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Much of the world’s population growth will occur in regions where food insecurity
is prevalent, with large increases in food demand projected in regions of Africa and
South Asia. While improving food security in these regions will require a multi-faceted
approach, improved performance of crop varieties in these regions will play a critical
role. Current rates of genetic gain in breeding programs serving Africa and South Asia
fall below rates achieved in other regions of the world. Given resource constraints,
increased genetic gain in these regions cannot be achieved by simply expanding the
size of breeding programs. New approaches to breeding are required. The Genomic
Open-source Breeding informatics initiative (GOBii) and Excellence in Breeding Platform
(EiB) are working with public sector breeding programs to build capacity, develop
breeding strategies, and build breeding informatics capabilities to enable routine
use of new technologies that can improve the efficiency of breeding programs and
increase genetic gains. Simulations evaluating breeding strategies indicate cost-effective
implementations of genomic selection (GS) are feasible using relatively small training
sets, and proof-of-concept implementations have been validated in the International
Maize and Wheat Improvement Center (CIMMYT) maize breeding program. Progress
on GOBii, EiB, and implementation of GS in CIMMYT and International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) breeding programs are discussed, as well
as strategies for routine implementation of GS in breeding programs serving Africa and
South Asia.
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INTRODUCTION

Crop improvement through plant breeding is a process
of continuous genetic improvement through selection and
recombination of superior lines. The response to selection, or rate
of genetic gain, is dependent on multiple factors, expressed in the
“breeder’s equation,”

R =
irσa
L

(1)

where R is the response to selection per year, i is the selection
intensity, r is the accuracy of selection, σa is the additive genetic
standard deviation for the trait of interest, and L is the generation
interval (Lush, 1936).

Assuming that breeding objectives, selection criteria, available
germplasm, and target environments are well defined, the success
of a breeding program is largely dependent on the optimal use
of available resources to maximize the response to selection
(Rutkoski, 2019). Effective breeding programs must re-evaluate
breeding strategies as technology, environments, access to
germplasm, and consumer needs are constantly changing. While
all the aforementioned factors are critical, the ability to identify
and effectively implement new technologies can be challenging.
This is especially true for publicly funded breeding programs
in Africa and South Asia, where resource and infrastructure
limitations make the adoption of new technologies particularly
challenging. The need to overcome these limitations and improve
the effectiveness of breeding programs is urgent, given the
historically low rates of genetic gains in many programs serving
Africa and South Asia (Godfray et al., 2010; Cobb et al., 2019),
expected population growth (Alexandratos and Bruinsma, 2012),
and the potential impacts of climate change on crop production
(Ritchie et al., 2018).

To achieve rates of genetic gain in crop improvement needed
to strengthen and stabilize food security, modern technologies
must be adopted and efficiently implemented. One promising
approach is genomic selection (GS), where the performance
of new lines is predicted based on genome-wide information
(Meuwissen et al., 2001). Multiple studies have shown the
potential of this methodology to increase the rates of genetic
gain in plant breeding programs (Heffner et al., 2009; Beyene
et al., 2015; Gaynor et al., 2017; Crossa et al., 2017; Rutkoski
et al., 2017), often through the reduction in cycle time, L.
However, despite compelling evidence of the potential gains
from GS and widespread adoption in animal breeding, public
sector plant breeding programs have been slow to routinely
adopt GS. Adoption of GS in animal breeding applications
benefited from the fact that the use of genomic Best Linear
Unbiased Predictors (GBLUP) (VanRaden, 2008) and single-step
GBLUP (Legarra et al., 2014) enabled GS implementations that
were straightforward extensions of existing breeding approaches.
In contrast, optimal implementations of GS in plant breeding
programs represent a significant change in how breeding data is
analyzed, how breeding decisions are made, and how breeding
pipelines are designed. The costs and challenges of large-
scale implementation of genomic selection in public sector
breeding programs have been a significant barrier to routine

implementation despite the potential for significant increases
in genetic gain.

A typical inbred or hybrid plant breeding program has this
basic structure: (i) selection of parents for crossing, (ii) selfing
or use of doubled haploid technology (DH) to achieve the
desired level of homozygosity, and (iii) multi-stage field trials
of selection candidates (inbred lines or testcross hybrids) to
identify best lines or hybrids for release and commercialization
as varieties. We generalize this structure as a variety development
pipeline (VDP, e.g., Figure 4 of Cooper et al., 2014). A typical
VDP evaluates progeny lines in the field for several growing
seasons, advancing the best lines at the end of each season, with
smaller numbers of lines being tested in more environments
in each successive season. Lines that are deemed successful
in advanced trials are candidates for variety release and are
typically recycled as parents into the breeding program. This
approach to breeding takes advantage of the ability to produce
inbred or testcross hybrid seed in large quantities which is then
extensively evaluated in the field. In this approach, decisions
to recycle lines as new parents are made using extensive, but
costly, phenotypic data, often with lines treated as independent
factor levels in the analysis. This approach produces accurate
(r, Equation 1) estimates of line performance but significantly
increases generation interval (L, Equation 1) due to the multiple
years of testing. While simulation studies demonstrate that a
rapid-cycle recurrent GS approach may ultimately provide the
largest increases in genetic gains (Gaynor et al., 2017; Gorjanc
et al., 2018; Rembe et al., 2019), it is not a practical initial
implementation of GS in a plant breeding program. Rapid cycle
approaches require relatively large training sets that must be
routinely updated to maintain prediction accuracy and breeding
decisions must be made using less accurate estimates of the line
performance, often without observing the line in replicated trials
(Crossa et al., 2010; Hickey et al., 2014; Schopp et al., 2017;
Gorjanc et al., 2018). This represents a significant change in how
breeding decisions are made and requires significant investments
for training set development. Both of these factors can limit
adoption of GS, especially in resource limited breeding programs,
and these factors need to be considered when developing a
strategy for implementation of GS.

Large scale adoption of GS will require optimizing breeding
strategies while accounting for costs, ease of implementation,
and potential impacts on operation efficiency and genetic
gain. Ideally, training data for a rapid-cycle recurrent selection
approach would be sourced from the breeding program’s VDP.
So, regardless of the ultimate end goal and long-term GS strategy,
the first step in GS implementation is to routinely genotype
lines entering the VDP. For sustainability and routine adoption,
this needs to be done without significantly expanding breeding
budgets. This requires rethinking how early-stage testing is done
in a breeding program. Several approaches have been proposed
for incorporating GS in VDPs (Bernardo and Yu, 2007; Cooper
et al., 2014; Jacobson et al., 2014; Gaynor et al., 2017; Jarquín
et al., 2017; Sukumaran et al., 2018). When evaluating optimal
approaches for breeding programs with little or no historical data
to train prediction models, strategies that achieve good prediction
accuracy from small training sets are critical.
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Identifying cost-effective approaches to routinely genotype
lines entering the VDP is a critical first step. However,
implementation also requires operational capabilities to sample,
genotype and generate genomic predictions on a tight turn-
around schedule. To do this effectively at scale, advanced
breeding informatics systems that include biometrical and
quantitative genetics, as well as bioinformatics, are needed.
Breeding informatics systems require significant and sustained
investment in foundational technologies and computational
infrastructure. Fortunately, recent funding initiatives have begun
to provide the resources needed to build the foundational
capabilities required to modernize and improve the efficiency
of public sector breeding programs. The Genomic Open-
source Breeding informatics initiative (GOBii)1 is one such
funding initiative with the goal of building the information
systems needed for routine application of genomic technologies
to improve efficiency of breeding programs targeting crop
improvement in Africa and South Asia. In addition to the
project’s focus on genomic technologies, GOBii is also partnering
with other open-source breeding informatics initiatives as part
of the Excellence in Breeding (EiB)2 platform. EiB is being
developed as a “complete platform” or set of interconnected tools
and strategies designed to increase the efficiency of breeding
programs through the adoption of modern technologies and
optimal use of breeding resources.

To examine potential approaches for GS implementation,
proof-of-concept studies were conducted by the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
and International Maize and Wheat Improvement Center
(CIMMYT) in chickpea and maize, respectively. To examine
optimal strategies for routine implementation of GS of lines
entering the VDP, three approaches were compared: (i) the
development of a dedicated training set (DTS) in parallel to the
VDP to serve as a starting point for GS implementation, (ii)
splitting full-sib families for training and prediction (FSTS), and
(iii) the use of incomplete block designs across environments, or
sparse testing (ST), to obtain good prediction accuracies while
reducing plot numbers to offset the cost of genotyping. Here
we present the results from these studies and discuss strategies
for phased implementation of GS in public sector breeding
programs. We also highlight breeding informatics capabilities
being developed to enable large-scale implementation of genomic
breeding strategies.

MATERIALS AND METHODS

Plant Materials
The two datasets from ICRISAT and CIMMYT are described
in detail in Roorkiwal et al. (2016, 2018) and Beyene et al.
(2019), respectively. Briefly, the chickpea data consists of 315
lines from two distinct chickpea seed-types, Kabuli (n = 153) and
Desi (n = 162), evaluated under rainfed and irrigated regimes in
a randomized complete block design with three replicates. All

1www.gobiiproject.org
2www.excellenceinbreeding.org

lines were previously genotyped with 2,598 DArT markers (see
Roorkiwal et al., 2016 for details). To highlight two contrasting
environments, only the rainfed and irrigated environments at
ICRISAT from 2013 and 2014 were included in all analyses of
the chickpea data.

The maize dataset consists of 849 double haploid (DH) lines
from 13 bi-parental families out of the CIMMYT Africa maize
breeding program. For demonstration, the three families with
the largest family sizes were used for this study (pedigree:
CML312/LPS-F64, CML442/LPS-F64, CML536/LPS-F64; size:
91, 108, and 88, respectively). Each DH line was testcrossed to
a single tester, and the testcrosses were evaluated in an alpha-
lattice incomplete block design with two replications planted in
the rainy season with supplemental irrigation as needed in both
Kiboko and Kakamega, Kenya, as well as under managed drought
conditions during the dry season in Kiboko. The DH lines were
genotyped with 9,155 dominant repeat Amplification Sequencing
(rAmpSeq) markers at Cornell Life Science Core Laboratory
Center, Ithaca, NY, United States (Buckler et al., 2016). Markers
were filtered for a minor allele frequency >0.05 and <10%
missing values, resulting in 6,785 markers for use in GS.

As the chickpea data consisted of fixed lines generated from
many parents, FSTS predictions were not appropriate in this case,
and only DTS and ST predictions were compared. In contrast,
as the maize dataset consisted of DH generated from three
bi-parental crosses, and as such, FSTS and ST were the most
appropriate comparisons. In each comparison, the same number
of individuals (i.e., half of the individuals for each population)
were assigned to the training and test sets.

Population Structure
Population structure was evaluated using singular value
decomposition of the additive genomic relationship matrix,
K = UDU’, where U is a matrix of eigenvectors and D is a
diagonal matrix of eigenvalues. The first two eigenvectors
multiplied by their respective eigenvalues were plotted against
each other to form a principal component (PC) plot. The
proportion of variance explained by each PC is defined as
Dii/tr(D), where tr() is the trace.

Prediction Model
An unstructured univariate genotype by environment interaction
model was used to estimate genetic correlations across
environments. This can be written as

y = Xβ+ Zu+ e (2)

where y is the vector of a phenotype in each environment, X is
the design matrix for the vector β of fixed environmental effects,
Z is an incidence matrix linking observations in y to individuals,
u is the vector of genetic values and e is the vector of residuals.
The random effects were both considered centered multivariate
normal such that E [u] = E [e] = 0 and

Var
([u

e

])
=

[
G⊗K 0

0 diag(σ 2
i )

]
, (3)
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where G is the genetic covariance of environments (which
must be estimated), and K is the additive genomic relationship
of individuals, calculated from genetic markers (method
I, VanRaden, 2008). Residual variances were considered
independent and identically distributed within environment but
allowed to differ across environments. Models were fit using the
average information algorithm of ASReml (Gilmour et al., 1995;
Gilmour, 1997).

Fixed effect values, or Best Linear Unbiased Estimates
(BLUEs), were used as true estimated breeding values (EBVs)
to compare to the Best Linear Unbiased Predictors (BLUPs), or
genomic estimated breeding values (GEBVs). These values were
computed using the above model, but allowing u to be fixed
instead of random, with all observed records included.

Model Validation
For the Desi and Kabuli comparisons, genomic prediction
accuracy was assessed using k-fold cross-validation with 10-
fold, where records for a random 10th of the individuals were
removed (or masked) from the dataset for each fold. Each fold
was predicted before the accuracy was calculated as the Pearson
correlation between the all predicted BLUPs and the observed
BLUEs. The average accuracy across 10 replicates was used as the
estimate of genomic prediction accuracy. This was accomplished
among both seed-types, within each seed-type, and across seed-
types.

For DTS prediction, the population was randomly split into
two sets. Phenotypic records from individuals in one set were
removed in both environments before fitting the prediction
model with records from the remaining set to predict GEBVs
for the missing individuals in both environments. Prediction
accuracy of unobserved genotype-environment combinations
was then determined using the Pearson correlation of the
predicted BLUPs to the observed BLUEs either separately by
environment, or by combining predictions across environments.
This process was repeated 10 times and averaged to produce an
estimate of prediction accuracy.

Similar to DTS prediction, FSTS prediction was accomplished
by removing phenotypic records from a random half of the
lines within each bi-parental family in all three environments.
The remaining individuals were used to fit the prediction model
and predict the GEBVs of unobserved individuals in all three
environments. Results from ten replicates were averaged to
estimate prediction accuracy.

Genomic prediction accuracy of ST was determined by again
randomly splitting the individuals into two equal sized sets. For
ST in chickpea, phenotypic records of one half were removed
in the rainfed environment while the records of the other half
were removed in the irrigated environment. For ST in the maize
dataset, half of the individuals within each family were removed
from Kiboko, then further split in half and removed from either
Kakamega or Kiboko Drought, along with an additional quarter
from the remaining set (see Figure 1). Prediction accuracy
of unobserved genotype-environment combinations were then
determined using the Pearson correlation to the observed BLUEs
either across or within the environment. The mean accuracy and

FIGURE 1 | Representation of sparse prediction scheme in maize and
chickpea. Black represents records present in the model fit for individuals in
each environment, while white represents removed (i.e., missing) records.

standard deviations of replicates for DTS, FSTS and ST can be
found in Supplementary Tables 1, 2.

RESULTS

Population structures for the chickpea and maize datasets can
be found in Figure 2. The principal component plot for the
maize dataset shows clustering by population but there is a
significant overlap between populations. This is not surprising as
the maize dataset consists of half-sibs from multiple populations.
In contrast, the chickpea data shows two distinct clusters
representing Kabuli and Desi lines, which are both genetically and
phenotypically distinct.

To determine whether these two chickpea groups should
be combined for training and prediction, cross-validation was
conducted among and within each group. Prediction across seed-
types was also accomplished to determine if the allele frequency
and linkage disequilibrium (LD) pattern is sufficiently shared
between seed-types. Results from the cross-validation results are
found in Table 1 and Figure 2. High cross-validation accuracies
were achieved using the combined dataset, containing both Desi
and Kabuli lines in both the training and validation sets, in
agreement with Roorkiwal et al. (2016, 2018), however, almost
complete loss of predictive ability was observed when one seed-
type was used to predict the other (Table 1). Training and
validation sets containing only one seed-type were generally
less accurate at predicting performance of that seed-type, as
compared with training and validation sets containing both seed-
types (Table 1).

To determine whether the high prediction accuracies seen
using Desi and Kabuli in both training and validation sets were
due to the prediction of group differences between Desi and
Kabuli, or due to predictions of phenotype variation within
seed-type, we then compared (1) single seed-type training sets
to predict phenotypes for the same seed-type, with (2) both
seed-types to predict phenotypes for a single seed-type. Higher
prediction accuracies were generally observed when the training
population was consisted of a single seed-type (Figure 3).

Genetic correlations between environments vary across traits
and range from moderate to high (Table 2). Results from
cross-validation comparing sparse testing to prediction using
historical information can be found in Figure 4. Results show that
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FIGURE 2 | Plots of the first two principal components of the additive genomic relationship matrix for maize and chickpea populations.

TABLE 1 | Genomic prediction accuracies for chickpea GEBVs across environments with various training and test sets estimated using 10-fold cross-validation.

All predict all Desi predict Desi Kabuli predict Kabuli Desi predict Kabuli Kabuli predict Desi

Seed yield 0.48 (0.015)a 0.26 (0.029) 0.25 (0.020) 0.08b 0.04c

Seed weight 0.92 (0.002) 0.76 (0.012) 0.74 (0.014) 0.20 0.58

Biomass 0.50 (0.013) 0.39 (0.019) 0.26 (0.026) 0.11 0.16

Plant height 0.65 (0.011) 0.75 (0.010) 0.42 (0.038) −0.13 0.16

Days to flower 0.68 (0.007) 0.63 (0.016) 0.56 (0.031) −0.34 0.07

Days to maturity 0.70 (0.003) 0.53 (0.021) 0.53 (0.038) −0.16 0.09

aMean prediction accuracy of the Pearson correlation between unobserved BLUPs and observed BLUEs. Standard deviation of ten replicates is shown in parentheses.
bAll Desi lines used to predict all Kabuli lines (no cross-validation). cAll Kabuli lines used to predict all Desi lines (no cross-validation).

across traits, the sparse testing approach consistently achieves
prediction accuracies that are as good or higher, which agrees
with similar studies in wheat (Jarquín et al., 2017; Sukumaran
et al., 2018). Unsurprisingly, the relative improvement in
performance increases for traits with higher genetic correlations
across environments.

DISCUSSION

Strategy for Phased Implementation
Routine implementation of genomic information represents
significant changes in the way plant breeding programs operate
and how breeding decisions are made. To facilitate routine
implementation, we recommend a phased implementation
strategy (Figure 5). In Phase 1 the goal should be to establish
informatics capabilities to successfully implement GS and
optimize trial designs, such as ST and FSTS, to build appropriate
training datasets in a cost-effective manner. While the focus
of this paper is the routine implementation of GS, it should

be noted that routine genotyping of all entries in the VDP
will immediately enable genetic quality control and pedigree
verification which can improve the overall efficiency of the
breeding pipeline by identifying errors early in the screening
process. Once the accuracies of genomic prediction models are
validated in a breeding program, Phase 2 of implementation
should focus on increasing selection intensity in the early stages
of the VDP, reducing the number of seasons in which varieties
are tested prior to release and recycling lines as new parents
earlier in the testing process. Finally, Phase 3 would focus on
the implementation of rapid-cycle recurrent selection to reduce
generation intervals towards the biological limits of the species.
The proposed phases account for the dependencies and logistical
complexities of implementation, as well as the size of the training
set needed to maintain accurate predictions. Phase 1 assumes a
breeding program is starting with very little combined genotypic
and phenotypic data to train prediction models. Given that most
public sector breeding programs in Africa and South Asia have
yet to initiate routine genotyping of lines entering the VDP,
the key first step is to implement capabilities and cost-effective
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FIGURE 3 | Prediction accuracies for Desi and Kabuli with different structures for training and validation sets. (A) Prediction accuracy of using only Kabuli lines to
predict Kabuli lines vs. using both Desi and Kabuli lines to predict Kabuli lines. (B) Prediction accuracy of using only Desi lines to predict Desi lines vs. using both
Kabuli and Desi lines to predict Desi lines.

strategies to routinely genotype lines entering early-stage testing
and generate accurate predictions with limited training data. This
is a key focus of this study and of projects like GOBii and the High
Throughput Genotyping (HTPG) project, both funded by the Bill
and Melinda Gates foundation, which are working to increase
genetic gains and improve the efficiency of breeding programs
serving Africa and South Asia.

The data used in this study were collected on crops with
different breeding approaches and different initial strategies for
building training sets and applying GS in early-stage trials.
These contrasting crops make for an interesting dataset for
testing widely applicable strategies for the initial adoption of GS
approaches. The chickpea training set was developed to represent
the full diversity of ICRISAT chickpea breeding programs, both
Kabuli and Desi, for the purpose of predicting the performance
of new lines prior to preliminary yield trials. The combined
chickpea training set may be good at distinguishing phenotypic
differences between the two known groups, but less accurate
at discriminating within groups. The inability to predict across
seed-types demonstrates that population specific allele frequency
and LD patterns appear to be driving the observed prediction
accuracy. While using Kabuli lines to predict the performance of
Desi, and vice versa, may be viewed as an extreme case, the large
decreases in prediction accuracy when compared to the use of
Desi to predict Desi and Kabuli to predict Kabuli highlight the
importance of building appropriate training sets.

In the chickpea case, the estimates of prediction accuracy
using both seed-types were overly optimistic and could have
disappointed and discouraged funders of these early GS efforts.
Indeed, many reported genomic prediction accuracies are likely

upward biased when it comes to selection, as the (unobserved)
accuracy of new lines formed from relatively few crosses will
not be inflated by the same degree of population structure
within the diverse training population. The inability to predict
across demonstrates that the two seed-types comprise effectively
separate breeding programs and should be treated as such
for training population designs in order to provide realistic
expectations to funders. It may be prudent to refrain from
reporting accuracies in diverse populations, instead focusing on
the average of within group/family to guide expectations.

It has been shown that, when assuming the infinitesimal
model, the expected prediction accuracy is a function of
population structure, trait heritability, training set size, and
the accuracy with which genomic relationships calculated using
genetic markers estimate the true genomic relationships at the
QTL regions controlling the trait of interest (Goddard, 2009;
Daetwyler et al., 2010; Goddard et al., 2011). The latter is a
function of both marker density and the number of independent
chromosomal segments segregating between the training set
and the target set of lines for prediction. Strategies that utilize
training sets containing lines closely related to the target lines
for prediction reduces the number of independently segregating
chromosomal segments, which in turn increases prediction
accuracy. When LD is high, as it is within close relatives,
small training sets and mid to low-density marker platforms
can adequately capture the genetic information required for
prediction (Schopp et al., 2017; Brauner et al., 2019). A straight-
forward approach to ensuring training data is closely related
to new lines being developed in the breeding programs is to
adopt a dual purpose line development and VDP approach to
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building training sets, where the VDP serves the additional
purpose of providing training data to continuously update
predictive models (Schopp et al., 2017; Brauner et al., 2019).
While this certainly isn’t a groundbreaking revelation, it does
provide a clear target for the initial step in implementing
GS in a breeding program: cost-effective genotyping of all
lines entering the VDP. The general concept of maintaining
reasonably close genetic relationships between the germplasm in
the line development program and germplasm in the VDP is an
important consideration when balancing the effectiveness of the
long-term GS implementation strategy with the need to diversify
the germplasm base. Maintaining diversity is important for
sustained long-term genetic gain as well as response to evolving
breeding targets. While GS shows substantial promise for
improving breeding program efficiency, it requires a thoughtful
germplasm strategy to maximize long-term effectiveness.

When comparing approaches to initiate a dual purpose VDP,
the ST approach consistently outperforms both FSTS and DTS in
terms of prediction accuracy. Given the differences in crops and
population structure of the training sets in this study, the fact that
ST delivered higher prediction accuracies in both cases indicates
that it could be a robust strategy across crops and breeding
programs. It should be noted that the ST method does necessitate
the generation of seed from all lines, where the FSTS does not,
however, the amount of seed required is less, presenting the
potential for time savings during seed multiplication for inbred
crops. In lower throughput programs where seed multiplication
occurs in the field, this could allow material to enter the VDP an
entire year earlier. However, for hybrid crops, the cost implication
of seed multiplication for ST is greater since hybrid crops
require testcrossing all candidates. The tradeoffs between cost
and accuracy need to be carefully considered when considering
implementation strategies.

Traits that benefited most from the sparse testing approach
were of moderate to high heritability. Traits with low heritability,
such as seed yield, also tended to have low genetic correlations
across environments. Often, moderate to high heritability traits
are under selection in small plot trials during seed multiplication,
meaning sparse testing may not be as advantageous for these
cases as indicated here. More importantly, the observation of
all lines in the field, as is done in ST, allows for a breeder to
identify and cull lines with other undesirable, but highly heritable
traits, before they enter into extensive field trials. Sparse testing
also presents opportunities for cross program collaboration,
including across countries or continents. If both programs share a
marker platform, implementation of germplasm sharing could be
expedited by predicting performance in the other program, and
exchange of promising materials for the other environment(s).
However, this may be limited to programs that already share
related materials which can be reliably predicted.

While prediction accuracy is a major factor in determining
the best approaches to implement GS, the cost and complexity
of implementation must also be considered. For simplicity and
ease of comparison, the same number of plots were used in
training predictive models for each approach presented here.
This does not mean that each approach would have roughly
the same cost or the same efficiency in VDP design. The FSTS

TABLE 2a | Plot level heritabilities and genetic correlations across rainfed and
irrigated environments for chickpea.

Chickpea Desi Kabuli

Rainfed Irrigated Rainfed Irrigated

Seed yield Rainfed 0.38a 0.24b 0.29 0.1

Irrigated 0.32 0.16

Seed weight Rainfed 0.59 0.88 0.65 0.83

Irrigated 0.76 0.74

Biomass Rainfed 0.21 0.41 0.27 0.25

Irrigated 0.28 0.11

Plant height Rainfed 0.54 0.87 0.42 0.73

Irrigated 0.64 0.49

Days to flowering Rainfed 0.51 0.91 0.55 0.97

Irrigated 0.6 0.67

Days to maturity Rainfed 0.36 0.82 0.49 0.89

Irrigated 0.34 0.38

TABLE 2b | Plot level heritabilities and genetic correlations across three
environments for maize.

Maize

Kiboko Kakamega Kiboko drought

Yield Kiboko 0.30 0.54 0.72

Kakamega 0.25 0.40

Kiboko drought 0.30

Moisture Kiboko 0.05 0.55 0.98

Kakamega 0.45 0.31

Kiboko drought 0.19

Plant Height Kiboko 0.36 0.86 0.97

Kakamega 0.27 0.77

Kiboko drought 0.32

aPlot level heritabilities within each environment are represented on the diagonal.
bThe above diagonal is the estimated genetic correlation of environments.

approach has the advantage of reducing the number of lines
for which seed must be produced for yield trial testing as with
this approach phenotypic data is not collected on all genotyped
lines. The DTS approach enables prediction of new lines prior
to the collection of any information on the line itself or on full-
sibs, but requires significant initial investment to develop the
training set. Thus, it is difficult to envision an implementation
that is cost neutral in terms of the total breeding budget. The
ST approach combines genomic prediction and advancement
decisions into a single analysis. The fact that implementation can
be viewed as a change in experimental design is appealing, but
it does increase the complexity of models that need to be run
to advance lines through the VDP. In an ST approach, genomic
relationship matrices need to be calculated for variety trials
and used in mixed models for variety advancements. This adds
complexity to the traditional advancement process that could
quickly overwhelm even a moderate sized breeding program
without breeding informatics tools to support the process.

It is important to note that incomplete block designs typically
have some explicit genetic overlap, with some lines shared across
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FIGURE 4 | Prediction accuracies for sparse testing (ST) vs. (A) dedicated training set (DTS) prediction accuracies in chickpea lines across six traits and two water
regimes, and (B) Full-sib prediction accuracies (FSTS) in maize across three traits and three environments.

FIGURE 5 | Recommended implementation of genomic information into a breeding program. Phase 1 (blue), Phase 2 (yellow), and Phase 3 (red). Solid lines
indicate the flow of genetic materials, while dashed lines indicate the flow of information.

each pair of environments, as is the case here in maize. With this
overlap, the genetic correlation of environments can be estimated
even when lines are considered independent. When genotypes
are available, however, the genetic correlation of environments
can be estimated without the need to replicate any lines across
environments. These correlations are instead estimated through

replication of alleles across environments, as is the case here in
chickpea. The ST approach does require estimation of genetic
correlations across environments, and this should be taken into
account when designing multi-environment trials. Generally,
greater levels of genetic overlap will increase the precision of these
correlation estimates.
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While these results provide some general guidance on
promising approaches for initial implementation of routine GS,
the optimal implementation strategy will depend on the specifics
of each breeding pipeline. The heritability of traits of interest,
cost of phenotyping, amount of historical data available for
training prediction models, field testing resources, structure of
breeding populations, and access to cost-effective genotyping
platforms are all factors that will influence decisions about
optimal approaches for implementation of GS. Even within a
program there may be a need for hybrid approaches given
the expected prediction accuracy for a given population using
historical data. It is recommended that any breeding program
test the potential efficiency of new approaches using simulation
prior to implementation. Fortunately, there are freely available
simulation packages (Faux et al., 2016; Yabe et al., 2017), and EiB
is working directly with public breeding programs in Africa and
South Asia to conduct simulations and make recommendations
for optimal breeding pipeline designs.

Breeding Informatics
Implementation of any of the approaches examined in this
study will require full integration of genomic information into
routine breeding decisions, requiring a shift in how data is
viewed and handled in a breeding program. The need to build
a large training set through a dual purpose VDP means that
variety testing trials can no longer be viewed as independent
experiments for the identification and advancement of superior
varieties. The data collected should be treated as a resource for
increasing understanding of breeding germplasm and improving
the accuracy of breeding decisions (Spindel and McCouch, 2016).

The capability to combine genotypic data with phenotypic data
collected across experiments, environments, and seasons will
be critical for success. While challenging in and of itself, the
narrow timelines between harvesting yield trials and planting
nurseries to generate seed for the next season make it infeasible to
implement these approaches without effective data management
and analytic platforms. To bring genomic information into
routine breeding decisions and enable access to valuable data
resources, information systems are required to track samples,
store genomic and phenotypic information, and implement
analysis pipelines to merge data from multiple sources and
conduct advanced analytics to guide decision making on tight
schedules. In addition, a standardized, low-cost and robust
genotyping platform with short turn-around time is essential to
delivering high-quality genotyping data in a timely fashion.

To address this critical need, GOBii, EiB, and several other
projects are working with public sector breeding programs to
build and deploy the foundational capabilities needed to digitize
breeding data, support breeding processes and implement GS
routinely. Given the size and capacity of many public sector
breeding programs, open-source breeding software needs to be
both scalable and customizable to meet the needs of diverse crop
breeding programs. To accomplish this communities of practice
associated with projects like the Breeding Application Program
Interface (BrAPI; Selby et al., 2019) and EiB are working to
develop best practices and standards to enable interoperability of
software being developed across multiple development teams and
projects. Figure 6 represents a high-level, generic architecture
focused on the development of web-based breeding software
tools. The use of web-based tools enables cloud deployment of

FIGURE 6 | High level architecture for breeding software. (A) Applications, (B) Databases, and (C) Breeding management systems.
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complex systems and software as a service (SaaS) for scalability.
Common standards for Application Program Interfaces (API),
such as BrAPI, will enable customization for a variety of breeding
processes. It should be noted that these development efforts are
not limited to web-based applications as it is recognized that
certain breeding activities will need to be conducted offline.

Several development teams are building applications designed
to support specific breeding processes (Figure 6A), and several
examples of these applications can be found on the BrAPI
website3. Projects like GOBii are focused on building databases
designed to achieve optimal performance with specific data
types (Figure 6B). The GOBii genomic data management system
(GOBii GDM) is designed to store multiple genomic data
types and is built on technology that enables fast querying of
large genomic datasets (Nti-Addae et al., 2019). The GOBii
system utilizes RESTful APIs and the BrAPI standard to enable
connections to breeding management systems and breeding
analytics pipelines being developed by EiB and other open-
source software development projects (Tecle et al., 2014;
Ribaut and Ragot, 2019). Finally, several projects such as the
EiB Enterprise Breeding System (EBS) and the USDA ARS
Breeding Insight4 are developing systems composed of multiple
applications and databases for end-to-end support of breeding
processes, leveraging existing breeding software and databases
when feasible (Figure 6C).

To enable cost-effective genotyping, EiB, in collaboration
with the High Throughput Genotyping (HTPG)5 project, are
sourcing genotyping platforms to reduce the cost of mid-density
genotyping (1,000–2,000 markers) to a price per line that is
comparable to the cost of running a single yield trial plot. Using
the HTPG platform, EiB is implementing low-cost genotyping
services for public sector breeding programs. Access to these low-
cost genotyping services, combined with open-source databases
and analytic pipelines greatly reduces barriers to cost-effective
implementation of GS strategies and should pave the way
for routine use of GS in public sector breeding programs in
the near future.

Notably, adoption of new technology demands a skilled
workforce. Rapid creation, quality control and turnover of
genotypic and phenotypic data will be necessary to make
and implement breeding decisions. This will result in many
moving parts, and all these steps require a high degree of skill.
Many programs will need to adopt a team-oriented approach
where expertise is split across many individuals, with enough
overlap for effective communication. Future members of plant
breeding teams will need skills and expertise outside of what
has traditionally been associated with plant breeding. Expertise
in database management, machine learning, biometrics, software
development, engineering, and operations research will be
needed to augment the biology, genetics, and agronomy skills
of the team. We acknowledge that building this expertise
for every program would be impractical, therefore movement

3https://brapi.org/brapps
4https://www.breedinginsight.org/about
5cegsb.icrisat.org/high-throughput-genotyping-project-htpg/

towards regional networks with shared services and expertise
will be necessary.

CONCLUSION

There are several barriers to routine implementation of GS at
a breeding program scale. These barriers are currently being
addressed and we foresee movement towards routine adoption
in several public breeding programs. We suggest that breeding
programs approach the implementation of GS in a phased
approach with the initial step being the routine genotyping
of all materials that are evaluated for yield. These materials
will be genetically and environmentally close to the materials
to be predicted in later stages. We stress that genotyping
should be a regular process instead of a series of isolated
efforts as is often practiced today. Modification of a traditional
variety development pipeline will include implementation of
experimental designs that optimize resources allocated to
phenotyping and genotyping. Changes in experimental designs
and VDP structure should focus on reductions in replications,
sparse testing, and faster germplasm turnover. Marker data must
be seamlessly integrated with pedigree information, phenotypes,
and experimental design to facilitate data processing and analysis
for making breeding decisions at a fast turnover rate. Adoption
of standardized databases and analysis platforms is necessary to
streamline decision making processes. Many of these platforms
exist or are currently being constructed, but adoption will be key
to successful implementation of GS into the 21st century public
breeding program.
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