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Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of 
these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by 
fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies 
revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in 
marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-
wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing place-
ment of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and 
QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced 
experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays 
may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of 
the trait architectures of agricultural significance will be crucial to accelerate crop improvement.

Introduction

Genetic improvement in crop plants is a continuous process 
of developing improved cultivars to meet the ever-increasing 
human demand for food, nutrition and energy. Natural vari-
ations available for important agronomic traits were utilized 
in crop improvement activities across the world over the 
century. Mendel’s experiments on genetic inheritance in 
the nineteenth century constituted the scientific basis for 
understanding genetics of plant traits and crop improvement 

through systematic plant breeding. Majority of the agricul-
turally important traits are complex or quantitative in nature 
(Abe et al. 2012). Traditionally, these traits were examined 
using morphological data and statistical analysis based on 
mean, variance and covariance of relatives. However, these 
studies achieved limited success because of low level of 
polymorphism and strong influence by environment. The 
discovery of molecular marker technology in 1980s made a 
major breakthrough in understanding the genetics of com-
plex traits. Concurrent refinements in statistical packages 
enabled construction of genetic linkage maps based on geno-
typic data for various mapping populations, thus paving the 
way to discover quantitative trait loci (QTLs) controlling 
important quantitative traits.

DNA markers associated with the QTL region were used 
for making rapid and accurate selections and for introgress-
ing traits in many crop species (Kulwal et al. 2012; Varsh-
ney 2016). The QTL regions identified by standard mapping 
procedure often extend to several centiMorgans (cMs) on 
genetic map (equivalent to several Mbs on physical map) 
and might contain a large number of genes (Varshney et al. 
2014). Therefore, it is very difficult to pinpoint causative 
locus responsible for a specific trait. Moreover, introgression 
of such broad QTL regions based on flanking markers may 
carry undesirable genes (linkage drag), thereby affecting the 
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performance of improved cultivars carrying the introgressed 
genomic segments. Therefore, genetic resolution of the map-
ping procedures should be enhanced to allow QTL place-
ment within the shortest possible genomic region (marker 
interval) using innovative strategies. This process of refining 
the QTL region is called as fine mapping.

Three factors, viz. population size (Dinka et al. 2007), 
phenotyping (Cobb et al. 2013) and number of markers, 
mainly determine the success of QTL dissection, fine map-
ping and further cloning of the QTLs. Conventional fine 
mapping process involves screening of a large number of 
individuals with the DNA markers flanking the target QTLs, 
followed by phenotyping of the selected recombinant plants 
and progeny testing. The fine-mapped region obtained 
through this process is positioned on the physical map, and 
candidate genes are then identified. In recent years, the dis-
covery of single-nucleotide polymorphism (SNP) markers 
in combination with evolving sequencing technologies has 
led a remarkable improvement in fine mapping procedures. 
SNPs are universal and the most abundant class of genetic 
variation among the individuals of a given species. High 
amenability of SNP markers to automation has broken the 
dominance of medium-throughput simple sequence repeat 
(SSR) markers that dominated crop research and breed-
ing during the last two decades. Furthermore, massively 
parallel or high-throughput NGS technologies dramati-
cally reduced per sample genotyping/sequencing cost and 
increased throughput (Varshney et al. 2009a). As a result, 
whole-genome sequences are available for majority of the 
important crop species (Michael and Jackson 2013, https​
://www.ncbi.nlm.nih.gov/assem​bly/organ​ism/2759/all/). 
With the latest SNP genotyping platforms in place, it is 
now possible to genotype tens of thousands of samples in a 
short span of time. In this review, we discuss and critically 

appraise the efforts to fine-map QTLs, cloning QTLs/genes 
and identification of candidate/causative genes in the pre- 
and post-NGS era.

Genotyping tools and approaches for fine mapping 
in the pre‑NGS era

In the early 1990s, DNA-based markers like restriction frag-
ment length polymorphism (RFLP), amplified fragment 
length polymorphism (AFLP), SSR markers were used for 
trait dissection. Tomato (Solanum lycopersicum) is the first 
model crop plant species where the use of RFLP markers 
and QTL identification were reported (Paterson et al. 1988). 
In the pre-NGS era, SSR markers were most extensively 
used in genetic and plant breeding studies owing to their sev-
eral advantages over other marker systems including higher 
polymorphism rate, genome-wide distribution and amenabil-
ity to automation (Gupta and Varshney 2000).

In the pre-NGS era, QTL cloning involved two broad 
steps: Firstly, QTL region underlying the trait of interest is 
identified by using a limited number of DNA markers. Later, 
the identified QTL region is refined by mapping the QTL-
flanking DNA markers onto their physical positions in order 
to identify respective BAC (bacterial artificial chromosome) 
clone on the physical map. The clones thus identified were 
used for sequencing and developing DNA markers within 
the QTL region (Fig. 1). A limited number of studies have 
reported fine mapping using SNP markers obtained from 
BAC/YAC clones in the pre-NGS era (Fridman et al. 2000; 
Kamolsukyunyong et al. 2001; Wang et al. 2009). Such stud-
ies could reach gene level of refinement, demonstrating the 
potential of SNP markers in refining the broad QTL regions. 
Although SNPs are more advantageous than other DNA-
based makers, lack of high-throughput SNP discovery and 

Fig. 1   Comparison of marker 
development, map and QTL 
resolution during the pre- and 
post-NGS era. In the pre-NGS 
era, QTL resolution is low 
(10–30 cM), while in the post-
NGS era the QTL resolution is 
high (0.5–10 cM)

https://www.ncbi.nlm.nih.gov/assembly/organism/2759/all/
https://www.ncbi.nlm.nih.gov/assembly/organism/2759/all/
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genotyping methods in pre- NGS era greatly constrained 
their widespread utilization for fine mapping studies. 

Genotyping technologies and approaches for fine 
mapping in the post‑NGS era

Increasing adoption of NGS-based assays for population 
genotyping has facilitated high-density linkage mapping in 
various crop species (Varshney et al. 2019a). Timeline for 
fine mapping in both the pre- and post-NGS era is compared 
in Fig. 2. Most importantly, the NGS technology has allowed 
parallelization of sequencing process, thereby generating 
thousands to millions of DNA sequences in a single run and 
reducing the sequencing cost over 1000-folds since its inven-
tion (Park and Kim 2016). New NGS-based protocols have 
emerged such as reduced representation libraries (RRLs), 
restriction-site-associated DNA sequencing (RAD), geno-
typing-by-sequencing (GBS), whole-genome resequencing 
(WGRS) and skim GBS that are capable of identifying and 
mapping massive number of SNPs in thousands of samples 
in one go (Varshney et al. 2019a). A dramatic reduction in 

sequencing cost has motivated researchers to obtain deeper 
view of the target genomic region by sequencing entire map-
ping populations. Additionally, one can generate new mark-
ers with lesser efforts and time using the available genome 
sequence for an identified QTL region using flanking marker 
information, which was not the case in the pre-NGS era 
(Fig. 2).

The NGS technologies have offered more benefits to crops 
that lack whole-genome sequence information, as these tech-
nologies generate large-scale DNA markers by sequencing 
the entire population under study. For example, building a 
genetic linkage map with moderate density (1000 loci) in the 
pre-NGS era demanded considerable time and the effort of 
few technicians in comparison with the current NGS assays 
that allow highly saturated genetic maps (100,000 loci) to be 
constructed within few months with modest technical efforts 
(Yang et al. 2015). Based on the use or non-use of restriction 
enzymes, the NGS methods can be grouped into two catego-
ries: (i) whole-genome sequencing (including WGRS, RNA 
sequencing, exome capture) that does not employ restric-
tion enzymes, (ii) reduced representation sequencing (such 

Fig. 2   Diagrammatic illustra-
tion of duration required for fine 
mapping during the pre- and 
post-NGS era. Development of 
NGS-based markers has nearly 
reduced half the time span taken 
for fine mapping using non-
NGS-based markers
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as RAD-seq, GBS, etc.) that uses restriction enzymes for 
reducing genome complexity (Fig. 3). As these techniques 
are adequately reviewed elsewhere, they are not discussed in 
detail in this review (Davey et al. 2011; Garg and Jain 2013; 
Goodwin et al. 2016).

Role of NGS in accelerating high‑resolution 
mapping and gene discovery

Several new approaches have led to the fast gene discovery 
through high-resolution mapping using NGS technologies. 
We list few important such methods in this section.

High-density SNP arrays for faster mapping The SNP 
arrays or high-density genotyping based on resequencing 
is being used to generate large-scale marker profiles for a 
number of individuals (Rasheed et al. 2017; Pandey et al. 
2017a; Roorkiwal et al. 2018; Saxena et al. 2018). The 
SNP chip is preferred over other high-density genotyping 
platforms as the SNP data it generates are less computa-
tionally demanding (Yuan et al. 2019). A high-quality SNP 
chip array, CottonSNP80K, was developed especially for 
intraspecific genotyping in cotton, and eight SNPs were 
found to be associated with salt stresses (Cai et al. 2017). 
In wheat, a high-throughput genotyping array (TaBW280K) 
containing 280,226 SNPs was developed and deployed for 

Fig. 3   Various techniques followed for fine mapping during the pre- and post-NGS era and their impact on fine mapping
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assessing the germplasm diversity as well as high-density 
linkage mapping (Rimbert et al. 2018). Similarly, SNP chip 
array containing 6,000 SNPs was developed in castor from 
WGRS dataset of 14 diverse lines (Senthilvel et al. 2019). 
This SNP chip array was validated on 314 inbred castor lines 
and can be applied in genome-wide analysis.

Bulked segregant RNA Seq (BSR-Seq) for gene discov-
ery Whole transcriptome sequencing of contrasting bulks is 
referred to as BSR-Seq. The technique is particularly impor-
tant for crops with large and complex genomes like wheat 
where resequencing still remains cost-ineffective (Liu et al. 
2012a, b). Also, BSR-seq is suitable for fine mapping in 
crops that still lack a reference genome sequence. Techni-
cally similar to QTL-Seq, BSR-Seq relies on sequencing 
RNAs (cDNA) from extreme bulks for the trait of interest. 
It facilitates identification of the target region and develop-
ment of markers near or within the gene of interest. For 
instance, BSR-seq assigned glossy 3 (gl3) gene of maize 
to ~ 2 Mb region and a single gene myb transcription fac-
tor was reported in this region. This gene was reported to 
control the genes involved in long-chain fatty acid synthesis 
in maize (Liu et al. 2012a, b). Similarly, BSR-Seq enabled 
fine mapping of grain protein content (GPC) region in wheat 
(GPC-B1) to 0.4 cM from previously reported 30 cM. This 
study pinpointed candidate genes (13–18 genes) for grain 
protein content in wheat (Trick et al. 2012). In another study, 
BSR-Seq approach identified marker associated with the 
Yr15 gene that imparts resistance to yellow rust in wheat. It 
facilitated fine mapping of this region to a shortest distance 
of 0.77 cM. These markers were also utilized to analyze 
germplasms and can be used in marker-assisted selection 
(Ramirez-Gonzalez et al. 2015). A more recent study on 
BSR-Seq allowed cloning of mutant genes in maize that are 
involved in plant growth via delineation of mapping inter-
val and candidate SNPs from whole-genome sequencing of 
pooled F2 individuals (Klein et al. 2018). Thus, BSR-Seq 
approach is being widely adopted for rapid discovery of 
genes and markers linked with the target genes.

QTL-Seq for gene identification QTL-Seq integrates 
traditional bulk segregant analysis (BSA) with sequencing 
methods. This approach has been established as highly effi-
cient for rapid discovery of candidate genes for the trait of 
interest. By allowing placement of QTL within a smaller 
genomic segment, it facilitates both detection of QTL and 
its fine mapping at a stretch. The procedure involves creation 
of extreme bulks by selecting lines with extreme low and 
high values of trait from a segregating population. The pools 
along with one of the parental genotypes are subsequently 
sequenced using NGS. A reference genome assembly for the 
parental genotype is developed based on sequencing data. 
Subsequently, SNP index for each bulk is computed based 
on the number of reads for a SNP that differs from the SNP 
in the parent reference assembly. (If 10 reads are having 

unique nucleotide as in the reference assembly, then SNP 
index is 0, i.e., 0/10.) Similarly, if all reads have a different 
nucleotide compared to the reference parent nucleotide, then 
the SNP index is 1 (10/10). Based on these analyses, Δ-SNP 
index value of high and low bulks is calculated and the can-
didate genomic region for the trait of interest is identified. 
This approach was successfully demonstrated for faster 
identification of QTLs for blast resistance in rice (Oryza 
sativa) (Takagi et al. 2013a). Similarly, rapid discovery of a 
major QTL for early flowering was undertaken in cucumber 
(Cucumis sativus) (Lu et al. 2014). In the case of chickpea 
(Cicer arietinum), Singh et al. (2016a) refined a 7 Mb QTL 
region on linkage group (LG) CaLG04 (previously identified 
using non-NGS-based markers) to a ~ 1 Mb region for root 
and seed weight traits in chickpea. Another QTL-seq study 
in chickpea delineated a 35 kb genomic region on CaLG01 
controlling 100-seed weight (Das et al. 2015). In the case of 
pigeonpea (Cajanus cajan), sequencing of resistant and sus-
ceptible bulks in combination with WGRS data of four addi-
tional genotypes elucidated candidate genes associated with 
Fusarium wilt and sterility mosaic disease resistance (Singh 
et al. 2016b). Similarly, QTL-Seq approach was applied to 
fine-map bacterial wilt resistance genes and develop diag-
nostic markers for use in breeding in the case of groundnut 
(Luo et al. 2019a). Adoption of QTL-Seq is increasingly 
reported for delineating candidate QTLs for both qualita-
tive and quantitative traits (Yang et al. 2017; Li et al. 2018; 
Zhang et al. 2018; Clevenger et al. 2018; Zhang et al. 2019; 
Luo et al. 2019b).

Mutation mapping techniques for gene identification

MutMap The MutMap technique was proposed by Abe 
et al. (2012) in rice to identify genomic regions governing 
important agronomic traits. In brief, this technique involves 
generation of a mutant population using chemical mutagen 
followed by the selection of line with desirable phenotype in 
M2 or in the subsequent generations. Such selected mutant is 
crossed with wild-type parent, and the F1 is selfed to gener-
ate an F2 population segregating for the mutant and wild-
type phenotypes. DNA samples of F2 lines showing mutant 
phenotype are bulked and subjected to WGRS. The causative 
SNP for the specific trait is determined based on the SNP 
index. If all the short reads covering a particular genomic 
position share a SNP that differs from the reference, the 
SNP index is defined as 1. The identified genomic regions 
with the SNP index of 1 are the causal locus underlying the 
mutant phenotype.

MutMap+ This technique involves direct sequencing of 
M3 population instead of backcrossing with wild-type plant; 
thus, the mutants which are not amenable for crossing in 
MutMap technique can be utilized for the study. Similar to 
QTL-seq, mutant and wild-type bulks are prepared using M3 
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lines and subjected to WGRS. Genomic loci responsible for 
trait of interest are then inferred with the help of SNP index 
(Feik et al. 2013).

MutMap-Gap MutMap-Gap facilitates identification of 
the causal SNPs in the genomic regions that are missing 
from the reference genome sequence. The method involves: 
(i) identification of the sequences unmapped with the ref-
erence genome, (ii) delineation of the candidate genomic 
segment with MutMap approach, (iii) creation of a de novo 
assembly of the target region through combining short 
reads pinpointed in steps i and ii, (iv) alignment of the bulk-
sequenced reads (of mutant individuals) to the ‘P + scaf-
folds’ reference (reference sequence combined with scaffolds 
obtained in step iv, and finally (v) identification of the causal 
mutation within the gap region (Takagi et al. 2013b).

MutChromSeq Another complexity reduction sequencing 
approach is mutant chromosome sequencing (MutChrom-
Seq), which involves mutagenesis and screening for mutants 
followed by chromosome sorting of the selected mutant and 
sequencing the specific chromosome to identify the causa-
tive mutation (Steurnagel et al. 2017). Sánchez-Martín et al. 
(2016) compared sequence information of multiple inde-
pendently derived mutant flow-sorted chromosomes which 
would allow the identification of induced, causal mutations 
without the need for positional fine mapping in barley and 
wheat. MutChromSeq can overcome the limitations of RNA 
Seq (tissue specific, time of sampling and sequencing depth) 
and exome sequencing (captures  known genes).

Exome sequencing

Whole-exome sequencing allows us to find out the variations 
in the protein coding regions and thus enhances the iden-
tification of disease-causing mutations in the target gene. 
The cost-effectiveness of this approach stems from the fact 
that it involves sequencing of known targeted region instead 
of the whole genome. It is also extended to capture all the 
functional region of a genome including noncoding genes 
and regulatory elements such as promoters and enhancers 
(Warr et al. 2015). Several targeted genome sequencing 
techniques are available for faster mapping and gene identi-
fication, such as (i) Resistance gene enrichment sequencing 
(RenSeq) technology for rapid cloning: RenSeq is a NBS-
LRR gene-specific R gene enrichment method, which allows 
rapid identification of disease resistance genes by targeted 
resequencing. This technique includes bait design using 
known NBS-LRR gene families followed by sequencing of 
the enriched samples NBS-LRR and genome annotation. As 
a proof-of-concept study, Jupe et al. (2013) demonstrated its 
utility in potato (Solanum tuberosum) and tomato. In this 
study, target enrichment library was prepared using 523 
NB-LRR-like sequences from potato genome, 57 tomato 
NB-NRC domains, 9 characterized NB-LRR types from 

tomato, tobacco (Nicotiana tabacum) and pepper (Capsi-
cum annum). The enriched samples against genomic DNA 
of the sequenced S. tuberosum Group Phureja clone were 
sequenced, and annotation was carried out. This resulted 
in successful enrichment of NB-LRRs from 438 to 755. 
(ii) MutRenSeq: Subsequently, Steuernagel et al. (2016) 
proposed mutational R gene enrichment sequencing (Mut-
RenSeq) that combines chemical mutagenesis with exome 
capture and sequencing for rapid cloning of resistance genes 
such as stem rust resistance genes Sr22 and Sr45 in hexa-
ploid wheat. MutRenSeq significantly reduces the duration 
of gene cloning process from 5–10 years to 2 years. (iii) 
SMART-RenSeq: Witek et al. (2016) employed SMART-
RenSeq (single-molecule real-time RenSeq) to clone a gene 
responsible for resistance to Phytophthora infestans (Rpi-
amr3i) causing late blight disease in potato. (iv) AgRenSeq: 
In order to develop broad range of disease resistance in 
domesticated crops, R genes from wild relatives can be uti-
lized. To achieve this, association analysis was combined 
with RenSeq approach to develop AgRenSeq method (Arora 
et al. 2019). This technique involves screening of wild plants 
for variety of diseases and sequencing of the wild plants 
to look for resistance genes. It was successfully applied in 
wheat for the rapid identification of resistance genes for 
stem rust disease. Any crop with diverse germplasm can 
be subjected to AgRenSeq approach for R gene cloning. 
Recent examples have shown utility of RenSeq for improv-
ing disease resistance in plants, and similar technique for 
abiotic stress-tolerant gene identification will benefit crops 
affected with abiotic stress. (v) Targeted chromosome-based 
cloning (TACCA) via long-range assembly follows an 
approach similar to MutChromSeq where prior information 
about the mapped gene (flanking markers of a QTL) and its 
chromosomal location is used for chromosome sorting and 
sequencing. Thind et al. (2017) cloned leaf rust resistance 
gene Lr22a in wheat using this technique. Two SSR mark-
ers flanking Lr22a covering 0.48 cM interval on chromo-
some 2D were mapped previously, the chromosome 2D was 
sorted followed by sequencing, and the causative genes were 
identified within four months. These targeted sequencing 
approaches reduce time and cost in achieving faster gene 
discovery compared to WGRS if prior knowledge about the 
gene or loci of interest is available.

Gene editing for candidate gene characterization

Gene editing is a versatile tool identified in this decade for 
gene characterization and creation of novel alleles. Taking 
advantage of the sequencing technologies, the candidate 
genes are identified and validated genome wide, and almost 
any gene underlying any trait of interest can be dissected. 
For instance, Lou et al. (2017) reported the role of OsSAPK2 
through creating loss of function mutants by CRISPR/
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Cas9 approach in rice. This study targeted the third exon 
of OsSAPK2 (SNF 1-RELATED PROTEIN KINASE 2) 
for sgRNA designing. The mutant lines (sapk2) were more 
sensitive to drought and reactive oxygen species (ROS) than 
wild-type plants. This study suggested that the OsSAPK2 
will be a candidate gene for drought tolerance in rice. Recent 
reviews highlight increasing contributions of CRISPR/cas9 
toward novel gene identification and characterization in vari-
ous crops (Arora and Narula 2017; Jaganathan et al. 2018; 
Chen 2019; Varshney et al. 2019b).

Evolving mapping resources for better resolution 
of genetic architectures

QTL mapping with standard mapping populations

An appropriate mapping population developed from geneti-
cally diverse and contrasting parents is a prerequisite of 
QTL identification (Collard et al. 2005). Various mapping 
populations such as F2, recombinant inbred line (RIL) and 
double haploid (DH) have been used for QTL identification 
(Varshney et al. 2009b). Although each population has its 
own advantages and disadvantages, a RIL population is the 
most commonly used for QTL mapping studies. Besides, 
the size of mapping population remains an important fac-
tor and depends on a variety of other factors such as type, 
genetic nature of target trait and access to genotyping and 
phenotyping facilities; a mapping population comprising 
50–250 or more individuals is generally required for prelimi-
nary QTL mapping (Collard et al. 2005). A larger mapping 
population will result in high-resolution mapping of major 
and minor QTLs. However, the size of mapping population 
in the pre-NGS era for detecting the QTL was often lim-
ited to 200–300 individuals due to lack of high-throughput 
genotyping methods. Once the QTL for target trait is iden-
tified through coarse mapping, populations for fine map-
ping are developed with large number of progenies (~ 500 
to < 10,000) to capture enough recombination to place QTL 
into a shorter genomic segment (Table 1). A growing body 
of research suggests NILs as the most preferred population 
for fine mapping studies as the genetic background is similar 
across the population except for the target genomic region. 
Such populations allow the effect of the QTL to be observed 
accurately, and resolving them into a shorter interval is pos-
sible (Fridman et al. 2000; Jander et al. 2002; Uga et al. 
2013; Song et al. 2015).

Emergence of high-throughput genotyping platforms in 
the post-NGS era has dramatically transformed the meth-
ods employed previously for fine mapping of a candidate 
genomic segment. Genome-wide SNP markers are now 
available even for the crops that were earlier known as 
orphan crops (Varshney et al. 2013a; Bohra and Singh 2015; 
Varshney et al. 2019a). Therefore, use of genome-wide 

methodologies is widespread for RIL or F2 populations for 
fine genetic dissection of QTL regions, which was otherwise 
not possible during the pre-NGS era. Recently, several stud-
ies have reported fine mapping and identification of genes 
from RIL, F2 populations (Qi et al. 2014; Wang et al. 2018).

Innovative experimental designs for enhanced gene 
discovery

The major drawback of the biparental QTL analysis is that 
the QTLs are often placed to large chromosomal regions as 
the inference is derived from limited recombinational events. 
Further, limited genetic diversity and inadequate polymor-
phic markers hamper the level of precision with which QTL 
could be placed in the genome. Later, GWAS was widely 
used to overcome these issues as it permits consideration 
of broad genetic diversity for trait mapping. In recent times, 
experimental populations based on multiple founders have 
gained widespread attention to accelerate QTL mapping and 
gene discovery (Bohra 2013). These multi-parental popula-
tions offer balanced population structure over GWAS and 
allow profuse recombination as compared to traditional 
biparental populations (Bazakos et al. 2017; Wallace et al. 
2018). These community genetic resources include multi-
parent advanced generation inter-cross (MAGIC) and nested 
association mapping population (NAM).

MAGIC population is developed by crossing multiple 
founders through two-way, four-way and eight-way cross-
ing, leading to attainment of a fully inbred recombinant 
population. The major advantages of MAGIC population 
include increased recombination, improved mapping reso-
lution and greater allelic diversity (Cavanagh et al. 2008). 
MAGIC design was successfully implemented in plants for 
fine genetic mapping including Arabidopsis (Kover et al. 
2009), wheat (Huang et al. 2012), rice (Bandillo et al. 2013), 
chickpea (Gaur et al. 2012), tomato (Pascual et al. 2015), 
cowpea (Huynh et al. 2018) and so forth. The current sta-
tus of MAGIC populations in major crops along with the 
unique opportunities and challenges offered by such map-
ping resources has been thoroughly discussed elsewhere 
(Huang et al. 2015).

Another multi-parent mating design NAM involves cross-
ing one common reference genotype with diverse founders 
to generate a series of “interconnected” segregating inbred 
families. Like MAGIC, NAM offers the advantages of both 
linkage analysis and association mapping approaches while 
overcoming the shortcomings of both approaches. The util-
ity of NAM design for QTL mapping is well established in 
maize (Yu et al. 2008), and the design has been extended 
to other crops like wheat (Bajgain et al. 2016), sorghum 
(Bouchet et al. 2017), barley (Nice et al. 2017), oilseed rape 
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Table 1   List of QTL cloning and fine mapping studies reported during the pre-NGS and post-NGS era

Crop Study Trait Primary 
mappinga

Fine mapping Population 
Size

Markers 
usedb

Refined Size References

Pre-NGS
 Arabidopsis QTL cloning Flowering (FRI 

and FIC)
M2 lines Test cross lines 4500 SSR 15 kb Michaels and 

Amasino 
(1999)

QTL cloning Ascorbate 
biosynthesis 
(VTC2)

F2 F2 3700 InDel 20 kb Jander et al. 
(2002)

 Rice QTL cloning Grain width and 
weight (GW2)

F2 BC3F2 6013 RFLP 82 kb Song et al. 
(2007)

QTL cloning Grain number BIL NIL + × NIL − _
F2

13,000 SNP 63 kb Ashikari et al. 
(2005)

QTL cloning Heading date RIL RIL + × P1_
BC2F2

8400 SSR 2 Mb Xue et al. 
(2008)

QTL cloning Grain weight F2 BC2F2 674 STS 122 kb Guo et al. 
(2009)

QTL cloning Heading date 
(Hd1)

F2 BC3F3 > 9000 RFLP, CAPS 71 kb Yano et al. 
(2000)

QTL cloning Submergence 
(Sub1A)

F3 F2 2950 AFLP 182 kb Xu et al. 
(2006)

QTL cloning Photoperiodic 
flowering 
(Ehd1)

BC2F1 NILs (BC6F2) >2500 RFLP, CAPS 115 kb Doi et al. 
(2004)

QTL cloning Seed hull color CSSL F2 (NIL) 3276 SSR, SNP 88 kb Zhu et al. 
(2011)

QTL cloning Rooting depth RIL NIL (BC3F2) 4560 SSR 60 kb Uga et al. 
(2013)

QTL cloning Grain weight 
(OsglHAT1)

BIL F3 (NIL) 3012 SNP 12 kb Song et al. 
(2015)

Fine map-
ping

Photoperiod 
sensitivity

BCF4F2 BC3F3/BC4F3 2807 CAPS 264 kb Takahashi 
et al. (2001)

Fine map-
ping

Stele transversal 
area

F3 BC2F1 to BC2F4 8–160 InDel 359 kb Uga et al. 
(2011)

 Maize QTL cloning Plant architec-
ture (tb1)

F2 F1 and F2 26,000 and 
42

RFLP 15 kb Doebley et al. 
(1997)

QTL cloning Leaf angle 
(ZmCLA4)

F3 BC5F2 (BC3F1 to 
BC5F2)

10,628 SSR 48 kb Zhang et al. 
(2014)

QTL cloning Glume architec-
ture (Tga1)

F2 F2 3106 SNP 1042 bp Wang et al. 
(2005)

QTL cloning Flowering time 
(vgt1)

NIL F2 (NIL) 4526 AFLP, 
CAPS, 
ASPCR

2 kb Salvi et al. 
(2007)

Fine map-
ping

Maize streak 
virus resist-
ance

F3 F2 4725 SNP 762 Mb Nair et al. 
(2015)

Fine map-
ping

Rough dwarf 
resistance 
(qMrdd1)

HIF BC1F3 2685 SSR, SNP 12 Mb Tao et al. 
(2013)

QTL cloning Root initiation 
(RTCS)

F2 F2 2000 SSR, CAPS 735 bp Taramino et al. 
(2007)

 Wheat QTL cloning Dormancy MAGIC HIF, NIL 5 NIL sets SNP 3 genes Barrero et al. 
(2015)

Fine map-
ping

Grain weight BC2F3 BC4F2, BC4F3 118 and 264 SSR 76 cM Roder et al. 
(2008)
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Table 1   (continued)

Crop Study Trait Primary 
mappinga

Fine mapping Population 
Size

Markers 
usedb

Refined Size References

 Barley Fine map-
ping

Frost resistance DH F2 1849 RFLP, SNP, 
CAPS

0.81 cM Francia et al. 
(2007)

Fine map-
ping

Grain Thresh-
ability

BC2DH BC4F2 7000 SSR, SNP 43 cM Schmalenbach 
et al. (2011)

QTL cloning Boron tolerance 
(Bot1)

DH lines F3 6720 CAPS 0.05 cM Sutton et al. 
(2007)

 Soybean Fine map-
ping

Seed number 
and leaflet 
shape

BC3F2 BC3F3 4635 SSR 66 kb Jeong et al. 
(2012)

 Tomato QTL cloning Fruit weight 
(fw22)

F2 F2 3472 RFLP, 
RAPD, 
CAPS

663 bp Frary et al. 
(2000)

QTL cloning Sugar content 
(brix9-2-5)

NIL F2 7000 RFLP, 
RAPD, 
CAPS

484 bp Fridman et al. 
(2000)

QTL cloning Locule number 
(lc)

F2 F2 9456 SNP, CAPS 1608 bp Munos et al. 
(2011)

Fine map-
ping

Tomato yellow 
leaf curl virus 
resistance

F3 F4 11,000 SSR 491 kb Yang et al. 
(2014)

Fine map-
ping

Fruit mass and 
Brix

IL IL 50 RFLP 32 and 
12 cM

Eshed and 
Zamir (1995)

Fine map-
ping

Sugar content IL F2 (NIL) 7000 RFLP, SNP 484 bp Fridman et al. 
(2000)

Fine map-
ping

Fruit mass IL NIL 3472 RFLP, 
RAPD

150 kb Alpert and 
Tanksley 
(1996)

Post-NGS
 Arabidopsis Fine map-

ping
Flowering time F2 NA 192 GBS-SNP 9 kb Rowan et al. 

(2015)
Fine map-

ping
Rosette leaf 

number 
(recq4a)

F2 NA 192 GBS-SNP 269 kb Rowan et al. 
(2015)

 Rice Fine map-
ping

Leaf width, 
aluminum 
tolerance

RIL NA 176 GBS-SNP < 2 Mb Spindel et al. 
(2013)

Fine map-
ping

Plant height RIL NA 150 WGRS-SNP 100 kb Huang et al. 
(2009)

Fine map-
ping

Tillering and 
panicle 
branching

F2 NA 1642 SSR, SNP 63 kb Yu et al. 
(2017)

Fine map-
ping

Brown 
planthopper 
(BPH31)

F2 NA 27 InDel 475 kb Prahalada et al. 
(2017)

Fine map-
ping

Grain weight, 
grain length, 
grain width

BIL NA 185 GBS-SNP 32–363 kb Bhatia et al. 
(2018)

 Maize Fine map-
ping

Tassel and ear 
architecture

F2 NA 708 GBS-SNP 08–566 Mb Chen et al. 
(2014)

 Wheat Fine map-
ping

Grain protein 
content (GPC-
B1)

RSL F3 28 SNP 0.45 cM Trick et al. 
(2012)

Fine map-
ping

Powdery mil-
dew (PmTm4) 
resistance

F2 NA 1499 SNP 066 cM Xie et al. 
(2017)
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(Hu et al. 2018) and soybean (Song et al. 2017; https​://www.
soyba​se.org/SoyNA​M/).

Fine mapping and QTL cloning in the pre‑ 
and post‑NGS era—notable examples

Recent advances in molecular biology, biotechnology and 
genomics have facilitated the cloning of QTLs in crop plants. 
Technological advances and the efforts toward QTL clon-
ing (see Salvi and Tuberosa 2005; Price 2006) and beyond 
cloning (Anderson and Mitchell-Olds 2010) were critically 
appraised recently. We summarize fine mapping and cloning 
procedures followed during the pre- and post-NGS era in 
model crops like Arabidopsis and tomato followed by major 
cereals and legumes with few case studies.

Model plants/crops

Arabidopsis Arabidopsis (Arabidopsis thaliana) is the first 
plant genome sequenced, and the availability of the genome 
sequence of Arabidopsis has brought tremendous changes 
to the methods of fine mapping and cloning (Lukowitz et al. 
2000). In the early 1990s, development of a genetic link-
age map with 50 markers required great efforts (Bell and 
Ecker 1994). More than 4000 BC1F1 plants were assayed 

by Michaels and Amasino (1999) for positional cloning of 
flowering genes (FLC and FRI). Recombinants were identi-
fied using two flanking SSR markers. The marker numbers 
were increased by four yeast artificial chromosome (YAC) 
clones from this region. The cleaved amplified polymorphic 
sequence (CAPS) markers were generated, and further prog-
eny testing delimited the FLC region to a 620 kb interval. 
Further, analysis of BAC clones in this region delineated a 
10–20 kb region with three genes, among which MADS box 
transcription factor was found to play an important role in 
flowering in Arabidopsis. This research took almost 5 years 
from coarse mapping to positional cloning of the flowering 
gene. The availability of genome sequence of Arabidop-
sis provided ample marker resources for fine mapping and 
QTL cloning for the trait of interest (Jander et al. 2002). 
For instance, VTC2 gene responsible for ascorbic acid 
deficiency was fine-mapped using the DNA markers from 
Cereon Genomics within a time span of 2 years.

The key genomic regions associated with flowering time 
and rosette leaf number were identified using GBS-SNP-
based examination of genome-wide crossover. This study 
identified recombination break points, and QTL analysis 
using a saturated linkage map determined the location of 
genes for flowering time and rosette leaf number within 9 
and 26.9 kb, respectively. Genome-wide analysis with 215 K 

Table 1   (continued)

Crop Study Trait Primary 
mappinga

Fine mapping Population 
Size

Markers 
usedb

Refined Size References

 Barley Fine map-
ping

Awn length HIF NA 927 SNP < 0.9 cM Liller et al. 
(2017)

 Sorghum Fine map-
ping

Grain weight F2 F3 307 SSR 101 kb Han et al. 
(2015)

Fine map-
ping

Seed dormancy F2 F3 80 SSR 96 kb Li et al. 
(2016a)

 Common 
bean

Fine map-
ping

Angular leaf 
spot resistance 
(ALS41GS,UC)

F4, Backcross 
lines

NA 180 SSR, SNP 418 kb Keller et al. 
(2015)

 Chickpea Fine map-
ping

Ascochyta 
blight

RIL bulks NA 20 QTL-Seq 
SNP

15–64 Mb Deokar et al. 
(2019)

 Soybean Fine map-
ping

Phytophthora 
resistance

F2 F3 826 SSR, CAPS, 
SNP

36 kb, 
151 kb

Li et al. 
(2016b)

Fine map-
ping

Root knot nema-
tode resistance

RIL NA 246 WGRS-SNP 297 kb Xu et al. 
(2013)

 Tomato Fine map-
ping

Fruit shape 
(fs81)

Backcross 
lines

NA 3 SNP, dCAPS 303 Mb Sun et al. 
(2015)

a Abbreviations for primary population used: CSSLs chromosome segment substitution lines, HIFs heterogenous inbred families, RSLs recombi-
nant substitution lines, MAGIC multi-parent advanced generation inter-cross, DH double haploid, BILs backcross inbred lines, NIL near-isogenic 
line, RIL recombinant inbred line, IL introgression line
b Abbreviations for markers used: RFLP restriction fragment length polymorphism, RAPD random amplified polymorphic DNA, AFLP amplified 
fragment length polymorphism, SSR simple sequence repeat, STS sequence-tagged site, SNP single-nucleotide polymorphism, CAPS cleaved 
amplified polymorphic sequence, dCAPS derived cleaved amplified polymorphic sequences, InDel insertion and deletion, ASPCR allele-specific 
polymorphic chain reaction, GBS-SNP SNPs derived from genotyping by sequencing, WGRS-SNP whole-genome resequencing, QTL-Seq QTL-
Seq analysis

https://www.soybase.org/SoyNAM/
https://www.soybase.org/SoyNAM/
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SNPs had uncovered candidate genes for time-dependent 
drought QTLs (Bac-Molenaar et al. 2016). As envisaged by 
Huang et al. (2009), enhanced precision in the identification 
of crossovers enabled by new genome-wide genotyping tech-
nologies will make current methods of QTL discovery and 
fine mapping faster, accurate and cost-efficient.

Tomato Tomato is one of the earliest targeted crop species 
for QTL studies, for which molecular markers were available 
in 1980s itself. The marker repertoire was enhanced from 
few RFLP markers to millions of SNP in the due course 
with the release of whole-genome sequence in 2012 (Tomato 
Genome Consortium 2012). Genomic resources including 
genome sequences, genome maps, QTLs and gene expres-
sion atlas are available in SGN (SOL Genomics Network) 
database; this provides a complete information of tomato 
and other crops that belong to Solanaceae (Mueller et al. 
2005). In 1993, pto gene conferring resistance to P. syringae 
pv. tomato was cloned using a high-density map with RFLPs 
and a tomato YAC library (Martin et al. 1993). The Pto gene 
was genetically mapped using 251 F2 progenies; later, the 
cloned segment/gene was confirmed by analyzing a total of 
1300 F2 plants, F3 families and 50 cultivars using markers 
spanning the identified YAC segment. This is the first report 
on map-based cloning of disease-resistant gene in plants. 
Cloning of fruit weight QTLs in tomato using map-based 
cloning was successfully performed, and progeny testing 
involved RFLP assay on a total of 3472 F2 plants with mark-
ers derived from a YAC contig (Alpert and Tanksley 1996). 
Later, Frary et al. (2000) screened this YAC contig with a 
cDNA library followed by cosmid library of L. pennellii 
(small fruited genotype), which identified a candidate gene 
ORFX, and the underlying mechanism was elucidated with 
complementation test of this gene. In another study, 7000 F2 
lines were used for fine mapping of sugar content in tomato 
(Fridman et al. 2000). Using RFLP markers derived from 
BAC sequence, a shortest interval of 484 bp of an invertase 
gene was identified by progeny testing. However, the sce-
nario has improved due to the availability of tomato genome 
sequence (Tomato genome consortium, 2012) and new 
sequencing techniques which allowed to precisely identify 
few candidate genes from a large set of genes. For instance, 
Sun et al. (2015) reported 12 candidate genes controlling 
tomato fruit shape and other morphological characters from 
a set of 122 annotated genes in 3.03 Mb region through RNA 
seq technique (Table 1).

Cereals Among cereals, extensive studies on fine map-
ping and QTL cloning have been conducted in rice, wheat, 
maize, barley, etc. The reference genomes have become 
available for almost all major cereal crops such as rice 
(IRGSP 2005), wheat (Choulet et al. 2010), maize (Schnable 
et al. 2009), sorghum (Paterson et al. 2009), barley (IBGSC 
2012), pearl millet (Varshney et al. 2017). Availability of 
these reference genomes has greatly facilitated fine mapping 

and QTL cloning studies on various agronomic traits includ-
ing response to biotic and abiotic stresses. Few of these 
genetic studies are listed in Table 1.

Rice The first success story of gene cloning in rice 
appeared even before the availability of genome sequence 
information of rice. For instance, the gene Xa21 (identified 
from O. longistaminata (Khush et al. 1990)) was cloned 
using map-based cloning approach. The Hd1 locus respon-
sible for photoperiod sensitivity was cloned using a map-
based cloning approach on a large BC3F3 population (Yano 
et al. 2000). Similarly, analysis of 2807 BC3F4 plants led to 
mapping of heading QTL, Hd6 to a 26.4 kb region and com-
plementation test confirmed its role in late heading in rice 
(Takahashi et al. 2001). In the post-NGS era, whole-genome 
resequencing of populations has been adopted in rice for 
quick identification of candidate genes. Several analyti-
cal frameworks were developed to tackle the deluge of the 
sequence information generated from such whole-genome 
sequencing projects. One such promising method was pro-
posed by Huang et al. (2009), known as sliding window 
approach to identify recombination break points using low-
coverage WGRS of 150 recombinant inbreds. The interval 
between two recombination break points is known as bin 
that served as markers for linkage map construction. This 
approach has accurately mapped the semi-dwarf gene “sd1” 
on chromosome 1 of rice genome. Another domestication-
related gene required for red pericarp (Rc) was also cloned 
(Sweeney et al. 2006). cDNA cloning was also adopted 
to clone a novel bacterial blight resistance-related gene 
ME137 from O. meyeriana (He et al. 2013). Guo and col-
leagues cloned the qSD7-1 dormancy QTL underlying gene 
Os07g11020, which is annotated as a transcription factor 
and is the same as the red pericarp color gene Rc from wild 
rice (O. rufipogan) (https​://porta​l.nifa.usda.gov/web/crisp​
rojec​tpage​s/02140​99-chara​cteri​zatio​n-of-the-qsd7-1-seed-
dorma​ncy-gene-for-allel​ic-diffe​renti​ation​-and-regul​atory​
-mecha​nism-in-isoge​nic-backg​round​-of-rice.html). Using 
map-based cloning approach, Dai et al. (2012) identified a 
major quantitative trait locus (QTL) LHD1 (late heading 
date 1), an allele of DTH8/Ghd8, which controls the late 
heading date of wild rice and encodes a putative HAP3/
NF-YB/CBF-A subunit of the CCAAT-box-binding tran-
scription factor. In another study, using map-based cloning 
approach, Wang et al. (2015) demonstrated map-based clon-
ing of BPH29 gene, a B3 domain-containing recessive gene 
conferring brown planthopper resistance in rice. This study 
used an Indica rice introgression line RBPH54, derived from 
wild rice O. rufipogon with sustainable resistance to BPH. 
Cloning of An-2 gene that encodes the Lonely Guy-like 
protein 6 (OsLOGL6) into O. sativa ssp indica cv GuangL-
uAi4 (GLA4) demonstrated to have a large impact on reduc-
ing awn length and increasing tiller and grain numbers in 
domesticated rice (Gu et al. 2015).

https://portal.nifa.usda.gov/web/crisprojectpages/0214099-characterization-of-the-qsd7-1-seed-dormancy-gene-for-allelic-differentiation-and-regulatory-mechanism-in-isogenic-background-of-rice.html
https://portal.nifa.usda.gov/web/crisprojectpages/0214099-characterization-of-the-qsd7-1-seed-dormancy-gene-for-allelic-differentiation-and-regulatory-mechanism-in-isogenic-background-of-rice.html
https://portal.nifa.usda.gov/web/crisprojectpages/0214099-characterization-of-the-qsd7-1-seed-dormancy-gene-for-allelic-differentiation-and-regulatory-mechanism-in-isogenic-background-of-rice.html
https://portal.nifa.usda.gov/web/crisprojectpages/0214099-characterization-of-the-qsd7-1-seed-dormancy-gene-for-allelic-differentiation-and-regulatory-mechanism-in-isogenic-background-of-rice.html
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With whole-genome sequence information and NGS pro-
tocols in place, several studies have reported characterization 
of important traits in rice including tillering traits (Yu et al. 
2017), disease resistance (Kim et al. 2015; Prahalada et al. 
2017), seed longevity (Sasaki et al. 2015), etc. McCouch 
et  al. (2016) launched an open-access high-resolution 
platform which contains collection of diverse germplasm, 
high-density SNP marker data and bioinformatics tools for 
facilitating genome-wide association mapping in rice. For 
instance, GBS approach has been utilized for QTL identi-
fication using nearly 3000 SNPs on backcross inbred lines 
(BILs) for grain weight and grain length (Bhatia et al. 2018).

Wheat Fine genetic mapping of fusarium head blight 
(FHB) resistance QTL to short interval of 1.2  cM was 
reported in wheat (Liu et al. 2006). Recombinants were 
selected using SSR and STS markers from a large mapping 
population with 3156 lines derived from an F7 line (RI 63). 
This study also highlighted micro-collinearity among wheat, 
rice and barley with respect to the genomic region control-
ling FHB resistance. Similarly, positional cloning of VRN1 
gene for vernalization in wheat employed a large popula-
tion for progeny testing (3095 F2 plants) and comparative 
physical maps of rice and sorghum for collinearity analysis 
of VRN1 region (Yan et al. 2003). BAC contigs and bin-
mapped markers from genetic map (ESTs, SSR and RFLP) 
were used followed by newly developed STS and CAPS 
markers to fine-map greenbug aphid resistance gene Gb3 
using F2:3 population (Azhaguvel et al. 2012). This marker 
enrichment allowed mapping of Gb3 gene to a short interval 
of 1.1 cM of wheat chromosome arm 7DL. Using BSR-Seq, 
a set of 13–18 genes in syntenic cereal genomes for grain 
protein content (Trick et al. 2012). Similarly, powdery mil-
dew resistance gene PmTm4 was fine-mapped into 0.66 cM 
interval using comparative genomics approaches on large 
F2 population (Xie et al. 2017). Furthermore, high-density 
linkage mapping based on NGS-derived markers has enabled 
fine mapping of major traits like fungal resistance (Cockram 
et al. 2015), powdery mildew resistance (Liang et al. 2016), 
awn shape and length (Yoshioka et al. 2017), flag leaf traits 
(Hussain et al. 2017) and stripe rust resistance (Ma et al. 
2019).

Maize Plant architecture is an important phenomenon to 
study, especially in maize, understanding the genetic con-
trol of ear and tassel is important due to their role in grain 
yield. Doebley et al. (1997) cloned the teosinte branched 1 
(tb 1) gene which explains the evolutionary changes dur-
ing maize domestication. This gene was found to play an 
important role in repressing the growth of axillary organ 
and enable the formation of female inflorescences. Initially, 
QTL for tb1 was mapped on F2 population; further, the QTL 
was introgressed into different genetic backgrounds to vali-
date the QTL and complementation test has confirmed the 
role of tb1 in maize architecture. A similar analysis of fruit 

case/ear structure on 3106 F2 plants delimited a single gene, 
teosinte glume architecture (tga1) into 1024 bp controlling 
ear structure from a wild teosinte to domesticated maize 
(Wang et al. 2005). Salvi et al. (2007) have cloned a major 
flowering-time quantitative trait locus, vegetative to genera-
tive transition 1 (Vgt1) in maize. The cloned region was con-
fined to ~ 2 kb noncoding region positioned 70 kb upstream 
from Ap2-like transcription factor. A large F2 population 
comprising 10,000 lines derived from N28 × NIL C22-4 was 
used for the QTL cloning study. NIL C22-4 was obtained 
through the twenty cycles of straight backcrossing of N28 
and Gaspé Flint (an early flowering variety). Tassel and ear 
architecture were dissected using an early-generation popu-
lation genotyped with low-coverage GBS assay (Chen et al. 
2014). This study reports candidate genes involved in tassel 
structure in addition to confirming several reported QTLs in 
the shortest physical interval with less time, cost and effort. 
Recently, BSR-Seq was applied in maize to understand her-
bicide resistance mechanism, and cytochrome P450 gene 
(CYP81A9) was identified to be the candidate gene of Nss 
associated with nicosulfuron sensitivity in maize (Liu et al. 
2019). Applying combination of approaches like linkage 
mapping and genome-wide association studies has shown 
its efficacy in narrowing down of the target regions in a short 
span of time.

Barley In the pre-NGS era, the best approach for map-
ping traits in crops with limited genomic resources relied 
on exploiting the syntenic relationships with the model 
crops that have whole-genome sequence information. 
Hinze et al. (1991) mapped the resistance loci mlo on 
chromosome 4 (2.7 cM) for powdery mildew resistance 
using RFLP markers on backcross lines. High-resolution 
mapping of Rym4/Rym5 locus conferring resistance to the 
barley yellow mosaic virus complex (BaMMV, BaYMV 
and BaYMV-2) were reported by Pellio et al. (2005). Two 
high-resolution mapping populations of 1040 F2 and 3884 
F2 lines were developed for mapping rym4 and rym5, 
respectively.  Combinations of markers including RAPD, 
AFLP, SSR and CAPS were employed for marker satura-
tion and screening; further, closely linked markers were 
converted to STS markers. The homozygous recombinants 
were characterized for disease resistance. This study 
delimited the Rym4/Rym5 locus into less than 2 cM on 
genetic map and paved a way for positional cloning. Boron 
tolerance (Bot1) gene was cloned using DH lines and a 
large mapping population comprising 6720 lines (Sutton 
et al. 2007). Bot1 was reported to be the responsible gene 
for boron tolerance by controlling the net entry of boron 
into the roots and the disposal of boron from leaves in 
African barley landrace Sahara 3771. Fine mapping of a 
semi-dwarfing gene sdw3 to 0.04 cM was achieved using 
synteny between barley and other cereal genomes such as 
rice, sorghum and brassica (Vu et al. 2010). Crops with 
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complex genomes like barley and wheat have been greatly 
benefitted by the NGS-based protocols like GBS (Poland 
and Rife 2012). GBS analysis was used to map plant height 
QTL on RIL population (Liu et al. 2014). Using barley 
genome assembly, the genes located within the QTL region 
were identified by mapping the flanking markers on the 
genome. Similarly, Liller et al. (2017) have fine-mapped 
a QTL (AL7.1) for awn length to < 0.9 cM on NILs using 
SNP markers derived from barley consensus map. Barley 
genome has been sequenced very recently (Mascher et al. 
2017) and being explored for fine trait mapping. BSA-Seq 
analysis suggested nine confident genes resulting from 
fine mapping of the locus Rha2 for cereal cyst nematode 
(CNN) in barley (Van Gansbeke et al. 2019). A seminal 
paper by Pourkheirandish et al. (2015) in barley reported 
fine mapping of btr1 and btr2 genes to genomic intervals 
of 1.2 kb and 4.9 kb, respectively, on chromosome 3H by 
analyzing more than 10,000 F2 individuals. The genetic 
complementation tests validating the identities of btr1 and 
btr2 as ORF 1 and ORF 3, respectively, elucidated key 
changes occurred during domestication in barley in terms 
of rachis brittleness and seed dispersal system.

Sorghum Several studies have reported QTLs in sorghum 
for abiotic and biotic stress tolerance and other agronomi-
cally important traits; however, only a few of these could 
reach the level of fine mapping and QTL cloning. In recent 
years, researchers have increasingly adopted WGRS for 
building high-density genome maps that serve as founda-
tion to locate QTLs with greater precision and accuracy in 
sorghum (Zou et al. 2012; Hilley et al. 2017). Fine structure 
of sorghum aluminum tolerance locus Altsb was elucidated 
following association mapping in a panel of 254 accessions. 
This study accentuates genetic manipulation of a precisely 
mapped 6 kb genomic region to confer aluminum tolerance 
in molecular breeding (Caniato et al. 2014). Fine mapping 
of shoot fly resistance and stay-green mechanism of terminal 
drought tolerance-related traits on chromosome SBI-10 was 
successfully achieved using GBS-SNP-based high-density 
linkage map on high-resolution fine mapping cross (Kiran-
mayee 2016). Genome sequencing of sorghum has paved 
the way for developing molecular markers linked to spe-
cific traits by extracting the DNA sequence for the region 
of interest. For instance, Han et al. (2015) delimited the 
qGW1 region to 101 kb region for grain weight in sorghum 
using SSR markers derived from whole-genome sequence. 
Similarly, by using SSRs from genome sequence, Li et al. 
(2016a) mapped qDor7 QTL for seed dormancy trait onto 
a genomic region spanning 96 kb with 16 candidate genes. 
Following linkage mapping and GWAS in two RILs and a 
diverse panel with GBS, Boyels et al. (2017) found genomic 
regions controlling grain quality traits. A more recent GWA 
study in sorghum using GBS-SNPs revealed resistance genes 
for grain mold fungal disease resistance (Nida et al. 2019).

Legumes

Legumes have lagged far behind those of cereals with 
respect to fine mapping and QTL cloning. However, fine 
mapping studies have gained momentum in recent years 
and the progress is likely to accelerate following the avail-
ability of whole-genome sequences of these legume species 
including soybean (Schmutz et al. 2010), pigeonpea (Varsh-
ney et al. 2012), chickpea (Varshney et al. 2013b), common 
bean (Schmutz et al. 2014) and groundnut (Bertioli et al. 
2019; Zhuang et al. 2019).

Soybean is a well-studied crop compared to other leg-
umes, and therefore several studies on fine mapping and 
QTL cloning have been conducted in soybean. For instance, 
three candidate genes for root knot nematode resistance 
were identified by using GBS on a RIL population (Xu 
et  al. 2013). NILs were used for map-based cloning of 
flowering and maturity gene (Watanabe et al. 2011; Tar-
divel et al. 2014). Two genomic loci responsible for phy-
tophthora resistance, namely RpsUN1 and RpsUN2, were 
fine-mapped into 151 and 36 kb regions, respectively (Li 
et al. 2016b). QTL-Seq approach identified a novel Phytoph-
thora sojae resistance gene RpsHC18, revealing its precise 
location on chromosome 3 in soybean (Zhong et al. 2018). 
Positional cloning in soybean with informative recombinants 
at the Rhg4 locus enabled Liu et al. (2012a, b) to define an 
8 kb region on chromosome 8 controlling resistance to soy-
bean cyst nematode (SCN). Confirmatory evidence for the 
causative gene underlying Rhg4 locus, i.e., serine hydroxy-
methyltransferase (SHMT), was provided through mutant 
screens, gene expression and gene silencing experiments. 
More recent use of WGRS data of 106 soybean accessions 
by the same group has established major role of CNVs in 
rhg1 (GmSNAP18) and Rhg4 (GmSHMT08) loci in combi-
nation with epistasis and promoter variation for broad-based 
resistance against SCN (Patil et al. 2019).

In chickpea, skim sequencing has been done on one RIL 
population to refine the QTL region controlling drought 
component traits (Kale et al. 2015). This study resolved 
a broad 7.74 Mb QTL region into ~ 300 kb short segment 
containing 26 genes. Furthermore, QTL-Seq combined 
with WGRS identified candidate genes for 100-seed weight 
(100SDW) and root traits in chickpea (Singh et al. 2016a). 
These QTLs were co-mapped with the earlier identified 
QTLs for 100SDW and root traits. Another QTL-Seq study 
in chickpea identified QTLs for Ascochyta blight on five 
chromosomes (Ca1, Ca2, Ca4, Ca6 and Ca7) among which 
QTLs on Ca1, Ca4, Ca6 and Ca7 were overlapped with the 
earlier identified QTLs using conventional QTL mapping 
(Deokar et al. 2019). In pigeonpea, marker densities of 
the genetic maps have been improved incredibly with the 
recent adoption of NGS techniques (Saxena et al. 2017). 
Consequently, QTL analysis using high-density genetic 
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linkage maps led authors to detect QTLs in shorter genomic 
region for disease response (fusarium wilt, sterility mosaic 
disease: Saxena et al. 2017) and flower, seed-related traits 
(Yadav et al. 2019). QTL-Seq approach has been used for 
fine mapping of various important traits in groundnut. Based 
on the non-synonymous SNPs found between the extreme 
bulks, allele-specific diagnostic markers were reported for 
three SNPs for rust and one SNP for LLS (Pandey et al. 
2017b). More recently, QTL-Seq by Zhao et  al. (2019) 
localizes AhTc1 gene in peanut controlling purple testa to 
a 4.7 Mb region and the underlying J3K16L gene was con-
firmed through bulked segregant RNA sequencing (BSR-
seq) and gene overexpression analyses. A similar QTL-Seq 
approach in groundnut was associated with 2.4 Mb and 
0.74 Mb genomic regions on the pseudomolecules B05 and 
A09, respectively, with fresh seed dormancy trait (Kumar 
et al. 2019).

Is map‑based cloning still relevant in the post‑NGS 
era?

In the past two decades, map-based cloning of QTLs/loci for 
agronomic traits was very popular and several laboratories 
around the world accomplished fine mapping and cloning 
of genes by investing > 10 years or so (Salvi and Tuberosa 
2005, 2007). One of the main reasons for this included avail-
ability of limited markers and requirement of higher costs 
on sequencing technologies. Identification of millions of 
SNPs for genetic mapping experiments has now become a 
common phenomenon. Similarly, new methods of sequenc-
ing have brought the costs on sequencing dramatically low. 
These advances in our opinion have provided a radical 
change and great opportunity in the way of creating experi-
mental designs and genetic mapping procedures.

For fine mapping in the past, the coarse mapping-based 
information was used for refining the underlying genomic 
region by bringing more and more markers. Subsequently, 
when the QTL region was used to be delimited to very 
small region on genetic maps, the markers from these 
regions were used to be deployed for screening large-insert 
libraries developed using YAC or BAC clones. After iden-
tification of positive BAC clones, Sanger sequencing of 
those clones used provides sequencing of those regions, 
then predicts the genes and finally shortlists and validates 
those genes responsible for QTL. However, new ways were 
introduced in the post-NGS era to avoid these cumbersome 
procedures. Massive discovery of genome-wide genetic 
markers like SNPs facilitates quick development of high-
density genome maps. QTL mapping using these high-den-
sity maps can refine the preliminary QTL regions into can-
didate gene identification in a faster manner. For instance, 
if we need to place a QTL into as finer as 10 kb, in case of 
Arabidopsis we may need ~ 12,500 well-placed markers 

and in case of papaya ~ 37,200, for rice ~ 43,000 markers, 
for grape ~ 50,500, for chickpea ~ 73,000, and in the case 
of large genomes like maize, we may need ~ 2,30,000 and 
for soybean ~ 1,11,500. Discovery and mapping of such a 
huge number of genetic markers is now possible by WGRS 
of entire population (Peters et al. 2003).

The WGRS-based strategy permits placement of a QTL in 
a genomic region as fine as 10 kb or even lesser. Comparison 
of those genomic regions with the genome assemblies (as 
for majority of crops, reference genomes have become avail-
able now) can easily identify the well-annotated genes in 
those regions. In fact, rapid trait mapping approaches such as 
QTL-Seq can identify the well-annotated genes directly on 
genome assembly. Such methodological leaps in our opinion 
indicate non-requirement of traditional cloning methods that 
seek initial coarse mapping of the genomic region followed 
by fine mapping to reach candidate loci. The recent post-
NGS technologies definitely can help to reduce the time of 
QTL cloning, and more importantly, one can even bypass 
the standard fine mapping processes as the primary map-
ping itself could pinpoint the genes in the QTL region with 
great precision.

Conclusion

Fine mapping and QTL cloning were instrumental in under-
standing the functional mechanism of important plant pheno-
types in the past decade. However, sequencing technologies 
have revolutionized genomics and breeding research in the 
last decade than in the last 150 years (https​://www.lifet​echno​
logie​s.com/in/en/home/life-scien​ce/agric​ultur​al-biote​chnol​
ogy/disco​very-of-high-densi​ty-molec​ular-marke​rs.html). 
The resources and time invested to attain candidate genes 
have been reduced tremendously with these NGS technolo-
gies. In the recent past, fine mapping of QTL has become 
less complicated and rapid due to a variety of reasons: (i) 
availability of reference genomes for majority of crop spe-
cies, (ii) availability of high-resolution mapping populations 
such as MAGIC and NAM, (ii) possibility of construction 
of genetic maps and undertaking QTL analysis with high 
marker densities, (iii) possibility of landing directly to genes 
in QTL regions using rapid trait mapping approaches such 
as QTL-seq and RenSeq, (iv) availability of gene annotation 
information for majority of crops to easily shortlist possible 
genes from the candidate gene lists and (v) availability of 
mutant populations in several crops and possibility of using 
fast gene editing approaches for validating gene function. 
The projects that had taken considerable time (10–15 years) 
to fine-map, clone QTL and identify a candidate gene now 
can be completed within a time of 10–20 months.

https://www.lifetechnologies.com/in/en/home/life-science/agricultural-biotechnology/discovery-of-high-density-molecular-markers.html
https://www.lifetechnologies.com/in/en/home/life-science/agricultural-biotechnology/discovery-of-high-density-molecular-markers.html
https://www.lifetechnologies.com/in/en/home/life-science/agricultural-biotechnology/discovery-of-high-density-molecular-markers.html
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