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SUMMARY

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine

max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies pro-

vided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The

Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for

these accessions. Comparisons among the three accessions show generally high structural conservation,

but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and

4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the

Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against

the US germplasm collection show placement of the sequenced accessions relative to global soybean diver-

sity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily

in genomically clustered gene families. We found approximately 40–42 inversions per chromosome between

either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and

Lee. We also investigated five domestication loci. For each locus, we found two different alleles with func-

tional differences between G. soja and the two domesticated accessions. The genome assemblies for multi-

ple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources
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for identifying causal variants that underlie traits for the domestication and improvement of soybean, serv-

ing as a basis for future research and crop improvement efforts for this important crop species.

Keywords: Glycine max, Glycine soja, soybean, genome assembly, domestication, comparative genomics.

INTRODUCTION

Soybean, Glycine max (L.) Merr, is an important crop that

is widely used as human food, animal feed and for biofuel

production, because of its high protein and oil content of

40% and 21%, respectively (Valliyodan et al., 2017). The

cultivated species of soybean was domesticated in China

approximately 5000 years ago from a wild progenitor

related to the closest extant relative, Glycine soja. Domesti-

cation and selection have since led to a reduction in

genetic diversity (Hyten et al., 2006).

The reference genome assembly of cultivated soybean is

of a northern US cultivar, Williams 82 (Wm82), produced by

the soybean research community in collaboration with the

Department of Energy Joint Genome Institute (DOE-JGI)

(Schmutz et al., 2010). This assembly applied a whole-gen-

ome shotgun approach complemented by Sanger-se-

quenced bacterial artificial chromosomes (BACs), and

comprised 950 Mbp in 20 pseudomolecules, plus 23.2 Mbp

in 1148 unanchored scaffolds. A second assembly, Wm82.a2,

was released by DOE-JGI in 2014 and comprised 949 Mbp in

20 pseudomolecules, plus 29.3 Mbp in 1170 unanchored

scaffolds (Song et al., 2016). Additional ab initio (Salamov

and Solovyev, 2000) soybean genome assemblies have been

released recently: Zhonghuang 13 (Shen et al., 2018); Enrei

(Shimomura et al., 2015); a perennial relative of soybean,

Glycine latifolia (Liu et al., 2018); draft assemblies for seven

wild soybean accessions (Li et al., 2014); and a high-quality

G. soja assembly for accessionW05 (Xie et al., 2019).

These genome assemblies are being used to further

understand soybean biology and to accelerate breeding. A

small sampling of the many studies that have used the

soybean reference assembly includes: population structure

and ancestry (Bandillo et al., 2015; Zhou et al., 2015; Valliy-

odan et al., 2016); identification of the locus determining

pod shattering (Dong et al., 2014; Funatsuki et al., 2014);

seed protein content (Hwang et al., 2014; Vaughn et al.,

2014; Bandillo et al., 2015); plant architecture (Prince et al.,

2019); precision gene editing (Curtin et al., 2018); and

genomic selection (Desta and Ortiz, 2014). Recent advances

in next-generation sequencing technologies, including

long-read sequencing, long-range scaffolding and

advanced bioinformatics for short read assembly (Burton

et al., 2013), have led to the production of improved

assemblies for even large and highly complex genomes

(Jiao et al., 2017; Ling et al., 2018; Raymond et al., 2018).

Here, we report three reference-quality de novo assem-

blies, using a combination of short- and long-read

technologies, for three accessions: an improved assembly

of the northern US accession Wm82; an assembly for the

southern US accession Lee (PI 548656); and an assembly

for G. soja accession PI 483463. All are assembled into

pseudomolecules, with scaffolds anchored using a combi-

nation of optical maps, high-density genetic maps, and

reciprocal structural comparisons between the three gen-

omes. The three assemblies have complementary charac-

teristics, with the Lee assembly being the largest overall

(at 1.016 Gbp, approximately 3% bigger than the other

two), the Wm82 assembly having the highest contiguity at

the scaffold and contig levels (with scaffold N50 of 20 Mbp

and contig N50 of 419 kbp), and the G. soja assembly pro-

viding a useful reference for undomesticated gene forms.

Together, these assemblies provide a resource to advance

soybean biology and breeding. To illustrate the utility of

multiple high-quality genome assemblies, particularly

including a wild G. soja accession, we examined alleles at

loci with established domestication-related functions in

soybean, including loci involved in pod dehiscence, deter-

minacy, seed coat color and hard seededness.

RESULTS AND DISCUSSION

Similarity comparisons relative to the US soybean

germplasm collection

To determine the similarity between the three genomes

described in this study relative to other soybean acces-

sions, we compared these genotypes with the rest of the

United States Department of Agriculture (USDA) germ-

plasm collection using two methods: first, using an overall

similarity metric between accessions in this study and

those in the SoySNP50k genotype matrix (Song et al.,

2013); and second, using a phylogenetic tree calculated

from the SoySNP50k matrix.

Wm82 shows high similarity (≥99%) with 40 other lines.

There are 137 accessions with at least 90% similarity, and

the median similarity value for Wm82 is 0.628 relative to

all other accessions in the US collection (Table S1). Lee

shows high similarity (≥99%) to just one other line in the

US collection:PI 567789, which is reported to be a mutant

of Lee. There are 11 accessions with at least 90% similarity,

and the median similarity value for Lee is 0.678 relative to

all other accessions in the US collection (notably higher

than the similarity value for Wm82) (Table S1). Glycine

soja PI 483463 is distinct from all other accessions in the

US collection: the closest match (PI 597451A) has 90%
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similarity, and the median similarity value for G. soja

PI 483463 is 0.5435 (Table S1). In comparison with each

other, Lee and Wm82 are 67.4% similar, Wm82 and G. soja

PI 483463 are 48.5% similar, and Lee and G. soja PI 483463

are 52% similar.

Phylogenetic analysis relative to the US soybean

germplasm collection

A phylogeny of the (sampled) US germplasm collection

and the accessions described in this paper shows several

striking features (Appendixes S1–S3; Figures 1 and S1).

The tree is rooted between G. max and G. soja accessions

(top and bottom clades, respectively). Colors indicate coun-

tries of origin: yellow, Indonesia and Vietnam; blue, China;

orange, South Korea and North Korea; green, Japan; cyan,

USA; pink, Brazil; and gray for all others (primarily Russia

and India). Most of the clades are predominantly com-

prised of accessions from particular geographic locations

(indicated by countries). Chinese accessions mostly fall

into two clades: the large upperclade, with accessions from

Southeast Asian lines from Indonesia and Vietnam; and

the lower clade, with two nested clades of US accessions.

Accessions from North Korea and South Korea mostly fall

into one clade, as do those from Japan. Interestingly, the

G. soja accessions also fall into three clades, by geo-

graphic origin: China, North and South Korea, and Japan.

The accessions from this study, as well as some related

accessions, are highlighted: Lee and its parents CNS and

S-100 are indicated with green text and icons; Wm82

and its progenitors are indicated with red text and icons;

and PI 483463 is indicated with violet text and icon.

Wm82 and progenitors all fall within the clade of US acces-

sions in the lower clade of Chinese origin, with the excep-

tion of Kingwa, which was used in a cross with Williams as

the basis for Phytophthora resistance. The Lee progenitors

fall into two clades: the large Chinese-dominated clade and

a clade of US and Brazilian lines, apparently deriving from

an older Japanese lineage. This analysis suggests why the

average similarity scores against the US germplasm collec-

tion are higher for Lee than for Wm82 (Appendixes S1–S3;
Figures 1 and S1). Although Wm82 has high similarity with

a large group of US accessions, it is rather different from

accessions in the parent clade of Chinese accessions, and

is further separated from all other accessions in the large

Chinese, Korean and Japanese lines at the top of Figures 1

and S1, where Lee is found.

Comparisons of the three assemblies with the 20 087

accessions in the US germplasm collection show high sim-

ilarity between Wm82 and many other accessions (with 40

accessions having >99% similarity and 137 accessions hav-

ing ≥90% similarity). This is not surprising considering the

importance of Wm82 in research and breeding programs.

It is perhaps surprising that Lee, which has also been used

widely in southern US breeding programs, shares high

similarity with relatively few accessions in the US collec-

tion (with only 11 accessions having ≥90% similarity), yet

Lee has a higher overall similarity relative to the US collec-

tion, compared with Wm82 (median similarity values are

0.628 for Wm82 and 0.67 for Lee). A phylogenetic analysis

based on genotype data suggests that the greater median

similarity between Lee and the rest of the US collection

reflects characteristics of genotype representation in the

US collection: namely, that the collection has extensive

representation from southern China and Southeast Asia

(upper blue plus yellow clades in Figures 1 and S1), North

Korea and South Korea, and Japan. In contrast, Wm82 and

other northern US cultivars come from a clade of northern

Chinese origin (blue and gray clades at bottom of Figures 1

and S1; with gray mostly representing accessions from the

Vavilov Institute, http://www.vir.nw.ru). As expected,

G. soja accession PI 483463 nests within the clade of other

G. soja accessions (bottom clade in Figures 1 and S1), but

sits on a relatively long branch among Chinese G. soja

accessions, consistent with its phenotypic character as a

relative outlier among the available G. soja lines, showing

unusual salt tolerance (Lee et al., 2009; Valliyodan et al.,

2017).

Germplasm has evidently been under regional selection

(Figure 1), probably in relative genetic isolation from other

groups. This is suggested by distinct per-country clades. At

the same time, breeding efforts also clearly involve peri-

odic wide crosses, as well as the occasional movement of

germplasm across country borders. The parents of Lee

come from two distinct clades (one predominantly of Chi-

nese origin and another probably of Japanese origin), and

Wm82 has genetic material from two distinct clades (with

a parent Kingwa from one and Williams from another

clade).

Genome assembly and assessment

The G. max cultivar Lee and G. soja PI 483463 were

assembled using a similar approach and combination of

technologies, based primarily on NRGene DeNovoMagic

assemblies (Avni et al., 2017; Springer et al., 2018) that

usedpaired-end reads of 160–260 bp from size-selected

libraries, followed by scaffolding using a two-enzyme Bio-

nano optical map, and manual evaluation and integration

into pseudomolecules. The Lee pseudomolecules span

990.7 Mbp, with an additional 25.6 Mbp in 245 unan-

chored scaffolds, for a total assembly size of 1016.3 Mbp,

whereas G. soja PI 483463 pseudomolecules span

962.3 Mbp, with 22.9 Mbp in 286 unanchored scaffolds,

and with a total assembly size of 985.2 Mbp (Table 1).

The Wm82 version 4 assembly (Wm82v4) builds on the

widelyused assembly version 2, as well as an incremental

version 3 that involved the incorporation of BAC

sequences to fill contig gaps in 2016. The Wm82v2 assem-

bly was primarily Sanger-based, and gap-filling in v3 and
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Figure 1. Phylogenetic tree of a random sampling of the US germplasm collection for Glycine soja and Glycine max. The tree is rooted between G. max and

G. soja accessions, as indicated. Colors indicate countries of origin: yellow, Indonesia and Vietnam; blue, China; orange, South Korea and North Korea; green,

Japan; cyan, US; pink, Brazil; gray, all others (predominantly from Russia and India). Country and ID correspondences, as well as tree order, are shown in

Appendix S4. Accessions Lee and Wm82 and their immediate progenitors are indicated in green and red text and icons, and G. soja PI 483463 is indicated in

violet text and icon.
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v4 used PacBio-based BAC assemblies targeted to the gap

regions. The Wm82v4 assembly closed 3626 gaps and

added 5 138 978 bp of sequence relative to Wm82v2,

increasing the contig N50 from 233.1 to 419.3 kbp. The

Wm82v4 assembly has a total assembly size of 978 Mbp:

961 Mbp in pseudomolecules and 17 Mbp in unanchored

scaffolds.

The three assemblies have complementary strengths.

The assemblies are closely matched in size: each is within

4% of the total assembly size of the others, and represents

88–91% of the predicted genome size of 1115 Mbp (Arumu-

ganathan et al., 1991). In terms of scaffold and contig sizes,

the Wm82v4 assembly is the most complete and contigu-

ous, with scaffold N50s being approximately 20 Mbp com-

pared with 14 and 4 Mbp for Lee and G. soja, respectively,

and with contig N50 being approximately 420 kbp com-

pared with 41 kbp and 28 kbp for Lee and G. soja, respec-

tively (Table 1). In general, the scaffold boundaries are

different in each assembly, providing an indication of the

genomic content in the gap regions in each assembly, and

providing a means of assessing scaffold placement and

orientation (Figures S2–S4).

Assembly completeness in terms of gene, telomere and

centromere capture

Assessing assembly completeness, analyses with

CEGMA (v2.5) and BUSCO (Parra et al., 2007; Simao et al.,

2015) demonstrate similar scores, with 4/248 (1.6%) of

CEGMA genes missing from each assembly and 79–85/
1440 (5.5–5.9%) of BUSCO genes missing from each

assembly. This suggests that the gene content was effec-

tively captured in each assembly (Table 2). The Lee and

Wm82v4 assemblies were similar in their read realignment

rates, with the Wm82v4 assembly showing fewer regions

with no reads aligning (two-sided Student’s t-test,

P < 0.05), and fewer repetitive regions (Wilcoxon rank sum

test, P < 0.05), indicating that this has Wm82v4has the

highest quality of the three assemblies (Appendix S4; Fig-

ure 2; Table S2). Another indication of assembly complete-

ness is the proportion of pseudomolecules that extend into

the telomeric repeats at the chromosome ends. The

Wm82v4 assembly has telomeric repeats on 26 of the 40

pseudomolecule ends, whereasthe Lee and the G. soja

assemblies have telomeric repeats on 22 and 18 pseudo-

molecule ends, respectively.

Soybean has two characteristic centromeric repeat vari-

ants: CentGm-1 and CentGm-2, which are 92 and 91 bases

long, respectively (Gill et al., 2009). Although their

sequences are 85% identical, they are sufficiently different

to identify distinct arrays on different chromosomes, both

on the basis of sequence alignments in pseudomolecule

assemblies and by fluorescently labeling these two repeats

as fluorescence in situ hybridization (FISH) probes (Gill

et al., 2009; Findley et al., 2010). It has been speculated

that these repeats may have diverged in distinct Glycine

species, prior to an allopolyploidy event in Glycine approx-

imately 10 Mya (Gill et al., 2009). It is unclear how a hypo-

thetical autopolyploidy event (Wang et al., 2017) could

have impacted centromeric repeat diversity.

Centromeres assembled in all pseudomolecules

(Table 3). For a given chromosome, the repeat signatures

are similar across the three assemblies; however, the num-

ber of repeats and repeat-class ratios differ between chro-

mosomes within an assembly. For example, the number of

CentGm-1 repeats is high across all three assemblies for

chromosomes 5, 12, 15 and 20, whereas CentGm-2 repeats

are absent or near absent for these chromosomes. In con-

trast, CentGm2 repeats are observed in the centromeres of

all three assemblies for chromosomes 6, 7 and 11. Several

chromosomes show mixtures of repeat signatures in all

three assemblies, and chromosome 1 has a very low abun-

dance of both repeat classes in all three assemblies (Fig-

ures S5–S7). All assemblies showed very similar

transposon and repeat content (Figures 3, 4 and S5–S7),
and the copy number for copia is roughly half of that for

gypsy, as has been previously observed (Du et al., 2010;

Tian et al., 2012; Li et al., 2014).

Structural assessments and comparisons

There are few major structural differences observed

between the three genome assemblies (Figures S2–S4);
however, small inversions (500–62 045 bp) are frequent,

Table 1 Genome accessions and assembly statistics. Counts are perbase, excluding between-scaffold gaps or between-contig gaps for the
indicated statistics

Glycine max Lee Glycine max Wm82v4 Glycine soja PI 483463

GenBank accession no. GCA_002905335.1 PRJNA48389 GCA_002907465.1
Total assembly size (bp) 1 016 275 704 978 386 919 985 259 765
Pseudomolecules (bp) 990 714 026 961 401 624 962 330 378
Remaining scaffolds (bp) 25 561 678 16 985 295 22 929 387
Remaining scaffolds (count) 272 262 286
Scaffold N50 (bp) 15 020 773 20 441 467 4 430 511
Contig N50 (bp) 37 725 419 290 11 571
Nucleotides (bp) 43 188 592 25 907 548 33 895 040
Ns (percent) 4.25% 2.65% 3.44%
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with approximately 40–42 inversions per chromosome

between either Lee or Wm82v4 and G. soja, and approxi-

mately 32 inversions per chromosome between Wm82 and

Lee. Considering inversions larger than 500 bp, the most

frequent variations between assemblies were in the size

range of 1–2 kbp, with the largest inversion detected being

62 kbp (detected in both Lee and Wm82, with respect to

G. soja). A prominent classical gene in soybean, the I locus

(controlling seed coat color), is the result of once such

inversion, described below under the section on domesti-

cation gene analysis.

The three assemblies were assembled into pseudo-

molecules using two dense high-resolution genetic maps:

one with 11 922 markers and another with 21 478 markers

(Song et al., 2016). In plots of genetic distance by physical

(genomic) distance, most chromosomes show high recom-

bination rates in the gene-rich and chromosome arms, and

low recombination rates in the gene-poor, transposon-rich

pericentromeric regions (Figures S8–S10). Exceptions are

seen on acrocentric chromosome 9, in which the pericen-

tromeric region is found on the leading chromosome arm.

There are no substantial deviations in the plots between

the three assemblies for corresponding chromosomes.

Comparative gene content

Genome annotation predicted 71 358 transcripts for 47 649

genes in the final Lee assembly, 86 256 transcripts for

52 872 genes in the Wm82v4 assembly and 62 102 tran-

scripts for 46 969 genes in the G. soja assembly (Table 4).

The differences between annotations are most likely due

primarily to the differing gene expression resources used

in the annotation pipelines for the three assemblies, with

the Wm84v4 annotation using more transcript sequence

data, by an order of magnitude, than the other two assem-

blies, from more diverse tissue libraries, and 2.6 million

full-length Iso-Seq transcripts (4.8 billion read-pairs of

RNA-seq reads and 2.6 million Iso-Seq reads for Wm82v4,

vs. 89 million 2x150 read-pairs for G. soja and 180 million

2x150 read-pairs for G. max Lee).

Assessing annotation completeness, applying BUSCO

(Simao et al., 2015) to predicted genes (rather than to

assemblies, presented above) identifies that annotation

completeness for the three assemblies ranged from 97.3%

to 97.7%, with 0.5% to 0.8% fragmented genes and 1.9% to

2.4% missing (Table 2).

To facilitate comparisons among the assemblies, we

identified sets of genes that correspond both by homology

(top blastn match of each gene sequence from a query

assembly to the comparison genome assembly, at ≥95%
identity) and by chromosomal position (overlapping gene

models, on the corresponding chromosome, from top GMAP

match (Wu and Watanabe, 2005) of each gene between the

assemblies). The resulting orthogroups (Table S3) can be

considered a genic pan-genome for this set of assemblies

and annotations. These orthogroups should also be useful

for researchers who wish to translate between the assem-

blies: for example, to find the gene in Wm82v4 that corre-

sponds with the genes in Wm82v2, Lee or G. soja.

The pan-gene analysis identifies 50 686 clusters, each

consisting of corresponding gene models from at least two

of the four annotation sets. Of these, 41 324 sets have

exactly one gene model from each assembly, whereas

Table 2 Assessments of assembly and annotation coverage in terms of conserved genes captured. Both the CEGMA and BUSCO methods
(Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single-Copy Orthologs, respectively) check for collections of highly
conserved protein sequences. For BUSCO, results are reported for the proportion of genes found in the primary assemblies and also for the
predicted genes (annotation)

Subject Glycine max Lee Glycine max Wm82v4 Glycine soja PI 483463

CEGMA Complete 224 (90.32%) 224 (90.32%) 226 (91.13%)
Complete: single copy 22 (8.87%) 19 (7.66%) 23 (9.27%)
Complete: duplicated 202 (81.45%) 205 (82.66%) 203 (81.86%)
Fragmented 20 (8.06%) 20 (8.06%) 18 (7.26%)
Missing 4 (1.61%) 4 (1.61%) 4 (1.61%)
Total CEGs searched 248 248 248

BUSCO–genomes Complete 1342 (93.2%) 1342 (93.2%) 1348 (93.6%)
Complete: single copy 682 (47.4%) 679 (47.2%) 676 (46.9%)
Complete: duplicated 660 (45.8%) 663 (46.0%) 672 (46.7%)
Fragmented 13 (0.9%) 14 (1.0%) 13 (0.9%)
Missing 85 (5.9%) 84 (5.8%) 79 (5.5%)
Total BUSCO searched 1440 1440 1440

BUSCO–genes Complete 1401 (97.3%) 1405 (97.6%) 1393 (96.7%)
Complete: single copy 569 (39.5%) 588 (40.8%) 568 (39.4%)
Complete: duplicated 832 (57.8%) 817 (56.7%) 825 (57.3%)
Fragmented 10 (0.7%) 7 (0.5%) 12 (0.8%)
Missing 29 (2.0%) 28 (1.9%) 35 (2.4%)
Total BUSCO searched 1440 1440 1440
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3295 have fewer than four members and 2298 have more

than four members. Orthogroups that have more than or

fewer than four orthologous genes across the four

assemblies are enriched for gene families known to occur

in genomic clusters. Among families with five or more

genes per orthogroup (i.e. above the expected four for

Figure 2. Repetitive and collapsed regions, and

regions without reads aligning, for the three assem-

blies. Each dot is one pseudomolecule. Panels: col-

lapsed regions as percentage of chromosome;

repetitive regions as a percentage of chromosome;

and regions without reads aligning as a percentage

of chromosome. Values in each case were calcu-

lated as proportions of reads aligning to each

assembly.

Table 3 Counts of characteristic centromeric repeats in the Glycine assemblies, by chromosome. Counts for each repeat type were calcu-
lated based on the top competitive match (BLASTN) between the two repeat types against genomic windows of 1 kb, and summarized by
chromosome

CentGm-1 CentGm-2
C.Gm-1 C.Gm-2

G. soja Lee Wm82 G. soja Lee Wm82 Average Average

Gm01 0 58 0 0 7 3 19 3
Gm02 2069 3980 896 61 73 25 2315 53
Gm03 237 172 130 241 0 0 180 80
Gm04 642 712 279 186 402 47 544 212
Gm05 3437 2724 1121 0 0 0 2427 0
Gm06 12 49 36 1298 2751 1003 32 1684
Gm07 78 41 12 808 455 261 44 508
Gm08 69 934 17 0 0 0 340 0
Gm09 208 495 346 45 95 44 350 61
Gm10 57 32 24 26 267 78 38 124
Gm11 28 30 21 471 400 264 26 378
Gm12 1899 2237 1023 0 5 0 1720 2
Gm13 488 262 302 1 1 0 351 1
Gm14 256 199 499 13 0 1 318 5
Gm15 2255 4995 1540 0 4 22 2930 9
Gm16 851 1528 603 142 40 32 994 71
Gm17 179 206 63 353 472 7 149 277
Gm18 723 1468 230 0 5 0 807 2
Gm19 460 194 341 31 79 76 332 62
Gm20 2538 6001 2476 0 0 7 3672 2
Sum 16 486 26 317 9959 3676 5056 1870 17 587 3534
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conserved single-copy genes), the most frequent families

are: tetratricopeptide repeat (TPR)-like genes; nucleotide-

binding and leucine-rich repeat genes (NBS-LRR) disease

resistance genes; SMALL AUXIN UP RNA (SAUR)-like

auxin-responsive proteins; protein kinase superfamily pro-

teins; F-box proteins; cytochrome P450 proteins; and chal-

cone- and stilbene-synthase family proteins. The families

with fewer than four genes per orthogroup overlap substan-

tially with those in the ‘larger than expected’ orthogroups,

consistent with a pattern of copy-number increases and

decreases occurring in local genomic clusters. Among fam-

ilies with decreased copy numbers in the orthogroups (i.e.

orthogroups of three or fewer genes among the four

assemblies), the most frequent families are: NBS-LRR dis-

ease resistance genes; TTF-type zinc-finger proteins; pro-

tein kinase superfamily proteins; PIF1 helicase proteins; a/
b-hydrolases superfamily proteins; SAUR-like auxin-re-

sponsive proteins; nodulin MtN21 proteins; and pentatri-

copeptide repeat (PPR) proteins. This comparison of

annotations is also supported by gene ontotology (GO)-

term enrichment analysis, which shows the strongest bio-

logical process responses for defense-response activity

(GO:0006952) and several terms related to NBS-LRR genes

(Table S4).

We also identified unique matches with predicted genes

from any of the assemblies (≥95% identity and ≥85% query

Figure 3. Total number of repeats in each repeat

class. The x-axis is the name of each repeat class

and the y-axis is the total number of repeats in each

repeat class. Total numbers of repeats in Glycine

max Wm82 are given by blue bars, total numbers

of repeats in G. max Lee are given by orange bars

and total numbers of repeats in Glycine soja are

given by blue bars.

Figure 4. Total copy number of copia and gypsy

retrotransposons. The y-axis is the total copy num-

ber of the retrotransposons. The left three bars rep-

resent the total copy number of copia, and right

three bars represent the total copy number of

gypsy. Total copy numbers in Glycine max Wm82

are given byblue bars, total copy numbers in

G. max Lee are given by orange bars and total copy

numbers in Glycine soja are given by gray bars.

Table 4 Gene prediction and gene clustering results for all assemblies. Counts of genes within clusters are based on OrthoFinder clusters of
protein sequences among the three annotation sets. Counts of genes with protein domains are based on INTERPROSCAN matches in the Pfam
database

Glycine max Lee Glycine max Wm82v4 Glycine soja PI 483463

Primary transcripts (genes) 47 649 52 872 46 969
All transcripts 71 358 86 256 62 102
Average primary transcript length (aa) 412.3 385.2 412.7
Genes within clusters (%) 46 598 (97.8%) 47 562 (81.2%) 45 403 (96.7%)
Genes with protein domains (%) 39 402 (82.7%) 42 369 (72.3%) 38 954 (82.9%)
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coverage in BLAT [Kent, 2002] output) on the correspond-

ing chromosome from which each gene was predicted.

This is a more lenient method than the pan-gene method

described above, as a search of the genes against the gen-

omes may find pseudogenes or gene models not identified

by gene-modeling software. The combined gene queries

identified58 762, 58 814 and 58 292 distinct genic regions

in Lee, Wm82v4, and G. soja, respectively. We finally used

annotation LiftOver procedures for all possible pairs of the

three annotations to find genes unique to each assembly.

This identified 70, 256 and 219 genes with no hits in the

other two assemblies for Lee, Wm82v4, and G. soja,

respectively.

The differences may arise from the greater completeness

of the Wm82v4 assembly, although the differences are

small (52 more near-identical gene-homologous regions in

Wm82v4 than in Lee, and 522 more in Wm82v4 than in

G. soja) and may reflect true gene presence/absence varia-

tion, as observed in many species (Golicz et al., 2016).

Disease resistance gene content

The primary transcripts of the three annotations were

mined for resistance gene analogs (also called resistance-

gene homologs, RGHs) using RGAugury (Li et al., 2016),

and split into three groups: receptor-like kinases (RLKs; TM

+ LRR/LysM + STTK domain), receptor-like proteins (RLPs;

TM + LRR/LysM), and NBS-LRR genes (TIR/Coils + NB-ARC

domain + Leucine-Rich-Repeat). The Wm82 annotation

contains the most RGH candidates (1886), followed by Lee

(1776) and G. soja (1750). Wm82 also contained the most

NBS-LRR genes (448), followed again by Lee (442) and

G. soja (419) (Table 5). In most categories of NBS-LRR

genes, Wm82 contained the most candidates, except in

Coils + NB-ARC + Leucine rich repeats (123 in Lee, 110 in

Wm82 and113 in G. soja), and ‘other’ R-genes (20 in Lee,

18 in Wm82 and17 in G. soja) (Table 5). The observed dif-

ferences may also arise from pseudogenization at some

loci or from missed gene models where expression sup-

port was lacking or where certain features of the gene

model were non-standard.

SNP comparisons among the assemblies

In nucleotide comparisons of the Lee, Wm82 and G. soja

assemblies, the SNP densities between the genotypes

were calculated as SNPs per kb. The following SNP densi-

ties were observed: 1.7 for Lee versus Wm82v4, 0.13 for

Wm82v2 versus Wm02v4, and 4.7 for both Lee and Wm82

versus G. soja PI 483463. These rates are consistent with

the rates reported by Hyten et al. (2006), who reported

nucleotide diversity (p) among elite lines of approximately

1.1 per kb, and among G. soja accessions of approxi-

mately 4.7 per kb. Fine-scale positional comparisons

uncovered several striking differences. Figure 5(a) shows

comparisons between the Wm82v2 and the Wm82v4

assemblies (red histograms on the left-hand side of each

chromosome backbone), and between the Wm82v4 and

Lee assemblies (blue histograms on the right-hand side of

each chromosome backbone).

In the comparison between the two Wm82 assembly ver-

sions, most genomic regions show very low levels of

nucleotide differences, with the exception of regions on

Gm03, Gm07, Gm12 and Gm14 (Figure 5a, red his-

tograms). The SNPs observed between Wm82v2 and

Wm82v4 (at a genome-wide rate of 0.13 per kb, with 31%

of the differences occurring on Gm03 and Gm07) are likely

to be caused by differential levels of introgression of the

Kingwa parent that was used in breeding Wm82, as

reported by Haun et al. (2011). Kingwa was selected as a

breeding parent of Wm82for its resistance to Phytophthora

sojae (Dorrance et al., 2004; Gao and Bhattacharyya, 2008),

conferred by the locus Rps1
k. This locus, located on chro-

mosome 3, was introgressed by an initial cross between

Williams and Kingwa, followed by multiple crosses to the

recurrent parent Williams to recover most of the elite back-

ground (while maintaining the KingwaRps1
k locus) (Ber-

nard and Cremeens, 1988). The largest differences

between the two Wm82 assembly versions are observed

near this locus. This is explained by the different Wm82

sources used to generate the two assemblies. The initial

assemblies of the Wm82 genome were based on DNA

samples that came from multiple different individuals of

Wm82, rather than a single individual (Haun et al., 2011).

Not all Wm82 plants have identical introgression of the

Rps1
klocus (or other loci that were introgressed during the

breeding of Wm82). Therefore, these regions of Gm03,

Gm07, Gm12 and Gm14 were assembled by reads from

Table 5 Resistance gene candidates found in the three annota-
tions

Class
Glycine max
Lee

Glycine max
Wm82v4

Glycine soja
PI 483463

CN 8 11 7
CNL 123 110 113
NBS 29 34 26
NL 92 105 94
OTHER 20 18 17
TN 22 24 22
TNL 99 101 85
TX 49 45 55
Total
NLR

442 448 419

RLK 1164 1197 1146
RLP 170 241 185
Total 1776 1886 1750

NBS, only NB-ARC domain; CN, Coils + NB-ARC; TN, TIR + NB-
ARC; NL, NB-ARC + Leucine rich repeat; CNL, Coils + NB-
ARC + Leucine rich repeat; TNL, TIR + NB-ARC + Leucine rich
repeat domain; TX, TIR + unknown domain; OTHER, TIR + Coils
domain (missing NB-ARC); RLP, receptor-like protein; RLK, recep-
tor-like protein kinase.
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several ‘Wm82’ subtypes, differing in genetic composition

in the introgression regions, resulting in a mosaic of

Kingwa and Williams reads in those regions. This

remained the case in Wm82v2. In Wm82v4, however, in

order to better represent this known highlyinbred acces-

sion, we used additional sequence reads from the single

haplotype of Wm82-ISU-01 in this assembly, thereby

changing many of these SNPs to now match either the

Kingwa or Williams haplotype throughout any given

region (instead of a mosaic of the two).

In the blue histograms on the right-hand side of each

chromosome (Figure 5a), showing differences between the

Figure 5. Single-nucleotide polymorphism (SNP) densities between assemblies Wm82v2, Wm82v4, Lee and Glycine soja PI 483463. (a) Red histograms (extend-

ing leftward from each chromosome) show differences between Wm82v2 and Wm82v4 (with Wm82v4 providing the reference assembly coordinates), whereas

blue histograms (extending rightwards) show differences between Wm82v4 and Lee. (b) Red histograms show differences between Wm82v4 and G. soja

PI 483463, whereas blue histograms show differences between G. soja PI 483463 and Lee. Histogram bin sizes are 500 kb for both panels. Only SNP variants are

shown (excluding indels and missing data).
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Lee and Wm82v4 assemblies, most chromosomal regions

show large differences between the two cultivars, with

notable exceptions in particular regions (e.g. the center of

Gm01 or distal regions of Gm06, Gm08 andGm09). These

appear to be shared haplotypes (regions of identity and

therefore shared ancestral history).

Comparisons of Wm82 and Lee against the G. soja

PI 483463 assembly (Figure 5b) show high levels of differ-

ence across almost all regions of all chromosomes, with a

few small exceptions. On Gm06 (approximately 38–
41 Mbp) and Gm15 (approximately 25–33 Mbp) there are

regions of nearidentity with G. soja. There are no such

large regions of near identity between Wm82 and G. soja

PI 483463. Although Wm82 does have regions of introgres-

sion with respect to G. soja, there is considerable diversity

among G. soja germplasm (Hyten et al., 2006; Li et al.,

2014), and the known introgression regions (particularly

Gm03) are not evident with respect to this particular

G. soja accession.

Parentage analysis of the Lee and Wm82 assemblies

Nucleotide-level characteristics of the assemblies can also

be seen in plots of SNP comparisons between the parents

of the sequenced cultivars. Figure 6(a,b) shows the

(a)

(b)

Figure 6. Single-nucleotide polymorphism (SNP) locations for comparisons between assemblies Wm82v2, Lee and their parents. A colored bar indicates when

at least five SNPs per 500 kb are present between the indicated parent genotype and the comparison genome. SNPs are from the Soysnp50k array (Song et al.,

2013). (a) SNP locations plotted relative to the Wm82v2 assembly (which is the coordinate system in which the SNPs are reported). Leftward redbars: differences

between the Williams parent and Wm82v2 assembly; rightward green bars: differences between the Kingwa parent and Wm82v2 assembly. (b) SNP differences

between Lee (backbone) and its parents are shown: leftward bars show differences from CNS (PI 548445); rightward bars show differences from S-100

(PI 548488).
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locations of SNPs from the SoySNP50k genotyping matrix

(Song et al., 2013), plotted relative to the Wm82v2 assem-

bly (which is the coordinate system in which the SNPs are

reported). Bars are indicated where there are at least

five SNPs per 500 kb. In Figure 6(a), the green bars indi-

cate relative SNP variation between Wm82v2 and Kingwa

(the Rps1
k donor parent), whereas the red bars indicate rel-

ative SNP variation between Wm82v2 and Williams (the

recurrent parent). Clearly, Williams and Wm82v2 share

nearly identical haplotypes throughout the vast majority of

the genome; however, the region of Rps1
k introgression on

chromosome 3 shows a match to Kingwa and abundant

SNP differences with Williams. This chromosome 3 region

generally matches the major region of variation between

the Wm82v2 and Wm82v4 assemblies, as discussed above

for Figure 5(a).

In Figure 6(b), the haplotype structure is more typical of

an early-generation cross between two distinct parents,

with little recurrent backcrossing. The parents of Lee are

S-100 (PI 548488) and CNS (PI 548445). Differences

between Lee and CNS are shown in red (left), and differ-

ences between Lee and S-100 are shown in green (right).

Some regions appear to be homozygous for one acces-

sion, e.g. for S-100 (‘not CNS’) on all of Gm08, or for CNS

(‘not S-100’) across much of Gm10, whereas other regions

are heterozygous (e.g. top of Gm14).

Domestication gene analysis

Loci responsible for at least two dozen important domesti-

cation- or diversification-related traits have been identified

in soybean (Sedivy et al., 2017), and the pace of such dis-

coveries appears to be increasing with technologies such

as GWAS (for locus and allele identification) and CRISPR

(for gene knock-out and functional tests). For domestica-

tion traits such as determinacy or podshatter (dehiscence),

the trait typically involves an identifiable variant with

respect to G. soja, which is the closest surrogate for the

progenitor of the domesticated soybean. To test the utility

of genome comparisons between cultivated and ‘wild-type’

accessions, we evaluated alleles for several important

domestication traits in these three genomes.

Pod dehiscence. We examined two loci that condition

pod dehiscence: SHAT1-5 (Gao and Zhu, 2013) and Pdh1

(Funatsuki et al., 2014). The SHAT1-5 locus was shown to

play a prominent role in pod dehiscence in soybean, with

most examined cultivated accessions having a loss-of-

function allele, with a premature stop codon in the C-termi-

nal end of the protein, 47 residues short of the wild-type

gene (Gao and Zhu, 2013). The SHAT1-5 loci in Wm82 and

Lee are on chromosome 7 starting at positions 4 314 874

and 4 398 874, respectively, and both contain the prema-

ture stop codon, likely conferring the reduction of pod

shattering observed in the Wm82 and Lee cultivars.

Pdh1 also contributes to the reduction of pod shattering,

independent of SHAT1-5 (Funatsuki et al., 2014). The Pdh1

shatter-resistant allele is present in Wm82v4, and this

allele is distinguished from the wildtype by a stop codon

on chromosome 16, 30 amino acids from the start of the

genic sequence at 30 161 121 nt. A gene model was not

predicted at this location in Wm82, presumably because of

the early stop codon. The same allele is present in Lee on

chromosome 16, also 30 amino acids from the start of the

genic sequence at 31 656 849 nt. In contrast, in G. soja,

the shatter-susceptible allelic form is present, and was

called gene model GlysoPI483463.16G111700.1.

Hardseededness. The GmHs1-1 locus was shown by Sun

et al. (2015) to confer hard seededness in the wild-type

form, and softer seed coat and greater coat permeability in

the domesticated variants. They identified a C?T point

mutation in Glyma02g43700.1 (equivalent to Gly-

ma.02g269500 in Wm82v2 and Wm82v4) between Wm82

and PI 479752, a G. soja accession. The authors showed

through genetic, biochemical, and complementation tests

that the C?T point mutation, resulting in a transition from

threonine to methionine, is causal for the trait. We find that

this same single mutation is present in both Lee and

Wm82, that this is the only mutation in the coding

sequence, and is thus likely the same causal/functional

mutation as reported earlier (Sun et al., 2015).

Determinacy. The Arabidopsis Terminal flower 1 gene (Tfl1)

was shown by Tian et al. (2010) to have four orthologs in soy-

bean, with the paralog on chromosome 19 (Glyma19g37890

in Wm82v1; equivalent to Glyma.19g194300 in Wm82v2 and

Wm82v4) having the largest effect on determinacy. We found

that the Wm82 and G. soja PI 483463 Dt1 genes at chromo-

some 19 are identical, as might be expected, as both are inde-

terminate (although with greater viny-ness in the

G. soja accession). The Lee allele differs, however, with a C?
T mutation, resulting in a transition from proline to leucine.

This mutation was identified by Tian et al. (2010) as the Gmt-

fl1-ab mutation, one of four functional missense mutations

identified in this gene across the germplasm collection

screened in that study. The closest paralog toGmTfl1, on chro-

mosome 3 (Glyma03g35250 in Wm82v1 and Gly-

ma.03G194700 in Wm82v2 and Wm82v4) is identical across

the coding sequence for Wm82v4, Lee and G. soja PI 483463,

so is unlikely to be causal for the determinacy differences

observed between these accessions.We conclude that the C?
T mutation in Lee is likely to be the same causal mutation as

one of the four mutations identified earlier (Tian et al., 2010),

and this is consistent with the indeterminacy in Wm82 and

G. soja PI 483463butwith the determinacy in Lee.

Seed coat color. An example of phenotypic consequences

from small inversions is seen in the classical I locus, which
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controls seed coat color in soybean (Wang et al., 1994;

Clough et al., 2004; Tuteja et al., 2004, 2009; Cho et al.,

2017). Although the full story of this complex locus is

beyond the scope of this resource paper, the outline is that

a cluster of approximately 12 chalcone synthase genes (de-

pending on the accession) on chromosome 8, in an approxi-

mately 100-kbp region, has undergone rearrangements that

result in the silencing of one of the key chalcone synthase

genes. In domesticated accessions, a large inversion and

adjacent duplications have rearranged these genes relative

to the ancestral state in G. soja, bringing one chalcone syn-

thase (CHS1, Glyma.08g110420 in Wm82v4) under tran-

scriptional control of a regulatory element formerly at

another location relative to CHS1 in the ancestral genome

(likely from the rearranged and fragmented subtilisin-like

protease Glyma.08g110380 in Wm82v4). In the rearranged

location (Figure S11), the transcription of CHS1 is in reverse

orientation (Clough et al., 2004; Tuteja et al., 2004). The

reverse-transcribed CHS1 transcript then pairs with a near-

lyidentical but forward-transcribed gene (Glyma.08g110901

in Wm82v4) from downstream in the Wm82 CHS cluster

(Figure S11). Post-translational gene silencing (PTGS) then

degrades the CHS1 transcripts, yielding seeds with a yellow

seed coat (Tuteja et al., 2004; Cho et al., 2017). Similar orga-

nization of the wild-type gene structure at the I locus is

reported for the W05 accession of G. soja (Xie et al., 2019).

In tests with the yellow-seeded Wm82, the subtilisin-

inverted-CHS1 chimera was able to form double-stranded

RNA with the forward-sense CHS mRNAs, thereby likely

causing breakdown of the CHS signal via PTGS (Xie et al.,

2019).

CONCLUSION

The availability of multiple reference-quality genome

assemblies, including an assembly for G. soja, will enable

basic and applied research in soybean. Multiple assemblies

provide confirmation of genomic structure and variations

in difficult-to-assemble regions, and comparisons between

domesticated accessions and G. soja can help to identify

the genomic transitions involved in domestication.

The primary reference genome assembly that has been in

use for the last decade, Wm82, has been substantially

improved, with the closure of more than 3600 gaps, the

addition of more than 5 Mbp and with improvements in

regions that exhibited high heterozygosity in the previous

reference assembly. The use of optical maps and dense

genetic maps has resulted in a robust chromosome-scale

backbone for soybean, and reciprocal comparisons between

the three independent assemblies allowed for the assess-

ment of scaffold contiguity and placement. The presence of

centromeric repeats on all chromosomes and terminal

telomeric repeats on more than half of the chromosomes in

the three assemblies provides an indication of their relative

completeness. The incorporation of substantial additional

full-length transcript data for the Wm82 gene annotation

also strengthens the gene models for soybean.

EXPERIMENTAL PROCEDURES

Similarity comparisons relative to the US soybean

germplasm collection

To assess similarities between the three genome assemblies and
accessions in the US germplasm collection, a similarity matrix of
all 20 087 accessions in the US germplasm against 42 502 SNPs
was created using the R program SNPRELATE (Zheng et al., 2012).
Similarity scores were extracted for all 20 087 US accessions in
the SoySNP50K data set for Wm82, Lee and PI 483463 from the
similarity matrix using the script extractTop-Match.pl available at
Github (https://github.com/avbrown1/SimMatrix-Analysis).

Phylogenetic analysis relative to the US soybean

germplasm collection

The SoySNP50k genotype matrix (Song et al., 2015) was down-
loaded from SoyBase Data Store (https://www.soybase.org/data/
public/Glycine_max/Wm82.gnm2.div.892R/), in Flapjack format (al-
leles coded as A, T, C, G or heterozygous sites). This matrix con-
tains genotype data for 20 087 accessions in the US soybean
germplasm collection. The main objective of this analysis was to
determine the phylogenetic placement of the Lee, Wm82 and
G. soja PI 483463 accessions relative to other material in the US
collection. The size of the US collection presents a challenge, how-
ever, as a phylogeny of >20 000 accessions is difficult to visualize.
We therefore selected a representative subset of the data by apply-
ing several filtering steps. Heterozygous sites were first collapsed
to a single allele, selected at random. We set aside genotype data
for 11 ‘focal accessions’ to be added back to the analysis at the
end. These were: Wm82 and progenitors Williams, Wayne, Clark,
Adams, Kingwa and Archer; Lee and progenitors S-100 and CNS;
and G. soja PI 483463. From the remaining accessions, we
selected representative sequences from among near-identical
ones, using VSEARCH (Rognes et al., 2016), with exemplars being
reported from clusters with ≥99% identity. This gave 15 096 acces-
sions. Accessions with large amounts of missing data (>1500 sites
out of 42 339) were omitted. To generate an alignment suitable for
phylogenetic reconstruction, every 10th SNP was selected, giving
an alignment length of 4238 characters. Finally, the 11 focal acces-
sions were added to the sampled set of accessions, giving 1510
representative accessions for phylogenetic analysis. To the geno-
type identifiers, a tag was added to indicate the country of origin
(from the Country of Origin field from GRIN, https://npgsweb.ars-
grin.gov). A maximum-likelihood phylogenetic tree was calculated
using FASTTREE 2.1.8 (Price et al., 2010). Tree visualizations were
generated using the ARCHAEOPTERYX tree viewer (Han and Zmasek,
2009).

Glycine max Lee and G. soja PI 483463 plant selection for

sequencing and assembly

Soybean germplasm seeds were obtained from the USDAGerm-
plasm Resources Information Network (GRIN). A total of 50 seeds
were planted in the glasshouse at the University Missouri and
after 2 weeks (V1 growth stage) single individuals from each
genotype were screened for homozygosity prior to sequencing
(Bergelson et al., 2016), and a single individual was selected for
tissue collection for sequencing. These seeds from selected plants
were increased and maintained for further use.
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Genome assembly methods

The three assemblies used a combination of technologies: G. max
Lee used notably NRGene DeNovoMagic scaffolded using Bio-
nano optical maps, G. soja PI 483463 used NRGene DeNovoMagic
without Bionano scaffolding and G. max Wm82v4 was built on
top of the existing Wm82v2 with additional information from opti-
cal maps, genetic maps and comparison with other assemblies
(Appendix S5).

Genome assembly validation

CEGMA 2.5 and BUSCO (Parra et al., 2007; Simao et al., 2015)
analyses as well as read remapping was performed to assess the
completeness of the assemblies using the CoReFinder pipeline
(Bayer et al., 2017), available at http://appliedbioinformatics.com.
au/index.php/CoReFinder.

Structural variation between assemblies

Structural comparisons between pseudomolecule assemblies
were primarily made using NUCMER from MUMMER 3.23 (Kurtz et al.,
2004). Visual evaluations were made using dot plots generated by
the MUMMERPLOT utility, and alignment summaries generated by the
MUMMERSHOW-COORDS utility were analyzed for gaps, inversions and
other discontinuities using custom shell scripts.

Nucleotide variation between assemblies

Basepair-level comparisons between pseudomolecule assemblies
were made using NUCMER from mummer 3.23 (Kurtz et al., 2004),
with the SHOW-SNPS utility being used to identify SNPs (with
parameters ‘show-snps -ClrT’). SNP densities in Figure 5 were
generated using CVIT (Cannon and Cannon, 2011). For SNP parent-
age comparisons (Figure 6), variants from the SoySNP50k array
(Song et al., 2013) were plotted against the Wm82v2 chromo-
some coordinates; for Lee, parental lines S-100 (PI 548488) and
CNS (PI 548445), and for Wm82, parental lines Williams and
Kingwa.

Genome annotation

The G. max Wm82v4 and Lee and G. soja assemblies were anno-
tated using PERTRAN (Shu et al., 2013) and Illumina RNA-seq reads
and PASA was used to create transcript assemblies (Haas et al.,
2003) (Appendix S6). The G. max Wm82v4 annotation was addi-
tionally improved using Iso-Seq CCSs.

Predicted genes were compared with SWISSPROT and between
assemblies using BLAST+ 2.5.0 (Camacho et al., 2009) (e-value cut-
off: 1e–5). Gene collinearity was mapped using MCSCANX 2 (Wang
et al., 2012). ORTHOFINDER 2.2.6 was used for sequence-based clus-
tering (Emms and Kelly, 2015). ORTHOFINDER clusters were function-
ally annotated using INTERPROSCAN 5.25-64.0 (Jones et al., 2014)
using SIGNALP 4.1 (Petersen et al., 2011) and PFAM 31.0 (Finn et al.,
2014) and KINFIN 1.0.3 (Laetsch and Blaxter, 2017). For gene loss
comparisons, all three annotations were lifted over to the other
two assemblies using the flo pipeline (https://github.com/wurm
lab/flo), which is based on the University of California, Santa Cruz
(UCSC) LiftoverToolkit (Kuhn et al., 2013), and genes deleted in
the other two assemblies were counted.

Pan-gene comparisons

Pan-gene correspondences between gene models for Wm82v2,
Wm82v4, Lee and G. soja PI 483463 were calculated both by
homology of coding sequences relative to each assembly and by

genomic position. Homologies were calculated as the top BLASTN

match of each gene sequence from a query assembly to the com-
parison genome assembly, at ≥95% identity. Chromosomal posi-
tions were identified as overlapping gene models, on the
corresponding chromosome, from the top GMAP match of each
gene between the assemblies. The resulting orthogroups are
available in Table S3.

Analysis of resistance genes

Resistance gene candidates (resistance gene analogs or RGAs)
were predicted using RGAUGURY (Li et al., 2016). Only primary tran-
scripts were used for R-gene prediction, and the class TM-CC was
removed from the results.

Analysis of telomeric and centromeric repeats

As a measure of pseudomolecule completeness near the chromo-
some ends, we checked for characteristic telomeric repeat motifs
AAACCCT and AGGGTTT at the leading and trailing ends of a
chromosome, respectively, checking for arrays of at least 10 such
repeats within 1000 bases of the pseudomolecule ends. We found
such telomeric repeat arrays on 26 of the 40 pseudomolecule ends
in Wm82, on 22 pseudomolecule ends in Lee and on 18 pseudo-
molecule ends in G. soja.

We searched for the two centromere-specific centromeres
CentGm-1 and CentGm-2 (Tek et al. 2010; Gill et al., 2009) in the
three assemblies to identify the assembled centromeric regions.
We used tandem repeat finder (trf) to extract all CentGm-1 (92 bp)
and CentGm-2 (91 bp)-like long tandem repeats in all three assem-
blies. The resulting datasets were then merged with CentGm-1
and CentGm-2 and clustered using CD-HIT (identity cut-off: 90%),
resulting in consensus sequences TGTGAAAAGTTATGACCATTT-
GAATTTCTCGAGAGCTTCCGTTGTTCAATTTCGAGCGTCTCGATAT
ATTATGCGCCTGAATCGGACATCCG and AGTCAAAAGTTATTGTC
GTTTGACTTTTCTCAGAGCTTCCGTTTTCAATTACGAGCGTCTCGA
TATATTACGGGACTCAATCGGACATCCG, respectively. CentGm-1
and CentGm-2 were aligned with the reference using BLASTN to
identify the location of the centromeres on the pseudomolecules.

ACCESSION NUMBERS

GenBank accession numbers for the genome assemblies

are given in Table 1. Assemblies and annotations are also

available for download and browsing at both Phytozome

(https://phytozome.jgi.doe.gov) and SoyBase (https://soy-

base.org/data/public/Glycine_max/).
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Additional Supporting Information may be found in the online ver-
sion of this article.
Figure S1. Phylogenetic tree displayed in Figure 1, in high resolu-
tion, with accessions and countries of origin indicated.

Figure S2. Dot plot of Wm82v4 (x-axis) by Lee (y-axis). Red: for-
ward alignment; blue: inverted alignment.

Figure S3. Dot plot of Wm82v4 (x-axis) by G. soja (y-axis). Red:
forward alignment; blue: inverted alignment.

Figure S4. Dot plot of Lee (x-axis) by G. soja (y-axis). Red: forward
alignment; blue: inverted alignment.

Figure S5. Densities and locations of repeats (light blue), genes
(brown) and centromeric sequences (red) for G. max Lee.

Figure S6. Densities and locations of repeats (light blue), genes
(brown) and centromeric sequences (red) for G. soja.

Figure S7. Densities and locations of repeats (light blue), genes
(brown) and centromeric sequences (red) for G. max Wm82v4.

Figure S8. Plot of Lee pseudomolecules (x-axis) by genetic map
(y-axis; Wm82 9 G. soja map). Vertical dotted lines show scaffold
boundaries within pseudomolecules.

Figure S9. Plot of G. soja pseudomolecules (x-axis) by genetic
map (y-axis; Wm82 9 G. soja map). Vertical dotted lines show
scaffold boundaries within pseudomolecules.

Figure S10. Plot of Wm82 pseudomolecules (x-axis) by genetic
map (y-axis; Wm82 9 G. soja map). Vertical dotted lines show
scaffold boundaries within pseudomolecules.

Figure S11. Plots of the I locus on chromosome 8, controlling seed
coat color. (a) Schematic of I locus: wild-type (pigmented) struc-
ture at top; cultivated (unpigmented) structure at bottom. Red:
subtilisin genes, and partial gene with promoter. Yellow: chalcone
synthase (CHS) genes. The subtilisin promoter drives a duplicated
and inverted CHS, which causes degradation of the corresponding
CHS transcript through post-translational gene silencing (PTGS).
(b) Dot plot of Wm82v4 and G. soja (y- and x-axes, respectively).
(c) Gene structures from the I locus, from G. soja. (d) Gene struc-
tures from the I locus, from G. max Wm82v4. (e) Dot plot of
G. soja and Wm82v4 (y- and x-axes, respectively). Red highlighted
regions: subtilisin gene.Yellow highlighted regions: chalcone syn-
thase genes. Dotted lines show approximate inversion and dupli-
cation boundaries.

Table S1. Similarity scores between each accession in the US soy-
bean collection and Lee, Wm82 and G. soja PI 483463. Similarities
and countries of origin are indicated in column headings and plot-
ted by descending similarity scores, as sorted for each of the three
comparison genotypes.

Table S2. Repetitiveness and inferred assembly collapses (under-
lying Figure 2).

Table S3. Pan-genome correspondences of gene models across
four assemblies.

Table S4. Gene ontology enrichment from the genome annotation
comparisons.

Appendix S1. Sequence alignment used to calculate the genotype
phylogeny in Figure 1. Genotypes and SNP positions are sampled
as described in Experimental procedures.

Appendix S2. Phylogenetic tree data displayed in Figure 1. The
format for the maximum-likelihood tree is ‘phylip’.

Appendix S3. Sequence data, countries of origin and linear tree
order for Figure S1 and Figure 1.

Appendix S4. R-language code for analysis of repetitive and col-
lapsed regions (used in Figure 2).

Appendix S5. Genome assembly.

Appendix S6. Genome annotation.
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