu et al., 2017

LRR-RLK Conserves disease resistance genes

Thaumatin- like protein Regulates host defense mechanism

Chitinase Hydrolytic enzymes that degrade chitin

Likewise, an RNA-seq-based approach was deployed in
groundnut to identify genes that confer resistance during PAC
(Clevenger et al., 2016). The study was able to associate the
role of abscisic acid (ABA) signaling pathway during drought
stress-induced aflatoxin contamination and/or PAC, and also
revealed the role of genes from the fatty acid metabolism, cell wall
restructuring and morphology, sugar metabolism and nitrogen
metabolism pathways during A. flavus contamination in soil.
Recently, Zhao et al. (2019) suggested the role of hevamine-
A protein in groundnut during PAC resistance. Hevamine-
A protein is an enzyme with chitinase activity that is also
coordinated with PR proteins and can directly inhibit the growth
of A. flavus (Zhao et al., 2019).

Post-harvest aflatoxin contamination can take place during
drying, storage or transportation due to increase in humidity
and/or insect damage, thereby promoting A. flavus infection.
To understand the post-harvest resistance mechanism, Wang
et al. (2016) performed global transcriptome profiling in the
grains of resistant (Zhonghua 6) and susceptible (Zhonghua 12)
genotypes of groundnut and identified 30,143 DEGs, of which
842 were defense-related genes, including mitogen-activated
protein kinase, PR proteins, leucine-rich repeat receptor-like
kinases transcription factors, nucleotide-binding site-leucine-
rich repeat proteins, polygalacturonase inhibitor proteins, and

ADP-ribosylation factors in response to AP by A. flavus. A recent
study by Korani et al. (2018) provides new insights into post-
harvest resistance mechanism in response to A. flavus infection
by comparing the seed transcriptome of resistant (ICG 1471)
and susceptible (Florida-07) groundnut cultivars. The study
identified 4,272 DEGs and showed the importance of WRKY TFs,
heat shock proteins and TIR-NBS-LRR in providing resistance.
Further, this study also showed the altered expression of genes
associated with protein processing in the endoplasmic reticulum,
spliceosome mediated protein degradation and α-linolenic
acid metabolism.

In maize, gene expression analysis of inbred line Tex6
identified 8,497 positive array spots including genes related
to disease resistance (chitinase, zeamatin-like protein,
endochitinase B precursor, PR-1;4;5), stress responsive (heat
shock proteins, auxin responsive factor-1, D-type cyclin), ROS
scavenger (glutathione S-transferase, superoxide dismutase),
and defense-related genes, as well as storage protein genes
and lipid metabolism genes (Luo et al., 2009). Further, Luo
et al. (2010) have shown that jasmonate and abscisic acid
biosynthetic and signaling pathways play crucial roles in
drought-induced A. flavus infection and accumulation of
aflatoxin in maize. The transcriptomic study of resistant maize
(Eyl25) with susceptible (Eyl31) lines identified 530 DEGs
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including defense-related genes; beta-1,3-glucanase, zeamatin-
like protein, trypsin inhibitor, and PR genes (Luo et al., 2011).
Fountain et al. (2013) have highlighted the role of WRKY TFs in
conferring resistance to Aspergillus infection and subsequently
in reduced PAC in maize genotype. The transcriptomic study
of maize kernels in two resistant inbred lines (Mp313E and
Mp04:86) and two susceptible inbred lines (Va35 and B73)
under artificial inoculation conditions identified NUP85-like
genes in resistance (Kelley et al., 2012). The NUP85-like
protein is a major part of nuclear pore complex (NPCs) and is
involved in the transportation of RNA, R-proteins, and other
macromolecules from the nucleus to the cytoplasm (Cheng
et al., 2009; Garcia and Parker, 2009). A few more genes like
heat shock protein (HSP101), metallothionein-like protein
(MTLP), lecithin cholesterol acyltransferase (LCAT)-like gene,
Prenylated Rab PRA1 proteins, molecular chaperones, and
detoxification proteins were found to be highly expressed in
resistant maize inbred line Mp313E. Some genes including a
nuclease-phosphatase domain superfamily protein, a cinnamoyl-
CoA, a heat shock protein HSP18a, and few significantly mapped
genes like lysine-rich RNA binding domains, large and small
ribosomal units had significantly higher expression in susceptible
line Va35 than in resistant line Mp313E (Kelley et al., 2012).

Climate change has a devastating impact on mycotoxin
production and fungal infection. Functional genomics tools have
shown the impact of elevated CO2 levels on aflR gene (an
aflatoxin biosynthetic regulatory gene) in A. flavus (Gilbert et al.,
2016). A cDNA library of Mp715 (resistant inbred) and B73
(susceptible inbred) was designed to differentiate expression
patterns for aflatoxin accumulation in maize, and those cDNA
clones were mapped onto the maize genome by in silico
mapping (Dhakal et al., 2017). This study identified 267 unigenes
related to stress tolerance, metabolism, disease resistance, PR-
4, and leucine-rich repeat family protein. A comparative study
of maize kernels infected with A. flavus and F. verticillioides
identified several candidate genes such as PR-1, 10,4,5,10.1;
chitinase, CC-NBS-LRR, LRR-RLK, and Thaumatin-like proteins
that showed temporal expression patterns during infection/stress
(Shu et al., 2017). Several environmental/external factors affect
the expression of transcripts, thus influencing the colonization
of A. flavus and subsequently toxin production. For instance, the
antifungal fumigant benzenamine affects aflatoxin biosynthesis,
development, and virulence in A. flavus by downregulating the
LeaA regulatory factor, thus acting as a fumigant against A. flavus
(Yang et al., 2019).

Transgenic Approaches for Resistance
to A. flavus Infection and Aflatoxin
Contamination
Several transgenic approaches including expressing
protein/enzyme that can reduce fungal infection or degrade
the toxin have been deployed in groundnut and maize to mitigate
aflatoxin contamination (Table 4). In groundnut, very few
reports on transgenic approaches are available substantiating
the importance of host genes like PR and defensin (Xie et al.,
2013; Arias et al., 2015). A study (Sharma et al., 2018) has

shown that the overexpression of Medicago defensin genes-
MsDef1 and MtDef4.2 reduced Aspergillus infection as well
as AP in susceptible groundnut variety JL 24. The study also
demonstrated a host-induced gene silencing (HIGS) mediated
silencing of aflatoxin biosynthetic pathway regulatory genes aflM
and aflP to inhibit AP. Notably, both OE−Def and HIGS lines
showed remarkably reduced levels of aflatoxin B1 ranging from 1
to 20 ppb compared to the wild type cultivar that accumulates up
to > 4,000 ppb.

Various studies on maize provide insights into using
transgenic approaches and the knowledge of precise engineering
strategies to improve food safety. A key approach is RNA
interference (RNAi), a technology that limits the transcription of
a target gene. This approach has been deployed to silence RAP
genes (PR-10, GLXI, TI) in maize to identify the key role of RAPs
in host resistance mechanism against A. flavus infection (Chen
et al., 2004a, 2010). RNAi Pr10 silencing construct was introduced
in maize plants showing increased susceptibility to A. flavus
colonization and aflatoxin accumulation (Chen et al., 2010).
Notably, PR-10 was involved in enhancing plant stress tolerance
and severe suppression of their PR protein encoding genes
drastically increased susceptibility to A. flavus infection (Xie
et al., 2010; Majumdar et al., 2017). Recently, aflC and aflR genes
were targeted that encode the enzyme in Aspergillus aflatoxin
biosynthetic pathway to develop aflatoxin-free transgenic kernels
(Masanga et al., 2015; Thakare et al., 2017). Also, thanatin,
a growth inhibitor of A. flavus, was overexpressed in maize,
reducing aflatoxin contamination and increasing resistance by
three to four-fold resistance (Schubert et al., 2015).

In a recent study, expression analyses of polyamine (PA)
metabolism/transport genes during A. flavus-maize interaction
showed significant increase in the expression of arginine
decarboxylase (Adc) and S-adenosylmethionine decarboxylase
(Samdc) genes in the maize host and PA uptake transporters in
the fungus (Majumdar et al., 2018). This study suggested that
future studies targeting spermidine biosynthesis in A. flavus,
using RNAi-based host-induced gene silencing approaches, may
be an effective strategy to reduce aflatoxin contamination in
maize and possibly in other susceptible crops. In contrary, Gressel
and Polturak (2018) report that RNAi technology can’t help post-
harvest AP as it may have only limited utility when the grain
has been dried. However, the dormant state of seeds is usually
alleviated during post-harvest storage conditions or under low
moisture conditions and cannot accelerate the production of
hpRNAs/siRNAs (Majumdar et al., 2017). Even in the post-
transcriptional state, RNAi negatively regulates gene expression
and does not produce any protein or enzyme in the host
plant (Majumdar et al., 2017). Fakhoury and Woloshuk (1999)
produced a mutant strain (101) of A. flavus which was defective
in the α-amylase activity. The α-amylase enzyme is crucial in
A. flavus as it is involved in the degradation of the host’s
carbohydrate reservoir which is an essential energy source for
fungus growth and reproduction, as well as AP. Therefore,
an α-amylase inhibitor protein (AILP) that inhibits α-amylase
activity was expressed in the host; this reduced fungus growth
and subsequent AP (Fakhoury and Woloshuk, 2001; see Chen
et al., 2015). Recently, a transgenic maize line expressing AGM182
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TABLE 4 | A summary of some overexpression, RNAi and host-induced gene silencing studies in groundnut and maize.

Gene Source Approach Promoter Outcome References

Groundnut

ARAhPR10 A. hypogaea Overexpression CaMV35S Transgenic lines
showed both
reduced infection and
less aflatoxin
production

Xie et al., 2013

aflR; aflS; aflJ; aflep;
aflC/pksA/pksL1, pes1

A. flavus RNA interference gene
silencing technology

CaMV35S Transgenic lines
showed up to 100%
reduction in aflatoxin
content

Arias et al., 2015

MsDef1; MtDef4 M. sativa; M. truncatula Overexpression FMV35S OE-Def lines showed
a significant reduction
in aflatoxin content
(up to 99%) HIGS
lines showed a
significant reduction
in aflatoxin content
(up to 99.9%)

Sharma et al., 2018

aflM; aflP A. flavus Host-induced-gene
silencing approach

CaMV35S

Maize

ZmPR10 Z. mays RNA interference gene
silencing technology

CaMV35S promoter Downregulation of
PR-10 caused
increased
susceptibility and
aflatoxin
contamination

Chen et al., 2010

Thanatin Podisus maculiventris Heterologous
expression

Ubiquitin-1 promoter Cloning of thanatin
(an antimicrobial
synthetic peptide)
improved resistance
and reduced aflatoxin
content (up to 68%)

Schubert et al., 2015

aflR A. flavus Host-induced-gene
silencing approach

Ubiquitin promoter Transgenic lines
showed up to 14-fold
less aflatoxin
concentration
compared to the wild
type

Masanga et al., 2015

aflC A. flavus RNA interference γ-zein
endosperm-specific
promoter

Transgenic lines
showed up to 100%
reduction in aflatoxin
content

Thakare et al., 2017

ZmPRms Z. mays RNA interference based
gene silencing

Zein promoter Downregulation of
ZmPRms gene
caused increased
susceptibility and
aflatoxin
contamination

Majumdar et al., 2017

AGM182 Tachypleus tridentatus Overexpression Ubiquitin-1 promoter Overexpression of
AGM182 (an
antimicrobial peptide)
caused suppression
of A. flavus growth
and subsequently
aflatoxin production
(up to 98%)

Rajasekaran et al.,
2018

which encodes a tachyplesin1-derived synthetic peptide (an
antimicrobial peptide) was developed that exhibited reduced
fungal growth and a significant reduction in aflatoxin level

(76–98%) compared to the control (Rajasekaran et al., 2018).
Characterization of these candidate genes through a transgenic
approach would be important in safeguarding food commodities.
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Managing Aflatoxin Contamination:
Similarities Between Groundnut and
Maize
Pre- and post-harvest management strategies largely predict the
extent to which Aspergillus fungi invade seeds and exacerbate
AP (Hell et al., 2008). Most post-harvest management practices
like rapid drying of groundnut in-shell and maize ears coupled
with appropriate storage conditions are crucial for reducing
infection and toxin accumulation. During initiation stage, host-
pathogen interactions occur in the cell wall where NBS-LRR
receptors, oxylipins, and elicitors play an important role. This is
followed by a change in ion flux across the plasma membrane
and the activation of a number of genes that lead to changes
in the plant’s cell wall. It activates various PR-related proteins,
phytoalexins-like compounds and TFs which play an important
role in defense mechanism. In addition, at the environmental
level, PAC is largely exacerbated by drought stress and insect
damage in groundnut and maize (Guo et al., 2008; Hell et al.,
2008). Attempts to characterize resistance due to the physical
barriers suggested that pod shell may serve as a barrier to A. flavus
infection when the kernels are stored in-shell in the case of
groundnut (Liang et al., 2006; Nigam et al., 2009). Similarly, in
maize, a tight husk and non-upright ear act as a barrier to the
entry of spores and keep the ear dryer, resulting in an unfavorable
environment for fungal growth (Warburton and Williams, 2014).
Such physical barriers are considered non-desirable traits since
they pose serious challenges while threshing or dehulling.

In groundnut and maize, cross-talk communication between
the pathogen and host plant is the first critical step toward the
rapid activation of defense mechanisms in host plants. Functional
and biological composition of resistance mechanisms in maize
and groundnut using integrated approaches have led to the
elucidation of the roles of several genes, PR-10, chitinase, 14-kDa
trypsin inhibitor, zeatin and beta-1,3-glucanase, lipoxygenase,
ROS, and stress responsive proteins (such as late embryogenesis
abundant protein (LEA14), catalase, glutathione S-transferase,
superoxide dismutase, heat shock proteins) which play a vital
role in regulating resistance and in cross-kingdom interactions
between host plants and Aspergillus species in groundnut (Luo
et al., 2005; Chadha and Das, 2006; Liang et al., 2006; Wang et al.,
2010; Guo et al., 2011; Kumari et al., 2011; Nayak et al., 2017) and
maize (Guo et al., 1997; Chen et al., 1998, 1999, 2001, 2002, 2004b,
2006, 2007, 2012; Lozovaya et al., 1998; Ji et al., 2000; Moore et al.,
2004; Magbanua et al., 2007; Pechanova et al., 2011; Pegoraro
et al., 2011; Roze et al., 2013; Fountain et al., 2014, 2016; Hawkins
et al., 2015; Ogunola et al., 2017).

METABOLOMICS UNDER A. flavus
INFECTION AND AFLATOXIN
RESISTANCE

Metabolomics is an emerging field that represents the complete
set of metabolites in a biological cell, tissue, organ or organism.
It provides an instantaneous snapshot of the “physiological state”
of an organism (Ramalingam et al., 2015; Kumar R. et al., 2017).

Metabolites are small molecules that are directly involved in
growth, development, and reproduction processes.

To understand the aflatoxin resistance mechanism at the
metabolite level, some metabolome studies in response to
A. flavus infection have been conducted in maize. For
instance, metabolome profile under A. flavus infection showed
significant induction and higher expression of polyamine (PA)
biosynthesis genes in maize-resistant lines TZAR102, MI82 than
in susceptible line SC212. Higher expression of spermidine
(Spd), spermine (Spm), and diamine putrescine (Put) along with
their increased catabolism in the resistant lines than in the
susceptible line indicate that polyamines play an important role
in A. flavus resistance (Majumdar et al., 2019). In addition, higher
concentrations of amino acids such as glutamate (Glu), glutamine
(Gln), and γ-aminobutyric acid in susceptible maize line SC212
showed that these amino acids favor A. flavus infection. In a
similar study by Falade et al. (2018), metabolites were analyzed at
R3 (milk), R4 (dough), and R5 (dent) stages of cob development
under A. flavus infection (4 doses). The study showed that grain
colonization decreases with increasing kernel maturity from
milk-, dough-, and dent-stage kernels, with approximately 100%,
60%, and 30% colonization, respectively. However, aflatoxin
levels increase with increased doses at dough and dent stages.
This shows that initial stages of cob development (milk and
dough) are more susceptible than the maturity stage (Falade
et al., 2018). A study on aflatoxin accumulation in grains of
120 maize hybrids showed that higher concentrations of beta-
carotene (BC), beta-cryptoxanthin (BCX), and total provitamin
A had significantly less aflatoxin accumulation compared to that
in hybrids with lower carotenoid concentration. Hence, breeding
for increased carotenoid concentration can increase aflatoxin
resistance in maize to help combat aflatoxin contamination
as well as malnutrition (Suwarno et al., 2019). In short,
metabolites significantly influence A. flavus infection and can
be used as biomarkers for screening resistant and susceptible
maize genotypes.

MOLECULAR BIOLOGY OF A. flavus
FOR AFLATOXIN PRODUCTION AND
RESISTANCE

The genome of the toxigenic strain of A. flavus contains∼12,000
genes involved in the synthesis of secondary metabolites, with
more than 56 gene clusters contributing to the production
of secondary metabolites, including aflatoxin (Rokas et al.,
2007). The aflatoxin biosynthesis gene cluster includes 25 genes
spanning approximately 70 kb of DNA (Yu et al., 2004). The
aflatoxin gene cluster resides on chromosome 3, next to the
telomeric region comprising of pathway-specific regulatory genes
as well as surrounded by four sugar-utilization genes at the distal
end (Yu et al., 2000). Some regulatory genes (e.g., aflR and
aflS) are reported to be essential for the production of aflatoxin
after infection, and they work in conjunction with several
other regulators/factors such as VelB/VeA/LaeA complex, CreA
transcription factor, among others. While the aflR gene encodes
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a DNA binding Zn-cluster protein that binds to DNA binding-
domains of aflatoxin pathway genes, aflS is an aflatoxin pathway-
specific regulatory gene required to mediate aflR transportation
to/from the nucleus and assist in aflR localization (Figure 2;
Ehrlich et al., 2012).

Aspergillus flavus can hijack the host machinery to facilitate
the uptake of resources required for AP. For instance, the fungus
requires the spermidine synthase (a polyamine biosynthetic gene)
for AP and can utilize the host substrate to enhance polyamine
(PA) biosynthesis and AP (Majumdar et al., 2018). In susceptible
maize kernel, the expression of the PA biosynthetic/metabolism
genes S-adenosylmethionine decarboxylase (Samdc) and arginine
decarboxylase (Adc) significantly increased; this was followed by
the upregulation of PA transporters in the pathogen (Majumdar
et al., 2018). Maize’s hypersensitivity and susceptibility to
A. flavus involve a gene encoding glycine-rich RNA binding
protein 2 which is associated with hormone and pathogen
stress (Kelley et al., 2012), through salicylic-mediated defense
signal transduction and HR reactions (Naqvi et al., 1998;
Singh et al., 2011). The NPCs which transport RNA and
other macromolecules are highly expressed in resistant maize
cultivars and suppress A. flavus infection (Kelley et al., 2012).
In Arabidopsis, a defect in MOS7 (an NPC encoding gene)
suppresses the accumulation of R-protein in the nucleus that
causes a defect in both basal and systemic acquired resistance
and R-protein-mediated immunity (Cheng et al., 2009). The
infection induces higher expression of ethylene-responsive
protein (ETHRP) in resistant maize cultivars suggesting the role
of the ethylene signaling pathway in aflatoxin accumulation
resistance. ETHRP is a universal stress protein and a key regulator
of stress responses, and confers stress survival (Kelley et al.,
2012). Further, fungal infection induces the production of several
antifungal proteins such as 14-kDa trypsin inhibitor, 18 kDa
ribosome-inactivating-protein, 28, 38 and 100 kDa protein,
non-specific lipid transfers proteins, 2 S storage proteins, and
zeamatin (Liang et al., 2006). An infection can also induce lipid
peroxidation, which facilitates resistance to AP in groundnut
(Liang et al., 2002).

Aspergillus infection also involves a dynamic network of
transcription factors that coordinate the expression of the target
biosynthetic genes of the pathogen and the suppression of the
host’s immune responses. This may involve the suppression
of key gene WRKY, a transcription factor that modulates the
expression of several genes involved in detoxification of ROS as
well as aflatoxin (Korani et al., 2018), including NBS-LRR; its
suppression is linked to aggravated accumulation of aflatoxin in
plants such as groundnut (Nayak et al., 2017). Further, these TFs
are also associated with PR proteins, which play a major role in
resistance after infection (Pierpoint et al., 1981; Van Loon, 1985;
Szerszen, 1990; Van Loon and Van Strien, 1999). In groundnut,
WRKY and other key TFs such as ERF and NAC function in a
coordinated fashion (Nayak et al., 2017; Korani et al., 2018); their
modulation has a substantial impact on antioxidant biosynthetic,
PR proteins, chitinase, and beta-1,3-glucanase genes. Modulation
of these TFs in the host severely affects the transcription of
ROS detoxifying genes such as catalases, superoxide dismutase,
glutathione-S-transferase, and antioxidant biosynthesis genes like

resveratrol synthase, PAL, chalcone synthase, chitinase, and beta-
1,3-glucanase (Nayak et al., 2017; Korani et al., 2018). These
genes protect host plants from oxidative damage, increase the
levels of secondary metabolites involved in lignin biosynthesis,
and restrict fungal invasion as well as its growth. In resistant
groundnut genotypes, the activity of PAL enzyme that catalyzes
the metabolism of phenolic compounds such as phytoalexin
and lignin precursors, increases significantly (Nayak et al., 2017;
Korani et al., 2018).

Resveratrol is a potent phytoalexin induced up to 30-fold in
resistant genotypes of groundnut seeds upon infection (Liang
et al., 2006). In wild groundnut species, the pod shell and seeds
are rich in lignin content that prevents aflatoxin contamination
(Guimarães et al., 2012). Notably, in maize, exposure to drought
severely reduces PAL enzyme activity and phytoalexin production
due to reduced moisture content in the kernel, resulting
in fungal invasion and toxin production (Gholizadeh, 2011).
Although, studies spanning 15 years have identified several
gene clusters regulating host-pathogen interactions and AP, the
characterization of individual genes is crucial to design strategies
toward mitigation of aflatoxin contamination.

CHALLENGES AND OPPORTUNITIES

Aspergillus flavus infection and subsequent aflatoxin
contamination is highly influenced by environmental parameters
such as high soil temperature, moisture stress, and relative
humidity which often outsmart the low levels of genetic
resistance available in groundnut and maize genotypes. This
could be one of the key reasons in making this trait very
complex and limited progress has been made under field
conditions as compared to controlled environment. Even under
controlled environmental conditions, most studies are targeted
at understanding host-pathogen interactions using a single
toxigenic A. flavus strain and its interaction with the host
(groundnut or maize). However, under field conditions, the
reality is different. Often, many species of Aspergillus group
of fungi such as A. flavus and A. parasiticus are involved in
causing aflatoxin contamination. The population dynamics of
toxigenic Aspergillus in soils and possible shifts in toxigenic and
non-toxigenic strains could be an important area to focus on
while studying host-pathogen interactions. Also required is a
knowledge of the soil composition of toxigenic A. flavus group
of fungi and the ambient environment in a crop production
region that drives Aspergillus population levels and other
competing and co-existing pathogens. Similar conditions can be
created/simulated under a controlled environment to facilitate
the easy adoption and translation of results from laboratory
conditions to the field. The lack of consistency in host-pathogen-
toxin interactions inhibits the understanding of the precise
genetic behavior of resistance in groundnut and maize. Despite
a sequencing revolution in the last decade, genetic and gene
discovery efforts have not led to solutions to aflatoxin reduction
because of inconsistent phenotyping results. Devising novel
phenotyping techniques to assay AP at different steps is a way
forward. Dissecting components of resistance using known
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FIGURE 2 | A simplified representation of the aflatoxin biosynthesis pathway and the defense response mechanism in groundnut or maize. (A) Aflatoxin biosynthesis
in A. flavus; (B) the aflatoxin biosynthesis pathway involve multiple genes which co-express together for the formation of toxin secondary metabolites. In the
susceptible genotype infection leads to the A. flavus seed colonization and production of aflatoxin which causes suppression of host defense mechanism results in
ROS generation and DNA damage causing cell death (apoptosis). In contrast, in resistant genotypes infection causes induction of host defense mechanism that
include MAPK pathway which induces WRKY TF expression which is a key regulator of pathogenesis and antioxidant related genes involved in the suppression of
aflatoxin biosynthesis pathway or detoxification of toxin.

pre-harvest resistant sources of groundnut and maize may be
an interesting area of research. In this context, studying the
biochemical composition of the seed coat could lead to a better
understanding of host-pathogen interactions.

Another key challenge as well as an opportunity would be to
understand the impact of soil and its environment on AP. Plants
growing in unhealthy soils are bound to be more stressed, and
this might increase aflatoxin contamination. While most studies
have concentrated on the physical and chemical components of
soil, the biological component remains unexplored. An analysis
of the phytobiome, the microbial component that surrounds the
plant, from the leaves down to the roots, is another emerging
area of research. A phytobiome that negatively impacts plant
health would influence aflatoxin contamination. Insights into the
phytobiomes of groundnut and maize would certainly influence
our understanding of host-pathogen interactions, especially in
complex traits such as aflatoxin contamination.

SUMMARY

While discussing the progress made in understanding
the resistance mechanisms of aflatoxin contamination in
groundnut and maize using multidisciplinary approaches,
the paper elaborates on several QTLs, genes, pathways and
complex genetic architecture of the target trait. The paper

has also reviewed the potential of different approaches in
better understanding the complexities of candidate genes
identified after the genome sequencing of host and pathogen.
Various cultural and biological methods have been reported
to prevent/sustainably manage aflatoxin contamination in
groundnut and maize. The development of varieties/hybrids
or transgenics with resistance to both fungal infection and
aflatoxin contamination remains a challenge. To date, aflatoxin
management strategies have centered around the use of
good agricultural practices during pre-and post-harvest
stages, including the use of biocontrol agents (particularly
of non-toxigenic strains of A. flavus) in countries where
they are available to farmers. Omics studies in the last
couple of decades provide an array of genetic and genomic
resources and expand the knowledge base on Aspergillus
infection and aflatoxin reduction mechanisms, host-pathogen
interactions, toxigenicity of the fungi, mechanism of aflatoxin
biosynthesis, and inhibitors targeting the aflatoxin biosynthetic
genes. Promising genomics and transgenic approaches have
provided complimentary beneficial effects by integrating
genes, peptides/antifungal proteins, and even silencing key
genes for Aspergillus growth and aflatoxin biosynthesis in
susceptible varieties to enhance resistance levels. These integrated
approaches comprising of functional and structural genomics,
together with NGS platform will provide more information
on candidate genes to facilitate the development of molecular
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markers for use in molecular breeding. Conventional and modern
breeding tools need to be deployed to develop aflatoxin-resistant
maize and groundnut varieties that will lead to food safety,
poverty reduction and boosting the industry and market.
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