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Abstract
Crop improvement efforts aiming at increasing crop production (quantity, quality)

and adapting to climate change have been subject of active research over the past

years. But, the question remains ‘to what extent can breeding gains be achieved

under a changing climate, at a pace sufficient to usefully contribute to climate adap-

tation, mitigation and food security?’. Here, we address this question by critically

reviewing how model-based approaches can be used to assist breeding activities, with
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particular focus on all CGIAR (formerly the Consultative Group on International

Agricultural Research but now known simply as CGIAR) breeding programs. Crop

modeling can underpin breeding efforts in many different ways, including assessing

genotypic adaptability and stability, characterizing and identifying target breeding

environments, identifying tradeoffs among traits for such environments, and mak-

ing predictions of the likely breeding value of the genotypes. Crop modeling science

within the CGIAR has contributed to all of these. However, much progress remains

to be done if modeling is to effectively contribute to more targeted and impactful

breeding programs under changing climates. In a period in which CGIAR breeding

programs are undergoing a major modernization process, crop modelers will need

to be part of crop improvement teams, with a common understanding of breeding

pipelines and model capabilities and limitations, and common data standards and pro-

tocols, to ensure they follow and deliver according to clearly defined breeding prod-

ucts. This will, in turn, enable more rapid and better-targeted crop modeling activities,

thus directly contributing to accelerated and more impactful breeding efforts.

1 INTRODUCTION

Global change projections indicate that many parts of the

world will continue to face extreme and erratic climate trends,

as a result of rapid population growth, and increasing green-

house gas (GHG) emissions (IPCC, 2014). Model-based pro-

jections indicate greater heat and drought stress during the

21st Century (Gourdji et al., 2013b; Li et al., 2015a; Teixeira

et al., 2013), especially (though not only) if no major GHG

emission reduction strategies are implemented at scale (Betts

et al., 2011; Rogelj et al., 2016; Schleussner et al., 2016).

Compounded by other drivers of global change (e.g. popu-

lation growth, changing economic structures, and changing

land use), these changes will reduce crop productivity and

increase crop yield variability of many crops (Campbell et al.,

2016; Deryng et al., 2014; Li et al., 2009), with major impli-

cations on farmer livelihoods (Jones & Thornton, 2009; Mor-

ton, 2007) and global food security (Campbell et al., 2016;

Wheeler & von Braun, 2013). In light of these projections,

crop improvement efforts aiming at increasing crop produc-

tion (quantity, quality) in a sustainable and efficient way have

been subject of active research over the past years.

Crop breeding programs have contributed to farmers

achieving higher yields, food security and income by devel-

oping and delivering varieties with higher yield potential, as

well as greater resistance to pests and diseases, tolerance to

abiotic stresses, and desirable market quality and nutritional

characteristics in the public (Evenson & Gollin, 2003; Pfeiffer

& McClafferty, 2007) and private sectors (Cooper et al.,

2014b; Voss-Fels et al., 2019d). Moreover, the use of varieties

resistant to heat stress, drought, and possible future pests and

diseases can also contribute to climate change adaptation

(Gaffney et al., 2015; Gourdji et al., 2013a; Habash et al.,

2009; Takeda & Matsuoka, 2008). A key question is, however,

‘to what extent can breeding gains be achieved under chang-

ing climates, at a pace sufficient so as to usefully contribute

to climate adaptation, mitigation and food security?’. Here,

we address this question by reviewing how model-based

approaches can assist breeding activities, with particular

focus on the CGIAR (formerly the Consultative Group on

International Agricultural Research but now known simply as

CGIAR). We critically discuss limitations and opportunities

in light of the need for greater breeding gains under changing

climates. Since the body of published literature (especially in

some thematic or geographic areas) is substantial, we concen-

trate on the most relevant examples, aiming at discussing their

strengths and weaknesses, in order to ultimately determine

the main crop modeling gaps and strategies for collaboration

with researchers, crop improvement teams, farmers, and

decision and policymakers. We first review the importance of

genotypic adaptation in delivering climate change adaptation

outcomes (Sect. 1.1), as well as the challenges in converting

potential adaptations into actual genetic improvement (Sect.

1.2). We then review tools and approaches for accelerated

breeding (Sect. 2), including modeling of environment-

and management- specific yield responses (Sect. 2.1),

environmental characterization (Sect. 2.2), ideotype design

(Sect. 2.3), the linking of crop modeling and genetic data

(Sect. 2.4), and simulation methods for optimizing breeding

pipelines (Sect. 2.5). Finally, we discuss limitations in terms

of data, models, and approaches (Sect. 3), and conclude

by proposing a set of next collaborative research activities

that can contribute to maximizing breeding gains under

climate change.



RAMIREZ-VILLEGAS ET AL. 3Crop Science

0

25

50

75

100

wheat sorghum pearl millet groundnut chickpea rice maize barley

B
en

ef
it 

fr
om

 g
en

ot
yp

ic
 a

da
pt

at
io

n 
(%

)

F I G U R E 1 Average simulated future potential benefits from genotypic adaptation (including ideotype design) as derived from 19 modelling

studies for wheat (n = 15 simulations), sorghum (n = 4), pearl millet (n = 48), groundnut (n = 12), chickpea (n = 48), rice (n = 159), maize (n = 19),

and barley (n = 48). The number of data points used to compute means and error bars follows the number of studies, and the number of sites,

varieties, and scenarios reported in each study. The height of the bar shows the mean of all reported simulations for each crop, and error bars extend

5–95% of the data

1.1 Importance of genotypic adaptation
under climate change

Modern varieties developed through years of crop improve-

ment have contributed to large increases in crop production

in the last 60 years, and they will continue to do so. Even-

son and Gollin (2003) reviewed breeding gains during and

after the Green Revolution for 11 major food crops, estimat-

ing that the contribution of modern varieties to yield growth

is in the range 17–50% in the period 1961–2000. One notable

example is the 70% yield potential increase from the release

of the semi-dwarf rice variety IR8 by the International Rice

Research Institute (IRRI) in the 1950s and 1960s (Peng et al.,

2008). Fischer et al. (2014) indicate a rate of progress in poten-

tial yield of 0.5 to 1.08% per year for wheat, rice, maize and

soybean, as a result of crop improvement. Genotypic adap-

tation to climate change –that is, the process of designing

and developing novel crop varieties to enhance productivity

and stability under future climates, has the potential to con-

tinue delivering productivity gains under changing climates

(Ramirez-Villegas et al., 2015; Rötter et al., 2015).

Evidence of how genotypic adaptation can effectively con-

tribute to climate change adaptation generally arises from two

types of studies: those in which models are used to simulate

future growing conditions with and without adaptation; and

those that quantify the yield benefit of climate-adapted geno-

types by means of field experimentation. Model-based studies

generally indicate potential for substantial gains in both yield

and yield stability. A systematic review of the literature (by

searching the keywords ‘climate change’, ‘genotypic adapta-

tion’, and ‘ideotype’ in http://scholar.google.com[June 2019])

identified 19 studies, from which 389 individual data points

for eight crops were drawn. While some publication bias is

expected in the meta-analysis, the identified studies indicate

that gains from genotypic adaptation are positive for a number

of crops (Figure 1). For instance, modelling by Semenov and

Stratonovitch (2013) suggested that if certain traits could be

improved adequately, wheat ideotypes could outperform cur-

rent cultivars in Europe by up to 65% under future climates.

Similarly, simulations by van Oort and Zwart (2018) showed

that favoring varieties with greater thermal time can compen-

sate for climate change-induced yield reductions in African

rice systems. Similar findings have been reported for Asian

rice (Li & Wassmann, 2010; Mottaleb et al., 2017), ground-

nut (Singh et al., 2012, 2014b), sorghum (Singh et al., 2014c),

pearl millet (Singh et al., 2017), chickpea (Singh et al., 2014a),

maize (Tesfaye et al., 2017), and wheat in China (Challinor

et al., 2010).

Experimental studies also provide robust evidence on the

benefits of genotypic adaptation, corroborating or extending

model-based findings. On-farm maize trials in Africa have

shown that drought-tolerant maize can yield between 20–25%

more than current commercial varieties, with no yield penalty

in ‘good’ years (Cairns & Prasanna, 2018; Setimela et al.,

2017). Suárez Salazar et al. (2018) identified common bean

lines adapted to a heat-stress environment in the Colombian

http://scholar.google.com
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Amazon, where commercial bean varieties show low yield.

Mondal et al. (2016) estimated genetic yield gains in the range

0.5–0.8% per year when breeding short-cycle heat-adapted

wheat varieties in South Asia. Success has also been reported

for drought tolerance in maize for the US corn belt (Cooper

et al., 2014a; Messina et al., 2015) and other regions and crops

(Sinclair et al., 2020). These studies provide initial evidence

that genotypic adaptation can indeed deliver greater yields in

stress-prone environments, thus likely contributing to future

adaptation outcomes.

1.2 Current warming rates will reduce yields
unless breeding and seed system efficiency is
enhanced

The process of breeding a novel cultivar, increasing seed

availability and achieving significant adoption often takes

more than a decade (Challinor et al., 2016; Langyintuo et al.,

2008). This means that temperature increases during the

breeding cycle can lead to a systematic (and unintended) yield

reduction due to decreases in the duration of the growing cycle

(Challinor et al., 2016; Zheng et al., 2016). Researchers con-

firmed that the challenge is more critical in many subtrop-

ical areas with emerging precipitation trends under climate

change (Rojas et al., 2019). The breeding of climate-ready

crops should, therefore, seek to deliver more productive and

resilient crops that keep pace with climate change (Challinor

et al., 2016; Ramirez-Villegas et al., 2015). In doing so, it

is important to implement a wide range of solutions aiming

at making the breeding process more effective and efficient.

Anticipatory and predictive tools using crop-climate models

(reviewed in Sect. 2 and 3) can enable preemptive breed-

ing and can help enhance and accelerate breeding gains, ulti-

mately ensuring crop improvement contributes effectively to

addressing major challenges for agriculture within the context

of climate change.

2 TOOLS AND APPROACHES FOR
ACCELERATING TRAIT
DISCOVERY IN TARGET
ENVIRONMENTS

For plant breeding, multi-environment trials (METs) are

conducted regularly to study Genotype (G) × Environment

(E) × Management (M) interactions (G × E × M), assess

genotypic adaptability and stability, and make predictions

about the breeding value of the genotypes in other environ-

ments and years that will allow crop improvement teams to

accurately select the parents for the next breeding cycle. This

section reviews modeling approaches to assess G × E inter-

actions (Sect. 2.1), characterize target breeding environments

(Sect. 2.2), understand ideal plant types for such target

environments (Sect. 2.3), predict breeding values (Sect. 2.4),

and breeding cycle optimization (Sect. 2.5). We review both

process-based eco-physiological models as well as statistical

approaches to G × E prediction.

2.1 Modeling genotype × environment ×
management

Accurately predicting G × E responses allows identifying

well-adapted genotypes for specific sites or stress situations

(Banterng et al., 2006; Hammer & Broad, 2003), or test-

ing ‘virtual’ genotypes to inform breeding programs (Bogard

et al., 2020; Cock et al., 1979; Hammer et al., 2020; Suriharn

et al., 2011). Similarly, predicting management responses

allows identification of appropriate levels of fertilization,

tillage, irrigation, weed control, amongst others, for a given set

of genotypes (Artacho et al., 2011; Boote et al., 1996; Deryng

et al., 2011). Accurate prediction of genotype performance

across environments and management options is contingent

on various elements, including (i) the development of a model

with the necessary physiological processes represented at an

appropriate level of complexity (Boote et al., 2013; Challinor

et al., 2009; Hammer et al., 2019); (ii) the development of a

well-constrained parameter set (Angulo et al., 2013; Iizumi

et al., 2009); and (iii) high quality environmental (soil, cli-

mate) data to drive the model (Lobell, 2013). As discussed

below, the CGIAR has made major contributions in these

three areas. The use of models for analyzing G × E × M inter-

actions for accelerating breeding is described in Sect. 2.1.2.

2.1.1 Model development, parameterization
and input data

Model development requires the acquisition of a deep under-

standing of the biological basis of G × E interactions (i.e.

crop physiology), and the translation of such understand-

ing into computer code. Physiological processes of interest,

and approaches to model those processes, can vary, some-

times substantially, between contexts. During the early 1980s,

progress in process understanding by CGIAR scientists led

to the development of three crop models that ably captured

G × E × M responses, while also contributing data and

knowledge to many other models. Perhaps the earliest crop

model developed and used in the CGIAR was the cassava

model developed by the International Center for Tropical

Agriculture (CIAT) (Cock et al., 1979), upon which vari-

ous components of the GUMCAS model (Matthews & Hunt,

1994), the CROPSIM-Cassava model (Jones et al., 2003), the

model of Gabriel et al. (2014), and the MANIHOT model

(CIAT, unpublished), were later developed. The ORYZA1
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rice model (Kropff et al., 1993a, 1994), developed at the Inter-

national Rice Research Institute (IRRI), incorporated many

years of eco-physiological research from IRRI and elsewhere.

ORYZA1 quickly evolved into ORYZA2000 (Bouman et al.,

2001), and later into ORYZAv3 (Li et al., 2017). The Interna-

tional Potato Center (CIP) has also led the development of the

SOLANUM and the dynamic carbon photosynthesis model

(DCPM) models for potato (Condori et al., 2010; Quiroz et al.,

2017) and sweet potato (Ramírez et al., 2017). Lastly, CIAT

also led the early development of the BEANGRO model,

which is currently part of the ‘CROPGRO’ module within

DSSAT (Decision Support System for Agrotechnology Trans-

fer) (Hoogenboom et al., 1993; White & Izquierdo, 1991;

White et al., 1995). The International Center for Agricul-

tural Research in the Dry Areas (ICARDA) and the Inter-

national Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) have extensively contributed to the development

and improvement of the Simple Simulation Model (SSM)

(Sinclair et al., 2020; Soltani & Sinclair, 2012), the CROP-

GRO for peanut and chickpea, and the CERES model for

sorghum and pearl millet, also available in DSSAT.

The determination of parameters for crop models, whether

they are statistically- or process-based, is crucial to ensure that

the model correctly captures genotype behavior across differ-

ent combinations of climate, soils, and management options.

This is especially important for process-based crop models,

since the sometimes large number of parameters required

means that there can be many more degrees of freedom in the

model than can be constrained by the available data (Challinor

et al., 2014; Wallach et al., 2016). Progress in model parame-

terization has been enabled by extensive eco-physiological tri-

als conducted by the CGIAR. Notably, recent progress in char-

acterizing yield changes in response to heat stress for wheat, at

least in part, was possible due to data collected in the Interna-

tional Heat Stress Genotype Experiment (IHSGE) carried out

by the International Maize and Wheat Improvement Center

(CIMMYT) (Asseng et al., 2014). Based on CIMMYT data,

too, statistical models by Lobell et al. (2011) and Gourdji et al.

(2013) assessed maize and wheat genotype responses to tem-

perature, respectively. Li et al. (2015) used IRRI trial data

from Los Baños (Philippines) and Ludhiana (India) to cali-

brate and evaluate 13 different rice crop models, and Fleisher

et al. (2017) used an experiment from Bolivia conducted by

the International Potato Center (CIP) as part of the calibration

and evaluation dataset for nine potato crop models. The use of

remote sensing has also been tested for the estimation of crop

model parameters at a low cost (Quiroz et al., 2017).

Attempts to estimate model parameters from genetic

information date to work in the 1990s at CIAT on common

bean, where simulations from gene-based estimates of

model parameters were generally as accurate as manually

estimated parameters (Hoogenboom et al., 1997; White &

Hoogenboom, 1996). Similar work in collaboration with

CIMMYT, showed that differences in phenology of winter

wheat cultivars could be simulated based on genetic infor-

mation (White et al., 2008). Work also extends into the

development of a gene-to-phenotype model for common

bean based field trials conducted by CIAT and the University

of Florida (UF) (Hwang et al., 2017). Compared to success

in linking gene-to-phenotypes achieved by other institutions

(Bogard et al., 2020; Chenu et al., 2009; Messina et al.,

2006), progress in the CGIAR remains slow.

The CGIAR has also contributed to the development of

key spatially explicit climate datasets that are used as inputs

into crop models. These include WorldClim (Hijmans et al.,

2005) and the Climate Change, Agriculture and Food Security

(CCAFS)-Climate database (Navarro-Racines et al., 2020), as

well as methods to generate daily weather data for crop model

simulations (Jones & Thornton, 2000, 2013). Contributions

to soil (Jones & Thornton, 2015; Piikki et al., 2017; Vågen

et al., 2016) and crop geography (IFPRI, 2019; You et al.,

2009, 2017) for crop modeling have also been made in recent

years. By contrast, CGIAR work on developing datasets that

characterize crop management for crop modeling is limited to

specific regional or national studies (see Sect. 2.1.2).

2.1.2 Explaining and simulating G × E × M
interactions

Using available data and models, CGIAR modelers have stud-

ied G × E × M interactions extensively in close coordina-

tion with breeding programs. Virtually all centers have done

modeling for their mandate crops. Use of models has focused

on assessing the stability of economically important traits

and predicting the performance of newly developed genotypes

evaluated under varying environmental conditions and man-

agement practices.

Statistical approaches have the longest history in plant

breeding. These models can be used to study both univariate

(Crossa, Yang, & Cornelius, 2004) and multivariate responses

(Montesinos-López et al., 2018d). A recent study with on-

farm wheat trials (Vargas-Hernández et al., 2018) used a uni-

variate model to assess the combined effects of the wheat lines

and their interactions with the farmer-irrigation-year combi-

nations for several traits. For single trait grain yield, the study

identified stable wheat lines across all environments, as well

as the environments that caused most of the G × E interac-

tion. Multivariate models, though less used, are particularly

useful when measurements are available for multiple response

variables (i.e. multi-trait), and the objective is to increase our

understanding of the complex nature of particular phenom-

ena under field conditions. Many studies have shown that

a multivariate approach is better than univariate approaches

because it identifies the existing (co)variation between the

response variables (Xiong et al., 2014). Moreover, the
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multivariate analysis also improves accuracy when classifying

and identifying superior genetic components (Montesinos-

López et al., 2018d). In addition, it increases the pre-

cision of genetic correlation parameter estimates between

traits, which helps crop improvement teams perform indi-

rect selection. Multivariate models have been implemented

using Bayesian analysis (Montesinos-López et al., 2016b)

as well as deep machine learning regression (Montesinos-

López et al., 2018a,2018c). Notably, Montesinos-López

et al. (2018) report that the performance of multi-trait and

multi-environment deep learning (MTDL) is commensurate

with that of the Bayesian multi-trait and multi-environment

approach. Ersoz et al. (2020) and Washburn et al. (2020)

review machine-learning approaches in crop improvement.

Process-based crop models have also been used for assess-

ing G × E × M interactions within the CGIAR. At ICRISAT,

crop models are used to investigate whether and how changes

in G and M result in positive change in yield across different

environments, as a way to prioritize breeding and agronomic

intervention decisions, including sowing density (Vadez et al.,

2017), irrigation (Vadez et al., 2012), the combination of

better-adapted genotypes and irrigation (Soltani et al., 2016),

and different traits and combinations of traits (Kholová et al.,

2014). ICARDA has employed the Simple Simulation Model

(SSM) to characterize the stress scenarios in target regions of

focus, as well as to explore plant traits and/or management to

be exploited in stress-adapted cultivars for specific target envi-

ronments (Ghanem et al., 2015; Guiguitant et al., 2017). CIP

has used the SOLANUM (Condori et al., 2010) and LINTUL

(Spitters, 1988, 1990) models to compare the performance of

native and hybrid potato genotypes under extreme climatic

conditions (Condori et al., 2010, 2014) and climate change

(Quiroz et al., 2018), demonstrating that appropriate choice

of germplasm and crop management practices could signifi-

cantly secure and increase potato production under future cli-

mate conditions.

Similar work has been conducted by IRRI, whereby

high yielding and stable genotypes were identified using

the ORYZA2000 crop model (Li et al., 2013a). At IRRI,

simulations have also been used to simulate potential yield

across environments (Kropff et al., 1993b), identify ideotypes

for increasing rice yield potential (Aggarwal et al., 1997;

Dingkuhn et al., 2015, 2016; Kropff et al., 1995), and

to inform national certification processes for the release

of crop varieties (Li et al., 2016). At CIMMYT, grid-based

global-scale simulations are used to assess the value of

certain traits. This modeling capacity was developed in a

consortium of UF, CIMMYT, and the International Food

Policy Research Institute (IFPRI) that incorporated three crop

models, including CERES-wheat, CROPSIM, and NWheat

(Gbegbelegbe et al., 2017; Hernandez-Ochoa et al., 2018).

At CIAT, crop models have been used to understand drought

responses across G and M for rice and beans (Heinemann

et al., 2016; Ramirez-Villegas et al., 2018), as well as to

assess the value of drought tolerance traits (Heinemann et al.,

2019). At IFPRI, a grid-based crop modeling framework

was developed and linked with the IMPACT global trade

and economic model (Robinson et al., 2015) to simulate the

potential impacts of adopting agricultural technologies (e.g.

precision agriculture), management practices (e.g. integrated

soil fertility management), and breeding target traits (e.g.

drought and/or heat tolerance) on global food security and

economic implications under climate change scenarios (Islam

et al., 2016; Rosegrant et al., 2014). Analyses of climate risk

for rice in Africa have also been possible by crop simulation

at the Africa Rice Center (van Oort et al., 2015b, 2015a).

2.2 Environmental characterization for
setting breeding priorities

The existence of significant G × E × M interactions can slow

plant breeding progress for broad adaptation and/or for adap-

tation to specific conditions within a region (Chenu et al.,

2011; Löffler et al., 2005). The Target Population of Environ-

ments (TPE) approach aims at addressing G × E × M through

model-based environmental characterization (Chenu, 2015;

Lacaze & Roumet, 2004). In the TPE approach, process-based

crop models are used to assess and detect stress patterns and

their impacts. This, in turn, allows prioritizing stress types by

their intensity and frequency across geographies, as well as

identifying sites where selection for given stresses is likely to

be more successful. Thus, TPEs offer a concrete way to aid

breeding programs through effectively setting trait and geo-

graphic priorities. The TPE approach has been used with suc-

cess by wheat breeding programs in Australia (Chenu et al.,

2011, 2013; Lobell et al., 2015), and more recently has been

applied to maize in Europe (Harrison et al., 2014).

Compared with the applications described in Sect. 2.1,

CGIAR’s work on TPEs for breeding programs is less in

terms of number of crops covered and published studies

(Figure 2a, b). CGIAR’s collaborative efforts include studies

addressing drought for rice (Heinemann et al., 2015; Ramirez-

Villegas et al., 2018) and beans (Heinemann et al., 2016,

2017) under current and future climate in Brazil. Significant

breeding progress has resulted from these studies, including

improvements in drought phenotyping in a drought-prone

environment which allows controlling the timing, intensity,

and duration of drought, reducing the uncertainty asso-

ciated with climate variability trials in the main season

(Martinez et al., 2014).

For rainfed beans, EMBRAPA (Empresa Brasileira de
Pesquisa Agropecuaria) initiated a drought tolerance breed-

ing program following the results of Heinemann et al. (2016,

2017), though its implementation was halted due to the

Brazilian economic crisis. For post-rainy sorghum in India,
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F I G U R E 2 Three major CGIAR examples of environmental characterization to support breeding. (a) Drought stress patterns for rice in central

Brazil (Ramirez-Villegas et al., 2018); (b) drought stress patterns for post-rainy sorghum in India (Kholová et al., 2013); and (c) map of maize

breeding mega-environments from CIMMYT (Cairns et al., 2013). Panels A and B are redrawn from the original studies, and data from C was

provided by CIMMYT

Kholová et al. (2013) report five main types of stress con-

ditions requiring different breeding/agronomic approaches

(Figure 2b). A related larger-scale method, referred to as

Mega-Environments, has been used by CIMMYT to tar-

get breeding since the 1990s (Cairns et al., 2013; Rajaram

et al., 1994; van Ginkel et al., 2002). Though less main-

stream in the CGIAR in terms of centers and traits, TPE

and Mega-Environment work has the potential to help better-

target breeding programs across scales (see Figure 2c). Sim-

ilar TPE analysis has also been done for chickpea in India

(Hajjarpoor et al., 2018).

The first step across breeding programs should be to map

what stresses exist currently (in recent decades) to then

analyze changes in stress patterns under future climates

(Harrison et al., 2014; Lobell et al., 2015). Using TPE results

to stratify the target geographic area of the breeding program,

in combination with socio-economic (e.g. farmer preference)

studies, breeding programs can then decide which products

are most relevant and impactful. Contrary to the private

sector (Cooper et al., 2014a; Voss-Fels et al., 2019a, 2019c),

however, to the best of our knowledge, the extent to which

this is currently done in a systematic way across the CGIAR

system is very limited. Yet, taking into account the TPE

definition as part of the definition of the breeding products

will allow modelers to impact breeders, while allowing

breeders to discuss model results from the start of the

breeding process.

2.3 Design of ideotypes for future target
environments

With a clear understanding of the target stresses for breeding,

a key use of process-based crop models is to determine

which traits can maximize yield in each target environment.

When applied to a range of traits simultaneously, this then

becomes a process referred to as ideotype design (Donald,

1968; Rasmusson, 1987). Ideotypes can be developed for

current as well as for future climates via a variety of methods

ranging from iterative testing changes in model parameters

(Dingkuhn et al., 2015; Suriharn et al., 2011), optimization

to maximize mean yield and minimize yield variability

(Hammer et al., 2020; Semenov & Stratonovitch, 2013), or

by developing gene- or trait × gene-specific components into

the crop models (Hoogenboom et al., 2004; Messina et al.,

2006; White & Hoogenboom, 1996). Modeling in this case

is based on traits that have previously indicated promise

for example in boosting yield potential (Reynolds et al.,

2012), adaptation to heat stress (Cossani & Reynolds, 2012),

amongst others. Table 1 summarizes all existing studies in



8 RAMIREZ-VILLEGAS ET AL.Crop Science

T A B L E 1 Key CGIAR model-based ideotype design studies

Crop Region Model Proposed ideotype/trait change Reference
Chickpea South Asia and

East Africa

CROPGRO

(DSSAT)

– Increased maximum leaf photosynthesis

rate, partitioning of daily growth to

pods and seed-filling duration.

– Drought and heat tolerance: greater

rooting density, water extraction

capacity, and lower sensitivity for

seed-set, individual seed growth, and

partitioning (depending on location)

Singh et al. (2014)

Peanut India CROPGRO

(DSSAT)

Longer maturity Singh et al. (2012)

Peanut India and West

Africa

CROPGRO

(DSSAT)

– Increased crop maturity, leaf

photosynthesis, partitioning to seeds,

and seed filling duration

– Greater heat and drought (root traits)

tolerance

Singh et al. (2014)

Peanut India GLAM Increasing maximum photosynthetic rates,

total assimilate partitioned to seeds,

and, where enough soil moisture is

available, also maximum transpiration

rates

Ramirez-Villegas

and Challinor

(2016)

Lentil East Africa SSM – Shorter cycle of lentil

– Limited transpiration rates under high

vapor pressure deficit

Ghanem et al. (2015)

Lentil South Asia SSM – Shorter cycle of lentil

– Limited transpiration rates under high

vapor pressure deficit

Guiguitant et al.

(2017)

Sorghum India and West

Africa

CERES-Sorghum – Increased crop maturity, radiation use

efficiency, relative leaf size and

partitioning of assimilates to the

panicle.

– Greater heat (lower sensitivity of

reproductive processes) and drought

(root traits) tolerance

Singh et al. (2014)

Sorghum India APSIM Limited transpiration rates under high

vapor pressure deficit, especially

combined with enhanced water

extraction capacity at the root level.

Smaller canopy size, later plant vigor or

increased leaf appearance rate.

Kholová et al. (2014)

Pearl millet India and West

Africa

CERES-Pearl millet – Increased crop duration and yield

potential traits (photosynthesis,

partitioning)

– Drought and heat tolerance in arid and

semi-arid hot tropical climates.

Singh et al. (2017)

Rice Africa ORYZA2000 Greater crop duration and increased

maximum photosynthetic rate at high

temperatures

van Oort and Zwart

(2018)

Rice South Asia ORYZA2000 Deeper roots (from 45 to 50 cm) to reduce

plant sensitivity to drought. Drought

onset occurs 3 weeks after

transplanting.

Mottaleb et al.

(2017)

Rice Philippines ORYZA2000 Greater duration and tolerance to extreme

temperatures

Li and Wassman

(2010)
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which models have been used to design ideotypes within the

CGIAR; that is, conducted by CGIAR scientists on CGIAR

mandate crops and geographic areas.

The 12 studies listed in Table 1, published in a span of

9 years, indicate that CGIAR Centers are very active in this

area of work. The list, while not extensive in terms of crops

or countries (i.e. covers five crops across five countries),

offers valuable insights as to the methods used and the poten-

tial value of these analyses for breeding programs. Foremost,

we note that all studies use systematic parameter modifi-

cations to create ideotypes, which suggests opportunities to

explore optimization methods as well as more direct gene-to-

phenotype modeling (e.g. van Eeuwijk et al., 2019). Addition-

ally, the similarity in the ideotypes proposed for different stud-

ies (e.g. chickpea, sorghum and groundnut) suggests the need

for refinement in the traits assessed through discussion with

crop improvement teams, or through the use of more detailed

eco-physiological models (Dingkuhn et al., 2016; Rebolledo

et al., 2015). Such similarity could also suggest that the mod-

els may fail to capture cropping system dynamics realisti-

cally when subjected to these parameter modifications. Fur-

thermore, little connection is seen in most studies between the

parameter variations proposed and existing ideotypes for these

crops, except for the study of Mottaleb et al. (2017). Addi-

tionally, there is a need to ensure that parameter modifica-

tions, especially when several traits are simulated simultane-

ously, are done within realistic biological bounds (Koornneef

& Stam, 2001).

Finally, we note that moving from a set of prescribed

changes in model parameter values (as reported in the stud-

ies listed in Table 1) to a range of phenotypic screens that

can be feasibly measured and selected for in breeding trials is

not a trivial process. Most notably, it requires delivering infor-

mation on (i) the available genetic diversity, (ii) heritability,

and (iii) high-throughput phenotyping methods for the trait in

question. Future research within and outside the CGIAR will

need to capitalize on existing well-calibrated models, results

from environmental characterization, methods to connect eco-

physiological models with genetic data (see Sect. 2.4), in bet-

ter connection with existing ideotypes and crop improvement

teams and their knowledge, needs and priorities.

2.4 Assisting varietal selection through
linking crop models and genetic information

A more recent area of work aims at directly linking crop model

and genetic information with the aim of addressing two differ-

ent, but related, questions (i) what is the phenotypic response

of a set of genotypes for which the genetics are known, but on

which no phenotyping has been conducted?; and (ii) what is

the phenotypic response of a set of genotypes (with known

genetics) in a location where environmental (soil, climate)

characteristics are known, but no phenotyping has been con-

ducted? As the methods to be used may depend on the crop

and geographic areas of interest (e.g. due to differences in data

availability, targets, and breeding methods), several poten-

tial avenues need to be explored to address these questions

(Asseng et al., 2019a). These are discussed below.

2.4.1 Link environmental information into
genomic selection models

Genomic selection (GS) that leverages genome-wide molec-

ular marker information to select individuals based on their

predicted genetic merit (Meuwissen et al., 2001) is a promis-

ing tool for accelerating crop genetic gains in the face of cli-

mate change. In a recent paper, Zhang et al. (2017) reported

genetic gains of 0.225 ton ha−1 per cycle (or 0.100 ton ha−1

year−1) from rapid cycling genomic selection for four recom-

bination cycles in a multi-parental CIMMYT tropical maize

population (Figure 3). However, in spite of these early find-

ings and the fact that GS has revolutionized animal breeding

by increasing the accuracy of selections and reducing cycle

time and cost (Hayes et al., 2013; Hickey et al., 2017), its

implementation in CGIAR crop breeding programs is still

limited (focusing primarily on the major cereals), in part due

to costs associated with routine evaluation and relatively low

prediction accuracy due to G × E.

CGIAR has done extensive research to evaluate the

genomic predictabilities of several traits including phenol-

ogy, grain yield and its components, disease resistance, qual-

ity and micronutrients (Crossa et al., 2016a; Grenier et al.,

2015; Juliana et al., 2017a; Juliana et al., 2018; Sukumaran

et al., 2018). The accuracy of forward predictions for grain

yield (using a previous nursery/year to predict the next nurs-

ery/year) is, however, low and highly influenced by the

environment (Juliana et al., 2018), thereby highlighting the

importance of incorporating environmental data in genomic

prediction models for grain yield (Bhandari et al., 2019; van

Eeuwijk et al., 2019). Several novel methods and statistical

models for modeling genomic relationships, pedigree rela-

tionships, environmental data and genomic × environment

(Gi × E) interactions have been developed and evaluated in

the CGIAR. These methods (see Table 2) vary in the type

of information they use as input, the way they assess Gi ×
E interactions, and their prediction purpose and accuracy.

Notably, studies comparing the predictive abilities of some

of these approaches have also been conducted (Juliana et al.,

2017b; Montesinos-López et al., 2018a; Pérez-Rodríguez

et al., 2012).

While GS models are promising tools to accelerate breed-

ing gains, further research is needed to understand how they

fit in different stages of the breeding cycle, their comparative

advantage over conventional breeding, their integration with
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F I G U R E 3 Response to rapid GS cycling for grain yield from the rapid cycling recombination genomic selection for four cycles (C1, C2, C3,

and C4). Colored dots indicate means of the checks (red) and of the entries (blue). Figure taken from Zhang et al. (2017)

rapid cycling technologies such as speed breeding (Voss-Fels

et al., 2019b), and the type of approach used to integrate crop

and genomic models (Messina et al., 2018; van Eeuwijk et al.,

2019; Voss-Fels et al., 2019a). Experience for hybrid maize

breeding in the private sector, however, offers evidence of the

potential of GS for enhancing breeding gains (Cooper et al.,

2014b, 2020).

2.4.2 Models that capture trait-trait
relationships

Crop models aimed at capturing trait-trait relationships,

developed with sufficient simplicity to be understandable, yet

with enough mechanistic detail to be robust, can also help crop

improvement teams in the selection process. CGIAR involve-

ment and leadership in this area is very limited. These mod-

els can be useful in situations where a trait is too difficult to

screen but is clearly predictable on the basis of other, more

easily measurable, traits. Fundamental changes in the struc-

ture of current crop models would, however, be required for

this approach to be implemented. That is, models should be

sufficiently generic to be applicable across genotypes with

limited or no calibration requirements (Holzworth et al., 2014;

Kholová et al., 2014; Soltani & Sinclair, 2012). More flexibil-

ity in the types of model inputs may also be required when

dynamic changes in certain plant traits are used as predic-

tors. For instance, prediction modeling for genotype values

can use correlated physiological traits measured using high-

throughput phenotyping (HTP) platforms. This, in turn, facil-

itates indirect selection for grain yield in early-generations.

Integration of HTP data for canopy reflectance and vegetation

indices in genomic and pedigree-relationship based prediction

models has proven to increase prediction accuracies in several

studies (Juliana et al., 2019; Rutkoski et al., 2016; Sun et al.,

2017, 2019).

2.4.3 Gene-based crop simulation models

Another way to couple crop models and genetic data is to

develop models or model components that, from the start,

use genetic and environmental information and are based on

empirical relationships from available agronomic trial and

marker data. This can be achieved through a highly dynamic

approach (Hwang et al., 2017), at the expense of increas-

ing uncertainty, or through prediction of crop state variables

at coarser time scales, at the expense of mechanistic detail.

Dynamic approaches that link genetic information with crop

simulation models have proved successful for crop devel-

opment variables (i.e. phenology) (White & Hoogenboom,

1996; White et al., 2008; Yin et al., 2004) as well as for

more complex traits (Bertin et al., 2010; Chenu et al., 2009).

The current level of direct engagement and leadership by the

CGIAR in this line of work is very limited, likely due to a com-

bination of CGIAR center-specific focus, funding sources for

modelers, and limited uptake and applicability of these mod-

els in CGIAR breeding programs.

2.5 Optimization of breeding methods
through genetic modeling and simulation

In addition to modeling of cropping systems and trait-specific

responses, simulation work also extends to the design of

breeding pipelines. While not directly related to crop model-

ing, we include this area of work in our review as constitutes
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T A B L E 2 List of statistical approaches that incorporate environmental information into genomic prediction models

Method description Reference(s)
i Prediction model integrating pedigree based additive genetic covariances

between relatives and G × E interactions

Crossa et al. (2006)

ii Multi-environment prediction framework for modeling G × E interactions

using pedigree and genomic information

Burgueño, de los Campos, Weigel,

and Crossa (2012)

iii Reaction norm model for incorporating the main and interaction effects of

high-dimensional markers and environmental covariates

Jarquín et al. (2014)

iv Threshold models incorporating Gi × E and additive × additive ×
environment (G × G × E) interactions for predicting ordinal categorical

traits

Montesinos-López et al. (2015)

v Bayesian mixed-negative binomial genomic regression model for count data

that integrates G × E interactions

Montesinos-López et al. (2016)

vi Marker × environment interaction (Mk × E) genomic model for predicting

non-phenotyped individuals and identifying genomic regions associated

with yield stability and environmental specificity

Crossa et al. (2016)

vii Models integrating genomic, pedigree and environmental covariates for

predicting grain yield in different agro-ecological zones

Saint Pierre et al. (2016)

viii G × E interaction kernel regression models using nonlinear Gaussian kernels

for modelling marker main effects and marker-specific interaction effects

Cuevas et al. (2017)

ix Single-step approach incorporating genomic, pedigree and G × E interaction

information for predicting wheat lines in South Asia

Pérez-Rodríguez et al. (2017)

x Pedigree-based reaction norm model incorporating G × E interactions for

multi-environment trial data

Sukumaran, Crossa, Jarquín, and

Reynolds (2017),

xi Bayesian approach and a recommender systems approach for predicting

multiple traits evaluated in multiple environments

Montesinos-López et al. (2016,

2018b)

xii G × E interaction model in durum wheat evaluated using three

cross-validation (CV) schemes for predicting incomplete field trials (CV2),

new lines (CV1), and lines in untested environments (CV0)

Roorkiwal et al. (2018);

Sukumaran et al. (2018)

part of the simulation tools available to crop improvement

teams. These computer tools are capable of simulating the

performance of a breeding strategy. For instance, QuLine,

can simulate the selection of inbred lines, which means most

major food cereals in the world, plus basically all leguminous

crops (Wang & Pfeiffer, 2007; Wang et al., 2003, 2005).

QuLine has been used to compare and optimize conventional

selection strategies (Li et al., 2013b; Wang et al., 2003, 2009),

to predict cross performance using known gene information

(Wang et al., 2005), and optimize marker assisted selection

to pyramid multiple genes (Wang et al., 2007).

3 LIMITATIONS OF EXISTING
APPROACHES AND FUTURE WORK

The use of crop models to accelerate breeding under chang-

ing climates is a complex and rapidly evolving area of work,

especially with regard to linking crop models and genetic data.

At the same time, with the availability and affordability of

high throughput phenotyping and genotyping technologies,

most breeding programs are undergoing major transforma-

tions in the way they operate, most notably through the incor-

poration of genomic selection and modeling. The CGIAR

is no exception to these transformations, as shown by the

establishment of the Excellence in Breeding Platform and the

Crops to End Hunger Initiative1, and the existing research

on genomic selection (Sect. 2.4.1). Under these initiatives,

breeding programs are expected to become more focused and

impactful, with clearly set product profiles that clearly out-

line geographic, farmer and consumer, as well as trait prior-

ities. Hence, it is in the context of these transformations that

crop modeling needs to operate, in an effective, flexible and

agile way, to provide crop improvement teams with tools and

information that can help them make informed decisions.

An emerging result from the review of Sect. 2 is that there

is no common protocol or approach in the CGIAR to inform

breeding programs. This is in part due to the diversity of meth-

ods and approaches used, but also due to the lack of collabora-

tion platforms for crop modelers, as well as between modelers

1 The CGIAR Crops to End Hunger Initiative (CtEH Initiative) seeks to

improve and modernize CGIAR crop breeding programs, moving toward

using improved breeding approaches. See document of the 8th CGIAR

System Council meeting here https://storage.googleapis.com/cgiarorg/2019/

04/SC8-08-CtEH-Module.pdf.

https://storage.googleapis.com/cgiarorg/2019/04/SC8-08-CtEH-Module.pdf
https://storage.googleapis.com/cgiarorg/2019/04/SC8-08-CtEH-Module.pdf
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and crop improvement teams. In addition, varying degrees

of leadership by the CGIAR and coordination between

CGIAR Centers also exists with respect to the integration of

modeling into breeding programs. As a result, crop modeling

activities have little perceived and actual impact on breeding

decisions and the breeding process itself. We highlight four

suggestions for targeted joint work across the modeling and

breeding communities.

(i) Actively take part in the transformation of the breed-
ing programs. Many CGIAR modeling studies, espe-

cially those focused on ideotype design, fail to capture

the range of traits relevant in crop improvement, the

range of model outputs and spatial and temporal scales

that would be useful to them, and the parts of the breed-

ing process that need to be informed (see Sect. 2.3).

As breeding programs become more modern (Voss-Fels

et al., 2019c), crop modelers need to be an active part

of crop improvement, ensuring crop improvement teams

are truly multidisciplinary, including crop physiology

and modeling, quantitative genetics, genomic prediction

and breeding. Given its potential to enhance breeding

gains (Messina et al., 2018; Voss-Fels et al., 2019a), a

critical part of this endeavor will be the integration of

crop modeling with genomic selection (Sect. 2.4.1), and

the use of crop models to map and stratify stress varia-

tion and response in the target breeding area (Sect. 2.2).

As has been demonstrated by some private sector breed-

ing programs (e.g. Cooper et al. 2014), if these tools are

integrated to enable the definition and implementation of

breeding products, the impact of the breeding programs

can be maximized.

(ii) Move towards simpler models that ably simulate key
traits and their responses across environments and
management conditions. In the last decade, most model

improvements have been relatively slow (compared to

the rate of knowledge generation), limited by data

availability, typically incremental (i.e. without thinking

out of the box), and focused on a small range of crops

(Challinor et al., 2014; Maiorano et al., 2017). At the

same time, because crop models are increasingly being

used beyond their original design purposes, they have

also tended to become overly complex. Furthermore,

as summarized by Rötter et al. (2011) and Challinor

et al. (2018), major limitations exist in process-based

crop models regarding the processes they consider, the

accuracy and precision with which they do so, and the

true significance of their parameters. New models need

to be designed that specifically incorporate those traits

that are of importance to CGIAR breeding programs and

crops, as well as their response to key stresses and their

interactions, considering the proper balance between

parsimony, and biological relevance (Hammer et al.,

2019). Leapfrog changes in crop modeling frameworks,

such as those proposed by Droutsas et al. (2019) and

Soltani and Sinclair (2011, 2012), offer promise in

creating models that can be more effectively and rapidly

improved to support the breeding process (e.g. by adding

new processes and/or traits, or by connecting them with

genetic or phenotypic data) (e.g. Messina et al., 2015).

A documented portfolio of models will allow selection

of best-bet models on a case-by-case basis.

(iii) Modernize data storage and interoperability. Collab-

oration across researchers in crop modeling in global

or regional projects, including the Agricultural Model

Inter-comparison Project (AgMIP), has helped the crop

modeling community to identify high-value datasets

(Asseng et al., 2015; Raymundo et al., 2018), result-

ing in improved models with greater applicability for

breeding under future climates, for example for heat

stress response on wheat (Asseng et al., 2013, 2014,

2019b), or CO2 response on maize (Durand et al., 2018).

As breeding programs become more data-driven (e.g.

through the application of genomic selection), joint

efforts between the modeling and breeding communi-

ties will help develop and deploy common standards

and inter-connected data storage, translation, transfer,

and use platforms that enable the seamless integration

of crop modeling into breeding methods.

(iv) Fully take advantage of phenotyping and breeding
data for modeling key traits. Lack of appropriate docu-

mentation and benchmarking and extensive model eval-

uation across target breeding environments implies that

the range of model capabilities is generally poorly under-

stood within the modeling community itself (Challinor

et al., 2018; Ramirez-Villegas et al., 2015), and even less

so by the breeding community. Testing models against

experimental data will generate closer links between

crop model parameter sets and specific crop varieties,

and enable faster and more targeted model development

and improvement.

4 CONCLUSIONS

We have reviewed the use of crop models in support of

accelerated breeding, with a particular focus on the CGIAR.

Crop modeling can support breeding efforts in many ways,

including assessing genotypic adaptability and stability,

characterizing and identifying target breeding environments,

identifying traits and/or eco-physiological characteristics

that maximize yield for such environments, and making

predictions about the breeding value of the genotypes.

Crop modeling science, especially within the CGIAR, has

contributed to all of these, with clear strengths around knowl-

edge generation on eco-physiology, the translation of such



RAMIREZ-VILLEGAS ET AL. 13Crop Science

knowledge into crop model development and evaluation, and

the assessment of G × E × M interactions. However, much

progress remains to be made if crop modeling is to effectively

contribute to the accelerated breeding rates required to adapt

to climate change (see Sect. 1.2).

In a decade in which major CGIAR system breeding pro-

gram transformations are expected, crop modelers will need

to be part of crop improvement teams, with a common under-

standing of breeding pipelines and model capabilities and lim-

itations, and common data and protocols, ensuring they follow

and deliver according to common and clearly defined breed-

ing products. Doing so will imply more rapid and better tar-

geted crop model improvement activities, and ‘thinking out of

the model box’ to create novel approaches that capitalize on

the availability of genetic data, thus ultimately allowing the

use of the knowledge embedded in current models to effec-

tively address breeding program questions. Standard tests of

crop model skill, whilst requiring perhaps a little courage on

the part of modelers, will ultimately be of great service to the

modelling and breeding communities, as well as those who

use the results of their work.
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