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Globally, two billion people suffer from micronutrient deficiencies. Cereal grains provide
more than 50% of the daily requirement of calories in human diets, but they often
fail to provide adequate essential minerals and vitamins. Cereal crop production in
developing countries achieved remarkable yield gains through the efforts of the Green
Revolution (117% in rice, 30% in wheat, 530% in maize, and 188% in pearl millet).
However, modern varieties are often deficient in essential micronutrients compared
to traditional varieties and land races. Breeding for nutritional quality in staple cereals
is a challenging task; however, biofortification initiatives combined with genomic tools
increase the feasibility. Current biofortification breeding activities include improving rice
(for zinc), wheat (for zinc), maize (for provitamin A), and pearl millet (for iron and zinc).
Biofortification is a sustainable approach to enrich staple cereals with provitamin A,
carotenoids, and folates. Significant genetic variation has been found for provitamin A
(96–850 µg and 12–1780 µg in 100 g in wheat and maize, respectively), carotenoids
(558–6730 µg in maize), and folates in rice (11–51 µg) and wheat (32.3–89.1 µg)
in 100 g. This indicates the prospects for biofortification breeding. Several QTLs
associated with carotenoids and folates have been identified in major cereals, and the
most promising of these are presented here. Breeding for essential nutrition should be
a core objective of next-generation crop breeding. This review synthesizes the available
literature on folates, provitamin A, and carotenoids in rice, wheat, maize, and pearl
millet, including genetic variation, trait discovery, QTL identification, gene introgressions,
and the strategy of genomics-assisted biofortification for these traits. Recent evidence
shows that genomics-assisted breeding for grain nutrition in rice, wheat, maize, and
pearl millet crops have good potential to aid in the alleviation of micronutrient malnutrition
in many developing countries.

Keywords: biofortification, nutri-genomics, cereal, folate, provitamin A, lutein, zeaxanthin, human nutrition

INTRODUCTION

Micronutrient and vitamin-deficiency-induced malnutrition is widely prevalent in South Asia and
sub-Saharan Africa, affecting approximately two billion people worldwide. In the human diet, more
than 50% of total calories come from major cereals, including rice, wheat, and maize, in developing
countries and more than 70% in Southeast Asia and Africa. The green revolution contributed
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to remarkable increases in grain yield in these crops, which
helped to prevent starvation in developing countries (Bouis and
Welch, 2010). It is well known that cereal grains supply enough
calories; however, these grains are inherently low in essential
micronutrients, including carotenoids and folates (Bouis and
Welch, 2010). The global production of rice is 769.4 m tons (from
167.2 m ha), wheat is 771.7 m tons (from 218.5 m ha), maize
is 1134.7 m tons (from 197.2 m ha), and millet is 28.4 m tons
(from 31.2 m ha) (Food and Agriculture Organization [FAO]
et al., 2017), i.e., these crops play a critical role in food systems.
Therefore, enhancing the nutritional quality of staple cereal crops
is important for human health, particularly for resource-poor
people in developing countries. Globally, 792.5 million people
are malnourished, of which 780 million people live in developing
countries (McGuire, 2015). Globally, two billion people suffer
from hidden hunger due to inadequacies of micronutrients in
their daily diet (Muthayya et al., 2013). Although major attention
has been given to iron and zinc, in this review we also report
on breeding efforts to improve concentrations of provitamin A,
folate, and carotenoids.

Carotenoids are the second largest group of naturally
occurring lipophilic pigments, following flavonoids, and at least
50 of them occur in plants. The most important carotenoids in
food crops are β-carotene, α-carotene, β-cryptoxanthin, lutein,
zeaxanthin, and lycopene. These carotenes are metabolized and
converted to provitamin A (Davey et al., 2009). Humans are
incapable of carotenoid biosynthesis, and we therefore depend
on dietary carotenoid sources from plant-based foods (Fraser and
Bramley, 2004). More than three million children in developing
countries are affected by xerophthalmia, and 250,000–500,000
people become blind each year because of vitamin A deficiency
(Food and Agriculture Organization [FAO] et al., 2017). The
Recommended Dietary Allowance (RDA) of vitamin A for men
and women is 900 and 700 µg Retinol Activity Equivalents
(RAE)/day, respectively. For dietary provitamin A carotenoids,
β-carotene, α-carotene, and β-cryptoxanthin RAEs have been set
at 12, 24, and 24 µg, respectively (Institute of Medicine Food and
Nutrition Board, 1998).

Folates act as cofactors in several metabolic functions,
including the biosynthesis of nucleic acids and methylation of
hormones, lipids, and proteins (Forges et al., 2007). Among
many naturally occurring folates, cereal and pulse grains
largely contain tetrahydrofolic acid (THF), 5-methyl-THF (5-
MTHF), 10-formyl-THF (10-FTHF), and pteroylpolyglutamates
(Jha et al., 2015; Ashokkumar et al., 2018b). Folate deficiency
is a major problem for people from developing countries and
can cause severe health issues, including impaired cognitive
function, neural tube defects, and cardiovascular diseases (Ramos
et al., 2005; McCully, 2007) as well as low birth weight, preterm
delivery, and fetal growth retardation (Scholl and Johnson, 2000).
Over 300,000 birth defects occur each year worldwide due to
folate-deficiency-induced neural tube defects (Flores et al., 2014).
Consumption of a folate-rich diet, fortification of foods with folic
acid, and folic acid supplements can increase folate concentration
in humans (Hefni et al., 2010). The RDA of folates is 400 µg
for adults, 500 µg for lactating women, and 600 µg for pregnant
women (Institute of Medicine Food and Nutrition Board, 1998).

Biofortification of staple crops through plant breeding and
genomics integrated approaches is an effective strategy for
delivering vitamins and nutrients to reduce micronutrient
deficiencies in developing countries (Bouis, 2002; Welch
and Graham, 2005). As urban development increasingly
occupies fertile lands, the achievable agricultural production
will be pushed toward marginal lands in developing countries.
Enhancement of the nutritional value of staple crops through
biofortification breeding might have a substantial impact on
with their increased consumption worldwide. Increasing the
availability of biofortified crops is a relatively straightforward
approach to reach low-income people with limited access to
healthy diets. Biofortification is a long-term, cost-effective,
and sustainable approach to fight malnutrition in developing
countries (Meenakshi et al., 2010). In the upcoming decades, the
human population will increase in developing countries, and,
with the altering climate conditions, food security will pose an
increasing challenge (Das et al., 2013; Smith and Myers, 2018).
Currently, the most common targeted micronutrients through
biofortification breeding are iron, zinc, and carotenoids since
these micronutrient deficiencies are common in children under
the age of five and in pregnant and lactating women (Bouis
and Welch, 2010). The World Health Organization (WHO)
and Consultative Group on International Agricultural Research
(CGIAR) aim to develop biofortified crops with enhanced
nutrition (Bouis, 2000). To date, 36 biofortified varieties have
been developed in maize, and these have reached 126,000
households in Zambia (Saltzman et al., 2017). The hybrid Pusa
Vivek QPM nine Improved is the first biofortified maize variety
in India with enhanced provitamin A. It was released in 2017
and is suitable for cultivation in nearly all states of India.
Developing countries have included biofortification in their
national agricultural nutrition strategies. For instance, India is the
first country to prioritize biofortification and has set minimum
standards for the release of pearl millet cultivars of 420 and
320 µg/100 g for iron and zinc, respectively. In this review, first
major food sources and traits associated with carotenoids and
folates have been discussed. In the next section, genetic variation
and breeding strategies for enhancing the carotenoids and folates
in major cereals (i.e., rice, wheat, maize, and pearl millet) have
been summarized and discussed. In the final section we have
discussed genomics integrated breeding and biofortification for
carotenoids and folates as well as research gaps and future
research directions.

IMPORTANT FOOD SOURCES OF
CAROTENOIDS AND FOLATES

Folate is also referred to as vitamin B9 and is involved in DNA
and RNA synthesis. It is required to produce healthy red blood
cells and is critical during periods of rapid growth, such as during
pregnancy and fetal development. Carotenoids are essential
for protecting eyes and bones and protecting against various
types of cancer. Regular consumption of naturally available food
sources can give a substantial quantity of folates, β-carotene,
and macular carotenoids (lutein and zeaxanthin). However, the
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availability and affordability of such food sources are not possible
in rural, poor, and remote areas in developing countries. The
top ten food sources that are rich in (per 100 g) folates and
carotenoids from earlier published reports and international
food databases are summarized (Tables 1, 2 and Figure 1).
Table 1 summarizes the percentage of recommended dietary
allowance (% RDA) of folate, which is calculated based on a
100 g serving of each crop type expressed for adults, pregnant
women, and lactating women. β-carotene is the precursor of
provitamin A, and it is predominantly accumulated in fruits and
vegetables (Ashokkumar et al., 2018a). Ten major food crops
with the highest concentration of β-carotene are presented in
Table 2. Among them, kale or leafy cabbage, sweet potato, and
carrot have the greatest concentration of β-carotene. Continuous
availability and accessibility of these sources at affordable prices is
challenging; improving the nutritional value of locally produced
and available foods is an appropriate way to address this issue.

TRAITS ASSOCIATED WITH
CAROTENOIDS AND FOLATES

The growing food markets pay close attention to grain nutritional
quality due to the mounting health concerns among consumers.
Yellow to orange pigmented grain types are positively correlated
with carotenoid concentration in maize (da Silva Messias
et al., 2014). Carotenoids are located in amyloplasts in maize.
Lutein is the major carotenoid present in the grains of wheat
(Ramachandran et al., 2010), pulses (Ashokkumar et al., 2014,
2015), oilseeds (McGraw et al., 2001), and spices (Ashokkumar
et al., 2020). The seeds of wild-type maize chiefly accumulate
lutein, followed by zeaxanthin, xanthophyll, and trace amounts of
β-carotene (Janick-Buckner et al., 1999). Lutein and zeaxanthin
are the major carotenoids in millets, with lutein being the
predominant in white millet, while zeaxanthin is the main
carotenoid in red millet (McGraw et al., 2001). Similarly, the

TABLE 1 | Folate-rich food sources available worldwide.

Sl. No. Food source Concentration (µg/100 g) % RDA§§§ References

Adult Pregnant Lactating women

1. Mung bean, raw 626.0 156.5 104.3 125.2 USDA–ARS (2012)

2. Chickpea, raw 470.7 117.7 78.5 94.1 Jha et al. (2015)

3. Common bean, raw 191.7 47.9 32.0 38.3 Jha et al. (2015)

4. Lentil, green, raw 156.5 39.1 26.1 31.3 Jha et al. (2015)

5. Soybean, green, raw 165.0 41.3 27.5 33.0 USDA–ARS (2012)

6. Spinach, cooked 146.0 36.5 24.3 29.2 USDA–ARS (2012)

7. Broccoli, cooked 108.0 27.0 18.0 21.6 USDA–ARS (2012)

8. Bread wheat, raw 85.0 21.3 14.2 17.0 USDA–ARS (2012)

9. Rice, pigmented, raw 51.0 12.8 8.5 10.2 Ashokkumar et al. (2018b)

10. Corn, sweet, white, raw 46.0 11.5 7.7 9.2 USDA–ARS (2012)

§The percentage of recommended dietary allowance (RDA) of folate concentration was calculated based on the serving of 100 g of each species. The United States
(U.S.), Food and Nutrition Board, RDAs required 400 µg/day, 600 µg/day, and 500 µg/day for adult, pregnant and lactating women, respectively.

TABLE 2 | Rich food sources of provitamin A (µg/100 g)a.

Sl. No. Food source β-carotene
(µg/100 g)

RAE
(µg/day)‡

% RDA§§§

Children
(1–3 years)

Children
(4–8 years)

Men
(>19 years)

Women
(>19 years)

1. Kale or leaf cabbage, raw 9226 768.8 256.3 192.2 85.4 109.8

2. Sweet potato, raw 9180 765.0 255.0 191.3 85.0 109.3

3. Carrot, raw 8836 736.3 245.4 184.1 81.8 105.2

4. Squash, winter, butternut, raw 4226 352.2 117.4 88.0 39.1 50.3

5. Collards, raw 3323 276.9 92.3 69.2 30.8 39.6

6. Pepper, sweet, red, raw 2379 198.3 66.1 49.6 22.0 28.3

7. Melon, cantaloupe, raw 1595 132.9 44.3 33.2 14.8 19.0

8. Lettuce, romaine, raw 1272 106.0 35.3 26.5 11.8 15.1

9. Apricots 664 55.3 18.4 13.8 6.1 7.9

10. Peas, green, raw 432 36.0 12.0 9.0 4.0 5.1

aSource: USDA–NCC Carotenoid Database for the US Foods-1998 published by Holden et al., 1999. §Recommended dietary allowance (RDA) for vitamin A was
calculated based on daily value (DV) of retinol activity equivalents (RAE) µg/day from 100 g serving of each species. The United States (U.S.), RDAs required RAE
300 µg/day and 400 µg/day for children aged 1–3 years and 4–8 years, respectively; 900 µg/day and 700 µg/day for adult men and women, respectively. ‡RAE was
calculated by 12 µg dietary β-carotene converted to 1 µg retinol (REA ratio 12:1).
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FIGURE 1 | Top 10 food sources providing macular carotenoids (lutein + zeaxanthin).

TABLE 3 | Genetic control of carotenoid concentration in major cereal grains.

Crop Trait Gene effects References

Wheat Yellow pigment concentration Additive Clarke et al. (2006)

Wheat β-carotene Digenic epistasis (additive × dominance) Santra et al. (2005)

Maize β-carotene Incompletely dominant Hauge and Trost (1928)

Maize Carotenoids Additive Kandianis et al. (2013)

Maize β-carotene Additive Jittham et al. (2017)

Maize Provitamin A Non-additive Halilu et al. (2016)

Pearl millet β-carotene Non-additive Khangura et al., 1980

Sorghum β-carotene Additive Fernandez et al. (2008)

yellow kernel color of maize was positively correlated with non-
provitamin carotenoids lutein and zeaxanthin (Muthusamy et al.,
2015). A red-pigmented rice grain variety accumulated two-fold
higher folate concentration than that found in white rice grains
(Ashokkumar et al., 2018b). Abscisic acid (ABA) accumulation in
grains is one of the important traits associated with carotenoid
concentration (Maluf et al., 1997). Sometimes, reducing the
antinutrient factors, such as phytic acid, may enhance the
nutritional quality and bioavailability of cereals (Bohn et al., 2008;
Tamanna et al., 2013). This approach has been effectively used to
enhance the nutrition of maize grown for animal feed (Raboy,
1996). The highest accumulation of total carotenoids in wheat
grain was reported at 12–15 days after anthesis and thereafter the
level of accumulation declined (Graham and Rosser, 2000).

GENETICS AND GENETIC VARIATION OF
CAROTENOIDS AND FOLATES IN
CEREALS

Genetic analysis of carotenoids offers expedient directions to
breeders initiating further breeding events. However, limited

information is available on the genetic control of carotenoid
concentration in staple cereal crops (Table 3). Yellow pigment
concentration (YPC) in wheat and β-carotene, α-carotene,
β-cryptoxanthin, and provitamin A in maize endosperms are
largely controlled by additive genetic variance (Elouafi et al.,
2001; Halilu et al., 2016). These complex traits may be linked to
genotype-dependent and environmental factors. Grain yield and
carotenoid concentration were predominantly controlled by non-
additive gene actions in maize (Halilu et al., 2016). Furthermore,
earlier investigations reported that carotenoids and its related
compounds were controlled by both additive and non-additive
gene action in maize endosperm (Chander et al., 2008). Babu et al.
(2013) noticed that partial dominant and partial recessive gene
action was in play in maize for the genes LCYE-50TE and crtrB1-
30TE, respectively. The superiority of additive gene action and
non-additive gene action suggested the application of recurrent
selection and heterosis breeding followed genetic improvement
of a particular trait in cereal crops.

Heritability estimates are mainly used for the determination
of genotypic proportion of the trait, which favors the estimation
of the effect of selection. If a particular trait has a higher
heritability value, that trait might be modified by proper selection
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methods. Conversely, lower heritability values indicated that
those selection methods are not suitable for that particular
trait. However, various researchers remarked that low to high
heritability values were observed for carotenoids in maize. The
heritability of YPC ranged from low (11%) to high (69%) in
wheat (Elouafi et al., 2001; Clarke et al., 2006). Broad-sense
heritability (H2) was observed for lutein (61.49%), zeaxanthin
(58.91%), and β-carotene (67.37%) in maize. Studies also noted
narrow sense heritability (h2) for lutein (19.00%) and zeaxanthin
(18.09%) (Halilu et al., 2016). However, higher broad sense
heritability was detected for lutein and zeaxanthin (Chander
et al., 2008), and medium heritability values were observed
for provitamin A (Wong et al., 2004). Genetic studies for
gene action and heritability estimates are essential before
initiating biofortification breeding programs for provitamin
A and folates since heritability and gene action could be
varied for different plant materials and environmental factors.
Additionally, the investigation of gene action is imperative to
design breeding programs.

In order to breed varieties with enhanced carotenoid and
folate concentrations, information on the magnitude of genetic
variation for carotenoids and folate in rice, wheat, maize,
and pearl millet is needed. The variability for carotenoid
and folate concentrations that have been recorded in the
available genetic resources is summarized in Table 4. Genetic
variation for β-carotene ranged from 96–850 µg/100 g in
wheat, and 0.0–1780 µg/100 g in maize (Santra et al., 2005;
Badakhshan et al., 2013; Muthusamy et al., 2014, 2015). In
a study of 100 maize inbred lines, lutein and zeaxanthin
concentrations ranged in the order of 20–1130 µg/100 g and 20–
2000 µg/100 g, respectively. The highest lutein (1130 µg/100 g)
and zeaxanthin (2000 µg/100 g) contents were recorded in two

maize genotypes, namely, HP180-25 and CML161. According
to Ortiz-Monasterio et al. (2007), 5–30% total carotenoids were
provitamin A carotenoids while, β-carotene and β-cryptoxanthin
were around 21 and 27% of the total concentrations of kernel
carotenoids of yellow maize genotypes, respectively (Suwarno
et al., 2014). These studies show that substantial genetic
variability is present in the maize genetic resources for provitamin
A and non-provitamin A concentrations of carotenoids, which
could be used for the development of biofortified maize
varieties/hybrids.

Pearl millet has limited concentrations of β-carotene, but a
few accessions were identified with higher levels. For instance,
genotype PT 6129 was high in β-carotene (241.7 µg/100 g),
and such a line is useful to breed carotenoid rich varieties
(Aarthy et al., 2011). Additionally, genetic variability is being
explored in sorghum through the yellow endosperm lines which
are available in the germplasm collections of the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT),
Patancheru, Hyderabad, India. The β-carotene concentrations of
sorghum lines ranged from 56–113 µg/100 g, six lines, namely, IS
7684, IS 7776, IS 24703, IS 24868, IS 24883, and IS 26886, having
an average of 85 µg (Reddy et al., 2005).

In terms of carotenoids in wheat seeds, lutein, zeaxanthin,
and β-cryptoxanthin were predominant in the germ, while
the endosperm had predominantly lutein, followed by
β-cryptoxanthin and zeaxanthin (Table 5). For instance,
the lutein concentration of wheat endosperm and germ varied
significantly from 15.5 to 70.7 µg and 43.1 to 193.7 µg in 100 g,
respectively (Adom et al., 2005; Masisi et al., 2015). The total
carotenoids in wheat ranged from 170.1 to 227 µg/100 g in
endosperm and 945 to 1029 µg/100 g in bran or germ (Ndolo
and Beta, 2013). Interestingly, maize endosperm had substantial

TABLE 4 | Range of carotenoid and folate concentrations in the available genetic resources of major cereal grains.

Crop Genotypes evaluated Nutrient trait Concentration (µg/100 g) References

Rice 4 genotypes Folate 11.0–51.0 Ashokkumar et al. (2018b)

Wheat 130 winter wheat genotypes Folate 36.4–77.4 Piironen et al. (2008)

Wheat 20 spring wheat genotypes Folate 32.3–74.1 Piironen et al. (2008)

Wheat 10 durum wheat Folate 63.7–89.1 Piironen et al. (2008)

Wheat 82 wheat accessions β-carotene 96.0–169.0 Badakhshan et al. (2013)

Wheat 5 genotypes β-carotene 300.0–850.0 Santra et al. (2005)

Maize 12 inbred lines Provitamin A 738.0–1359.0 Zunjare et al. (2018)

Maize 111 inbred lines Total carotenoid 650.0–6730.0 Sivaranjani et al. (2013)

Maize 105 inbred lines Lutein 20.0–1130.0.0 Muthusamy et al. (2015)

Maize 105 inbred lines Zeaxanthin 20.0–2000.0 Muthusamy et al. (2015)

Maize 105 inbred lines β-carotene 0.0–1500.0 Muthusamy et al. (2015)

Maize 105 inbred lines β-cryptoxanthin 10.0–330.0 Muthusamy et al. (2015)

Maize 27 inbred lines β-carotene 130.0–1780.0 Muthusamy et al. (2014)

Maize 64 inbred lines Total carotenoids 558.0–390.0 Safawo et al. (2010)

Maize 64 inbred lines β-carotene 12.0–474.0 Safawo et al. (2010)

Pearl millet 10 F5 progeny lines β-carotene 129.0–173.0 Jiji et al. (2017)

Pearl millet 10 F5 progeny lines Total carotenoids 329.0–810.0 Jiji et al. (2017)

Sorghum 11 genotypes β-carotene 56.0–113.0 Reddy et al. (2005)

Sorghum 121 RILs Lutein 8.0–63.0 Fernandez et al. (2008)

Sorghum 121 RILs Zeaxanthin 6.1–102.0 Fernandez et al. (2008)
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concentrations of zeaxanthin (1367.1 µg/100 g) and total
carotenoids (1417.1–3135.2 µg/100 g).

Few studies have been conducted for the evaluation and
identification of plant genetic resources for folate enhancement
in cereal grains. This is likely due to the complexity, stability,
and cost of folate concentration assays. Folate concentration was
double in red-pigmented rice (Nootripathu) compared to non-
pigmented rice genotypes (IR 20, N 22, and Pusa Basmati-1), and
it ranged from 11 to 51 µg/100 g (Ashokkumar et al., 2018b).
Piironen et al. (2008), assessed the total folate concentration in
160 genotypes of winter, spring, and durum wheat, and it ranged
from 32.3 to 89.1 µg/100 g, with the greatest range evident
in durum (63.7–89.1 µg/100 g). Their growing environments
significantly influenced total folate concentration of winter wheat
genotypes, more so than the genetic factors (Kariluoto et al.,

2010). Variation for folates in maize, sorghum and pearl millet
was not reported among the available genetic resources. Hence,
further studies are needed to investigate the folate concentrations
in grains of those major cereals. The rich sources of germplasm
and their use for the genetic improvement and grain localization
of carotenoids and in major cereal grains are described (Table 6).

BREEDING FOR INCREASED
CAROTENOID AND FOLATE
CONCENTRATION

The breeding strategies that are widely used to improve the
carotenoid and folate concentrations in cereals are presented
in Figure 2. Rice does not contain adequate amounts of

TABLE 5 | Grain localization of carotenoids and folates in major cereals.

Crop Genotypes evaluated Nutrient trait Concentration (µg/100 g) References

Endosperm Germ Aleurone

Wheat 5 genotypes Lutein 36.9–70.7 164.1–191.7 – Adom et al. (2005)

Wheat 5 genotypes Zeaxanthin 1.6–2.7 19.4–26.2 – Adom et al. (2005)

Wheat 5 genotypes β-cryptoxanthin 3.5–4.4 8.91–10.0 – Adom et al. (2005)

Wheat 1 genotype Lutein 15.5 43.1 2.2 Masisi et al. (2015)

Wheat 1 genotype Zeaxanthin 0.7 21.5 21.2 Masisi et al. (2015)

Wheat 4 genotypes Total carotenoids 171.0.–227.1 845.1–987.1 – Ndolo and Beta (2013)

Maize 1 genotype Lutein 136.9 7.2 16.1 Masisi et al. (2015)

Maize 1 genotype Zeaxanthin 1367.1 98.9 35.8 Masisi et al. (2015)

Maize 4 genotypes Total carotenoids 1417.1–3135.2 33.3–53.6 – Ndolo and Beta (2013)

TABLE 6 | Available genetic resources for carotenoids and folate improvement in major cereal grains.

Crop Genotype Nutrient trait Concentration
(µg/100 g)

RAE
(µg/day)‡

% RDA§§§,† References

Children
(1–3 years)

Children
(4–8 years)

Men
(>19 years)

Women
(>19 years)

Rice Nootripathu Folates 51.0 34.0 25.5 12.8 12.8 Ashokkumar et al. (2018b)

Maize HP704-22 Provitamin A 1605.0 133.8 44.6 33.4 14.9 19.1 Zunjare et al. (2018)

Maize HP704-23 Provitamin A 1528.0 127.3 42.4 31.8 14.1 18.2 Zunjare et al. (2018)

Maize HP465-41 Provitamin A 1550.0 129.2 43.1 32.3 14.4 18.5 Muthusamy et al. (2015)

Maize HP465-30 Provitamin A 1510.0 125.8 41.9 31.5 14.0 18.0 Muthusamy et al. (2015)

Maize HP180-25 Lutein 1130.0 – – – Muthusamy et al. (2015)

Maize CML161 Zeaxanthin 2000.0 – – – Muthusamy et al. (2015)

Maize HPLET-03-36 Total carotenoid 6730.0 – – – Sivaranjani et al. (2013)

Maize HPLET-03-37 Total carotenoid 6320.0 – – – Sivaranjani et al. (2013)

Maize HPLET-03-35 Total carotenoid 5990.0 – – – Sivaranjani et al. (2013)

Maize BLSB-RIL17 Total carotenoid 5700.0 – – – Sivaranjani et al. (2013)

Maize BLSB-RIL43 Total carotenoid 5670.0 – – – Sivaranjani et al. (2013)

Maize HPLET-03-41 Total carotenoid 5610.0 – – – Sivaranjani et al. (2013)

Maize BLSB-RIL95 Total carotenoid 5090.0 – – – Sivaranjani et al. (2013)

Maize UMI176 β-carotene 580.0 48.3 16.1 12.1 5.4 6.9 Safawo et al. (2010)

Pearl millet PT 6129 β-carotene 241.7 20.1 6.7 5.0 2.2 2.9 Aarthy et al. (2011)

Pearl millet PT 6129 Total carotenoid 899.0 – – – Jiji et al. (2017)

Sorghum PI 585351 Total carotenoid 234.3 – – – Shen et al. (2017)

‡RAE was calculated by converting 12 µg of dietary β-carotene into 1 µg of retinol (REA ratio 12:1); §Recommended dietary allowance (RDA) for vitamin A was calculated
based on daily value (DV) of retinol activity equivalents (RAE) µg/day from 100 g serving of each species. The United States (U.S.), RDAs required RAE 300 µg/day and
400 µg/day for children aged 1–3 years and 4–8 years, respectively; 900 µg/day and 700 µg/day for adults of both men and women, respectively.
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FIGURE 2 | Breeding strategies for enhancing carotenoids and folates in cereals.

carotenoids (i.e., β-carotene), which the human body could
convert into vitamin A. Conventional breeding strategies have
not been successful in increasing the β-carotene contents
in rice endosperm. This is due to the fact that there is
no genotype/cultivar that can synthesize carotenoid in the
endosperm of the seed and the available contents are very low.
Tan et al. (2004) showed that brown rice contains carotene
and/or lutein, but the polishing process considerably reduces
its nutritional value. In this respect, genetic engineering offers
opportunities to improve the levels of provitamin A in rice
grain. The control of the expression of ferritin through its
control on the glutelin promoter has been successful in increasing
nutritional levels in the whole and polished grains of rice. Similar
principles have been used in the development of golden rice
(Datta et al., 2007; Paine et al., 2005; Ye et al., 2000). Currently,
no rice genotype has been enhanced for β-carotene content
through traditional breeding strategies. It is obvious that there
is huge potential in the exploitation of genetic variability of the
carotenoid content in rice grains. However, the bioavailability
of β-carotene should be studied in greater depth. In the case of
folates, very few attempts were made to characterize the folate
profile in rice by screening the germplasm. Blancquaert et al.
(2015) screened 12 rice cultivars and found a two-fold difference
(up to 70 µg/100 g) in the total grain folate content. The natural
range of folate concentrations was determined in 78 rice varieties
and both in milled (up to 78 mg/100 g) and whole grains (up
to 111 µg/100 g), the contents exhibited an eight-fold difference
(Yu and Tian, 2018). In all diverse accessions of rice germplasms
around the world, an even more extensive screening for folate
would bring out higher levels of variation in folate contents. This
could be utilized in breeding programs for enhancing the folate
contents in rice.

Natural genetic variability is very low for β-carotene contents
in wheat grains. Lutein is the most common carotenoid in

tetraploid wheat grains, whereas hexaploid wheat grains contain
minimal levels of total carotenoids (Abdel-Aal el et al., 2007;
Lachman et al., 2013). The durum wheat variety HI 8627 with
high provitamin A was released by IARI, India, in 2005. The
“Yellow pigment” is primarily caused by lutein, which is one
of the significant factors in the enhancement of quality traits.
Both lutein and anthocyanins are antioxidants in nature, which
provokes a lot of interest in the research community. Black
grained wheat cultivars and colored wheat cultivars are already
being exploited in many breeding programs around the globe
and they are rich in protein and selenium (Li et al., 2006). The
purple wheat cultivar Indigo, which was released in Austria in
2006 (Eticha et al., 2011), the purple wheat cultivar PS Karkulka
of Slovakia in 2014, and purple, blue, and black white lines of
India in 2017 (Garg et al., 2016) are major sources of carotenoids
in wheat breeding. Poutanen et al. (2008) evaluated the genetic
variation for folates in the Health Grain wheat diversity screen
with whole and milled wheat grains. Around 150 varieties
of hexaploid, diploid, and tetraploid wheat showed two-fold
variation in folate content (up to 77 µg/100 g) in whole grains
(Piironen et al., 2008; Ward et al., 2008). Environmental effects
cause variations in folate contents indicating low heritability
and high G × E interactions in diverse varieties (Shewry et al.,
2010). Induced chemical or physical mutagens could be utilized
to identify mutants with greater folate contents.

Most of the breeding programs targeted to improve the
provitamin A in maize aims at developing high yielding,
provitamin A-enriched maize cultivars that fetch profit for the
farmers and also promise customer preference and may ensure
the effective reduction of vitamin A deficiency (Bouis and
Welch, 2010). The simultaneous improvement of provitamin
A carotenoids and grain yield is easily attainable. This is due
to the weak correlation between provitamin A and agronomic
performance. Other factors, like the relatively high heritability
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of the trait, the mode of inheritance (additive genetic effects),
and the genetic control of provitamin A, are also accountable
(Suwarno et al., 2014; Menkir et al., 2018; Ortiz-Covarrubias et al.,
2019). So far, the enhancement of provitamin A is mostly focused
on the selection of β-carotene content. A target of 1500 µg/100 g
of β carotene equivalents was set for breeders beyond which there
occurs an increasingly marked effect on the human health (Hotz
and McClafferty, 2007). Around 1,500 genotypes were screened
for their carotenoid contents by various researchers, resulting
in about 200–300 µg/100 g in their profiles (Ortiz-Monasterio
et al., 2007). Among these germplasms, only a few lines of the
temperate zones contained target level in their seeds (Menkir
et al., 2008). In the meantime, the tropical and sub-tropical inbred
lines possessed very low levels of provitamin A when compared
with the breeding target in maize (Bouis et al., 2011). It demands
the necessity and the initiation of searching for novel sources
of favorable alleles to boost provitamin A concentration to new
levels. Taleon et al. (2017) and Sowa et al. (2017) emphasized
the application of breeding for provitamin A carotenoids that
would increase β-cryptoxanthin rather than β-carotene, as
β-carotene has lower stability, while β-cryptoxanthin ensures
higher bioavailability and bioefficacy to β-carotene (Schmaelzle
et al., 2014; Menkir et al., 2018). Breeding programs with this
vision have already been initiated, resulting in inbreds that are
being used in the improvement of new hybrids and synthetics. So
far, most of the pearl millet breeding programs are targeted for
improving grain iron and zinc concentration and yield related
traits. Limited breeding efforts have been made thus far to
explore the genetic variation of carotenoids and folates in pearl
millet. Current circumstances demand carotenoid- and folate-
rich donor lines for pearl millet breeding, and large numbers of
germplasms must therefore be screened.

Typically, plant breeders use bi-parental populations for
identification of QTL and development of varieties for the traits
of interest. Many varieties developed of rice, wheat, maize, and
pearl millet are based on single crosses between two parents.
However, a higher number of parents and initial crosses will
lead to a better dissection of complex traits. Thus, breeders
recently introduced new experimental design namely multiparent
populations, which provide significant benefits for genetic and
QTL studies in plants. One of the most popular multiparent
populations is the multiparent advanced generation intercross
(MAGIC) population. The major goal of constructing MAGIC
populations is to encourage intercrossing and shuffling of the
genome into a single line (Huang et al., 2012; Holland, 2015). It
is a diverse population with high recombination, thus providing
excellent breeding materials to genetic and QTL mapping studies
for complex traits such as carotenoids and folates. MAGIC
populations have identified multiple loci and demonstrated the
genetic complexity of the grain micronutrients (Fe and Zn),
cooking quality, and agronomic traits (Holland, 2015; Descalsota
et al., 2018; Ponce et al., 2018) in rice. Similarly, genetic properties
of the MAGIC populations have also been detected in maize
and wheat, and their benefits in detecting the complex traits
have been confirmed by many researchers (Huang et al., 2012;
Verbyla et al., 2014; Holland, 2015; Chen et al., 2016; Butrón et al.,
2019). However, no study has been published that investigates

carotenoids and folates using a MAGIC population design in
cereals. ICRISAT has been developing a MAGIC population
for various traits, including grain micronutrients (unpublished).
Thus, it is a highly prioritized research area in which to
work in the future for cereal-based national and international
research organizations.

GENOMICS-ENABLED BREEDING
APPROACHES FOR IMPROVING
CAROTENOIDS AND FOLATES

Genomics research in cereals has substantially improved our
knowledge of the QTLs/genes and biochemical pathways
involved in carotenoids and folates in cereals (Figure 3). Second-
and third-generation sequencing technologies have been game
changers for genomics research and contributed to completion of
the reference genome sequences for major cereal crops including
rice (Yu et al., 2002), wheat (Brenchley et al., 2012), maize
(Schnable et al., 2009), and pearl millet (Varshney et al., 2017).
This genomic revolution has led to a pronounced increase in
our knowledge of cereal genomics and our understanding of
the structure and behavior of the cereal genomes. So far, an
impressive number of genomic resources including detailed high-
density genetic maps, cytogenetic stocks, contig-based physical
maps, and deep coverage, and large-insert libraries have been
developed in cereal crops (Muthamilarasan and Prasad, 2016).
More interestingly, the genomic resources from a model or major
cereal species (i.e., rice, maize, and wheat) also have potential that
can be exploited for the development of minor cereals through
comparative genomics approaches (Varshney et al., 2006). The
transfer of genomic information and techniques from model or
major to minor cereals provides detailed information about the
genetic diversity of the crop and assists in the identification of the
potentially beneficial variants in minor cereals. It also provides a
greater chance for the identification of favorable alleles and the
cloning and transfer of favorable alleles within the species.

Genomics offers tools to improve the contents of carotenoids
and folates in cereals through advanced breeding techniques.
Refining the breeding strategies through marker-assisted
selection (MAS) is significantly improving the effectiveness of
breeding for the enhancement of carotenoids and folates in
cereals. The availability of the whole genome sequence data of
major cereals enables the development of molecular markers.
Among the different types of molecular markers, simple sequence
repeats (SSRs) and single nucleotide polymorphisms (SNPs)
markers are considered to be the markers of choice for a variety
of applications, mainly in marker-assisted breeding (MAB).
Besides, the genic or functional markers developed from the
transcribed regions of the genome also act as ideal markers
for MAB and as a major resource for assessing the functional
variation in natural or breeding populations, in cereals. Expressed
sequence tags (ESTs) or gene sequences have also been used to
find SSRs/SNPs, and genic molecular markers have also been
developed in cereals (McCouch et al., 2002). Fortunately, the
information about SSR and SNP markers are available in the
public domain for crop such as rice (McCouch et al., 2002),
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FIGURE 3 | Biosynthesis of carotenoids and Folates in plants. (A) Carotenoids biosynthesis and subsequent influential of phytohormones and provitamins.
Footnotes: The first committed step in carotenoid biosynthesis is the condensation of two molecules of Geranylgeranyl diphosphate (GGPP) by phytoene synthase
(PSY ) to form phytoene (C40). The colorless phytoene is subsequently desaturated to give zeta-carotene and lycopene. Desaturation of phytoene occurs by two
enzymes, phytoene desaturase (PDS) and zeta-carotene desaturase (ZDS), which are required to form lycopene. A major branch point occurs after lycopene
synthesis when cyclization mediated by the enzymes lycopene-b-cyclase (LCYB) and lycopene-3-cyclase (LCYE) gives rise to α-carotene and β-carotene. α-carotene
is acted upon by a β-ring hydroxylase to form zeinoxanthin, which is then hydroxylated by a ε-ring hydroxylase to produce lutein. β-carotene can be hydroxylated
β-carotene hydroxylase (CRTRB) in a two-step reaction to zeaxanthin, with β-cryptoxanthin as an intermediate product. Zeaxanthin can be epoxidized to violaxanthin,
and a set of light- and dark-controlled reactions, known as the xanthophyll cycle, rapidly optimize the concentration of violaxanthin and zeaxanthin in the cell through
the action of zeaxanthin epoxidase (ZEP) and violaxanthin de-epoxidase (VDE), respectively, via antheraxanthin. Violaxanthin undergoes synthesis by the enzyme
neoxanthin synthase to form neoxanthin and as precursor of the plant hormone abscisic acid. (B) Biosynthetic pathway of folates (Adapted by DellaPenna, 2007).
Footnotes: The pteridine pathway leading to hydroxymethyldihydropterin (HMDHP) is shown in blue, the pathway leading to p-aminobenzoate is shown in green, and
steps localized in the mitochondria are in black. Open circles indicate possible transporters. Red arrows indicate the two enzymes GTP-cyclohydrolase I (GCHI) and
aminodeoxychorismate synthase (ADCS). DHN, dihydroneopterin; -P, monophosphate; -PP, pyrophosphate; -PPP, triphosphate; DHM, dihydromonapterin.

wheat (Jaiswal et al., 2017), maize (Sharopova et al., 2002) and
pearl millet (Senthilvel et al., 2008). Thus, MAB in cereals has
become standard procedure and many researchers to improve
the levels of carotenoids and folates in cereals are pursuing
these markers. Capitalizing on the genome-wide marker data,
linkage-map-based QTL mapping, genome-wide association
studies (GWAS), and genomic selection (GS) have become
powerful tools to dissect the QTL and investigate trait-allele
associations in cereals. To date, several QTLs/genes associated
with carotenoids and folates in cereals were identified using
linkage-map-based QTL mapping and GWAS. In particular,
GWAS effectively pinpoints the genes that play a key role in
the biosynthesis of carotenoids and their accumulation, and
to find out the variation in the alleles at the concerned loci
that are related to the biosynthesis of carotenoids in maize and
wheat (Yan et al., 2010; Colasuonno et al., 2017). However, the
nutritional traits like carotenoids and folates are quantitative
and governed by minor QTLs that are responsible for the large
phenotypic variation, including epistatic interactions. In this
case, GS can capture both minor effects of QTL and epistatic
interaction effects, so it could be a highly useful strategy in
trait genetic gains of crop breeding programs. GS determines
the genetic potential of an individual based upon the genomic

estimated breeding values (GEBVs) instead of identifying the
specific QTL (Robertsen et al., 2019). In the process of enhancing
various complex traits, genomic selection has been used in
cereals and other commercial crops. Still, the benefits of GS
have not been utilized for the improvement of folates and
carotenoids in cereals. This should provoke interest among
the researchers working for upgrading the nutritional status of
the major cereal crops in developing countries. So far, many
QTLs/genes associated with carotenoids (provitamin A, lutein,
and zeaxanthin) and folates have been identified in major cereals
(i.e., rice, maize, and wheat). However, all of these QTLs/genes
are not equally effective in the production of carotenoids and
folates. Therefore, some of the important QTLs/genes that are
identified so far are summarized and discussed here.

QTLs AND CANDIDATE GENES FOR
CAROTENOIDS AND FOLATES

(a) Rice
QTL and genes have recently been identified for folate contents in
rice through mapping studies, but in the case of carotenoids, no
such information is available. In experiments with recombinant
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inbred lines and backcrossed lines of milled rice, several major
QTLs were identified to be associated with a higher level
of folate. Dong et al. (2013) identified three QTLs, qQTF-3-
1, qQTF-32, and qQTF-3-3, located on chromosome 3, which
contributed 7.8, 11.1–15.8, and 25.3% of the variation in folate
concentration. Three genes are associated with these QTLs, i.e.,
a rice homologue of plastidial folate transferase of Arabidopsis,
a rice homologue of human folate hydrolase, and the serine
hydroxymethyl transferase gene. When these newly identified
QTLs associated with high folate are used in the synthesis of
commercial varieties with high folate concentrations, there will
be a larger wealth of knowledge about folate and its metabolism,
regulation, and accumulation in grains (Yu and Tian, 2018).

(b) Wheat
Genetic analyses based on molecular markers have mapped
major QTL for YPC on chromosome 7. Minor QTLs, associated
with YPC, were detected on almost all chromosomes of the
wheat genome. Some of these QTLs are stable, and they may
be suitable for MAS in breeding programs. Two major QTLs
were on chromosomes 3A and 7A, with 13 and 60% of the
phenotypic variance, respectively (Parker et al., 1998). The QTL
on chromosome 7A found to be closely related to an AFLP
marker Xwua26-7A.4 (Parker and Langridge, 2000), which was
later transformed into an STS marker. Further, QTL that controls
YP concentration of the kernels was detected on chromosome
7A with 12.9–37.6% of phenotypic variance in five different

locations (Zhang et al., 2006). The YPC genes that encode
phytoene synthase (Psy) have been mapped on the homologous
groups of chromosomes 7 and 5 in wheat (Pozniak et al.,
2007). There is an association between the loci of Psy-B1,
which co-segregated with a QTL for endosperm color on 7B.
Through in silico cloning, He et al. (2008) have categorized the
association of the YPC in wheat grain across the full-length
of the sequence of the genomic DNA sequence of a Psy-A1,
which is linked to the SSR marker, Xwmc809, on the long arm
of chromosome 7A with 20–28% of the phenotypic variance
for the YP concentrations. Zhang et al. (2009) identified four
QTLs namely, QYpc-1A, QYpc-1B, QYpc-4A, and QYpc-7A, for
the YP concentration on chromosomes 1A, 1B, 4A, and 7A,
which explained 1.5–33.9% of the phenotypic variance. Blanco
et al. (2011) investigated the recombinant inbred line population
arising from wheat cultivars Latino and Primadur, and they
found that the QTLs linked with the concentration of YP and
individual carotenoid compounds, namely, lutein, α-carotene
zeaxanthin, β-cryptoxanthin, and β-carotene, were present on
the same genomic regions of chromosomes 2A, 3B, 5A, and 7A.
A single locus called Lute, controlling the lutein esterification on
the short arm of chromosome 7D in wheat (Ahmad et al., 2015).
The syntenic region of the rice genome contained a GDSL-like
lipase gene. The sequences of wheat that are similar to this gene
were mapped at the same locus of Lute. Folate variation in wheat
accessions is very limited; almost no information is available on
the folate QTLs and genes in wheat. Thus, researchers are trying

TABLE 7 | QTLs/Genes associated with carotenoids and folate concentrations in rice, wheat, maize, and pearl millet.

Crop Nutrient QTL/gene Chromosome References

Rice Folate qQTF-3-1, qQTF-3-2 and qQTF-3-3 3 Dong et al. (2013)

Wheat Carotenoid Lute 7 Ahmad et al. (2015)

Wheat Provitamin A Psy-B1 7 Pozniak et al. (2007)

Psy-A1 7 He et al. (2008)

QYpc-1A, Qypc-1B, Qypc-4A, and Qypc-7A 1A, 1B, 4A, and 7A Zhang et al. (2009)

TaZds-A1 2A Dong et al. (2012)

AO1, AO2, and AO3 2, 5, and 7 Colasuonno et al. (2017)

Maize Folate q5-FTHFa and q5-FTHFb 5 Guo et al. (2019)

Maize Provitamin A lcyE 8 Harjes et al. (2008)

crtRB1 10 Yan et al. (2010)

crtRB3 2 Vallabhaneni and Wurtzel (2009); Zhou et al. (2012)

Y1/PSY1 6 Buckner et al. (1996)

PDS 1 Li et al. (1996).

ZDS

(ZISO)/y9 locus 7 Chen et al. (2010); Matthews et al. (2003)

qbc1-1, qbc5-1, qbc6-1, and qbc10-1 1, 5, 6, and 10 Jittham et al. (2017)

Maize Lutein qtll/umc1447–umc1692–umc2373 5 Chander et al. (2008)

Qtll /phi091–atf2 7 Chander et al. (2008)

qlut1-1 and qlut6-1 1 and 6 Jittham et al. (2017)

Maize Zeaxanthin qtlz/phi30870–umc1553 1 Chander et al. (2008)

qtlz/phi115–umc1735 8 Chander et al. (2008)

ZEP1 Vallabhaneni and Wurtzel (2009); Zhou et al. (2012)

qzea6-1, qzea8-1, and qzea10-1 6, 8, and 10 Jittham et al. (2017)

PS1/LCYB 5 Singh et al. (2003)

Sorghum β-carotene Bc-1.1, Bc-2.1, Bc-2.2, Bc-2.3, Bc-10b.1 1,2, 10b Fernandez et al. (2008)
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to identify novel QTLs and markers that are closely associated
with folate for marker-assisted breeding in wheat.

(c) Maize
Several QTLs and genes related to carotenoids (provitamin A,
lutein, and zeaxanthin) and folates have been reported in maize
using different mapping approaches. Yellow 1 (Y1) gene encoding
PSY1 (phytoene synthase1) and is positioned on chromosome
6 in maize (Buckner et al., 1996). The gene PSY1 was studied
through association mapping in two different populations of
maize. This gene has two alleles that are responsible for the
differences in total carotenoids. Further, QTL mapping was
carried out in one segregating population and lines that are
polymorphic for genomic regions within PSY1 were studied for
expression analysis. Two functional sites that are concerned with
the total carotenoid concentration of maize contributed 7 and 8%
of the genetic variation (Fu et al., 2013).

Phytoene desaturase (PDS) and zeta-carotene desaturase are
the enzymes that desaturate phytoene into lycopene. Lycopene
is the first pigment that is produced in maize (Li et al., 1996).
PDS is associated with viviparous 5 (vp5) that was mapped
on chromosome 1. It was found that ζ−carotene isomerase
(Z−ISO) was encoded by locus y9 (Chen et al., 2010) and
located on chromosome 7. Without the presence of Z−ISO, no
provitamin A carotenoids could be synthesized in the endosperm
(Matthews et al., 2003; Chen et al., 2010). Furthermore, 30
QTLs for carotenoid composition were also identified (Wong
et al., 2004; Chander et al., 2008). A few of these are tightly

linked to the biosynthetic pathway of y1 or y9 (Li et al., 2007)
and are also associated with β-carotene, zeaxanthin, and lutein
in maize. Lycopene epsilon cyclase (lcyE) on chromosome 8
(Harjes et al., 2008) and β-carotene hydroxylase enzyme (crtRB1)
also known as BCH2 and HYD3, on chromosome 10 (Yan
et al., 2010) have the most significant effect on provitamin A
concentrations in the maize grains. As per Harjes et al. (2008),
the gene LcyE, causes different variation in of concentration of
carotenoids because of its four alleles affect ß−branches of the
biosynthesis pathway of carotenoids. Three polymorphisms were
identified in the gene crtRB1, which controlled the variations
in carotenoids (Yan et al., 2010). There was a 5.2-fold increase
in the carotenoid concentrations in the haplotypes, which
possessed the favorable alleles of crtRB1-50 TE and crtRB1-30
TE. The gene crtRB1 was identified to have a much greater
effect on the concentrations of provitamin A than that of LcyE
(Babu et al., 2013).

The gene crtRB3, which encodes the α-carotene hydroxylase
enzyme (also called BCH1), is a major role player in the
metabolic pathway of carotenoids in maize (Vallabhaneni and
Wurtzel, 2009; Zhou et al., 2012). On chromosome 2, there
is a QTL locus cluster that is associated with carotenoids
(Table 7). The gene, crtRB3, was mapped on this QTL
locus cluster. Eighteen polymorphic sites within crtRB3 that
are closely linked to the QTL cluster were found through
candidate−gene association analysis using 126 diverse inbred
lines of yellow maize. Significant effects on the level of
α−carotene were noticed (from 8.7 to 34.8%) among the two

FIGURE 4 | The proposed schema for developing biofortified cereal crops with enhanced nutrients (e.g., folates).
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SNPs, SNP1343 (in the 5’ untranslated region) and SNP2172 (in
the second intron), with 1.7- to 3.7-fold differences. Recently,
four QTLs namely, qbc1-1, qbc5-1, qbc6-1, and qbc10-1 were
mapped by Jittham et al. (2017) on three chromosomes (1,
5, and 6) of maize for β-carotene with 5.04 to 17.03 %
phenotypic variation.

Zeaxanthin and lutein are the other major carotenoids that
are found in maize. But, only a few QTLs/genes that are
associated with zeaxanthin and lutein have been identified so
far. The Ps1 locus located on chromosome 5 was encoding
LCYB. This locus is considered essential for the accumulation
of zeaxanthin in maize (Singh et al., 2003). ZEP1 is one of
the major genes in the metabolic pathway of carotenoids in
maize (Zhou et al., 2012). It controls the gene zeaxanthin
epoxidase (Vallabhaneni and Wurtzel, 2009). Three QTLs,
namely, qzea6-1, qzea8-1, and qzea10-1, explaining 12.5%,
6.7%, and 19.4% of phenotypic variation in zeaxanthin, are
found on chromosomes 6, 8, and 10 of maize, respectively
(Jittham et al., 2017). Jittham et al. (2017) identified two lutein
QTLs that are mapped on chromosomes 1 and 6. They are
designated as qlut1-1 and qlut6-1, explaining 9.1 and 28.9 of
phenotypic variation.

Folates are quantitative or polygenic traits typically controlled
by several small effect QTLs. However, two major effect QTLs
namely, q5−F−THFa and q5−F−THFb, explaining 26.7 and
14.9% of the folate variation were identified in maize (Guo
et al., 2019) on chromosome 5 by whole−exome sequencing
and F3 kernel−folate profiling. A unique correlation between
the folate and the expression of the conserved genes of folate
biosynthesis and metabolism was reported in the kernels of
maize (Lian et al., 2015). Naqvi et al. (2009) and Liang
et al. (2019) stated that the molecular understanding of the
genetic networks of folates in grains is unclear even when
successful increments have been made through transgenic
experiments in maize.

(d) Pearl Millet
The Pearl Millet inbred Germplasm Association Panel (PMiGAP)
contains around 1000 accessions, cultivars, and landraces
of pearl millet that have been collected from three major
pearl millet growing continents (Sehgal et al., 2015). Iniari
germplasms that are found on the landraces of West Africa
have already been collected and stored along with other
Indian landraces and cultivars by ICRISAT (Yadav et al.,
1999). The USDA National Plant Germplasm System Pearl
Millet Collection, presented at the Plant Genetic Resources
Conservation Unit in Griffin, GA, United States, preserves
about 1297 unique germplasm lines from around 31 countries.
However, no efforts have been made to explore the genetic
variation of carotenoids and folates in these germplasm
collections. Thus, marker-assisted breeding to improve the
carotenoids and folates suffer due to the lack of donors.
There also appears to be a significant gap in the literature,
as no genes/QTLs/markers have been discovered with an
association with carotenoid and folate concentrations in pearl
millet. The headway toward the genetic enhancement of pearl

millet is still painstaking due to the lack of PCR-based co-
dominant markers. It is hoped that the recently released
reference genome of pearl millet will facilitate the discovery
of markers/QTLs/genes associated with carotenoid and folate
concentration. Also, researchers should consider synteny studies
with other cereal crops to improve pearl millet nutritional
breeding programs.

BIOFORTIFICATION OF CAROTENOIDS
AND FOLATES IN CEREAL GRAINS

Biofortification is the process of increasing the natural content of
bioavailable nutrients in plants. It is a successful and cost-effective
method that associates nutritious agriculture with human health,
can be efficient and more maintainable than the delivery
of food supplements. Major tools in biofortification include
conventional breeding, modern biotechnology, and agronomic
practices (Figure 4). As mentioned above, carotenoids and
folates are essentials for the human diet. Thus, biofortification
of major cereal crops with carotenoids and folates may assist in
easing micronutrient deficiencies in humans. Existing evidence
recommends that genetic biofortification by breeding and
modern biotechnology could be appropriate for increasing folates
and pro-vitamin A carotenoids, and an agronomic strategy could
be effective for Zn. Conventional breeding-based biofortification
is the most successful approach to develop micronutrients rich
crops, and several important food crops have been targeted
for fortification by conventional breeding. So far, many more
studies have been conducted to improve the provitamin A
concentration and a few targeted at folate. Biofortification
in maize has been attempted in many different ways. For
instance, improvement of single or group of micronutrient
(s) (single biofortification) and diverse micronutrients (double
biofortification), including (i) the incorporation of favorable
alleles of crtRB1 and lcyE into popular elite genotype by MAB
and transgenic approaches to increase the amount of provitamin
A concentration and (ii) the development of genotypes with
crtRB1 and lcyE and o2 alleles to increase the essential amino
acids and provitamin A concentration by MAB (Hossain et al.,
2019). In the recent decades, CIMMYT, Mexico, and IITA,
Nigeria, developed and released many provitamin A varieties
and hybrids (i.e., GV662A, GV664A, and GV665A, Ife maize
hyb-3, and Ife maize hyb-4, Sammaz 38, Sammaz 39, and CSIR-
CRI Honampa) in African countries (Dhliwayo et al., 2014;
Simpungwe et al., 2017; Andersson et al., 2017). IARI released
four provitamin A hybrids viz., HM4, HM8, and Vivek Hybrid-
27 [which possessed provitamin A as high as 2170 µg/100 g
(in freshly harvested grains) with a 8.5-fold maximum change]
in India. The hybrid, “Pusa Vivek QPM 9 Improved,” which
was developed through MAB, contains higher provitamin A
(815 µg/100 g) even after storing for 2 months with higher
levels of tryptophan, 0.74% and lysine, 2.67% (Muthusamy
et al., 2014; Yadava et al., 2017). This hybrid was developed
by the introgression of the crtRB1 allele into a o2-based
hybrid. In a similar manner, four popular QPM hybrids namely
HQPM1, HQPM4, HQPM5, and HQPM7 were developed by
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pyramiding crtRB1 and lcyE to improve the concentration of
provitamin A (Hossain et al., 2019). Despite the success stories,
conventional or marker-assisted breeding suffers due to the
lack of genetic variation in micronutrient traits within the
species or closely related species. In this context, transgenic
technologies are an alternative to conventional breeding and
useful to improve the genotypes by creating variations in targeted
metabolic pathways. The concentration of provitamin A in rice
was improved through transgenic methods. Over-expression
of PSY, CrtI and β-lcy from daffodil, Erwinia uredovora and
maize facilitated an increase in provitamin A concentration
in rice lines (Ye et al., 2000; Beyer et al., 2002; Paine et al.,
2005). In particular, PSY from maize increased provitamin
A concentration up to 3700µg/100 g (Paine et al., 2005).
Similarly, the contents of β-carotene increased to 1000 µg/100 g
in the Hi-II maize line through the over-expression of crtB
and crtI genes from Erwinia herbicola (Aluru et al., 2008).
Likewise, five genes, namely, psy1, crtI, lycb, bch, and crtW,
were used to develop transgenic maize genotypes that contained
6000 µg/100 g of β-carotene (Zhu et al., 2008; Naqvi et al.,
2009). The over expression of psy1 from maize and crtI or
CrtB from the bacteria enhanced provitamin A to 496 µg/100 g
and 321 µg/100 g of seed dry weight in wheat (Cong et al.,
2009; Wang et al., 2014). Likewise, five genes, namely, psy1,
c rtI, lycb, bch, and crtW, were used to develop transgenic
maize genotypes that contained 6000 µg/100 g of β-carotene
(Zhu et al., 2008; Naqvi et al., 2009). Despite the success
of transgenic technologies, the main drawback to biofortified
transgenic crops is their public acceptance and extensive
regulatory processes required before they get clearance for
cultivation and consumption by humans.

CONCLUSION AND FUTURE
PROSPECTS

The growing world population requires many key nutrients
and vitamins that can be delivered through staple foods.
Advancing genomic tools can play an important role in
accelerating genetic enhancement of these vitamins and
minerals through biofortification in major cereal grains.
Bioavailable vitamins or nutrients bred into varieties can
be made available to resource-poor people generation after
generation by their cultivation and regular consumption.
The surplus production brings better livelihoods through
marketing to other regions. Crop breeding requires substantial
genetic variability and diagnostic markers to handle traits
in segregating early generations. Nutrient-dense germplasm
resources are essential to the breeding of adequate carotenoids
and folates for fulfilling daily dietary requirements. National
and international organizations have made excellent research
progress in this direction to incorporate carotenoids into
cereal crops. High throughput phenotyping tools (XRF,
HPLC, and LC-MS/MS) are being developed and will be
made accessible to partners at various organizations. These
methods are cost effective for analyzing large sets of germplasm.
The diagnostic markers play a key role in discarding low

vitamin/nutrient materials. Integrating MAB creates the
opportunity to introduce/track the QTL that are associated
with nutritional quality into popular varieties. A survey
of wild and cultivated accessions demonstrated noticeable
variations in the carotenoid and folate concentration and
the possibility to identify novel sources for alleles to be
used to broaden the present gene pool. So far, substantial
genetic variation has been exhibited only in the genetic
resources of maize for provitamin A. Other major cereals, like
rice, wheat, and pearl millet commercial or elite lines, lack
sufficient concentration of provitamin A to achieve global
target levels. Almost no folate research has been done in
major cereal crops. Biofortification based breeding has been
demonstrated as a successful of enhance the micronutrients
in cereals. However, new breeding designs, such as MAGIC
populations and GS, also need to be explored on parallel
to maximize the genetic understanding and identification
of QTLs and genes for complex traits such as carotenoids
and folates. Hence, greater prospects await with the use
of these technologies in nutrition breeding. On the other
hand, where inadequate genetic variability exists within
the cultivated germplasms and primary gene pools, then
the transgenic technology may be an option for enhancing
carotenoids and folates in cereals but has limited scope for
acceptance in most of the developing countries. Genetic gain
for yield alone may not be appropriate to feed the growing
population, but concurrently achieving nutrition traits genetic
gains is a sustainable approach. Government programs are
required to create public awareness for the adoption of
biofortified varieties by farmers through increased consumer
acceptance. Moreover, research coordination is required between
agriculture and nutritional experts for strengthening the
target level of carotenoids and folates, their retention after
cooking, storage, processing, and consumption of prospective
concentrations in the target population. Therefore, with
the available genetic resources and genomic tools, breeding
investment should be made and optimized for increasing
vitamins and nutrients in staple food crops besides increasing
sustainable yields.
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