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Abstract
A composite blend consisting of sunflower cake, maize germ, wheat bran, fresh water shrimps and

cassava flour was extruded using a single-screw extruder to produce expanded fish feed pellets.

The effects of temperature (80–120 �C), die diameter (2–4 mm), and feed pre-conditioning time

(50–150 s; steam 400 kPa) on properties of the pellets (expansion ratio, bulk density, floatability,

durability, water absorption, water solubility, water stability, and in-vitro protein digestibility) were

investigated using response surface methodology. Regression equations describing the effect of

each variable on the product responses were obtained. The pellets extruded using a factor combi-

nation of 120 �C extruder barrel temperature, 2 mm die diameter, and 100 s of feed pre-

conditioning time gave most desirable pellet floatability (100%), durability index (99%), expansion

ratio (2.64), water absorption index (4.12), water solubility index (9.31), water stability (87%), bulk

density (479 g/L), and in vitro protein digestibility (69.97%) with a composite desirability of 0.88.

Practical applications
Extrusion is a modern feed processing method whose use is fast gaining popularity among small

feed processors in developing countries. However, extrusion is a process that involves many

parameters that need to be optimized for desirable end properties. These findings guide fish

feed manufacturers on the optimum conditions for single screw extruders for production of

feeds with desirable properties especially for the fish types that are top feeders. In addition, the

results offer important insights on how temperature, die diameter, and feed pre-conditioning,

may be manipulated to influence properties of extruded aquafeed when using simple low-cost

small-scale extruders.

1 | INTRODUCTION

Aquaculture contributes about 50% of the fish consumed by humans

globally (Halden, Lindberg, & Masembe, 2014). About 80% of the

world's aquaculture is practiced in developing countries mainly by

small-scale farmers (FAO, 2016). For this reason, there is growing

appreciation of the role that small-scale aquaculture can play in

improving rural household nutrition and income security in these

countries. However, access to affordable high-quality feeds is a chal-

lenge that limits smallholder participation, and threatens aquaculture

profitability and sustainability (Munguti, Kim, & Ogello, 2014). Avail-

ability of ready-to-use or manufactured aquafeeds is not widespread

(Ngugi, Bowman, & Omolo, 2007). Some small-scale farmers formulate

low-cost feeds using locally available ingredients at farm level. The

feeds fail to meet the needs of expanding semi-intensive aquaculture

systems; they have inferior functional quality especially with regard to

physico-chemical properties (Munguti et al., 2014; Ogello, Munguti,

Sakakura, & Hagiwara, 2014). Thus, the search for alternative proces-

sing method with optimized operating conditions for the manufacture

of high quality feeds has become imperative (Cocker, 2014).

Ideally, smallholder farmers mix locally sourced ingredients into a

mash, which they sometimes moisten and press using simple mechani-

cal tools to produce pellets. While this approach somewhat meets

short-term needs, it is unable to produce consistently high quality
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feeds in commercial quantities. A more versatile processing technique

is extrusion cooking (Kazamzadeh, 1989). Small-scale feed manufac-

turers are increasingly adopting low-cost extruders to bridge the

demand gap for good quality fish feed. The compounded mash is

pushed through a heated closed barrel by means of screw(s) and

pressed through a die at the end of barrel (Levic & Sredanovic, 2010).

In the process, components of the mash, that is, carbohydrate, protein,

fiber, and fat are subjected to heating, mixing, and shearing under high

pressure resulting in cooked molten dough that is shaped into pellets

as it leaves the die. Consequently, nutritional and functional prop-

erties of pellets are improved as a result of thermal and shear

modification of the mash ingredients. Extrusion is also shown to

destroy anti-nutritional factors such as trypsin inhibitor and lectins

(Moscicki, 2011; Nikmaram, Kamani, & Ghalavand, 2015), increase

the solubility of nitrogen and dietary fiber, reduce lipid oxidation

by denaturing deteriorative enzymes (Alam, Kaur, Khaira, & Gupta,

2016; Filipovic et al., 2010; Levic & Sredanovic, 2010; Moscicki,

2011; Nikmaram et al., 2015; Sorensen, 2009) and destroy microbi-

ological pathogens. It therefore provides the feed manufacturers

with the means to improve quality of their products (Filipovic

et al., 2010).

Extrusion parameters, among them feed composition, pre-condi-

tioning, extruder temperatures, and die-diameter influence proper-

ties of extrudates (Sorensen, 2012). Starch-rich ingredients form a

relatively elastic melt in the barrel and result in expanded products

that have low bulk density (Alves, Grossmann, & Silva, 1999)

whereas protein-rich ingredients form a plastic melt that extrudes

into a porous product with less expansion (Singh, Nielsen, Chambers,

Martinez-Serna, & Villota, 1991). Fat and fiber modify the viscosity

and behavior of the melt in the extruder barrel (Ilo, Schoenlechner, &

Berghofe, 2000). Feed pre-conditioning prepares the material for the

actual extrusion. This may be achieved using steam, water or

mechanical means (Levic & Sredanovic, 2010), but the use of steam

is preferred because it pre-heats and plasticizes the raw materials

resulting in lower extruder energy input, and improved physical qual-

ity of extrudates (Levic & Sredanovic, 2010; Rokey, Plattner, &

Souza, 2010; Tumuluru, 2014). Temperature is usually a targeted

value, and is attained through steam in the pre-conditioner, ther-

mal energy dissipated by mechanical shearing and heat emanating

from heated surfaces (Chiu & Solarek, 2009; Sorensen, 2009,

2012). Die-diameter controls the flow of the melt and contributes

to pressure build-up through the extrusion barrel (Akdogan,

1999). Thus to achieve targeted product characteristics, under-

standing the relationships between ingredients and process

parameters is necessary. The aim of this study was to establish the

optimal conditions for production of floating pellets using a simple

low-cost single screw extruder. A further aim was to investigate

the effects of feed pre-conditioning, extruder temperature, and

die diameter on properties of the extruded pellets processed from

a fish feed blend containing locally sourced food ingredients.

2 | MATERIALS AND METHODS

2.1 | Extruder

A low cost single screw extruder powered by a 15-HP motor (Model:

DOLLY, Unitech, New Delhi, India) with a processing capacity of

50–80 kg/hr was used. The extruder comprised feed pre-conditioning

system and extruding system (Figure 1). The feed pre-conditioning

system comprised a boiler supplying steam to the pre-conditioning

chamber at a pressure of 400 kPa. The extruding system comprised a

single screw with three differentiated channel-width zones (feeding

zone: 30 mm; transition zone: 12 mm; metering zone: 6 mm) having

uniform flight width (1 mm) and uniform channel depth (1 mm). The

length and diameter of the screw was 55 and 6 cm, respectively (L/D

9:1), and the screw rotating speed was maintained at 200 rpm, as set

by the manufacturer. The extruder barrel was equipped with band

heaters, and temperature was controlled at the metering zone. The

FIGURE 1 Schematic representation of single screw extruder
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die assembly comprised of interchangeable discs, each with equal-size

holes drilled concentrically close to the edge of the disc. The dies had

conical centers with initial diameters of 6, 9, and 12 mm and exit

diameters of 2, 3, and 4 mm, respectively.

2.2 | Composition of feed blend

The formulation used in this study was based on the minimum nutri-

tional requirement for tilapia fish (Oreochromis niloticus), which is

commonly farmed in small-scale aquaculture systems in developing

countries. Protein is the key nutrient in fish diets and therefore the

priority was to achieve the minimum protein content requirement

when mixing the various ingredients. We selected to process a prod-

uct that would be suitable for adult tilapia (FAO, 2017). Sunflower

cake, maize germ, wheat pollard, fresh water shrimps, and cassava

flour were purchased locally from an approved agro dealer shop.

Each of the ingredients was separately milled into a fine powder

using a Thomas Model 4 Wiley® laboratory mill (Thomas Scientific

Inc., Swedesboro, NJ) and sieved through a 1.0 mm aperture sieve.

The proximate compositions of the various ingredients were deter-

mined using AOAC (2000) methods. Crude protein was determined

by AOAC Method 984.13, crude fat by AOAC Method 920.39 and

crude ash by AOAC Method 942.05. Crude fiber was determined

according to ISO 6865.2000 (ISO, 2000), while carbohydrate content

was determined by difference. Based on the proximate compositions

of ingredients, the quantities required to formulate 5 kg blends

containing 27% protein recommended for tilapia fish (FAO, 2017),

were calculated. These were proportionately weighed using digital

weighing scale into 20 L buckets. The amount of water needed to

raise the moisture content of the mash to 20% was added and the

ingredients were mixed manually by hand. This moistened mash was

then transferred to a multivane paddle mixer (Unitech, New Delhi,

India) for further mixing for 2 min at moderate speed.

2.3 | Experimental design

A response surface methodology using Box–Behnken design with three

independent variables: extrusion temperature (factor A), die-diameter

(factor B), and feed pre-conditioning time (factor C) was used. The

design was generated using Minitab 14.12.0 (Minitab Inc, State College,

PA), and comprised 30 trials (Table 1). The response variables were

expansion ratio, bulk density, floatability, durability index, water absorp-

tion index, water solubility index, water stability, and in vitro protein

digestibility of the extruded pellets.

2.4 | Extrusion process

The blended ingredients were introduced into the steam conditioning

chamber (with steam inlet pressure set at 400 kPa) through a manual

hopper at a rate of 60 kg/hr. Residence time in the conditioning

chamber was 50 s per cycle. The conditioning step was varied to have

1–3 cycles equivalent to conditioning times of 50, 100, or 150 s, after

which the mash was channeled into the extrusion barrel. The extru-

sion temperature was set at 80, 100, or 120 �C, as measured at the

end of the metering zone of the extruder barrel. Extrudates exited

through a die of 2, 3, or 4 mm diameter. The choice of feed pre-

conditioning times, extrusion temperatures, and die diameters was

based on range of values that have been recommended by others

(Vijayagopal, 2004) for the production of floating fish feeds. Screw

speed was maintained at 200 rpm. Each extruded sample was collected

into a separate 20 L bucket and then dried in a solar tent to constant

weight. The design of the solar tent consisted of a transparent plastic

polythene sheet stretched over a wooden box (0.6 m wide × 1.2 m long

× 0.2 m high) placed on a slanting metal frame constructed to a height

of 1 m on the air inlet end and 1.2 m on air exit end. The inside of the

box was lined with a black polythene sheet and the air entry and exit

ends were drilled with closely spaced holes of 1 cm diameter. The

temperature and relative humidity in the solar tent before introducing

the samples ranged between 50–60 �C and 15.5–24.5%, respectively,

as determined using an El-USB-1 data logger (Lascar electronics Inc.,

Pennsylvania). Duplicate samples of the dried pellets, each weighing

500 g, were taken and packed into zip-lock bags for analyses.

TABLE 1 Experimental arrangement of Box–Behnken design and the

treatment combinations

Run

Coded variables Actual variables

A B C A B C

1 −1 0 −1 80 3 50

2 1 0 −1 120 3 50

3 1 0 1 120 3 150

4 0 0 0 100 3 100

5 1 1 0 120 4 100

6 −1 1 0 80 4 100

7 0 −1 −1 100 2 50

8 −1 −1 0 80 2 100

9 −1 −1 0 80 2 100

10 1 −1 0 120 2 100

11 0 0 0 100 3 100

12 0 1 1 100 4 150

13 0 1 −1 100 4 50

14 1 0 1 120 3 150

15 0 0 0 100 3 100

16 0 0 0 100 3 100

17 0 −1 −1 100 2 50

18 0 0 0 100 3 100

19 1 1 0 120 4 100

20 0 1 1 100 4 150

21 −1 0 −1 80 3 50

22 1 0 −1 120 3 50

23 −1 0 1 80 3 150

24 1 −1 0 120 2 100

25 −1 0 1 80 3 150

26 0 −1 1 100 2 150

27 −1 0 +1 80 3 150

28 +1 0 +1 120 3 150

29 0 −1 +1 100 2 150

30 0 -1 +1 100 2 150

A = Temperature (�C); B = Die diameter (mm); C = Feed pre-conditioning
time (s).
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2.5 | Determination of expansion ratio

Expansion ratio (ER) was determined as outlined by Tumuluru (2013).

For each sample, the diameter (D) of 10 randomly selected pellets

were measured using a digital Vernier caliper, and their average value

recorded. Expansion ratio was calculated using the expression D2=D2
i

where Di is the die diameter.

2.6 | Determination of bulk density

Extruded pellets were milled using a laboratory-scale grinder and

passed through a 1 mm aperture sieve. A 50 ml graduated measur-

ing cylinder was tarred, and gently filled with 50 g of the powder.

The bottom of the cylinder was repeatedly tapped gently until

there was no further reduction in sample volume. Bulk density

(BD) was calculated as weight of the sample divided by the respec-

tive volume (g/L).

2.7 | Determination of floatability

For each sample, 10 randomly selected pellets were put into 250 ml

beakers containing 200 ml of distilled water at room temperature.

This was done in three replicates and average number of pellets that

were found floating after 20 min was recorded. Floatability was

calculated as the number of floating pellets after 20 min divided by

the total number of pellets introduced in the water multiplied by

100 (Umar, Kamarudin, & Ramezani-Fard, 2013).

2.8 | Determination of pellet durability index

The method described by Umar et al. (2013) was used. About 15 g of

each sample was sieved on a 2.36 mm sieve in triplicate. The pellets

that were retained on the sieve were weighed (Wi) and placed in a

flask mounted on a Lab-line shaker (Lab-Line Instruments, Inc, Illinois),

which was then shaken for 20 min at 260 oscillations per min. The

TABLE 2 Proximate composition of ingredients and gross composition of formulated mash

Ingredient/formulated mash

Composition (g/100 g dry matter basis)

Inclusion level (%)Crude protein Crude fat Crude fiber Crude ash Available carbohydrate

Sunflower cake 20.60 � 0.67 21.29 � 0.51 31.89 � 0.74 4.78 � 0.97 21.44 � 1.31 19.0

Maize germ 13.81 � 0.16 9.87 � 0.05 16.17 � 1.20 5.89 � 0.14 54.26 � 0.09 19.0

Wheat pollard 16.01 � 0.33 8.50 � 0.49 11.49 � 1.34 3.44 � 0.03 60.56 � 0.43 28.0

Fresh water shrimps 53.98 � 1.52 10.53 � 1.44 4.18 � 0.23 22.34 � 2.02 11.97 � 1.26 29.0

Cassava flour 1.96 � 1.12 0.26 � 0.20 1.9 � 0.03 2.34 � 0.02 93.54 � 0.25 5.0

Formulated mash 26.77 11.37 13.66 9.59 39.49

FIGURE 2 Surface plots showing the effects of temperature and die diameter at constant feed conditioning time of 100 s on expansion ratio (a),

bulk density (b), floatability (c), and durability index (d)
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pellets were then sieved and re-weighed (Wr) and the pellet durability

index (PDI) calculated as (Wr/Wi) × 100.

2.9 | Determination of water absorption index and
water solubility index

Water absorption index (WAI) and water solubility index (WSI) were

determined as described by Rosentrater, Muthukumarappan, and Kan-

nadhason (2009). About 0.625 g of each sample (Wi) was ground and

suspended in 8 ml distilled water in a tarred 12 mL centrifuge tube. The

contents were shaken vigorously for 3 min and then centrifuged (using

a bench-top DSC-200T centrifuge (Digisystem Laboratory Instruments

Inc, Taipei, Taiwan) at 2,500 rpm for 10 min. The supernatant was dec-

anted and transferred into a tarred aluminum dish and placed in a hot

air oven (DAIHAN Scientific, Gangwon-do, Korea) maintained at

135 �C for 2 hr. The dish and its contents was cooled in a desiccator

and re-weighed on a sensitive weighing scale (Shinko Denshi, Tokyo,

Japan), and the difference in weight (Ws) obtained. The mass of the gel

remaining in the centrifuge tube (Wg) was obtained as well. The WAI

and WSI were calculated using the expressions (Wg/Wi) and (Ws/Wi) ×

100, respectively.

2.10 | Determination of water stability

The procedure described by Umar et al. (2013) was used. About 4 g of

each sample was weighed and put on a 0.5 mm wire mesh screen in

three replicates. The screen with the sample was immersed into a

250 ml beaker containing 200 ml distilled water for 20 min. The pel-

lets retained on the wire mesh were then dried in a hot-air oven

(105 �C) for 24 hr. The percent ratio of weight of pellets retained on

the wire mesh to the initial weight gave the water stability (WS).

2.11 | Determination of in vitro protein digestibility

The procedures outlined by March and Hickling (1982) and Fenerci and

Şener (2005) were used with modifications. About 0.2 g of ground sam-

ple was weighed into a 50 mL centrifuge tube. Exactly 15 mL of

0.1 mol/L hydrochloric acid solution containing 0.02% sodium azide and

1.5 mg pepsin from porcine gastric mucosa (P7000; activity ≥250 units/

mg solid, Sigma-Aldrich, Schnelldorf, Germany) was added, and the tube

incubated in a shaking water bath (Model; WSB-30, Witeg Labortechnink

GmbH, Wertheim, Germany) maintained at 15 �C for 3 hr. A control

preparation was incubated without a sample. Samples and the control

treatments were then centrifuged at 5,000g for 20 min at room tempera-

ture, and the supernatant carefully separated from the sediment. Nitro-

gen contents of the supernatants of the sample (Ns) and control (No)

treatments were determined by the Kjeldahl method according to the

AOAC Method 984.13, using a DK 20 digester and UDK 129 distillation

unit (VELP Scientifica, Usmate, Italy). Nitrogen content of the undigested

sample (N) was also determined. in vitro protein digestibility (IVPD) was

determined by the expression (Ns − No)/N × 100.

2.12 | Statistical analysis

Data on expansion ratio, bulk density, floatability, pellet durability

index, water absorption index, water solubility index, water stability,

and in vitro protein digestibility were analyzed using multiple regres-

sion analysis on Minitab 14.12.0. Each response variable was fitted to

FIGURE 3 Surface plots showing the effects of die diameter and feed conditioning time at constant barrel temperature of 120 �C on expansion

ratio (a), bulk density (b), floatability (c), and durability index (d)
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a second order model expressed with the coded variables (A, B, and C)

with the following equation;

Y ¼ β0 + β1A + β2B + β3C + β11A
2 + β22B

2

+ β33C
2 + β12AB + β13AC + β23BC + ε;

where, Y is the estimated response, β0 is the constant term, βi are the

linear terms, βii represents the quadratic terms for a single variable, βij

are the interaction terms (i = 1–3 and j = 1–3), and ε is the random

error. Response surfaces were plotted as a function of two indepen-

dent variables while keeping the other independent variable at the

optimal value.

3 | RESULTS AND DISCUSSION

3.1 | Composition of formulated feed blend

Proximate compositions of the various raw ingredients are presented

in Table 2. Gross composition of the formulated blend comprised

26.77% protein, 11.37% fat, 13.66% fiber, 9.59% ash, and 39.49%

carbohydrate. This composition corresponded well with requirements

for tilapia fish (FAO, 2017).

3.2 | Effects on expansion ratio, bulk density,
floatability, and durability of pellets

Expansion ratio is a measure of how extrudates puff at the die exit.

Expansion affects bulk density and floatability and to some extent the

durability of pellets. Figures 2 and 3 show surface plots for pellet

expansion ratio, bulk density, floatability and durability as influenced

by temperature, die diameter, and feed conditioning time. The mea-

sured values of response variables are presented in Table 3, and

analyses of variances given in Table 4. The surface plot models, after

excluding the insignificant terms, are presented in Table 6. All the

models were highly significant (p < 0.01). Increasing extrusion temper-

ature resulted in higher extrudate expansion whereas increasing die

diameter decreased rate of expansion at constant feed conditioning

time of 100 s (Figure 2a). Likewise, increasing feed conditioning time

TABLE 3 Properties of extrudates processed under treatment combinations of the various runs

Run

Response variables

Y1 (%) Y2 (−) Y3 (g/L) Y4 (%) Y5 (−) Y6 (%) Y7 (%) Y8 (%)

1 27.50 1.72 489.38 99.76 3.88 11.62 75.11 65.22

2 87.50 2.50 494.94 99.68 4.06 11.92 82.52 65.77

3 85.00 1.71 430.40 99.71 4.22 7.71 81.33 65.55

4 80.00 1.16 761.64 99.73 4.20 8.75 75.99 63.57

5 22.50 2.14 409.32 99.77 3.86 11.95 82.07 60.93

6 10.00 1.15 500.03 99.79 3.98 8.03 81.56 61.82

7 100.00 2.64 431.92 99.88 4.00 10.31 83.62 73.28

8 80.00 2.54 470.98 99.87 3.80 13.29 82.03 63.89

9 65.00 2.12 477.54 99.86 3.79 13.22 79.87 63.99

10 97.50 1.62 499.96 99.86 4.11 9.07 86.75 64.22

11 77.50 2.44 643.11 99.69 4.19 9.26 74.72 62.17

12 57.50 1.24 413.29 99.79 4.15 6.68 84.28 66.97

13 10.00 1.18 451.05 99.88 3.91 7.65 80.45 64.93

14 85.00 1.29 464.00 99.73 4.16 8.91 82.93 65.56

15 85.00 1.97 634.82 99.73 4.17 7.89 76.61 61.34

16 79.50 1.59 676.16 99.71 4.19 8.79 78.09 64.46

17 100.00 2.13 461.99 99.87 3.98 9.50 82.31 70.26

18 97.50 1.79 712.48 99.73 4.17 8.95 75.73 63.43

19 22.50 1.67 409.32 99.77 3.86 11.95 82.07 60.94

20 52.50 1.95 426.11 99.79 4.13 7.59 84.31 68.18

21 27.50 1.17 474.23 99.72 3.91 11.98 76.51 65.29

22 100.00 2.58 491.00 99.69 4.07 11.29 84.69 65.58

23 75.00 1.74 655.98 99.70 4.07 11.09 83.83 58.62

24 100.00 1.17 477.33 99.86 4.14 7.52 85.78 63.04

25 80.00 2.68 599.69 99.69 4.02 11.15 84.18 57.89

26 100.00 1.37 477.89 99.96 4.06 6.66 86.09 57.67

27 97.50 1.25 486.30 99.93 4.06 6.91 85.24 57.98

28 5.00 2.50 499.06 99.80 3.94 7.74 83.33 62.25

29 77.50 2.76 687.68 99.73 4.13 8.95 77.80 63.28

30 35.00 2.78 424.41 99.85 3.87 8.07 80.00 64.49

Y1 = Floatability, Y2 = Expansion ratio; Y3 = Bulk density; Y4 = Pellet durability index, Y5 = Water absorption index; Y6 = Water solubility index; Y7 = Water
stability; Y8 = In-vitro protein digestibility.
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resulted in higher expansion (Figure 3a). The expansion of extrudates

starts to occur at approximately 100 �C when starch has gelatinized

and viscosity of the melt has considerably decreased (Majumdar &

Singh, 2014; Rokey et al., 2010; Rosentrater et al., 2009). Further-

more, higher barrel temperature results in high pressure at the

die, which leads to greater extrudate expansion (Meng, Threinen,

Hansen, & Driedger, 2010). But as the temperature is increased

further, viscosity of the melt continues to decrease and the material

tends to expands more longitudinally while cross-sectional expansion

decreases (Singh, Majumdar, & Venkateshwarlu, 2014), which explains

tendency of expansion ratio to decrease. Increasing dextrinization as

well as weakening of the dough structure could also lower expansion

as processing temperature is increased further (Rosentrater et al.,

2009). Our findings agree with those of other studies that reported an

increase in expansion ratio with increasing barrel temperature

(Badrie & Mellowes, 1991; Jozinovic et al., 2013; Peluola-Adeyemi,

Idowu, Sanni, & Bodunde, 2014; Tumuluru, 2013). The increase

in expansion ratio with longer conditioning times is due to moistening

of the feed, which promotes starch gelatinization (Adeparusi &

Famurewa, 2011; Rokey et al., 2010), whereas the decrease in expan-

sion with increasing die diameter can be attributed to reduced pres-

sure within the extrusion barrel (Singh & Muthukumarappan, 2014) as

well as increase in melt viscosity (Akdogan, 1999). The two phenom-

ena cause less puffing effect as the extrudate exits the die.

Increasing barrel temperature, die diameter, and feed pre-conditioning

time had curvilinear effects on bulk density; higher bulk density

was recorded close to the mid-levels of these factors (Figures 2b

and 3b; Table 4). Bulk density accounts for expansion of the prod-

uct in all directions and a low bulk density is desirable for the extru-

dates to float in water. Generally, bulk density would decrease with

TABLE 4 Analysis of variance for floatability, expansion ratio, bulk density and durability index

Source of variation Df

Expansion ratio Bulk density Floatability Durability index

Ms F value Ms F value Ms F value Ms F value

Regression 9 0.958 28.90*** 30,896.9 33.49*** 3,121.39 50.68*** 0.02 111.64***

Linear 3 0.237 7.15** 60,990.2 66.11*** 987.7 16.04*** 0.03 143.08***

Square 3 0.288 8.68** 76,786 83.23*** 1,295.67 21.04*** 0.05 257.68***

Interaction 3 0.213 6.41** 8,426.3 9.13** 786.2 12.77** 0 26.04***

Lack of fit 3 0.072 2.72ns 1,332.5 1.57ns 129.69 2.62ns 0 0.02ns

Pure error 17 0.026 850.3 49.57 0

Total 29

R2 0.93 0.94 0.96 0.98

R2-Adj 0.90 0.91 0.94 0.97

s 0.18 30.37 7.85 0.01

ms = mean square; s = standard error of the regression; *** significant at p < 0.001; ** significant at p < 0.01; *significant at p < 0.05; ns not significant
at p < 0.05.

FIGURE 4 Surface plots for the effects of temperature and die diameter at constant feed conditioning time of 100 s on water absorption index

(a), water solubility index (b), water stability (c), and in-vitro protein digestibility (d)
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increase in temperature due to decreased melt viscosity that

encourages bubble growth and greater expansion of the product

(Giri & Bandyopadhyay, 2000; Meng et al., 2010; Singh & Muthuku-

marappan, 2016). However, some other studies reported an

increase in bulk density where extrusion conditions favor longitudi-

nal expansion as opposed to cross-section expansion as already

mentioned (Singh et al., 2014).

Increasing extrusion temperature increased floatability whereas

increasing die-diameter decreased it (Figure 2c). Increasing the feed

conditioning time increased floatability only marginally (Figure 3c).

Depending on composition, it has been found that extrudates do

not typically expand until temperature approaches approximately

100 �C (Rosentrater et al., 2009). As with expansion, floatability

of extrudates increased as the extruding temperature increased

(Foley & Rosentrater, 2013). Adeparusi and Famurewa (2011) also

found a positive correlation between floatability and temperature

and feed conditioning time. Saalah, Shapawi, Othman, and Bono

(2010) have, however, reported a trend where temperature did

not affect floatability of fish feed, an observation that was proba-

bly due to the overall composition of the feed used in their study.

With respect to die diameter, a small die diameter restricts extru-

date exit, hence higher pressure is developed within the extrusion

barrel resulting in greater expansion and therefore higher floatabil-

ity (Vijayagopal, 2004).

Pellet durability index (PDI) is a measure of how strong the pellets

can withstand mechanical handling during transportation, storage

FIGURE 5 Surface plots for the effects of die diameter and feed conditioning time (s) at constant barrel temperature of 120 �C on water

absorption index (a), water solubility index (b), water stability (c), and in-vitro protein digestibility (d)

TABLE 5 Analysis of variance for water absorption index, water solubility index, water stability, and in-vitro protein digestibility

Source of variation df

Water absorption Water solubility Water stability Protein digestibility

ms F value ms F value ms F value ms F value

Regression 9 0.05 80.70*** 12.18 46.04*** 38.0 39.29*** 32.84*** 12.95

Linear 3 0.09 136.49*** 19.11 72.27*** 17.13 17.70*** 57.79*** 22.79

Square 3 0.07 102.13*** 13.53 51.15*** 63.92 66.06*** 12.2** 4.82

Interaction 3 0.04 55.40*** 15.67 59.25*** 21.29 22.00*** 55.09*** 21.72

Lack of fit 3 0.00 2.41ns 0.37 1.52ns 0.24 0.22ns 12.68** 17

Pure error 17 0.00 0.25 1.09 0.75

Total 29

R2 0.97 0.95 0.95 0.85

R2-Adj 0.96 0.93 0.92 0.79

S 0.03 0.51 0.98 1.59

ms = mean square; s = standard error of the regression; *** significant at p < 0.001; ** significant at p < 0.01; *significant at p < 0.05; ns not significant
at p < 0.05.
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and subsequent use. A high PDI is desirable to both manufacturers

and farmers (Ayadi, Muthukumarappan, Rosentrater, & Brown, 2011).

Figures 2d and 3d show surface plots for PDI as influenced by

temperature, die diameter and feed conditioning time. The effect of

temperature was curvilinear. Highest pellet durability was achieved at

extrusion temperature of 100 �C, while temperatures of 80 and

120 �C resulted in lower pellet durability. Increasing the feed condi-

tioning time resulted in lower PDI (Figure 3d) whereas a die diameter

of 3 mm gave the lowest PDI. Pellet durability is a function of starch

gelatinization whereby the molten polymer binds the other ingredi-

ents upon setting (Chevanan, Muthukumarappan, & Rosentrater,

2009). Extrusion temperature of 100 �C is close to the peak gelatini-

zation temperature of most starches (Chiu & Solarek, 2009). The

decrease in PDI with increased time of feed conditioning is unclear

because increased moisture should encourage gelatinization of starch.

However, it can be argued that too high moisture results in lower

shearing effect within the extruder barrel as a result of excessive plas-

ticization. Sitaula (2012) also reported a decrease in PDI with the

inclusion of steam conditioning. Nonetheless all pellets obtained in

this study had PDI higher than 99%, which could be attributed to the

high carbohydrate content in the feed blend (Chiu & Solarek, 2009)

and the addition of cassava starch as binder. According to Tumuluru,

Conner, and Hoover (2016), binders added at about 4% inclusion

results into PDI of over 98%.

3.3 | Effects on water absorption, water solubility,
and water stability

Figures 4 and 5 show surface plots for water absorption index, water

solubility index, and water stability at the various levels of temperature,

die diameter, and feed conditioning time. The analyses of variances are

given in Table 5 and the surface plot models are given in Table 6. Water

absorption increased in a curvilinear manner as extrusion temperature

and feed conditioning time were increased (Figures 4a and 5a) suggest-

ing effects of enhanced starch gelatinization and probably other struc-

tural modifications involving fiber or protein during extrusion. These

modifications, seemingly, became less intense with increasing die diame-

ter (Figures 4a and 5a). Water solubility decreased with increasing tem-

perature as well as with increasing feed conditioning time (Figures 4b

and 5b) but increased as the size of the die was made bigger (Figures 4b

and 5b). The findings point to an inverse relationship between WAI and

WSI which is also reported by other researchers (Chevanan, Muthuku-

marappan, Rosentrater, & Julson, 2007; Fallahi, Muthukumarappan, &

Rosentrater, 2012; Gui, Gil, & Ryu, 2012; Rosentrater et al., 2009;

Singh & Muthukumarappan, 2014).

TABLE 6 Explanatory equations for various pellet properties after excluding the insignificant terms

Model equation R2 (%) R2-Adj (%) s

Y1 = 549.7+ 9.98A + 55.1B + 1.144C − 0.039A2 − 17.46B2 −
0.015AC + 0.169BC

95.3 93.8 7.93

Y2 = −8.57 + 0.1905A + 1.234B − 0.01508C − 0.0008A2 − 0.01246B2 −
0.01055AB + 0.0002AC

92.86 90.59 0.17

Y3 = 686.0 − 30.66A − 76.1A2 − 141.9B2 − 97.4C2 − 26.2AB − 48.0AC 90.8 88.4 34.42

Y4 = +99.72 − 0.041B − 0.02813A2 + 0.131B2 + 0.01813C2 + 0.0200AC −
0.03625BC

97.4 96.7 0.01

Y5 = −1.54438 + 0.0723A + 1.23875B + 0.00044C − 0.00026A2 − 0.13438B2

− 0.00001C2 − 0.00538AB + 0.00090BC
97.3 96.2 0.03

Y6 = +95.00 − 1.399A − 9.40B + 0.0099C + 0.0055A2 − 0.585B2 + 0.11281AB
− 0.0007AC + 0.0120BC

95.0 93.1 0.52

Y7 = +128.2 − 0.613A − 18.766B + 0.065C + 0.006A2 + 4.171B2 + 0.001C2 −
0.071AB − 0.002AC

94.4 92.2 0.98

Y8 = +62.809 − 2.275C + 1.768C2 + 1.720AC + 4.203BC 78.3 74.8 1.73

Y1 = Floatability; Y2 = Expansion ratio; Y3 = Bulk density; Y4 = Pellet durability index, Y5 = Water absorption index; Y6 = Water solubility index; Y7 = Water
stability; Y8 = in-vitro protein digestibility; R2 = Co-efficient of determination; R2-Adj = Adjusted co-efficient of determination; s = Standard error of the
regression; A = Extrusion temperature; B = Die diameter; C = Feed conditioning time.

TABLE 7 Pearson's correlation coefficients of response variables (n = 30)

Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y1 0.814ab 0.311 0.039 0.572a −0.085 0.218 0.092

Y2 0.194 0.265 0.575a −0.334 0.177 0.096

Y3 −0.484a 0.511a −0.052 −0.535a −0.327

Y4 −0.374b −0.275 0.457b 0.049

Y5 −0.582a −0.031 0.019

Y6 −0.168 0.042

Y7 −0.067

Y1 = Floatability, Y2 = Expansion ratio; Y3 = Bulk density; Y4 = Pellet durability index, Y5 = Water absorption index; Y6 = Water solubility index; Y7 = Water
stability; Y8 = in-vitro protein digestibility.
a Correlation is significant at the 0.01 level.
b Correlation is significant at the 0.05 level.
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Water stability is a measure of how strongly the extruded pellets

will resist disintegration and thus disallow leaching of nutrients when

placed in water (Ayadi et al., 2011). Water stability increased with

increasing temperature (Figure 4c). Curvilinear relationships between

water stability and die diameter (Figures 4c and 5c) as well as

pre-conditioning time (Figure 5c) were observed. Generally, pellets

produced under the experimental conditions of the present study

exhibited high water stability ranging from 75–87% (Table 3), which is

the consequence of strong starch–protein matrix formation from the

interaction of the gelatinized starch and denatured protein (Tumuluru,

2013). Increasing extrusion temperature enhanced the formation of

such matrix (Vijayagopal, 2004; Bandyopadhyay & Rout, 2001). The

curvilinear effects observed with respect to die diameter and condi-

tioning time may be related to the interaction effects of temperature,

pre-conditioning, and pressure within the barrel, which affect modifi-

cation of the polymers, and the viscosity and integrity of the melt as it

pushed through the die. Water stability of extruded pellets might

decrease when die diameter is increased, partly because melt viscosity

increases (Akdogan, 1999). Water stability may also increase with

increased conditioning but decrease if the conditioning results in

moisture level that diminishes cohesive strength of polymers due to

excessive plasticization. The high water stability of pellets reported in

this study implies that the products would exhibit minimum nutrient

loss and environmental problems in fish ponds.

3.4 | Effects on in-vitro protein digestibility

Protein is the most important nutrient for growth of fish, and the

digestibility is influenced by processing conditions (Aksnes,

Hjertnes, & Opstvedt, 1996). Extrusion improves IVPD of feeds in

comparison to feeds produced through pelletization (Fenerci &

Şener, 2005). In the present study, in vitro protein digestibility of

pellets ranged between 59 and 73% (Table 3). These results corre-

spond well with those reported by Fenerci and Şener (2005). Sur-

face plots showing the effects of die diameter, temperature and

feed conditioning are shown in Figures 4d and 5d. The linear,

square and interaction components of the various factors were sig-

nificant (Table 5). Increasing die diameter from 2 to 4 mm resulted

in increasing IVPD (Figure 4d). Increasing temperature from 80 to

approximately 100 �C also resulted in increasing IVPD but further

increase to 120 �C resulted in decreased IVPD (Figure 4d). The ini-

tial increase in IVPD with increasing extrusion temperature could

be attributed to protein denaturation which exposes more poly-

peptide bonds to enzymes (Opstvedt et al., 2003) and probably also

the degradation of enzyme-specific inhibitors. On the other hand,

the decrease in IVPD as temperature was increased from 100 to

120 �C could be linked to formation of complexes that resist

hydrolysis such as those involving covalent binding of proteins and

polyphenolic compounds present in the feed ingredients (Opstvedt

et al., 2003) or the formation of disulfide linkages within the matrix

(Kinyuru, Kenji, Njoroge, & Ayieko, 2010). However, the dynamics

of these events may depend on the intrinsic forces contributing to

conformational stability of proteins from different sources. Increas-

ing the feed conditioning time decreased IVPD (Figure 5d) which

could be due to the ability of high amount of steam to promote

protein–polyphenol complexes at high extrusion temperatures

(Onyango, Noetzold, Bley, & Henle, 2004).

3.5 | Correlation between response variables

Table 7 shows the correlation between the various measured vari-

ables. As expected there was significant direct correlation between

expansion ratio and floatability (Umar et al., 2013; Vijayagopal, 2004).

From this observation, an inverse relationship between expansion

ratio and bulk density would be expected (Majumdar & Singh, 2014)

but this was not observed in the present case probably because of

effects of the ingredients used. Nonetheless, there was significant

inverse relationship between bulk density and pellet durability as well

as water stability, which is explained by the fact that extrudates with

high bulk density are linked to lesser thermal or shear modification of

constituent polymers and so have weaker binding of the ingredients.

Furthermore, the significant direct correlation between pellet durabil-

ity and water absorption index can be linked to more intense polymer

modifications involving starch gelatinization, protein denaturation or

even swelling of fibers. Water solubility was inversely related to water

absorption as also reported by others (Fallahi et al., 2012; Singh &

Muthukumarappan, 2014). This relationship is related to polymer

modifications that increase the capacity to hold water while at the

same time entangling soluble molecular components and stabilizing

them within the molten mass. Water soluble ingredients weaken

pellet structure in water allowing components to separate thereby

affecting feed utilization. Moreover decomposition of ingredients not

FIGURE 6 Optimization plot for in vitro protein digestibility (IVPD),

water stability (WS), water solubility index (WSI), and floatability with
respect to temperature (mm) and feed conditioning time (s)
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eaten by the fish may increase nitrogenous waste in the water which

is toxic to fish.

3.6 | Optimum conditions for production of floating
pellets

Optimal conditions for processing good quality floating fish pellets were

established using the graphical method of response surface methodology

with the aim of obtaining extrudates with most desirable properties. The

main criteria involved maximizing water stability and floatability, minimiz-

ing water solubility index and targeting IVPD of about 70%. Figure 6

shows the final optimized plots for the response optimization of extru-

sion conditions (temperature, die diameter and feed conditioning time) in

making floating fish feeds. The optimized responses for IVPD, water

stability, water solubility index, and floatability gave higher desirability

values of 0.9972, 1.0000, 0.6002, and 1.0000, respectively. The opti-

mum extrusion conditions of temperature, die diameter, and feed condi-

tioning were identified as 120 �C, 2 mm, and 100 s, respectively. The

optimum values had a composite desirability of 0.8796 which is accept-

able though it implies that other than the study parameters, there are

other factors such as feed composition and rate of feeding (not within

the scope of this study) that probably also affected the physico-chemical

properties of extruded fish feeds.

4 | CONCLUSION

Physical properties that relate to floating, stability in water, and stabil-

ity during handling are especially critical for aquafeeds. This study was

conducted to optimize extruder conditions for the manufacture of fish

feeds with desirable physico-chemical properties. The target study

variables were temperature, die diameter and feed conditioning time,

while the response parameters were floatability, expansion ratio, bulk

density, pellet durability index, water absorption index, water solubil-

ity index, water stability, and IVPD. Response surface methodology

gave optimum treatment combinations of temperature, die diameter,

and feed conditioning time of 120 �C, 2 mm, and 100 s, respectively.

One limitation of extrusion is that it may lead to loss of vitamins par-

ticularly the water soluble and heat sensitive ones where about

15–20% of the vitamins in the raw materials are lost during extrusion.

Further studies should explore ways of addressing this limitation.
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