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satellite 30-m time-series big-data using random forest machine learning
algorithms on the Google Earth Engine cloud
Murali Krishna Gumma a, Prasad S. Thenkabail b, Pardhasaradhi G. Teluguntla b,c, Adam Oliphant b,
Jun Xiong b, Chandra Giri b, Vineetha Pyla d, Sreenath Dixit a and Anthony M Whitbread a

aRS/GIS Lab, Innovation Systems for the Drylands, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502
324, India; bWestern Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, AZ, USA; cBay Area Environmental Research Institute
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ABSTRACT
The South Asia (India, Pakistan, Bangladesh, Nepal, Sri Lanka and Bhutan) has a staggering 900million
people (~43% of the population) who face food insecurity or severe food insecurity as per United
Nations, Food and Agriculture Organization’s (FAO) the Food Insecurity Experience Scale (FIES). The
existing coarse-resolution (≥250-m) cropland maps lack precision in geo-location of individual farms
and have lowmap accuracies. This also results in uncertainties in cropland areas calculated from such
products. Thereby, the overarching goal of this study was to develop a high spatial resolution (30-m
or better) baseline cropland extent product of South Asia for the year 2015 using Landsat satellite
time-series big-data andmachine learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud
computing platform. To eliminate the impact of clouds, 10 time-composited Landsat bands (blue,
green, red, NIR, SWIR1, SWIR2, Thermal, EVI, NDVI, NDWI) were derived for each of the three time-
periods over 12 months (monsoon: Days of the Year (DOY) 151–300; winter: DOY 301–365 plus 1–60;
and summer: DOY 61–150), taking the every 8-day data from Landsat-8 and 7 for the years
2013–2015, for a total of 30-bands plus global digital elevation model (GDEM) derived slope band.
This 31-band mega-file big data-cube was composed for each of the five agro-ecological zones
(AEZ’s) of South Asia and formed a baseline data for image classification and analysis. Knowledge-
base for the Random Forest (RF) MLAs were developed using spatially well spread-out reference
training data (N = 2179) in five AEZs. The classification was performed onGEE for each of the five AEZs
using well-established knowledge-base and RF MLAs on the cloud. Map accuracies were measured
using independent validation data (N = 1185). The survey showed that the South Asia cropland
product had a producer’s accuracy of 89.9% (errors of omissions of 10.1%), user’s accuracy of 95.3%
(errors of commission of 4.7%) and an overall accuracy of 88.7%. The National and sub-national
(districts) areas computed from this cropland extent product explained 80-96% variability when
comparedwith the National statistics of the South Asian Countries. The full-resolution imagery can be
viewed at full-resolution, by zooming-in to any location in South Asia or the world, at www.croplands.
org and the cropland products of South Asia downloaded from The Land Processes Distributed Active
Archive Center (LP DAAC) of National Aeronautics and Space Administration (NASA) and the United
States Geological Survey (USGS): https://lpdaac.usgs.gov/products/gfsad30saafgircev001/.
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1. Introduction

Up-to-date spatial distribution of cropland maps that are
precise, accurate, and at high-spatial resolution (30-m or
better) is of great importance for sustainable agriculture
production and food security (Teluguntla et al. 2015;
Thenkabail et al. 2012). However, cropland areas are
changing rapidly over time across South Asia due to
climate variability, rural migration to urban areas, indus-
trialization, population growth, and other socio-
economic issues. Modern sustainable agriculture and
sustained rural development are critical to eradication
of poverty and improving livelihoods. Of the nearly

1.9 billion population in South Asia, about 250 million
people (~15% of the population) still live under the
international poverty line of $1.90 purchasing power
parity (PPP) and a staggering about 900 million (~48%
of the population) in lower middle income class value of
US$3.20 PPP (WorldBank 2018)

Agriculture is still the main livelihood of most South
Asian population and much of this is small-holder domi-
nant. For example, in India, 80% of farmers have less
than 2 Ha and in Pakistan, 58% of farmers have less than
2 Ha. In Bangladesh and Nepal, over 90% of farmers have
less than 1 Ha. In Bhutan, the average farm size is slightly
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over 1 Ha and women own about 70% of total agricul-
tural land. South Asia has one of the largest cropland
areas of the world, both in terms of the net cropland area
as well as the gross cropland area (Teluguntla et al. 2015;
Thenkabail et al. 2012). Both irrigation and rainfed agri-
culture are prominent in South Asia and comprise 35%
and 65% of the total cropland area, respectively; South
Asia also has one of the highest irrigated areas of the
world (Thenkabail et al. 2009b).

The population of the region is projected to grow faster
than its ability to produce sufficient food to meet demand,
especially rice and wheat which are the two major staple
crops (Papademetriou 2000). Subsequently, this could
make South Asia food insecure in the coming decades. To
evaluate and monitor this situation, high-resolution (30-m
or better) cropland maps with accurate spatial distribution
are required for all higher-level products (e.g. crop type
mapping, crop productivity, and crop water productivity
modeling and mapping, biomass and yield assessments).
This will provide critical information to planners, decision-
makers, and scientists onwhere exactly crops are cultivated
and the dynamics affecting them over space and time.
High-resolution cropland maps are capable of analyzing
and interpreting precise and accurate assessments of agri-
cultural water use and irrigation systems. This is extremely
important because about 80% of all human water use
currently goes toward producing food. Furthermore, crop-
land extentmaps at high-resolution help establish cropland
area statistics at individual farm level to various adminis-
trative units. Overall, the importance of a detailed high-
resolution cropland extentmaps in food andwater security
studies cannot be over-emphasized (Thenkabail et al. 2010;
Teluguntla et al. 2015; Waldner et al. 2015, 2016).

In South Asia there has been large disagreement
between available cropland map products (Fritz and See
2008; Giri, Zhu, and Reed 2005; Herold et al. 2008; Roy et al.
2015) with cropland area as well as geo-precision of crop-
land location (Dheeravath et al. 2010; Gumma et al. 2011a,
2016; Teluguntla et al. 2015; Thenkabail and Wu 2012).
These differences are attributed to factors such as fragmen-
ted and heterogeneous rural landscapes (Biggs et al. 2006;
Gray et al. 2014), coarse spatial resolution of the imagery
(Thenkabail et al. 2009a), class definition issues (Teluguntla
et al. 2015), methodological issues, such as many decisions
on the most appropriate methods and thresholds used in
those methods (Gumma et al. 2014). Additional challenges
of mapping croplands in South Asia also include: (a) small
farm sizes, (b) fragmented farms (scattered agriculture), (c)
spectral similarity with grasslands and fallows in arid and
semi-arid areas (Dheeravath et al. 2010; Thenkabail, Schull,
and Turral 2005), (d) high regional variability in terms of
agricultural systems and calendars between the desert
margins and other agro-ecological zones (Roy et al. 2015),

(e) mixed cropping with multiple crops in same farm (Giri,
Zhu, and Reed 2005), and (f) mountainous terrain (i.e. Nepal
and Sri Lanka).

Time series analysis of satellite images have been used
widely for croplands monitoring (Biggs et al. 2006;
Dheeravath et al. 2010; Dong et al. 2015; Gumma et al.
2011a, 2018; Thenkabail et al. 2007a, 2009b). However,
most of these studies have been processed as standalone
products using powerful, yet, time-consuming methods
and approaches that were required to achieve the best
possible results. Several advances in semi-automation
were attempted by a number of studies mapping crop-
land extent over large areas (Pittman et al. 2010; Radoux
et al. 2014; Salmon et al. 2015; Thenkabail and Wu 2012).
These semi-automated methods also used data from
a wide array of sensors, mapping croplands at various
spatial resolutions of 250 to 10,000 m (Dheeravath et al.
2010; Gumma et al. 2011b, 2011c; Siebert et al. 2005;
Thenkabail, Schull, and Turral 2005; Vörösmarty et al.
2000). These include: semi-automated methods include
phenology-based algorithms (Xiao et al. 2006); decision
tree algorithms that were mainly based on monthly NDVI
thresholds at different crop growth stages (Defries,
Hansen, and Townshend 2000; Friedl and Brodley 1997;
Otukei and Blaschke 2010; Pal and Mather 2003); spectral
matching techniques (Teluguntla et al. 2017; Gumma et al.
2014; Thenkabail et al. 2007b) and other machine learning
algorithms (Duro, Franklin, and Dubé 2012; Lary et al.
2016). More recently, significant advances have been
made in mapping agricultural croplands using high-
spatial resolution (30-m or better) time-series imagery
over large areas such as continents using machine learn-
ing algorithms on Google Earth Engine (GEE) cloud-
computing platforms (Oliphant et al. 2019; Teluguntla
et al. 2018; Sangeeta, Gensuo, and Anzhi 2018; Xiong
et al. 2017a, 2017b; Gorelick et al. 2017).

However, all of the above studies were constrained by
the limited collection of in-field ground reference data
so crucial for 1. development of accurate and precise
knowledge-base for the machine learning algorithms, 2.
Class identification and labeling, and 3. Class validation.
This study overcomes this limitation of other studies by
gathering very rich set of in-field ground reference train-
ing and validation data covering all the South Asian
countries through several major field campaigns.
Furthermore, this study had access to sub-national sta-
tistical data from all South Asian countries which helped
validate sub-national area statistics derived from this
study. Also, there is not a single high resolution (30-m
or better) wall-to-wall seamless cropland product for
entire South Asia; existing studies are often limited to
small areas within South Asia or were conducted using
coarser resolution data.
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The overarching goal of this research was to produce
a precise and accurate cropland extent product of entire
South Asia (Figure 1) using Landsat 30-m data with machine
learning algorithms (MLAs) on the GEE cloud computing
platform. Random forest (RF) MLA was used because it is
an extremely effective classifier that is resistant to overfitting
(Oliphant et al. 2019; Teluguntla et al. 2018; Xiong et al.
2017a; Rodriguez-Galiano et al. 2012). Extensive training
and validation data spread across South Asia area were
derived from various field data collections from many cam-
paigns and were also sourced from sub-meter to 5 m very
high-resolution imagery (VHRI). These reference data were
used to train the RF MLAs in each of the five distinct agro-
ecological zones (AEZs) of South Asia (Figure 1). The refer-
ence validation data, sourced from ground data as well as
VHRI data, were used in developing accuracy error matrices
for each of these fiveAEZs aswell as for the entire SouthAsia.
The goal of this study is also to help determine consistent
andobjective cropland areas at the national and sub-national
level and compare these areas with the national and-sub-
national cropland records obtained from country statistics.

2. Study area

South Asia is located between 5°38′ and 36°54′ latitudes,
61°05′ and 97°14′ longitudes, with total geographical area
of 477 Mha (Figure 1). This study includes 6 countries of

South Asia (Pakistan, India, Nepal, Bhutan, Bangladesh and
Sri Lanka; Afghanistan and Maldives not included in the
study). In South Asia, 80% of poor live in rural areas and are
mostly depend on agriculture for their livelihood
(WorldBank 2015). Nine major river basins were included
in the study area: The Indus, Ganges, Brahmaputra,
Narmada, Tapti, Godavari, Krishna, Kaveri and Mahanadi.
SouthAsia is amajorworld leader in terms of the large scale
of cropland areas as well as irrigated land. There are many
major and minor irrigation projects in South Asia, covering
a total command area of 133 Mha (Thenkabail et al. 2009a).
The combination of irrigated and rainfed croplands and
a wide variability in their crop types, cropping patterns,
crop productivities, and crop dynamics make it complex
to map croplands; requiring rich reference data to cut
across these complexities over space and time. Rice and
wheat are the two major crop in this region. Rice is grown
two times a year in large parts of the region; in Bangladesh
itis grown three times a year (Gumma et al. 2014).

Agricultural practices such as planting, harvesting,
types of crops, and climate regimes vary greatly in
South Asia, from generally dry arid climate in Western
India and much of Pakistan to humid tropical climate in
Southern India and Bangladesh. South Asia has five broad
climate types: humid tropics, sub-humid tropics, semi-arid
tropics, semi-arid, subtropics and arid (HarvestChoice
2009). To account for these differences in climate and

Figure 1. Study area and AEZs of South Asia. Study area of South Asia with five FAO simplified agro-ecological zones (AEZs).
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agricultural practices we divided South Asia into five
Zones based on the FAO Agro-Ecological Zones or AEZ
(Figure 1). Each AEZ zone was classified separately with
separate training data and each zone was validated sepa-
rately with independent validation data; these will be
described in the methods section below.

3. Input data

3.1. Landsat 30-m time-series data

The input data used for cropland extent mapping over
entire South Asia consisted of Landsat 8 and 7, 30-m
time series data over 2 years (2014 and 2015) (Table 1).
Landsat 30-m data was preferred because of their high-
quality spectral calibrations and high spatial (30-m) and
temporal (8 days from two satellites) resolution. The
Landsat satellite series are launched by the NASA and
the acquired data was freely processed and distributed
by the USGS to the public globally.

After reviewing the literature and from earlier experi-
mentation, we chose 10 bands for this analysis consisting
of blue, green, red, near-infrared (NIR), SWIR1, SWIR2 and
thermal, along with vegetation indices NDVI, EVI and LSWI
for this classification (Table 1). NDVI (Normalized Difference
Vegetation Index) was used for the identification of dense
vegetation including forests. EVI (Enhanced Vegetation
Index) is an optimized vegetation index which was used
to detect the sensitive vegetation which are not clearly
detected by NDVI. NDWI (Normalized Difference Water
Index) was used for the identification of croplands.
Images used were pre-processed to Top of the
Atmosphere (TOA) by the USGS: Surface Reflectance
images were not widely available when this study was
conducted for Landsat 8 on GEE. Additionally, we decided
to use the GDEM-derived elevation, helps providing classes
which are otherwise same spectrally, into distinct classes in
random forest classifier. This is specifically useful in classify-
ing croplands in low elevation (e.g. rice in the river deltas)
as opposed to croplands or non-croplands in uplands in
higher elevations. Based on elevation, these spectrally

similar classes get classified into distinct classes which are
then identified using ground data along with other data
such as the sub-meter to 5-m data and ancillary data.

As Landsat produces optical data, there are significant
cloud issues. In order to get cloud-free pixels over entire
South Asia we composited 10 bands of Landsat (8 and 7
combined) data (Table 1) over 2 years (2014 and 2015)
and three time periods (Table 2): Period 1, (Monsoon
season: 151–300 DOY [day of year]); Period 2, (winter or
rabi season: 301–365 DOY extending to 1–60 DOY); Period
3, (summer season: 61–150 DOY). For example, there will
be 18 Landsat images over 150 days of period 1. So, for
each band (e.g. blue band) a single time-composited layer
is generated from the 18 layers of blue band. This ensures
with almost certainty there will be a single pixel from 18
dates that is cloud free. The same process is applied for
each of the 10 bands resulting in 10 time-composited
bands that are almost completely cloud free over entire
South Asia for the given period. A similar process is
applied to obtain 10 time-composited bands for Period
2 and 3, respectively, with a combined total of 30 bands
for the three Periods. These 30 Landsat-derived bands
were merged with the slope GDEM band to create a 31-
band mega-file data-cube (MGDC) (Table 2, Figure 2) for
each of the five AEZs (Figure 1). By establishing these
MFDC cloud free data stacks ensures that no erroneous
classification results due to missing data occurred in por-
tions of the image (Teluguntla et al. 2018). By overcom-
pensating data over multiple years (2014 and 2015) it
helps to overcome inter-annual variability. Since our
goal was to obtain a cropland extent product for the
nominal year 2015, we only use 2 years of data (2014
and 2015) that includes cloud-free pixels over nearly
100% of the South Asia, except for an insignificant per-
centile (<0.05%) of noisy pixels.

3.2. Reference training and validation:
introduction

Reference training and validation data (Table 3) were
gathered from two major sources:

Table 1. Characteristics of multi-temporal Landsat 8 and 7 data used in this study. Overall 10 bands of data (seven spectral bands plus
three indices) were used for every 8 days (from two satellites) over 2014 and 2015.
Band name Landsat 8 OLI Spectral range (µm) Landsat 7 ETM+ Spectral range (µm) Vegetation index (VI) Equation

Blue 0.450–0.515 0.450–0.516 EVI EVI = 2.5 (NIR-red)/(NIR+6*red-7.5*blue+1)
Green 0.525–0.600 0.525–0.601
Red 0.630–0.680 0.630–0.681 NDWI NDWI = (NIR-SWIR1)/(NIR+SWIR1)
NIR 0.845–0.885 0.845–0.886
SWIR1 1.560–1.660 1.560–1.661
SWIR2 2.100–2.300 2.100–2.301 NDVI NDVI = (NIR-red)/(NIR+red)
Thermal 10.6–11.2 10.6–11.3

NIR = near-infrared, SWIR = short-wave infrared, TIR = thermal infrared.
NDVI = normalized difference vegetation index, NDWI = normalized difference water index.
EVI = enhanced vegetation index.
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● Ground data (Figure 3 shows the distribution of
reference training data but not the validation
data) obtained through field visits; and

● Sub-meter to 5-m very high-resolution Imagery
(VHRI) data (Figure 4 shows the distribution of
reference training data and not validation data)

The reference training and validation data from ground
surveys were gathered during various field campaigns
that precisely identified latitude and longitude using geo-
graphicposition systems (GPS) systems. The reference train-
ing and validation data were also gathered from sub-meter
to 5-m very high-spatial resolution imagery (VHRI) which
come from numerous satellites such as IKONOS, Quickbird,
Geoeye, and Worldview obtained through sub-meter to
5-m imagery sourced through the National Geospatial
Agency (NGA). Both the ground data and VHRI data were
gathered from3×3pixel homogeneous locations to obtain
pure samples for training and validation. A wide array of
variability in these sampleswere compiled and categorized,
for example various crop types (e.g., whether they were
irrigated (Figure 5) or rainfed (Figure 6) or croplands as seen

in VHRI (Figure 7). Capturing a diverse set of data during
various time-periods allow us to capture the diversity of
agriculture whether they are irrigated (Figure 5) or rainfed
(Figure 6) or whether they are croplands or non-croplands
(Figure 3 through 7).

3.2.1. Reference data organization for training and
validation
Reference data is obtained from ground surveys as well
as sub-meter to 5 m very high-resolution imagery (VHRI)
(see section 3.2 through 7). From these both sources we
obtained a total of 2179 reference training samples for
training the Random Forest (RF) machine learning algo-
rithms (MLAs). Of the 2179 samples, 986 samples were
cropland samples and the remaining 1193 samples were
non-cropland samples (Table 3). The spatial distribution
of these reference samples is shown in Figures 3 and 4.
For validation (section 3.2.2) we have a total of 1185
samples of which 917 came from ground data and the
268 came from VHRI. Location of these is not shown in
Figures 3 or 4. As shown in Table 3, the number of
samples, for both training and validation, were much

Table 2. Composition of 31-band time-composited mega file data cubes (MFDCs) for each of the three periods (Period 1: Monsoon,
Period 2: Winter, and Period 3: Summer) using 2 years (2014 and 2015) for each of the five AEZs.
Region
name

Landsat
image series

Years
of data

Julian days over data are
time-composited Bands useda for each composited period

Total # of bands used in mega-
file data cube

Data provi-
der name

South
Asia

Landsat-8
and 7

2014,
2015

Period 1, Monsoon season:
151–300 days;

Period 2, winter or rabi
season: 301–365, 1–60

Period 3, summer season:
61–150 DOY

blue, green, red, NIR, SWIR-1, SWIR-2, TIR1,
NDVI, EVI and NDWI (n = 10)

31 (10 bandsa 3 periods) + slope
derived from GDEM)

USGS and
NASA

aNIR = near-infrared, SWIR = short-wave infrared, TIR = thermal infrared.
NDVI = normalized difference vegetation index, NDWI = normalized difference water index.
EVI = enhanced vegetation index.

Figure 2. Illustration of the composited data cube for each of the five AEZs. The 30-m Data-cube for South Asia composited three time-
periods using 2013–2015 Landsat-8 Operational Land Imager (OLI) data. For each period (e.g. Period 1, Monsoon season: Julian days
151–300 of a year; Period 2, winter or rabi season: 301–365 days of a years plus 1 to 90 days of next year; Period 3, summer season:
Julian days 91–150 days), 10 bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, EVI, NDVI, NDWI) per period plus slope band were
composited and a median value was calculated for a given pixel over the period. From the three periods, there was a 31-band mega-
file data cube in GEE image collection.
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higher in Semi-arid, sub-humid, and humid zones
because they, together, cover 98% of all cropland areas
of South Asia. The arid (Table 3) have only about 2% of
the cropland areas of south Asia and hence have pro-
portionally much lower training and validation samples.

3.2.2. Validation data
The total number of reference training and validation
data were 3364 samples (2179 for training and 1185 for
validation; Table 3). So a total of 35% of the samples were
reserved for validation. Validation was conducted sepa-
rately for each of the five AEZs (Figure 1). Validation
involved developing error matrices that provide, for
each of the five AEZs as well as for the entire area overall
accuracies, errors of omissions, and errors of commissions.
The entire sample training and validation dataset used is
made available at the following website: https://crop
lands.org/app/data/search.

4. Methods

An overview of the proposed methods and approaches
is shown in Figure 8. The analysis starts with an imagery
stack or mega file data cube (MFDC) as shown below in
Figure 2. Such MFDC’s were composed for each of the
five agro-ecological zones (AEZ’s) of South Asia (Figure
1). The 31 band MFDC (Figure 2) were generated sepa-
rately for each of the five AEZs. A custom cloud detect-
ing script which was available to us from our team
member (Oliphant et al. 2017a; 2017b) was used to run
within GEE to mask out cloud pixels. The novel script ran
faster and masked out more cloud impacted pixels effi-
ciently than Fmask (Housman et al. 2015; Zhu et al.
2015). All the image processing steps and big-data com-
puting for large AEZ areas were performed on the
Google Earth Engine (GEE) cloud computing platform
to enable seamless and fast work.

4.1. Random forest (RF) machine learning
algorithm

Using GEE, a pixel-based supervised random forest (RF)
machine learning algorithm was used for classification
using data cubes (e.g. Figure 2) for each of the five AEZs
(Figure 1). Random forest classifiers applied to Landsat
imagery in GEE have successfully mapped a variety of
vegetation including plantations such as oil palms (Lee
et al. 2016) and rubber (Beckschäfer 2017). The RF classifier
is a relatively fast, nonlinear classifier that is robust to noisy
data (Rodriguez-Galiano et al. 2012). It uses multiple deci-
sion trees to assign classification labels and to reduce
overfitting, furthermore, each tree is created from
a subsection of training data.Ta
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Figure 3. Reference training and validation data with illustrative ground data photographic samples of croplands versus non-croplands are
shown in this figure. Location of the reference data collected by ground survey as well as sub-meter to 5 m very high-resolution imagery
(VHRI) are shown on the map. Illustration of photographs taken during field visits of croplands versus non-croplands are also shown.

Figure 4. Reference training and validation data with sub-meter to 5-m VHRI illustrative samples of croplands versus non-croplands are
shown in this figure. Location of the reference data collected by ground survey as well as sub-meter to 5 m very high-resolution
imagery (VHRI) are shown on the map. Illustration of VHRI snapshots of croplands versus non-croplands are also shown.
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Since the RF classification is a pixel-based supervised
classifier, accurate cloud-free reference data ware
needed with a high-quality input raster. The classifica-
tion of South Asia requires large reference data because
of variability in spectral signatures of varied land use/

land cover (LULC) within this large geographical area. In
this regard, RF classification for each of the five AEZ
produced far better results than classifying the whole
area, an iterative approach was used to add and remove
training samples, based on classification results, to

Figure 5. Illustrative ground-level photos of reference training and validation data samples for some irrigated areas.

Figure 6. Illustrative ground-level photos of reference training and validation data samples for some rainfed areas.
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improve the map classification and each map was
visually assessed to see how well the classified map
correlated with observed cropland in the landscape as
seen in the sub-meter to 5-m VHRI (Oliphant et al. 2014)
primarily using WorldView-3 data. The RF MLA was
mainly used to generate cropland and non-cropland
classes in five AEZs.

The sample size constantly increases with increasing
iterations in RF classifier to map better classification in
complex AEZs. The following steps (Figure 8) were con-
sidered invaluable:

(1) Start with the best set of training samples for the
RF classifier representing any one AEZ;

(2) Extract the band values of the 31-band mosaic
(e.g. Figure 2) of pixels that are in the training
dataset to build an RF classification model knowl-
edge-base (Figure 9) for each of the five AEZ’s
(Figure 1);

(3) Use above knowledge-based (Figure 9) in RF clas-
sifier to classify the 30 m, 31-band MFDC data
stack (Figure 2);

(4) Visually interpret the classification results with
independent ground data (not used in the classi-
fication or reserved for validation), existing refer-
ence maps from various sources (Teluguntla et al.
2015) as well as sub-meter to 5-m very high-
spatial resolution imagery (VHRI);

(5) If any misclassification, reclassify using addi-
tional or refined training samples with
improved knowledge-base until the desired
results of separating all or nearly all croplands
from non-croplands are achieved. This is
visually checked in detail using reference
maps, sub-meter to 5-m VHRI;

(6) Develop accuracy error matrices for AEZ and
repeat the above steps until desired high levels
of classification accuracies are achieved; and

(7) Repeat the above steps for other AEZ’s (Figure 1)
completing the classification of the entire South
Asia.

The number of iterations required to achieve better
classification correlates to the complexity of the area as
well as the quality of input datasets.

Based on prior experimentation and referencing
works that systematically analyzed classification para-
meters (Heydari and Mountrakis 2018; Breiman 2001)
we selected the following parameters for the random
forest classification. 500 classification trees were cho-
sen as it produced better classifications than fewer
trees and had a reasonable processing time (≈1 h per
zone). The default parameters were chosen for vari-
ables Per Split: √(n_bands), minLeafPopulation: 1, and
bag Fraction: 0.5. All computations were performed
on GEE cloud.

Figure 7. Illustrative reference sample selection from cropland versus non-cropland locations using sub-meter to 5-m very high-
resolution imagery (VHRI).
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4.2. Cloud computing on Google Earth Engine

Due to large area classification, the size of the Landsat data
is very high (running into peta-bytes when time-series is
involved). It is very hard to process the data in regular
systems, so we performed using Google Earth Engine
cloud computing platform for image processing. GEE has
the entire Landsat archive along with many openly avail-
able raster datasets from NASA, European Space Agency
(ESA), and other imagery which allows code to be brought
to data; complex multi-temporal continental scale data can
be analyzed using relatively simple JavaScript or Python
code and also can be shared and replicated by other
researchers, lowering the barriers to utilizing super compu-
ters to perform geospatial analysis (Gorelick et al. 2017).

In this study, we used the GEE cloud-based supercom-
puting platform to integratemany capabilities that include:

(1) Seamless Landsat image collection from 2014–2015
for the entire South Asia (Figure 2, Section 3.1);

(2) Ability to write scripts in Python and JavaScript to
process the petabyte scale data processing over
very large areas such as South Asia within minutes
using the GEE platform (Gorelick et al. 2017);

(3) Machine learning algorithms (Section 4.1)
(4) Ability for powerful and fast parallel computing

linking 1000s of computers on the GEE cloud
(Gorelick et al. 2017).

The entire classification process was performed in GEE
using the above process. First, codes were executed on GEE
to create cloud-free image composites. After creating the
composites (Figure 2), the extracted training data’s median
pixel values were used as the knowledge-basis (Figure 9) for
the pixel-based supervised RF MLA (Section 4.1) classification
of eachof theAEZ’s of SouthAsia (Figure 1). After classification,
the results were viewed within GEE, and the accuracy of
classification was tested using reference data (e.g. indepen-
dent field data from ground, data from collaborators, other
available maps, and sub-meter to 5-m very high-resolution
imagery or VHRI; Section 3.2), This process was iterated using
additional training data until optimal classification results of
croplands versus non-croplands were achieved.

The knowledge-base data (Figure 9) for the RF algo-
rithm (Section 4.1) was calculated by overlaying reference
training data (e.g. Table 3) on themega file data cube (e.g.
Figure 2). Next, the values were plotted in a box and

Figure 8. Methodology for mapping 30-m cropland extent. Pixel-based Random Forest (RF) machine learning algorithm for mapping
cropland extent using Landsat 30-m data.
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whisker plot in Figure 9 shows time-composited bands,
one plot for each time-period (Table 2) and for three time
periods (Monsoon, Summer, Winter), there are three time-
composited bands. For example, bands 1 to 3 have three
NDVI time-composted bands representing monsoon
(DOY 151–300), summer (DOY 301–365 and DOY 1–60)
and winter (DOY 61–150). Similarly, there are three EVI’s
bands for the same time-periods and so on. Overall, the
31 band MFDC (Figure 2) is stacked separately for each of
the five AEZ.

The above approach of knowledge-generation, based
RF algorithms is performed for each of the five agro-
ecological zones (AEZs) of South Asia (Figure 1) and
classified images into croplands versus non-croplands.

4.3. Classification post-processing

Once the final product of cropland versus non-
croplands is achieved, post-processing is performed
to sieve out “salt and pepper” noise that is inherent
in any pixel-based classification product. A 3 × 3
median value kernel smoothing algorithm was used
to sieve out noisy pixels and group non-contiguous
pixels into contiguous pixels. However, fine features
like roads and waterbodies will provide greater clarity
to the product and hence were overlaid back on the

final product (Figure 10) using data from secondary
sources. However, these features (roads, waterbodies)
are part of non-croplands and hence are treated as
such in accuracy assessments (Table 4).

4.4. Accuracy assessment

Accuracy assessment of the classification image was
performed using validation data (Section 3.3, Table 3).
Table 3 shows the distribution of the cropland versus
non-cropland validation samples. These data are inde-
pendent of the reference training data and reserved
for validation purpose only and not used either in
class classification or class identification. Accuracies
were conducted using error matrices (Congalton and
Kass 2008; Congalton et al. 2017) and established for
each of the five AEZ’s (Figure 1) as well as for the
entire South Asia. Overall accuracies, producer’s
accuracies (or errors of omissions) and user’s accura-
cies (or errors of commissions) were established.

4.5. Area calculations

Post-processing was also performed using GEE and crop-
land areas were calculated in GEE based on the Global
Administrative Unit Layers (GAUL) database by the United

Figure 9. Knowledge generation for the random forest machine learning algorithm. Croplands versus non-croplands knowledge
capture to train random forest machine learning algorithm using Landsat OLI data cube for each of the five agro-ecological zones
(AEZs) of South Asia. Each data-cube consisted of [Band 1–3 (NDVI), band 4–6 (EVI), band 7–9 (NDWI), band 10–12 (blue), band 13–15
(green) 16–18 (red), 19–21 (NIR), 22–24 (SWIR1), 25–27 (SWIR2), 28–30 (TIR1), 31 (Slope)]. Note: TIR1 (thermal infrared band 1) values
are scaled for convenience.
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Nation’s (UN) Food and Agricultural Organization or FAO
(http://www.foodsec.org/tools_gaul.htm) country political
boundaries. Since the 30-m cropland product (Figure 10) is
of high-spatial resolution, areas are calculated at various
geographic units. In this study, we calculated areas of
countries as well as districts for entire South Asia and
compared them with the area statistics available to us
from the National statistics for these countries.

5. Results

This section summarizes the results of the Landsat
data-derived 30-m cropland extent product of all
South Asia (Figure 10). The results of accuracy assess-
ment of the 30-m cropland product are also shown in
Tables 4-6. The classified cropland versus non-
cropland (Figure 10) derived areas are provided in
Table 7. The 30-m product is compared with existing
coarser resolution products (Figure 11). The cropland

areas derived from the 30-m products were compared
with the national and sub-national crop area statistics
obtained from the national systems of the South
Asian countries (Figure 12). The product is made
available on NASA’s The Land Processes Distributed
Active Archive Center (LP DAAC): https://lpdaac.usgs.
gov/products/gfsad30saafgircev001/

5.1. Random forest classification results of
croplands versus non-croplands

Methods described in section 4.0 and its sub-sections
were applied using the pixel-based supervised ran-
dom forest (RF) machine learning algorithm to estab-
lish croplands versus non-croplands for entire South
Asia (Figure 10). This study created a 30-m seamless
cropland extent product of South Asia (Figure 10)
using 2014–2015 time-series Landsat-7 and Landsat-
8 satellite data, and supervised random forest

Figure 10. The South Asia 30-m cropland extent. The 30-m cropland extent derived using Landsat OLI data for the nominal year 2015.
Zoom-in views highlight the detail provided for the 30-m product. For detailed zoom-ins visit www.croplands.org. The data can be
downloaded from: https://lpdaac.usgs.gov/products/gfsad30saafgircev001/.
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machine learning algorithms, trained using extensive
reference cropland and non-cropland data. The
results of this product is discussed below.

5.1.1. Croplands versus non-croplands knowledge
capture
The South Asia cropland extent product is shown in
Figure 10. In Figure 10, the top-left image “zoom-in”
shows the identification of settlements among crop-
lands whereas bottom-left “zoom-in” image identified
barren land among croplands. The top-right “zoom-
in” image shows the identification of forest, waste-
lands among the croplands whereas bottom-right
“zoom-in” image identified settlements and waterbo-
dies among croplands. The product shows croplands
at a fine (1 pixel = 0.09 Ha) spatial resolution over the
entire South Asia in great detail. The product is called
the Global Food Security-support Analysis Data @ 30-
m Cropland Extent for South Asia. A user can ”zoom-
in” to any part of South Asia and view croplands
versus non-croplands at full resolution (www.crop
lands.org) and/or downloaded the product from
NASA’s LP DAAC:

https://lpdaac.usgs.gov/products/gfsad30saaf
gircev001/

In Figure 10, cropland extent is shown in bright
green and non-cropland extent is shown in gray. The
benefit of the 30-m cropland maps is more visible
when compared with existing coarse resolution crop-
land maps as shown from left to right in Figure 11:
30-m GFSAD30 (this study), 500 m GIAM (Dheeravath
et al. 2010), 250-m Global Crop Extent (Pittman et al.
2010). These are compared with the reference sub-
meter to 5-m VHRI. “Zoom-in” views of the four sub-
areas are also shown along with the sub-meter to
5-m very high-spatial resolution imagery (VHRI) data
corresponding to these “zoom-in” views for visual
comparison (Figure 10). The 30-m cropland product
provides detail and precision on where croplands are
geographically compared to the uncertainty involved

Table 4. Accuracy error matrix of the entire study area. Accuracy
assessment error matrix of the 30-m cropland extent product.
Entire South Asia reference data

Crop No-Crop Total User accuracy
Map Data Crop 824 41 865 95.3%

No-Crop 93 227 320 70.9%
Total 917 268 1,185
Producer accuracy 89.9% 84.7% 88.7%

Table 5. Error matrices of RAEZ 1, 2, 3, 4, and 5 of South Asia.
Zone 1 Reference Data

Crop No-Crop Total User Accuracy
Map Data Crop 75 6 81 92.6%

No-Crop 9 33 42 78.6%
Total 84 39 123
Producer Accuracy 89.3% 84.6% 87.8%

Zone 1: Geographic area 5.3% (total geographic area = 435.3 Mha)

Zone 1: Cropland area 0.1% (total net cropland area = 220.2 Mha)

Zone 2 Reference Data
Crop No-Crop Total User Accuracy

Map Data Crop 130 15 145 89.7%
No-Crop 12 68 80 85.0%

Total 142 83 225
Producer Accuracy 91.6% 81.9% 88.0%

Zone 2: Geographic area 22.27% (total geographic area = 435.3 Mha)

Zone 2: Cropland area 24% (total net cropland area = 220.2 Mha)

Zone 3 Reference Data
Crop No-Crop Total User Accuracy

Map Data Crop 276 6 282 97.9%
No-Crop 39 29 68 42.7%

Total 315 35 350
Producer Accuracy 87.6% 82.9% 87.1%

Zone 3: Geographic area 33.01% (total geographic area = 435.3 Mha)

Zone 3: Cropland area 45.6% (total net cropland area = 220.2 Mha)

Zone 4 Reference Data
Crop No-Crop Total User Accuracy

Map Data Crop 223 4 227 98.2%
No-Crop 15 52 67 77.6%

Total 238 56 294
Producer Accuracy 93.7% 92.9% 93.5%

Zone 4: Geographic area 27.15% (total geographic area = 435.3 Mha)

Zone 4: Cropland area 28.4% (total net cropland area = 220.2 Mha)

Zone 5 Reference Data
Crop No-Crop Total User Accuracy

Map Data Crop 120 10 130 92.3%
No-Crop 18 45 63 71.4%

Total 138 55 193
Producer Accuracy 86.9% 81.8% 85.5%

Zone 5: Geographic area 12.27% (total geographic area = 435.3 Mha)

Zone 5: Cropland area 1.9% (total net cropland area = 220.2 Mha)

Table 6. 30-m Landsat derived Cropland areas by country com-
pared with national statistics.

Country

01. This
study:

GFSAD30
Croplands
(Mha)

02. This
study:

GFSAD30
Non crop-
lands (Mha)

03.This study:
Total croplands

plus non-
croplands(Mha)

04.
National
statistics:
Croplands
(Mha)

India 184.3 142.2 326.4 168.1
Pakistan 22.4 57.7 80.1 22.9
Bangladesh 9.97 4.1 14.1 9.8
Nepal 2.19 12.6 14.8 4.03
Sri Lanka 1.84 4.7 6.6 2.08
Bhutan 0.06 3.9 4.0 0.12
Total 220.8 225.3 446.0 207.0

Sources:
http://www.indiastat.com.
http://www.fao.org/faostat/.
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in coarser resolution data (Figure 11). Spatial compar-
ison of cropland products across three different spa-
tial resolutions (30-m, 250-m, and 500-m) and the
reference sub-meter to 5-m VHRI are shown in
Figure 11. The Coarser the pixel, the more approxi-
mate the cropland locations. Further, areas calculated
from these coarser products will also have greater
uncertainty.

5.1.2. Accuracy assessments
Accuracy assessment error matrices are reported for the
entire South Asia (Table 4) as well as for each of the five
AEZ’s (Table 5). A total of 1185 well-dispersedvalidation
samples (Section 3.3) were available for assessing the
accuracies of South Asia. The results showed that the
South Asia cropland product (Figure 10) had a producer’s
accuracy of 89.9% (errors of omissions of 10.1%), user accu-
racy of 95.3% (errors of commission of 4.7%) and overall
accuracy of 88.7%. This implies the product (Figure 10)
misses 10.1% of croplands and adds 4.7% of non-
croplands (Table 4). Errors of omissions and commissions
are consistently improved by gathering good reference
data to train the RF machine learning algorithm (MLA).
Large number of samples by themselves does not ensure
high accuracies. Most important factors for higher accura-
cies were the following:

Purity of samples used in training RF MLA (e.g. avoiding
edge pixels, mixed pixels)

Diversity of sampling (e.g. capturing different cropland
types);

Spatially well distributed samples;

Ability to tweak the RF MLA through multiple iterations
till the desired results are achieved;

Number of samples

When all of the above conditions are met, accuracies
at certain stage reach optimal, meaning further addition
of samples will not increase accuracies. The goal not to
just achieve high overall accuracies, which can be decep-
tive in the sense the class that we desire may or may not
have high accuracies just because overall accuracies are
high. The goal in this study was to achieve very high
producer’s accuracies (or very low errors of omissions) by
ensuring the user’s accuracies (errors of commissions)
low. Often, when we try to decrease errors of omissions
(croplands mapped as croplands) the errors of commis-
sions go up (non-croplands mapped as croplands).
Optimal results as shown in Tables 4 and 5 were
achieved by trial and error by tweaking the RF MLA
through multiple iterations by adding and deleting
reference samples and generating much purer separabil-
ity in the knowledge base for the RF MLA. With low
errors of omissions 10.1% and low errors of commission
of 4.7% for entire South Asia (Table 4), we achieved an
optimal result in capturing as much croplands as
possible.

Accuracies are also reported (Table 5) for each of the
five AEZ’s (Figure 1) of the South Asia cropland product
(Figure 10). As shown in these tables, only 2% of the total
net cropland areas (TNCA) of 220.2 Mha are in zones 1
and 5 put together, whereas zones 1, 2, 3, and 4 have
98% of the croplands. As a result, the validation data for
zones 1 and 5 are much smaller than those of zone 2, 3,
and 4 (Table 5). Overall for the five zones, the producer’s

Figure 11. Spatial comparison of cropland products for precision. Comparison of cropland extent products across three different
spatial resolutions (30-m, 250-m, and 500-m) with<5-m very high-resolution imagery.
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accuracies varied between 86.9% and 93.7% (errors of
omissions varied from 6.3% to 13.1%), user’s accuracies
varied between 89.7% and 98.2% (errors of commissions
varied from 1.8% to 11.3%), and overall accuracies varied
between 85.5% and 93.5% (Table 5). All five zones
achieved similar low errors of omissions and commis-
sions (Table 5). Errors of commissions of 13.9% in zone 5
were mainly a result of complex mountain terrain.

5.2. Comparison landsat product with national
statistical data

Table 6 compares cropland areas derived in this study
(GFSAD30) from Landsat 30-m time-series data of 2014
and 2015 (called nominal 2015) with the cropland statis-
tics obtained from the National systems of the South
Asian Countries. Overall, there was 14. 8 Mha more crop-
land areas estimated by GFSAD30 (this study) with 220.8

Figure 12. Comparison of district-wise cropland areas. 30-m Landsat derived versus national area statistics.
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Mha compared to 207 Mha reported by the National
systems as gathered from the UN FAO statistics (http://
www.fao.org/faostat/); (Portmann, Siebert, and Döll
2010). These differences can be expected due to several
reasons such as the type of data used, methodologies
implemented and resolution of the imagery.

There was very a close match in cropland area esti-
mates of Bangladesh and Pakistan (Table 6). Croplands
of both these countries are relatively easy to assess due
to long stretches of flatbed croplands along the river
systems (e.g. Ganga and Brahmaputra in Bangladesh,
Indus valley in Pakistan) and/or well-structured irrigated
command areas. The greatest differences in cropland
areas were in Nepal, Bhutan and Sri Lanka where remote
sensing significantly underestimated National statistics.
This was mainly a result of the complexity of croplands in
the mountain terrains and approaches to estimating or
mapping them. Most croplands of South Asia are in India
with an area of 184.3 Mha as derived from GFSAD30 as
opposed to 168.1 Mha estimated by the national statis-
tics. India’s croplands are spread across diverse agro-
ecological zones, cropping practices, irrigation techni-
ques, and rainfed areas. Further, croplands are either
contiguous vast stretches in some places and discrete
and fragmented in other places. They occur in all topo-
graphies: from flat flood plains and river courses to
mountainous areas. Croplands in India also occur in
various irrigation types (e.g. large reservoirs, small
tanks, ground water pumping). High-resolution, time
series remote sensing data from Landsat with 30-m
spatial resolution offers the best opportunity to map all
of these diverse croplands (Figure 10) which can be
viewed in full resolution at www.croplands.org.

From the results in Table 7, it is clear that GFSAD30
derived cropland areas were comparable to MIRCA 2014
estimates (Portman and Siebert, personal communica-
tion) and GRIPC (Salmon et al. 2015). Since all these are
either 2014 or 2015 estimates, this supports our findings.
The FAO reported areas coming from the National sys-
tems were about 10% less than GFSAD30. The GIAM and
GMRCA areas (Biradar et al. 2009; Thenkabail et al.
2009b) were for the nominal year 2010 based on much
coarser resolution (1 to 10 km) remote sensing data of
2000–2010, therefore, significant lower areas of GIAM
and GMRCA are expected (Table 7).

However, a much better comparison of cropland
areas identified from the Landsat-derived 30-m product
were included with sub-national statistics (Figure 12).
For this district or equivalent administrative region, the
statistics derived from this study were compared with
the equivalent National statistics obtained through
National systems of the corresponding countries
(Figure 13). The results of this study explained 82% to

96% of the variability of district cropland areas obtained
from the National statistics (Figure 12), specific countries
included; India, Sri Lanka, Pakistan, Bangladesh, and
Nepal R2 and variances between the two datasets were
0.8203, 0.9568, 0.8032, 0.8179 and 0.9659, respectively.

6. Discussion

This study mapped cropland extent over the entire
South Asia at the high-spatial resolution of 30-m utilizing
Landsat time-series data of 2014–2015. This is an
advancement over previous studies that mapped crop-
land extent in South Asia using coarser resolution data
like MODIS at 250–1000 m resolution. In cropland map-
ping and studies pertaining to agricultural croplands,
the need for near continuous time-series data are of
significant importance to capture the phenology and
growth characteristics of crops. Historically, the limita-
tion in utilizing high resolution (30-m or better) imagery
has been the unavailability of time-series data, especially
over large areas. However, by using the availability of
Landsat-8 and Landsat-7 images (every 8 days from the
two satellites) this limitation has been reduced. When
such 8-day data is acquired over multiple years (e.g.
2014 and 2015 as in this study) it further enhanced
cloud-free imagery. In order to increase the temporal
availability of high-resolution imagery, several studies
(e.g. Oliphant et al. 2019; Teluguntla et al. 2018; Xiong
et al. 2017a) have used data from multiple imaging plat-
forms (e.g. Landsat and Sentinel) to produce cropland
maps over large areas. Xiong et al. (2017a, 2017b) noted
that the use of Landsat 8 along with Sentinel 2 temporal
acquisition outweighs any minor drawbacks from mis-
match in radiometry and geometry using multiple sen-
sors. Nevertheless, a careful evaluation and synthesis of
data from multiple platforms will harmonize and stan-
dardize any minor geometric and radiometric mismatch
(Claverie et al. 2017). In this study, we increased the
temporal frequency using Landsat 8 and 7, so there
were no issues involved in the use of data from multiple
platforms. Increasing temporal acquisition from multiple
satellites also increases the performance of data inter-
polation and curve fitting algorithms (Brooks et al. 2012;
Nguyen et al. 2012; Vuolo, Ng, and Atzberger 2017). In
addition to Landsat 8, Landsat 9, is currently being con-
structed and is planned to be launched in 2020, ensuring
the continuity and relevance of Landsat imagery
(Jenstrom and Sauer 2018). When data from multiple
Landsat systems become available (e.g. Landsat 9
along with Landsat 8 and 7), then combined with data
from systems such as Sentinels such as Sentinel 2 we will
have access to rich time-series data to conduct any sort
of agricultural cropland studies.
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In this study, we first generated cloud-free image
composites from Landsat 8 but through initial research,
it was found that the composite of both Landsat 8 and
Landsat 7 was far better than composite of Landsat 8
alone in providing seamless wall-to-wall coverage of
cloud-free imagery over entire South Asia. In order max-
imize information and ability to separate croplands from
non-croplands (Oliphant et al. 2019; Teluguntla et al.
2018; Xiong et al. 2017a, 2017b), all available spectral
bands (blue, green, red, NIR, SWIR1, SWIR2, TIR) both in
Landsat-8 and Landsat 7 along with three derived
indices (NDVI, EVI, and NDWI) were included. These 10
bands were composited for each season (Monsoon, win-
ter, and summer) and GDEM-derived slope data was
added. The ability to separate croplands of varying
kinds from non-croplands with a high degree of accura-
cies became possible as a result of such rich time-
composited cloud-free imagery from multiple bands
over all three seasons. In addition, Figure 9, shows the
standard deviation of the bands, indices and slope layer
that helped class separability significantly.

The random forest algorithm was used for the image
classification because it has been successfully used for
over a decade in remote landscape classifications, and is
resistant to highly correlated data and for overcoming
data over-fitting (Belgiu and Drăguţ 2016). Because of
this, high band correlation was not a factor for decreasing
classifier performance. The continuous iterative process of
classification, review, adding additional training samples
of misclassified areas and reclassification was performed
to improve the product. An independent validation data
was used in the accuracy assessments and it is evident
that accuracies are robust and reliable, especially consid-
ering this study covers large areas with heavy cloud cover
especially during the monsoon season.

Comparing Landsat derived cropland areas
(GFSAD30) with National statistics showed satisfactory
results. In India, Landsat derived cropland area was

about 184.3 Mha compared to 168.1 Mha national sta-
tistics. Whereas in Pakistan it was 22.4 out of 22.9 Mha,
Bangladesh it was 22.4 out of 22.9, Nepal it was 2.2 out of
4.0 Mha, Sri Lanka it was 1.8 out of 2.1 Mha, Bhutan it was
0.1 out of 0.1 Mha. Overall, the croplands of the above
countries shows the variance of 220.8 Mha out of 207
Mha. The area statistics clearly reveal that an objective
remote sensing-based cropland area estimates is feasi-
ble but methods and approaches can improve in high
mountain areas.

In South Asia, the average farm size is meager 1.2 Ha,
but as low as 0.3 Ha in Bangladesh (Lowder, Skoet, and
Raney 2016; Otsuka 2014). However, there are three
factors that help in overcoming the limitation of small
farm size in mapping. These three factors are 1. Landsat
pixel of 0.09 Ha (30 m x 30 m), 2. Contiguous nature of
small farms, and 3. Methodology that involves the use of
8-day multi-year Landsat data. As a result, it was possible
to capture even the smallest of farms, except when they
are extremely fragmented and located in forests as
“slash and burn” shifting cultivation or as extreme
small fragments in other landscapes. Given extreme
low percent (<1% of the total net cropland area) of
such cases, this is not an issue.

In any classification, the goal is to obtain accuracies as
high as possible andwhen producer’s accuracies (errors of
omissions) increase, user’s accuracies (errors of commis-
sions) decrease and vice versa. The random forest algo-
rithm is iterated to achieve optimal producer’s and user’s
accuracies. In order to serve as a foundation for all higher-
level cropland products such as cropping intensity, irriga-
tion or rainfed areas mapping and crop type mapping. It
was preferable to improve the classification for producer’s
accuracies (e.g. get all the croplands mapped as perfectly
as possible even when user’s accuracies reduce slightly in
trade-off). In other words, over-classifying cropland (non-
cropland as cropland) was preferable to under-classifying
cropland (cropland as non-cropland).

Table 7. Country wise cropland areas compared between this study and other coarse resolution studies. Net cropland areas derived
based on 30-m Global Food Security Support Analysis Data (GFSAD30) cropland product and comparison with other cropland
products.
Country name Land Area (Mha) GFSAD301 (Mha) MIRCA2 (Mha) FAO3 (Mha) GRIPC4 (Mha) GIAM -GMRCA5 (Mha)

India 326.4 184.3 177.4 169.7 187.5 150.1
Pakistan 80.1 22.4 25.2 21.3 20.4 17.7
Bangladesh 14.1 10.0 10.0 8.5 9.2 7.8
Nepal 14.8 2.2 3.4 2.5 3.5 4.4
Sri Lanka 6.6 1.8 2.2 2.2 3.5 2.4
Bhutan 4.0 0.1 0.2 0.1 0.1 0.2
Total 446.0 220.8 218.4 204.3 224.2 182.6

1 = GFSAD30 current study
2 = Monthly irrigated and rainfed crop areas (MIRCA) around the year 2014 derived by Portmann et al., 2010
3 = FAO Agricultural land area excluding pasture based on FAO2013 statistics consider nominal 2015 http://www.fao.org/faostat/en/#data/QC
4 = Global rain-fed, irrigated, and paddy croplands (GRIPC) derived by Salmon et al., 2015
5 = Global croplands derived from Global Irrigated Area Mapping (GIAM) and Global Map of Rainfed Cropland Areas (GMRCA) by Thenkabail et al., 2009 and
Biradar et al., 2009.
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7. Conclusions

The study produced the high-spatial resolution Landsat-8
and 7 derived 30-m (1 pixel = 0.09 ha) cropland extent
product of the nominal year 2015 (based on every 8 day
data for the 2013–2015 time period) for the six of the 8
countries of South Asia consisting of India, Pakistan,
Bangladesh, Nepal, Sri Lanka and Bhutan (Afghanistan
and Maldives not included in the study) covering
a geographic area of 435.3 Mha. Agricultural croplands of
the entire South Asia was 220.8 Mha (50.7% of the geo-
graphic area). The product showed that the South Asia
cropland product had a producer’s accuracy of 89.9%
(errors of omissions of 10.1%), user’s accuracy of 95.3%
(errors of commission of 4.7%) and overall accuracy of
88.7%. The National and sub-national (districts) areas com-
puted from this product explained 80-96% variability
when compared with the National statistics of the South
Asian Countries obtained from the National system.
Overall, for the five agro-ecological zones of South Asia,
the producer’s accuracies varied between 86.9% and
93.7% (errors of omissions varied from 6.3% to 13.1%),
user’s accuracies varied between 89.7% and 98.2% (errors
of commissions varied from 1.8% to 11.3%), and overall
accuracies varied between 85.5% and 93.5%. Agricultural
cropland areas of the six countries were: 184.3 Mha for
India, 22.4 Mha for Pakistan, 9.97 Mha for Bangladesh, 2.19
Mha for Nepal, 1.84 Mha for Sri Lanka, and 0.06 Mha for
Bhutan. The National and sub-national (districts) areas
computed from this product explained 80-96% variability
when compared with the National statistics of the South
Asian Countries.

The study established methods and approaches for
peta-byte scale cloud computing on the Google Earth
Engine (GEE) cloud platform using the Random Forest
(RF) Machine Learning Algorithms (MLAs) which were
trained using rich set of reference training data gathered
from the field as well as sub-meter to 5-m very high-
spatial resolution imagery (VHRI). An independent refer-
ence validation data was used to assess accuracies based
on error matrices for each of the five AEZs as well as for
the entire South Asia. The full-resolution imagery can be
viewed at www.croplands.org and the data downloaded
from the NASA and the USGS The Land Processes
Distributed Active Archive Center (LP DAAC): https://
lpdaac.usgs.gov/products/gfsad30saafgircev001/

Highlights

● Highest spatial resolution (30-m) cropland product covering
entire South Asia for 2015;

● Unique cropland mapping methods involving petabyte-
scale computing on cloud;

● Random forest machine learning algorithm applied over
very large area;

● Overall accuracy of 88.7% with 89.9% of agricultural crop-
lands captured;

● Public availability of 30-m cropland product, codes, and
reference data
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