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the standard deviation of phenotypic data ranged from
1.78 to 2.39 across four environments. Two elite culti-
vars (Zhonghua 15 and Yuhua 9326) which have super-
ior yield potential, exhibited stably high-oil feature
across four-environmental trials (average oil content >

55%). The continuous distributions of phenotypic values
for peanut accessions were shown in Additional file 2:
Fig. S2. The phenotypic data of the peanut panel in
2015WH, 2016WH, and 2017WH followed a normal
distribution based on the Shapiro-Wilk normality test

Table 2 Phenotypic variation for oil content (%) for 292 peanut accessions across four environments

Env Min (%) Max (%) Median (%) SD Kurt Skew w (Sig) H2

2015WH 45.85 59.72 51.89 2.39 � 0.04 0.22 1.00 (0.51) 0.76

2016WH 43.82 55.88 50.13 1.78 0.54 0.00 0.99 (0.36)

2017NC 44.22 54.97 48.47 1.94 0.66 0.06 0.99 (0.04)

2017WH 45.11 56.69 51.53 1.86 0.32 0.06 1.00 (0.50)

Env environment, SD standard deviation, Kurt Kurtosis, Skew skewness, w Shariro-Wilk statistic value, Sig significance

Fig. 2 Geographical structure in the peanut panel. a The proportion of two groups G1 and G2 (Fig. 1c) in China. b Phylogenetic tree of the
peanut accessions grouped by original provinces. HEB, Hebei province; SD, Shandong province; HN, Henan province; JS, Jiangsu province; HUB,
Hubei province; SC, Sichuan province; FJ, Fujian province; GD, Guangdong province; GX, Guangxi province. HEB, SD, and HN belong to the
Northern China. JS, HUB, and SC belong to the Yangtze River region in China. FJ, GD, and GX belong to the Southern China
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(Table 2). Variance analysis across four environmental
trials showed that genotype, environment, and genotype
× environment significantly influenced oil content at the
P < 0.001 level (Additional file 2: Fig. S2). The broad
sense heritability for oil content was evaluated to be 0.76
in the peanut panel.
We further studied phenotypic differences in the genet-

ically highly diverse association mapping panel containing
genotypes different geographic distributions in China. The
oil content in the accessions from Northern China was
statistically higher than that from Southern China in all
the field trials. Similarly, the accessions from the Yangtze
River region had higher oil content than the accessions
from Southern China in 2016WH, 2017NC, and 2017WH.
The phenotypic difference between Northern China and
the Yangtze River region was not statistically significant in
three of the four environments. Meanwhile, we also made
a comparison among cultivated peanuts released at differ-
ent times (Additional file 2: Fig. S3). In general, there was
no obvious difference in oil content between cultivars re-
leased at different times.

Association analysis for oil content
The Mixed linear model with K +Q matrix was used to
perform association mapping with SSR-markers and the
phenotypic data on oil content generated on 292 peanut
accessions in four environments. The marker-trait associ-
ation analysis identified two associated loci for 2015 WH
environment, eight associated loci for 2016WH environ-
ment, three associated loci for 2017NC environment, and
five associated loci for 2017WH environment. Twelve sig-
nificantly associated loci at P < 0.00186 explained 4.54–
9.94% phenotypic variance across four environments
(Table 3 and Additional file 2: Fig. S4). Among them,

AGGS1014_2 with up to 9.94% PVE had been repeatedly
detected in multiple environments (2016WH, 2017NC,
and 2017WH). These markers were widely distributed on
nine linkage groups based on previously reported genetic
maps (Additional file 1: Table S2). Physical position of as-
sociated markers were on 12.7Mb of B01 (AGGS1014_2),
57.1Mb of B07 (AGGS1081), 47.4Mb of A03
(AGGS1149), 124.9Mb of B06 (AHGS0798), 30.1Mb of
B08 (AHGS1388), 20.8Mb of B06 (AHGS1431), 36.9Mb
of A04 (AHGS1679), 57.1Mb of B07 (AHGS2053), 67.8
Mb of B07 (AHS0127), 119.6Mb of A09 (pPGPseq8D9),
5.1Mb of A10 (TC11B4_2), 35.5Mb of A08 (TC9F10_2),
respectively.
The allelic number of these associated loci ranged from

two (pPGPseq8D9 and AGGS1014_2) to six (TC11B4_2).
The most favorable alleles which have the largest effect
values included pPGPseq8D9-131 bp, TC9F10_2-256 bp,
TC11B4_2-298 bp, AHGS1679-293 bp, AGGS1149-192 bp,
AGGS1081-201 bp, AGGS1014_2-215 bp, AHGS2053-256
bp, AHS0127-188 bp, AHGS1431-260 bp, AHGS0798-174
bp, and AHGS1388-304 bp (Table 3, Additional file 1: Table
S3). The accessions with different alleles showed statistically
significant difference in a four-environment average of oil
content (Fig. 3a). Compared with accessions in Southern
China (FJ, GD, and GX), the genotypes from Northern China
and Yangtze River (SD, HEB, HN, JS, SC, and HUB) carried
more alleles with relatively high effect (Fig. 3b). Similarly, the
frequencies of the most favorable alleles also showed geo-
graphic differences. For ten associated loci (pPGPseq8D9,
TC11B4_2, AHGS1679, AGGS1149, AGGS1014_2, AHG
S2053, AHGS0127, AHGS1431, AGHS0798, and AHG
S1388), the most favorable allele frequency was highest in
Northern China, the second-highest in the Yangtze River re-
gion, and lowest in Southern China (Fig. 3c). However, the

Table 3 Marker–trait associations across four environments for oil content

Marker Environment F-value P-value PVE(%) Favorable allele

pPGPseq8D9 2017NC 13.22 3.29E-04 4.61 pPGPseq8D9-131 bp

TC9F10_2 2017WH 6.48 3.09E-04 7.59 TC9F10_2-256 bp

TC11B4_2 2017WH 4.08 1.43E-03 8.84 TC11B4_2-298 bp

AHGS1679 2017WH 5.95 6.04E-04 6.39 AHGS1679-293 bp

AGGS1149 2016WH 6.54 1.68E-03 4.54 AGGS1149-192 bp

AGGS1081 2016WH 5.47 1.15E-03 5.76 AGGS1081-201 bp

AGGS1014_2 2016WH 23.23 2.50E-06 9.94 AGGS1014_2-215 bp

2017NC 14.89 1.45E-04 6.90

2017WH 21.43 5.90E-06 8.75

AHGS2053 2016WH 6.29 3.81E-04 6.65 AHGS2053-256 bp

AHS0127 2016WH 10.04 6.13E-05 6.99 AHS0127-188 bp

AHGS1431 2016WH 9.11 1.52E-04 7.35 AHGS1431-260 bp

AHGS0798 2015WH 9.54 1.03E-04 7.28 AHGS0798-174 bp

AHGS1388 2016WH 8.84 1.94E-04 6.78 AHGS1388-304 bp

PVE phenotypic variance explained
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most favorable allele frequencies were highest in Southern
China for another two associated loci (TC9F10_2 and
AHGS1431).

Evaluation of RIL population and confirmation of
associated markers
To estimate potential values of associated loci in peanut
breeding, a RIL population derived from two additional
accessions (Zhonghua 10 and ICG12625) was employed
as a test population. Oil content of the RIL population
across four environments ranged from 47.45 to 60.88%
in Env1, 45.30 to 58.96% in Env2, 42.89 to 55.07% in
Env3, and 45.98 to 58.37% in Env4, respectively. The oil
content of the female parent was 51.88 ± 1.41%, whereas

that of the male parent was 53.32 ± 1.47%. Three makers
(AGGS1014_2, AHGS0798, and AHGS1431) showed as-
sociation with oil content in the RIL population. A sig-
nificant difference in oil content between homozygous
alleles from P1 and P2 at AHGS1431 locus was observed
in Env1 (Additional file 1: Table S4). Compared with the
homozygous allele from P1 at AGGS1014_2 locus, the
homozygous allele from P2 had significantly higher oil
content in two environments i.e., Env2 and Env4 (Fig. 4a
and Additional file 1: Table S4). For marker AHGS0798,
oil content of the homozygous allele from P2 was signifi-
cantly higher than that of the homozygous allele from
P1 in two environments (Fig. 4a and Additional file 1:
Table S4). Combined allele effect of AGGS1014_2 and

Fig. 3 Phenotypic effect and geographic distribution of favorable alleles of trait-associated markers. a Comparison of accessions with different
alleles based on average values of four environmental data. The boxes with different letters were significantly different according to Tukey’s
Multiple Comparison Test (P< 0.05). b Overview of allelic effect of associated markers in accessions from nine provinces. The columns of heatmap
denoted the association markers. The rows of heatmap represented accessions distributed on nine provinces. Each cell in the heatmap
represented phenotypic effect of allele. c The spectrum of the most favorable allele frequencies in different geographic regions. HEB, Hebei
province; SD, Shandong province; HN, Henan province; JS, Jiangsu province; HUB, Hubei province; SC, Sichuan province; FJ, Fujian province; GD,
Guangdong province; GX, Guangxi province. HEB, SD, and HN belong to the Northern China. JS, HUB, and SC belong to the Yangtze River region
in China. FJ, GD, and GX belong to the Southern China
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Genotypic data analysis
The allele number, major allele frequency, genetic diver-
sity and polymorphism information content (PIC) were
calculated using PowerMarker V3.25 software [54]. The
number of subgroups of this peanut panel was estimated
using STRUCTURE software V2.1 based on the model-
based Bayesian clustering method [55]. To determine an
optimum number of subgroups (K), five independent
runs were performed to estimate each K values from 1
to 10 for each accession. For each run, a burn-in length
of 50,000 followed by 10,000 iterations were conducted
with the admixture and related frequency models. The
optimal K value was determined by the posterior prob-
ability [LnP(D)] and � K [56].
Phylogenetic analysis was performed to construct a

UPGMA tree based on Nei’s (1972) genetic distance.
Nei’s (1972) genetic distance was calculated using
PowerMarker [54] and the tree was formed using MEGA
4.0 (http://www.megasoftware.net). Principal component
analysis (PCA) was complement using R package “Facto-
MineR” (https://cran.r-project.org/web/packages/Facto-
MineR/index.html) and three-dimensional scatter plot of
PCA was completed using R package “scatterplot3d”
(https://cran.r-project.org/web/packages/scatterplot3d/).
SSR markers mapped on a dense genetic map were se-

lected to estimate LD. The pairs of markers located on
the same linkage group were treated as linked markers,
otherwise as unlinked markers. The r2 and p value was
calculated with TASSEL 3.0 [57]. LD decay in the peanut
panel with r2 values were plotted against the genetic dis-
tance (cM) between markers.

Evaluation of oil content and phenotypic data analysis
The percentages of Oil and H2O in seeds were measured
using nuclear magnetic resonance (PQ001, Niumag,
China). Matured seeds (~ 10 g) with less than 10% mois-
ture content were analyzed for each of the three sub-
samples per entry. Oil content (%) was calculated based
on dry-weight using the formula {[oil/(100 ŠH2O)] ×
100} [13].
The field trials in Wuhan in 2015, 2016 and 2017 were

treated as Environment I, II and III, respectively. The
field trial in Nanchong in 2017 was treated as Environ-
ment IV. The phenotypic data statistical analyses were
performed using the IBM SPSS Statistics software (V.22,
IBM, USA). The family-based broad-sense heritability
for oil content was calculated as H2 ¼ σ2g=ðσ2g þ σ2

g�e=r

þσ2
ε=rnÞ, where σ2g is the genotypic variance, σ2g�e is the

genotype × environment interaction variance, σ2ε is the
residual variance, r represents the number of environ-
ments and n represents the number of replications in
each environment.

Marker-trait association analysis
Associations between SSR markers and the trait of oil
content were performed using TASSEL software based
on a Q + K mixed linear model [57]. The population
structure (Q) was obtained from model-based program
STRUCTURE V2.1 [55]. The pairwise kinship matrix (K)
was calculated using SPAGeDi software [58]. To esti-
mate allelic effect, the phenotypic effect of last allele for
an associated marker is set to zero and the other allele
estimates are relatives to that. The mean of four-trial al-
lelic effect at 12 association locus were used to construct
a heatmap to view geographic distribution of allelic ef-
fect for associated markers. The software MeV was used
to visualize the heatmap [59].
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