Improving Post-Rainy Sorghum Varieties to Meet the Growing Grain and Fodder Demand in India

Jina Khrola, Sunita Choudhary, Srikanth Malleyek, Vincent Vadez, Ky SY Prasad, Michael Blumme

1. International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, TELANGANA, India
2. RD (Institut de Recherche pour le Développement) – UMR DIAGE – Team CEREZ, 911 Av Agropolis – BP 64501 - 34394, Montpellier Cedex 5, France
3. International Livestock Research Institute, Patancheru, Telangana, India
4. International Livestock Research Institute, Addis Ababa, Ethiopia

The grain and stover residues of post-rainy sorghum play an almost equally important role in the sorghum value chain, and the premium price of stover is linked to stover quality. These post-rainy sorghum production areas are constrained by water limitation and soil fertility. Eighteen sorghum elite cultivars along with stay green introgression line in background of four farmer-preferred sorghum genotype M 35-1, Parbhani Mut (PVY1411), Phule Vasudha and CR 21 advanced by two backcrosses were selected for present study. These lines were grown in post-rainy 2017-18 at BM-IB Block of ICRISAT in 3 replications with 4 factorial treatments of water stress, planting density and nitrogen level i.e., (i) Well-watered, High Nitrogen, High Density (WW-HN-HD), (ii) Well-watered, High Nitrogen, Low Density (WW-HN-LD), (iii) Water-stress, High Nitrogen, High Density (WS-HN-HD), (iv) Water-stress, Low Nitrogen, High Density. Plant samples were collected in 3 stages i.e., (1) 157th week after sowing, (2) booting and (3) final harvest. Stover quality and digestibility under different treatment assessed with Near Infrared Spectroscopy. The introgression lines of stay-green QTL into segregant sorghum lines showed improved stover quality without trade-off in grain yield and stover yield. There were also synergistic associations found between stover productivity and stover quality. The cascading effect of treatments on grain and stover quality was clearly evident and standardization of NIR mode for particularly water-stress environments can be interesting.