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Abstract: This study describes a semi-empirical model developed to estimate volumetric soil 
moisture ( vϑ ) in bare soils during the dry season (March–May) using C-band (5.42 GHz) synthetic 
aperture radar (SAR) imagery acquired from the Sentinel-1 European satellite platform at a 20 m 
spatial resolution. The semi-empirical model was developed using backscatter coefficient (σ° dB) 
and in situ soil moisture collected from Siruguppa taluk (sub-district) in the Karnataka state of 
India. The backscatter coefficients 0

VVσ  and 0
VHσ  were extracted from SAR images at 62 

geo-referenced locations where ground sampling and volumetric soil moisture were measured at a 
10 cm (0–10 cm) depth using a soil core sampler and a standard gravimetric method during the dry 
months (March–May) of 2017 and 2018. A linear equation was proposed by combining 0

VVσ  and 
0
VHσ  to estimate soil moisture. Both localized and generalized linear models were derived. 

Thirty-nine localized linear models were obtained using the 13 Sentinel-1 images used in this 
study, considering each polarimetric channel Co-Polarization (VV) and Cross-Polarization(VH) 
separately, and also their linear combination of VV + VH. Furthermore, nine generalized linear 
models were derived using all the Sentinel-1 images acquired in 2017 and 2018; three generalized 
models were derived by combining the two years (2017 and 2018) for each polarimetric channel; 
and three more models were derived for the linear combination of 0

VVσ  and 0
VHσ . The above set of 

equations were validated and the Root Mean Square Error (RMSE) was 0.030 and 0.030 for 2017 and 
2018, respectively, and 0.02 for the combined years of 2017 and 2018. Both localized and 
generalized models were compared with in situ data. Both kind of models revealed that the linear 
combination of 0

VVσ  + 0
VHσ  showed a significantly higher R2 than the individual polarimetric 

channels.  

Keywords: volumetric soil moisture; synthetic aperture radar (SAR), Sentinel-1; soil moisture 
semi-empirical model; soil moisture Karnataka India 

 

1. Introduction 

Soil moisture estimation across space and time has become possible with the advent of 
microwave remote sensing [1]. The amount of moisture in the soil is a function of physical, chemical, 
and management practices. Soil moisture is highly dynamic across space and correlated in time. The 
radar backscattering coefficient is a function of soil characteristics such as dielectric constant, texture, 
and surface roughness, and depends on the wavelength, polarization, and angle of incidence of the 
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radar [1]. Shorter wavelength C-band radar backscatter has shown sensitivity to surface soil 
moisture at a depth of about 5 cm [2–4]. The launch of the Sentinel-1 mission of the European Space 
Agency has made a huge amount of C-band data acquired since 2014 from all over the Earth’s 
surface accessible. This opened up new perspectives on studying soil moisture in semi-arid regions, 
as was undertaken in Karnataka, India, in this work. Large scale soil moisture monitoring will 
provide greater insights into energy fluxes, which can result in improved meteorological and 
climatic projections [5] that will provide critical inputs for agriculture.  

There have been studies based on physical, empirical, and semi-empirical models that estimate 
soil moisture over bare soils through radar remote sensing [6–8]. Physical approaches require many 
input parameters such as surface roughness and slope, which are not available under practical 
conditions [8]. Empirical models are only data driven, whereas semi-empirical models, while being 
data driven, also support theoretical considerations. In soil studies, they are site-specific and 
generally valid for specific soil characteristics [3]. Previous semi-empirical studies have considered 
single polarization to build a relationship between soil moisture and a backscatter model at 10 cm 
depth [9] and estimated vϑ  with a root mean square error (RMSE) of 3–6% [10–12] using C-band 
data. There have also been studies that have used the SAR interferometry technique and Sentinel-1 
data to estimate soil moisture and compare them with in situ measurements [13]. Even though SAR 
interferometry is less frequently used in the remote sensing community to estimate soil moisture, its 
advantage lies in its ability to disentangle moisture and terrain roughness contributions. Most 
SAR-based soil moisture estimation studies have covered small areas limited to a few hundred 
square kilometers [11–17]. Estimating soil moisture over a wider area and at a higher resolution 
using SAR imagery will provide information on managing water resources and irrigation 
scheduling that can benefit a large number of farmers [14]. 

The aim of this study was to estimate soil moisture in bare rice agricultural soils. While SAR 
images have been used to estimate rice phenology using X-band TerraSAR-X images [15], there 
have been limited studies to estimate the soil moisture in bare rice agricultural soils using Sentinel-1 
C-band images. Bare soils in Siruguppa are rice growing areas that lie bare after the rice crop has 
been harvested in March, with rice stubble and weeds that have dried up during summer (March–
June). By the time the monsoon rains start, it is extremely critical to estimate the amount of soil 
moisture in the top 10 cm, which will help farmers decide when to start preparing the land and 
start sowing the next crop. Surface roughness, soil status, soil moisture, and crop residue 
distribution affect radar backscatter [16]. It is well established that 0

VVσ  is more sensitive to 

variation in soils and 0
VHσ  is more suited to the identification of dry crop residue [17]. Utilizing 

both together can improve the accuracy of soil moisture estimates [18]. Nevertheless, soil moisture 
studies using 0

VVσ  and 0
VHσ  together, especially using Sentinel 1 SAR data, are limited. The need 

for such studies over significantly large agricultural fields is very important to study agriculture, 
water, and food security. The major goal of this study was to estimate soil moisture over bare soils 
using both 0

VVσ  and 0
VHσ  polarization and compare it with in situ measurements at a 10 cm (0–

10 cm) depth. At the time of measurement, soil moisture to 10 cm is at the steady state and consistent 
across that top surface layer and therefore the C-band can be assumed to detect the top 10 cm layer. 
However, it is known that C-band SAR signals cannot penetrate to a 10 cm depth. 

The contribution of standing stubble to total backscattering coefficient is comparable with that 
of the soil surface when the stubble has more than 75% water content. Backscatter coefficient 
decreases with a decrease in water content in the stubble. However, when the water content in the 
stubble is less than 40%, the contribution to the total backscattering coefficient is negligible [19]. We 
investigated both localized and generalized linear models to try to disentangle the stubble and soil 
moisture contributions. The linear coefficients of localized models were derived using in situ data 
acquired on a specific Sentinel-1 day. In contrast, generalized models were built using all in situ 
measurements acquired in the study period, thus adding the temporal dimension to the analysis of 
Sentinel-1 data. The question we wanted to answer is: can semi-empirical models estimate soil 
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moisture, getting rid of the stubble contribution to the backscattering coefficient? We tried to 
answer this question by studying the effects of each variable, time, and polarization, separately. A 
localized model does not take into account the temporal evolution of backscattering, while a 
generalized model includes the time variable when estimating the linear coefficients. Furthermore, 
for each model, it is possible to keep the polarimetric channels separated or merge them. In this 
work, we used a large dataset of in situ measurements of soil-moisture acquired across a 2-year 
period to answer the above question. The issues of the stability of results and of collinearity of data 
are crucial and will be used to assess the results of this experiment. 

The rest of this paper is organized as follows: Section 2 is devoted to materials and methods, 
Section 3 to the results, and Section 4 presents the discussion. Finally, a few conclusions are drawn 
in Section 5. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in Siruguppa taluk (sub-district) in the Bellary district of Karnataka 
state, India (Figure 1). Siruguppa is located between 15.35°N to 15.83°N latitudes and 76.69°E to 
76.71°E longitudes covering an area of 1048 sq. km. Its climate is moderate and dry most of the year. 
It experiences high temperatures ranging from 23.2 °C to 42.4 °C from March to May and an annual 
rainfall of 645 mm. Irrigation from canal discharges cater to 60% of the cropped area, and the rest is 
either rainfed or irrigated through groundwater. Most of the crops are grown in predominantly 
black-clay, red-loamy, and red-sandy soils.  

 
Figure 1. Map of the study area with sampling locations. 
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The River Tungabhadra runs diagonally across Siruguppa from the northwest, providing 
water for irrigation. The major crops grown are paddy, sorghum, pearl millet, sunflower, 
groundnut, cotton and sugarcane. The last decade saw a fall in kharif (rainy season) crop 
production due to deficit rainfall during the monsoon in some places in the taluk, leading to a shift 
from paddy and millets to cash crops such as cotton and sugarcane. The Deccan Plateau region is 
frequently prone to drought, making information on soil moisture critical for allocating water 
resources and scheduling irrigation. The date of sowing is a critical decision farmers make after the 
initial rainfall has occurred. This is done based on traditional knowledge and the physical 
assessment of soil moisture by hand or using a push probe. A scientific estimation of soil moisture 
can help farmers to decide the sowing date. This study was conducted on “bare agriculture fields” 
of Siruguppa to estimate soil moisture using radar remote sensing. 

2.2. In Situ Data 

2.2.1. Soil Sampling and Ground Data Collection 

 The soils of Siruguppa are classified into Vertisols (covering 720.9 km2), Aridisols (146.8 
km2), Inceptisols (65.1 km2), Alfisols (34.1 km2), and other land cover such as rock outcrops (21.5 
km2). The locations for soil sample collection were based on random sampling, taking into account 
the fractions of different soil types. This mitigates the effects of variation from sampling error and 
increases the precision of the measured variable [20]. Soil samples were collected using a 10 cm 
standard metallic cylinder for a soil type to account for vertical and horizontal homogeneity [21], 
and weighed on site using a Mettler Toledo electronic balance. A handheld GPS (Garmin etrex) was 
used to georeference the locations immediately with an average accuracy of 2.5 meters as we 
collected it after a good almanac was received. Sixty-two locations were sampled spread across the 
four soil types. Forty-eight locations were sampled in Vertisols, eight in Inceptisols, four in 
Aridisols, and two in Alfisols. This was repeated for two years (2017 and 2018) over 13 dates of 
satellite overpasses, bringing the total data points to 806 (Figure 1). 

Bulk density (BD) samples were collected simultaneously using standard cylindrical cores on 
site to estimate volumetric soil moisture ( vϑ ). The sampling was carried out from March to May in 
bare agricultural soils with crop residue from paddy and weeds. 

2.2.2. Laboratory Analysis 

Volumetric soil moisture was measured in two steps. First, the gravimetric method was used 
to estimate soil moisture from field samples over bare agricultural land [22]. Global Positioning 
System(GPS) coordinates were taken at each sample location to allow the approximate 
identification of the soil sample location with the image pixel. The soil collected from the ground 
after measuring the wet weight ( wϑ ) was filled in airtight polythene bags and numbered with their 
corresponding GPS ID. The polythene bags were brought to the soil laboratory to measure their dry 
weight ( dϑ ) using a standard drying process. Each sample was transferred to a microwave bowl 
and placed in the oven at 105 °C for 24 h, and the weight measured as dry weight. The following 
formula was used to estimate gravimetric soil moisture: 





−= g
g

d

dw

ϑ
ϑϑϑ0    (1) 

The second step involved collecting the soil cores to estimate bulk density (BD). The drying 
process was repeated for each sample and the following formula was used to estimate BD: 





= 30 cm
g

V
dϑϑ    (2) 

where V is the volume of the core. 
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Volumetric soil moisture was expressed as: 
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ϑϑ ⋅=     (3) 

where 0H 2
ρ  is the water density. 

2.3. Data Collection and Pre-Processing 

Thirteen Sentinel-1 images were used, six acquired between March 4 2017 and May 27 2017 and 
seven between March 11 2018 and May 22 2018 (see Table 1). The incidence angle varied from 30° to 
35° covering the study area in Co-Polarization (VV) and Cross-Polarization (VH) polarization. The 
frequency of the acquisition of imagery over India is very low, and a cycle of low and high number 
of acquisitions in alternating months was seen from the data portal (Table 1). Pre-processing of SAR 
imagery was carried out using SNAP software developed by the European Space Agency (ESA). 
Radiometric calibration, thermal noise removal, and terrain correction (using the Range Doppler 
terrain correction operator) algorithms were applied to obtain the backscattering coefficient ሺσ° dBሻ 
[23]. A Lee speckle filter was applied to reduce speckle noise. Linear 0

VVσ  and 0
VHσ  were 

converted to dB values. 
Sentinel-2 Level-1C S2 imagery with less than 10% cloud cover was downloaded for the years 

2016 to 2018. These were converted to Level 2A to obtain bottom of atmosphere reflectance using 
SNAP software provided by ESA under a GNU General Public License V3 . Visible and Near 
Infrared Radiation (NIR) bands B4 and B8 were used to generate normalized difference vegetation 
index (NDVI) to delineate the agricultural area. 

Table 1. Acquisition dates of Sentinel-1 images: Interferometric Wide (IW) swath mode, relative orbit 
63, descending. Ground Range Detected (GRD) product type (VV and VH polarization). Images were 
downloaded from the European Space Agency (ESA) portal https://scihub.copernicus.eu/.  

Year Acquisition Date 
2017 4 March 28 March 21 April 3 May 15 May 27 May  
2018 11 March 23 March 4 April 16 April 28 April 10 May 22 May 

 

2.4. Methodology 

The study began with pre-processing of Sentinel-1 C-band data (described in Section 2.3) to 
obtain σ° from both polarizations after applying appropriate corrections and speckle reduction. The 
in situ data collected during the field missions were used to extract 0

VVσ  and 0
VHσ  values in dB 

from the respective images of different dates (Table 1). The in situ data and σ° data were compiled to 
analyze and build a semi-empirical model. Agricultural land was derived using band B4 and B8 of a 
time series of Sentinel-2 images used to calculate the NDVI for the date for which an image was 
available in the season during each year. Random forest (RF) classification was applied to the set of 
nine NDVI images covering the study area and training dataset. This is useful to mask out 
non-agricultural areas when visualizing soil moisture estimates. An evaluation of the 
semi-empirical model was conducted to assess the accuracy of soil moisture (Figure 2).  

 

Figure 2. The process of estimating soil moisture using Sentinel-1 Co-Polarization (VV) and 
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Cross-Polarization (VH ) imagery. 

2.4.1. Semi-Empirical Model 

A semi-empirical model was proposed to estimate soil moisture over bare soils in agricultural 
areas from the backscatter coefficient based on a linear relationship. The linear equation captures the 
backscatter from bare soil, which constitutes soil moisture and surface roughness (as crop residue) 
and includes both VV and VH backscattering coefficients as:  
 

f ( vϑ ) =A 𝜎° (VV)+ 𝐵 𝜎°(VH) + T        (1) 
 

where vϑ  is the volumetric soil moisture; A, B, and T are empirical constants; and 0
VVσ  and 0

VHσ  

are the VV and VH backscattering coefficients, respectively. 
On bare soil, 0

VVσ  and 0
VHσ  are mainly influenced by soil moisture. Since the major crop in 

the study area is rice, there is a crop residue as rice stubble on the ground. The rice stubble at 75% 
water content also contributes to the 0

VVσ , but decreases as the water content decreases and is 
negligible in both polarizations [19,24]. A linear combination including both polarizations was 
found to better estimate soil moisture from bare soil.  

2.4.2. Delineation of Agricultural Fields 

The estimation of soil moisture is more meaningful when linked to the purpose for which it is 
used. The ideal domain for use of such information is agricultural lands. Ideally, NDVI [25] is used 
to understand changes in crop phenology as the growing season progresses. Since the target class 
was only agricultural land, time series NDVI during the cropping season was best suited for the 
delineation using Sentinel-2 imagery. A set of nine NDVI images during the three crop seasons was 
used to estimate land cover using the RF algorithm [26]. The training dataset included land use in 
the soil sample locations (62). Additionally, 200 training samples were used: 100 from agricultural 
land and 100 from non-agricultural land. This product was used as a base for mapping soil moisture 
in agricultural lands.  

2.4.3. Evaluation of Semi-Empirical Model 

Basic information like maximum, minimum and mean in situ soil moisture were generated 
(Table 2). Linear regression was used to understand the relationship between Sentinel-1 
backscattering coefficients and in situ soil moisture data. The P value, which indicates the 
significance of the accuracy assessment was significant (≤0.05) and not significant (≥0.05). The RMSE 
of the modeled soil moisture was estimated using the equation: 𝑅𝑀𝑆𝐸 =  ටଵே∑ ሺ𝑌௦ − 𝑌௦௧ሻଶேୀଵ       (4) 

To understand the contribution of each polarization and sum of both polarizations to the 
accuracy of the model, residual standard error (RSE) of the estimated soil moisture was calculated 
using equation:  

Residual standard error (RSE) =ට∑(௬బି௬)మିଶ       (5) 

where 𝒚𝟎 is the observed soil moisture; 𝒚𝒆 is the predicted soil moisture; and n is the degree of 
freedom. 

3. Results 

A well distributed sampling scheme and data collected over two years yielded a well 
calibrated model to estimate soil moisture in the bare agricultural soils during the dry season 
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(March–May). Linear and multi-linear regression was used to find the relationship between 
observed soil moisture and backscatter coefficients by deriving the model constants for each date 
and a combination of dates. 

3.1. Field Measurements and Laboratory Analysis 

Soil moisture was estimated using the gravimetric method for all 62 samples spread over 
Siruguppa taluk (Figure 1) for each date of satellite pass. Mean volumetric soil moisture ( vϑ ) in the 
samples ranged from 0.22 m3/m3 to 0.28 m3/m3 from 4 March 2017 to 27 May 2017. Minimum vϑ  
varied from 0.12 m3/m3 to 0.17 m3/m3 from March 2017 to May 2017 and the maximum vϑ  varied 
from 0.30 m3/m3 to 0.34 m3/m3, respectively (Table 2). Figure 3 illustrates the range of values that 
each point in the population takes above and below the mean for six dates of satellite passes during 
2017. It is worth noting that Figure 3 displays the soil moisture values measured the day of the 
satellite passes and for this reason, the ranges of the variation of soil moisture appeared as different 
from those reported in Table 2. Similarly, measurements were made during 2018 at the same 
locations. The minimum vϑ  varied from 0.11 m3/m3 to 0.15 m3/m3 and the maximum varied from 
0.32 to 0.34 m3/m3 from March 2018 to May 2018, respectively. The mean vϑ  was measured 
between 0.23 m3/m3 and 0.26 m3/m3 (Table 2). Figure 4 shows the range of values during 2018 for the 
seven dates of satellite passes during 2018. 

 
Figure 3. Observed soil moisture of each point during six passes of the satellite estimated using the 
gravimetric method during 2017. 

 

Figure 4. Observed soil moisture of each point during seven passes of the satellite estimated using 
the gravimetric method during 2018. 

Table 2. Observed soil moisture of all 62 samples combined during each pass of the satellite during 
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2017 and 2018 collected at Siruguppa taluk. 

Field Measurement 
Soil Moisture (m3/m3) 
Min Max Mean 

4 March 2017 0.14 0.31 0.22 
28 March 2017 0.12 0.30 0.23 
21 April 2017 0.14 0.30 0.22 
3 May 2017 0.12 0.30 0.23 

15 May 2017 0.17 0.34 0.28 
27 May 2017 0.15 0.30 0.23 

11 March 2018 0.15 0.33 0.24 
23 March 2018 0.15 0.34 0.26 

4 April 2018 0.13 0.33 0.24 
16 April 2018 0.13 0.34 0.25 
28 April 2018 0.14 0.33 0.25 
10 May 2018 0.11 0.32 0.24 
22 May 2018 0.11 0.32 0.23 

 

3.2. Localized and Generalized Relationships 

The concepts of localized and generalized relationships were used in the in situ measurements 
of soil moisture and SAR estimates. A relationship was localized if it was obtained using single date 
data points in the study area, collected both in 2017 and 2018. A generalized relationship was 
obtained when all the dates data points were considered in the study area (Figure 5). 

The relationship for localized models showed R2 ranging from 0.62 to 0.75 between 0
VVσ  and 

vϑ , revealing a significantly strong relationship in 2017 (Table 3). As far as 0
VHσ  is concerned, it was 

found to have a lower R2, ranging from 0.43 to 0.70. During 2018, R2 values ranged from 0.56 to 0.69 

for 0
VVσ  and from 0.31 to 0.62 for 0

VHσ . The linear combination of 0
VVσ  and 0

VHσ  showed higher 

R2 values, ranging from 0.71 to 0.88 during 2017, and from 0.60 to 0.86 during 2018 (see Table 3).  

Generalized relationships attempted to study the impact of seasonal effects observed in the 

study area due to different agroecologies (i.e., the different management and practices in a 

homogenous landscape). Table 4 summarizes the R2 values obtained in the individual years 2017 

and 2018 along with a combination of two years for 0
VVσ , 0

VHσ  and their linear combination ( 0
VVσ +

0
VHσ ). The individual and combined backscatter coefficients in the two VV and VH polarizations 

over 2017 and 2018 pointed out a clear relationship with the in situ measurements of soil moisture.  
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VV VH VV+VH 

   

   

   

   

Figure 5. Localized and generalized linear models between soil moisture and backscatter. (Top) 
Examples of localized models refer to the Sentinel-1 acquisition of 15 May 2017. The remaining rows 
refer to the generalized models obtained using all Sentinel-1 images acquired in 2017, 2018, and in 
the total study from 2017 to 2018. The images from left to right represent Sentinel-1 images VV, VH, 
and VV + VH backscattering coefficients. 
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Table 3. Localized relationship between soil moisture and backscatter. 

Sentinel-1 Acquisition Date R2 ( 0
VVσ )  R2 ( 0

VHσ )  R2 ( 0
VVσ  + 0

VHσ )  

4 March 2017 0.63 0.66 0.83 
28 March 2017 0.65 0.65 0.87 
21 April 2017 0.68 0.67 0.84 
3 May 2017 0.69 0.56 0.80 
15 May 2017 0.75 0.70 0.88 
27 May 2017 0.62 0.43 0.71 

11 March 2018 0.69 0.32 0.75 
23 March 2018 0.63 0.34 0.78 

4 April 2018 0.56 0.47 0.60 
16 April 2018 0.64 0.33 0.72 
28 April 2018 0.63 0.31 0.66 
10 May 2018 0.65 0.62 0.86 
22 May 2018 0.57 0.54 0.78 

 

 

Table 4. Generalized relationship between soil moisture and backscatter. 

Year 𝛔° R2 
2017 VV 0.68 
2017 VH 0.67 
2017 VV + VH 0.79 
2018 VV 0.66 
2018 VH 0.32 
2018 VV + VH 0.62 

2017, 2018 VV 0.62 
2017, 2018 VH 0.47 
2017, 2018 VV + VH 0.72 

 

3.3. Soil Moisture Evaluation 

Multi-linear regression and linear regression were applied to determine the value of empirical 
constants (A, B, and T) in both the localized and generalized models. Tables 5 and 6 summarize the 
results. Each localized model comprises images from one date of pass over of the study area, 
totaling 39 equations from March 2017 to May 2018, and considering individual 0

VVσ , 0
VHσ , and 

their linear combination 0
VVσ + 0

VHσ . Each generalized model combines all images acquired during a 

year for individual 0
VVσ , 0

VHσ  and linear combination 0
VVσ  + 0

VHσ . Three models were obtained 
for each year 2017 and 2018 and three additional models using all the images used in the study, 
making it a total of nine generalized models. For the localized model, 40 samples for calibration and 
22 samples for validation were used during 2017 and 2018 (N = 62). The model calibration for 
individual dates (localized models) with combined backscatter coefficient ( 0

VVσ + 0
VHσ )  during the 

study years of 2017 and 2018 estimated an R2 ranging from 0.91 to 0.70 and RSE ranging from 0.03 
to 0.01. 

As far as generalized models are concerned, N = 368 points were used in 2017, 258 for 
calibration, and 110 for validation, and N = 427 in 2018, with 299 for calibration and 128 for 
validation. The total number of points for both years was N = 795, with 557 used for calibration and 
238 for validation. The nine linear equations modeled each backscatter coefficient 0

VVσ , 0
VHσ  and a 

linear combination of both ( 0
VVσ  + 0

VHσ ) for each year (2017, 2018) and 2017 and 2018 put together. 

Table 6 summarizes the R2 values modeled from 0
VVσ  and 0

VHσ  as a function of ( vϑ ) during 2017 

and 2018. RSE was 0.03 for 2017, 2018 from 0
VVσ , and 0.03 and 0.04 from 0

VHσ  for 2017 and 2018, 
respectively. A linear combination of both backscatter coefficients during 2017 and 2018 showed an 
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R2 of 0.80 and 0.70, respectively. The RSE values were 0.02. The backscatter coefficient from each 
polarization and a linear combination of both polarizations put together for two years were also 
attempted. The R2 from 0

VVσ was 0.60 with a RSE of 0.03 and from 0
VHσ  it was 0.50 with a RSE 0.03. 

The R2 from a linear combination of both polarizations ( 0
VVσ + 0

VHσ ) was 0.70 with a RSE of 0.02. 
Model validation was done for individual dates from a linear combination of the two 

polarizations. Table 5 and Figure 6 summarize the RMSE values for 2017 and 2018. The nine 
generalized models were also validated and the RMSE values are reported in Table 6 and Figure 7. 
 

 
 
 

   

   

   
Figure 6. Localized models. Validation (2017 and 2018). 
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Figure 6. Localized models. Validation (2017 and 2018) (continued). 
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Figure 7. Generalized models. Validation between the estimated and observed soil moisture. 
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4. Discussion 

Accurate estimation of vϑ  was envisaged using a linear equation of 0
VVσ  and 0

VHσ  radar 
cross section from bare agricultural soils. A thorough data collection campaign was undertaken 
during 2017 and 2018, synchronizing with the pass of the satellite. Bare soil areas were mostly 
post-harvest cropped areas with little or no crop residue, depending on the crop sown. In the study 
area, 50% of the agricultural land comprises rice cropped and irrigated from a seasonal stream. 
Sentinel-1 SAR, dual polarized imagery was used to estimate soil moisture over bare soils using a 
semi-empirical model. Model parameters were estimated using linear and multi-linear regression. 
Performance evaluation was conducted based on a 70:30 ratio of sampled points and low RMSE was 
found between the observed and estimated soil moisture, when a linear relationship between 0

VVσ
and 0

VHσ  was combined for 2017 and 2018.  

Table 5. Empirical constants (A, B, and T) of the localized model. The total number of samples for each 
date was 62. The linear equation was derived using 70% of the total population. 

     Validation 
Sentinel-1 

Image 
Acquisition 

Date Model A B T R2 RMSE 

1 4 March 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.014 0.011 0.60 0.82 0.01 

2 28 March 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.013 0.014 0.65 0.88 0.02 

3 21 April 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.011 0.015 0.65 0.84 0.01 

4 3 May 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.014 0.012 0.62 0.76 0.01 

5 15 May 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.008 0.008 0.47 0.90 0.02 

6 27 May 2017 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.017 0.012 0.63 0.75 0.03 

7 11 March 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.016 0.008 0.57 0.82 0.02 

8 23 March 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.013 0.008 0.52 0.84 0.02 

9 4 April 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.022 0.004 0.55 0.76 0.02 

10 16 April 2018 ( vϑ ) = A × ୭  + B × ୌ୭  + T 
0.015 0.008 0.53 0.77 0.03 

11 28 April 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.022 0.010 0.67 0.70 0.02 

12 10 May 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.016 0.017 0.74 0.90 0.02 

13 22 May 2018 
( vϑ ) = A × ୭  + B × ୌ୭  + T 

0.014 0.019 0.76 0.78 0.02 
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Table 6. Empirical constants (A, B, and T) of the generalized model. The total number of samples 
for 2017 was 368, for 2018 it was 427, and for a combination of 2017 and 2018, it was 795. The linear 
equations were derived using 70% of the total sample of each year and combined year. 

      Validation 
Year 𝛔°  Model 𝑨 B T R2 RMSE 

2017 VV ( vϑ ) = Aˑ୭  + T 0.015 - 0.39 0.70 0.03 

2017 VH ( vϑ ) = Bˑୌ୭  + T - 0.017 0.56 0.67 0.03 

2017 VV + VH ( vϑ ) = Aˑ୭  + Bˑୌ୭  + T 0.009 0.009 0.51 0.80 0.02 

2018 VV ( vϑ )  =  Aˑ୭  + T 0.019 - 0.44 0.60 0.03 

2018 VH ( vϑ )  =  Bˑୌ୭  + T - 0.014 0.50 0.32 0.03 

2018 VV + VH ( vϑ ) =  Aˑ୭  + Bˑୌ ୭ + T 0.016 0.009 0.58 0.70 0.02 

2017, 2018 VV ( vϑ )  =  Aˑ୭  + T 0.016 - 0.41 0.60 0.03 

2017, 2018 VH ( vϑ ) =  Bˑୌ୭  + T  0.016 0.59 0.50 0.04 

2017, 2018 VV + VH ( vϑ ) =  Aˑ୭  + Bˑୌ୭  + T 0.011 0.009 0.59 0.70 0.02 
 

4.1. Relationship between 0
VVσ  and 0

VHσ  with Observed Data 

Soil moisture data were collected over two years (2017 to 2018) during the dry summer season 
from March to May from the 62 plots on the dates of the satellite passes. The relationship between

0
VVσ , 0

VHσ , and observed soil moisture by individual dates of the satellite pass (13 images) showed 
that in both years, the backscatter and observed soil moisture had a significant positive correlation 
[2,10,27,28]. In both years, VV polarization had a higher backscatter dB value than VH polarization. 
In cross-polarization (VH), signal attenuation occurs due to volumetric scattering [29]. In 2017, soil 
moisture constantly increased from March 4 to April 27. The R2 between radar backscattering 
coefficient and in situ measurements of soil moisture is reported in Table 3. A sudden increase in R2 
(VV) can be observed on May 15, corresponding to the consecutive rainfall events that occurred 
during the three days before the date of the satellite pass (Figure 8). This means that there is a better 
correlation for high values of soil moisture, probably because under this condition, the radar 
backscattering coefficient’s dependence on soil moisture is more important than it is on surface 
roughness. 

Similarly, an unexpected increase in 0
VHσ  was observed (Figure 5). May 27, 2017 (Table 3) had a 

low R2 value from 0
VHσ  compared to the rest of the dates due to the rainfall event (Figure 8), weeds 

or crop residue moisture [24]. In 2018, R2 for the relationship between 0
VVσ  and observed soil 

moisture was significant during March because of residual soil moisture (i.e., the crop residual 
moisture influenced the radar backscattering coefficient, Table 3). Residual soil moisture was low on 
April 4 and May 22 due to evaporative demand and higher between April 16 and May 10 due to 
consecutive rainfall events (Figure 8). R2 did not decrease from March to May, probably due to 
irregular changes in crop residue moisture, since 0

VHσ  is sensitive to it [24]. The R2 values from 0
VHσ

during March were relatively low despite no rainfall in the month because of residual soil moisture 
from the previous crop. The cumulative moisture due to rainfall during April is reflected in the low 
R2 of April 16 and April 28 (Figure 8). During May, high R2 values were due to bare soils. A linear 
combination of 0

VVσ  and 0
VHσ  during each date in 2017 produced higher R2 compared to R2 from 

individual polarization. This shows that the addition of 0
VVσ  and 0

VHσ  or vice versa improves the 
backscatter and soil moisture relationship rather than a single relationship with different 
polarization (Table 3). A similar relationship existed during 2018 from a linear combination of 0

VVσ  
and , which improved R2 significantly (Table 3). 
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Figure 8. Temporal soil moisture, backscatter, and rainfall, 2017–2018 (March to May). 

4.2. Localized and Generalized Relationships 

To operationalize the accurate estimation of soil moisture for decision making, a global 
relationship was envisaged considering all dates during the dry season. The R2 value of global 
relationship from VV polarization during 2017 was 0.68, which was higher than the mean of the local 
relationships. The generalized relationship was found to be more useful for an accurate soil moisture 
estimate. In addition, R2 for the generalized relationship performed better than the mean of the 
localized relationship (0.67) with VH polarization. The scenario during 2018 from VV polarization 
was more influenced by rainfall events in the dry season. The R2 values ranged from 0.56 to 0.69 with 
a mean of 0.62 from localized relationships and 0.66 from the generalized relationship, which was 
more than the local mean. R2 was very low from VH polarization due to cumulative moisture from 
rainfall events. However, the generalized relationship produced a lower R2 than the mean localized 
relationship for VH in 2018 (see Tables 3 and 4). The usefulness of a generalized relationship was 
exhibited with a consistent increase in the accuracy of the soil moisture estimates over two years. 
The relationship from VV and VH polarization during 2017 showed significantly lower R2 than the 
linear combination of VV and VH during the same year. Similarly, also during 2018, R2 was 
significantly higher than the individual polarization. Finally, the best relationship was obtained 
when the linear combination of two polarizations was combined (appended) for the two years 2017 
and 2018, than from single polarizations combined for the two years. It was inferred that generalized 
relationships are more promising in terms of building a model compared to localized relationships, 
which may not relate to the entire population. 

4.3. Modeling the Relationships 

The relationships of localized and generalized modeling were explored and tested for 
multicollinearity, especially linear combination models 0

VVσ  + 0
VHσ . Multicollinearity is a statistical 

phenomenon in which two or more predictor variables in a multiple regression model are highly 
correlated [30]. To detect multicollinearity, we used an indicator called variance inflation factor 
(VIF), which is a tool to measure and quantify how much the variance is inflated [30]. If any of the 
model’s VIF values exceed 5 or 10, it is an indication that the associated regression coefficient is 
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poorly estimated because of multicollinearity [31]. The P value indicates statistical significance for 
independent variable contribution in the model, which is explained in Section 2.4.3. 

For generalized models, nine different types of linear relationships were explored with 0
VVσ  

and 0
VHσ  data (Table 6) during 2017 and 2018. In 2017, among the three possible models 0

VVσ , 0
VHσ  

and, 0
VVσ  + 0

VHσ , individual models 0
VVσ  and 0

VHσ  showed a low RSE and the P value was 
statistically significant. When 0

VHσ  was added to 0
VVσ , the RSE was lower than in the individual 

models. This indicates a very good relationship with a low VIF as well as P value for both 
backscatter coefficients. Similar results were observed in 2018. Generalized models derived by 
combining two years (2017 and 2018) of data showed similar results as individual year models. This 
study also showed that the linear combination equations from the localized models also performed 
well with low VIF (<2) and a P value statistically significant for both backscatter coefficients (Tables 
7 and 8). 

A collinearity test on the generalized and localized models showed that the VIF for a linear 
combination of both backscatter coefficients (VV + VH) was <3. Hence, these models are 
non-collinear. All models showed low P value, indicating that both backscatter coefficients made 
meaningful addition to the models. During modeling relationships with a linear combination of 
individual backscatter coefficient, it was inferred that the individual backscatter coefficients were 
non-collinear, contributing to R2 independently. It was found that the localized models from 
individual dates varied over time, and any one equation with a low RSE and VIF may not represent 
the whole season. In addition, the generalized models produced lower RSE representing the whole 
season, and were hence better than each localized model. 

Table 7. Analysis of variance in the generalized model. 

     
Year (𝛔°) Variable t value 𝐏𝐫(> |𝐭| ) 𝐕𝐈𝐅 
2017 VV 24.24 <2 × 10−16 *** - 
2017 VH 23.24 <2 × 10−16 *** - 
2017 VV, VH 12.17, 11.20 <2 × 10−16 *** 2.11 
2018 VV 21.23 <2 × 10−16 *** - 
2018 VH 11.98 <2 × 10−16 *** - 
2018 VV, VH 20.76, 11.50 <2 × 10−16 *** 1.10 

2017, 2018 VV 29.49 <2 × 10−16 *** - 
2017, 2018 VH 24.31 <2 × 10−16 *** - 
2017, 2018 VV, VH 21.57, 16.32 <2 × 10−16 *** 1.40 

*** p value < 0.001. 

Table 8. Analysis of variance in the localized model. 

     
Date (𝛔°) Variable t value 𝐏𝐫(> |𝐭| ) 𝐕𝐈𝐅 

4 March 2017 VV, VH 4.63, 7.54 <2 × 10−16 *** 1.36 
28 March 2017 VV, VH 8.24, 8.04 <2 × 10−16 *** 1.30 
21 April 2017 VV, VH 6.93,9.02 <2 × 10−16 *** 1.54 
3 May 2017 VV, VH 7.39, 4.34 <2 × 10−16 *** 1.63 
15 May 2017 VV, VH 6.93, 5.02 <2 × 10−16 *** 1.71 
27 May 2017 VV, VH 5.03, 5.17 <2 × 10−16 *** 1.12 

11 March 2018 VV, VH 10.45, 6.07 <2 × 10−16 *** 1.09 
23 March 2018 VV, VH 11.25, 6.00 <2 × 10−16 *** 1.10 

4 April 2018 VV, VH 10.19, 1.94 <2 × 10−16 *** 1.14 
16 April 2018 VV, VH 9.17, 4.47 <2 × 10−16 *** 1.11 
28 April 2018 VV, VH 9.10, 4.12 <2 × 10−16 *** 1.0 
10 May 2018 VV, VH 10.69, 11.09 <2 × 10−16 *** 1.27 
22 May 2018 VV, VH 6.66, 6024 <2 × 10−16 *** 1.26 

*** p value < 0.001. 
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4.4. Validation of Models 

Models were validated using 30% of the sampled points. Results for the localized models are 
summarized in Table 5. In 2017, the lowest RMSE (0.01) was found on 21 April. Figure 8 shows that 
no rainfall or very weak rainfall was observed on this day. An increase in RMSE was observed on 15 
May. Similarly, in 2018, the lowest RMSE was observed on 23 March and the highest (0.03) on 16 
April 2018, probably due to the increase in rainfall. The results seem to show that the RMSE of the 
models is related to the amount of rainfall. Localized models performed better in drier soils. 

As far as the generalized models are concerned, the validation results showed that generalized 
models obtained using co-polar 0

VVσ  data provided a lower RMSE than those based on cross-polar
0
VHσ  data for both 2017 and 2018 and taking all data acquired from 2017 to 2018. We also found 

that the linear combination of both co-polar and cross-polar backscattering coefficients always 
provided a lower RMSE than the models using only one polarization. The best results came when 
using the linear combination of polarizations and all the data acquired along the two years, resulting 
in an RMSE of 0.02 (Table 6). This globalized model was used to produce maps of soil moisture and 
its spatial variability (Figures 9–11). This is probably the most important result, as a simple 
multi-linear model using both co-polar and cross-polar Sentinel-1 data acquired over long time 
periods can reproduce the spatial variability of soil moisture. 
 

 
Figure 9. Spatial variability in the soil moisture in Siruguppa taluk during 2017. 
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Figure 10. Spatial variability in the soil moisture in Siruguppa taluk during 2018. 
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Figure 11. Spatial variability in the estimated soil moisture from combining all the dates in 2017 and 
2018. 

5. Conclusions 

This study aimed to accurately estimate the soil moisture of bare, post-harvest agricultural 
areas collected from Siruguppa taluk (sub-district) in the Karnataka state of India. Fifty percent of 
this agricultural area is grown with rice that is irrigated by seasonal canal irrigation. An accurate 
estimate of volumetric soil moisture ( vϑ ) was envisaged using a semi-empirical model based on a 
linear equation of co-polarized and cross-polarized radar cross section obtained by Sentinel-1 
images. A thorough data collection campaign was undertaken during 2017 and 2018 during the pass 
of the satellite. 

Both localized and generalized models were developed using Sentinel-1 image independently 
and all images together, respectively. Results indicate that the accuracy of the soil moisture estimates 
increased when using both co-polar and cross-polar images instead of only 0

VVσ or 0
VHσ , 

independently. 
The use of localized models revealed that the RMSE of soil moisture estimates decreased 

corresponding to dry periods, with little or no rainfall. This indicates that better estimates of soil 
moisture can be obtained for drier soils. Coming to globalized models, soil moisture estimates with 
lower RMSE were observed when merging all data acquired in 2017 and 2018, and co-polar and 
cross-polar images, with a R2 of 0.7 and RMSE of 0.02. The availability of a large amount of in situ 
data collected over a large area demonstrated that a globalized linear model based on the joint use of 
co-polar and cross-polar C-band SAR images acquired for a long time period, with a short revisiting 
time of twelve days, could capture spatial variability in soil moisture. This is an important result as 
the availability of Sentinel-1 data can provide farmers with timely and accurate estimates of soil 
moisture and enable the mapping of its spatial variability by using simple semi-empirical models. 
This information, when provided in the immediate weeks and months preceding the cropping 
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season, could be very crucial in determining planting dates and assessing early season plant growth, 
thereby playing a key role in influencing productivity. 
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