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1. INTRODUCTION

The use of “alternative grains,” also known as ancient grains, climate-smart grains, nutrigrains, or traditional
grains, like sorghum and millets in modern food products, is becoming common across the world. This is taking
place in order to address several socioeconomic trends, especially changing lifestyles (e.g., urbanization, working
mothers, and single-parent families) and also consumer nutrition, health, and ethical concerns about obesity and
type 2 diabetes, allergies, and environmental sustainability (Taylor and Awika, 2017). For example, sorghum and
millets are increasingly being explored in gluten-free applications targeting consumers who suffer from celiac dis-
ease and intolerances to wheat and related cereals. Another perceived advantage of sorghum and millets is their
completely genetically modified organism (GMO)-free nature that can allow them to be used in specialty products
such as organic foods and humanitarian aid for countries with GMO restrictions.

This chapter is structured with the purpose of providing innovative ideas to enable mainstreaming of sorghum
and millets in modern foods, against this background of prevailing socioeconomic trends, all of which provide op-
portunities for creating a sustained “demand pull” for these crops. Opportunities for creation of sustainable business
enterprises to address the consumer demand for nutritious value-added products from these climate-smart, hardy
crops (see Chapter 1) are discussed, with a focus on technology as well as the “ecosystem” required to nurture and
sustain these business enterprises. The chapter specifically focuses on applications of sorghum and millets in ready-
to-eat (RTE) foods and other modern convenience-type foods and beverages, plus some feed products and the
various technologies used for their manufacture, for example, extrusion cooking. To highlight the global nature
of sorghum and millet food, beverage, and feed product development, the chapter brings perspectives and provides
product examples from the United States, India, and Africa. Products covered include breakfast cereals and snacks,
precooked pasta, unleavened flatbreads, health-promoting products, fortified blended foods (FBFs) used in
government-sponsored aid programs, beers and nonalcoholic malt drinks, other nonalcoholic fermented or
powder-based beverages, plus pet food and aquatic feed. These innovative applications point toward a gradual
mainstreaming of sorghum and millets against the background of increasing demand for alternative grains as dis-
cussed previously.
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2. HUMAN FOOD, PET FOOD, AND ANIMAL FEED APPLICATIONS—WITH A FOCUS
ON THE UNITED STATES

2.1 Snacks and Breakfast Cereals

RTE savory snacks and breakfast cereals constitute a multi-billion dollar market in the United States. Sorghum has
seldom been used as the main ingredient in the production of crispy/crunchy expanded snack and breakfast cereal
products, many of which are produced by the high-temperature short-time extrusion cooking process. Other cereal
grains such as maize, wheat, oats, and rice have traditionally been used exclusively for these products. However,
today the use of sorghum in this food product category is slowly increasing. One well-publicized example is a range
of breakfast cereals which includes products like puffed oat rings, shredded wheat, and flakes and contains whole
grain sorghum flour and sorghum bran from an antioxidant-rich, high-polyphenol variety. Scientific literature is also
relatively scarce but growing as sorghum gains popularity in these applications. A limited number of studies have
focused on expanded snacks using extrusion and sorghum alone (Gomez et al., 1988; Almeida-Dominguez et al.,
1994; Devi et al., 2014; Mkandawire et al., 2015) or a combination of sorghum with maize, rice, wheat, groundnut
(peanut), and cowpea-based ingredients (Falcone and Phillips, 1988; Youssef et al., 1990; Siwawej and
Trangwacharakul, 1995; Licata et al., 2014). Results indicated that addition of maize, rice, or wheat flours to sorghum
improved the radial expansion and sensory properties of snacks, while incorporation of the high-protein legume
flours like groundnut and cowpea had variable effects.

In one research study, for example, the effect of a range of ingredient and extrusion process variables on the phys-
ical properties of directly expanded extruded sorghum snacks was investigated (Puppala, 2003). The parameters
that were studied included extrusion in-barrel moisture, screw speed, sorghum variety, decortication level of sor-
ghum flour, decorticate (bran) addition, and level of maize flour. The results are shown in Figs. 10.1 and 10.2 and
explained in the following. It was clear that radial or sectional expansion reduced with increased level of sorghum
flour (Fig. 10.1A), irrespective of the sorghum variety or decortication level. The breaking strength of the snacks
showed an inverse relationship with expansion, which is a standard result, indicating that extrudates became harder
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FIGURE 10.1 Effect of flour composition on (A) sectional expansion index (SEI) and (B) breaking strength of sorghum-based directly
expanded snacks produced by extrusion (Puppala, 2003). AXP = variety Asgrow XP6126, Jow = variety Jowar 1, Low Deco = low decortication
level, High Deco = high decortication level.
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FIGURE 10.2  Effect of flour decorticate (bran) addition on (A) sectional expansion index (SEI) and (B) breaking strength of sorghum-based
directly expanded snacks produced by extrusion (Puppala, 2003).

with increased level of sorghum (Fig. 10.1B). Starch forms the continuous gas-holding matrix in the expanded extru-
dates, while protein and fiber usually have a disrupting effect. Sorghum flours had higher protein (10.7%—12.3%)
and less starch (72.0%—77.0%) compared with maize flour (6.7% and 81.0%, respectively), which was the reason
for the poor expansion of extrudates with increasing level of sorghum. Extrudates from sorghum variety Jowar I
had higher sectional expansion than those from variety Asgrow XP6126 (Fig. 10.1A) and was also due to the rela-
tively higher starch and lower protein contents (PCs) in the former. Effects of sorghum variety on breaking strength
and decortication level on both expansion and breaking strength did not show any clear trends. The breaking
strength of comparable commercial products (puffed snacks) made with maize was in the same range
(9.78—12.56 N) as the experimental products made from 100% sorghum flour, which was an encouraging finding.
A decrease in in-barrel moisture (range 15.5%—17.7%) and increase in screw speed (range 300—400 rpm) led to an
increase in expansion, which is also a standard result for expanded extrudates from any cereal ingredient including
sorghum (Gomez et al., 1988; Almeida-Dominguez et al., 1994). Addition of the decorticate to Jowar I sorghum flour
led to a more nutritious product but clearly reduced the expansion and increased the breaking strength of the extru-
dates (Fig. 10.2). The decorticate had higher fiber (5.5%), protein (13.6%), and lipid (8.1%) and lower starch (41.8%)
contents compared with sorghum flour (fiber, protein, lipid, and starch contents of 0.1%, 10.6%, 1.6%, and 79.4%,
respectively), which was the reason for the poor expansion on addition of the former, and the corresponding higher
breaking strength.

2.2 Gluten-Free Precooked Pasta

Pasta products such as spaghetti and macaroni are popular foods in many countries because they are versatile,
natural, and wholesome, and they are made using a relatively simple manufacturing process (Kruger et al., 1996).
Durum wheat semolina is the best and most common ingredient used in pasta as it contains high-quality gluten
in high concentration and has the right particle size, attributes important for optimum processing, storage, and cook-
ing of pasta. Durum wheat or common wheat flours or a mixture can also be used in pasta production. However, the
use of sorghum or millets in place of wheat to produce gluten-free pasta presents significant challenges. This is
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because gluten proteins of wheat have the unique property of forming an extensible, viscoelastic, and cohesive mass
when mixed with water. Pasta relies on this property of gluten to strengthen and retain its structure, maintain the
integrity of cooked product, and reduce cooking losses.

For individuals with celiac disease, a chronic enteropathy caused by consumption of prolamins present in wheat
(gliadins), rye (secalins), barley (hordeins), and possibly oats (avidins) (Murray, 1999; Thompson, 2001), a diet free
of gluten is advised. Sorghum is a recommended gluten-free food ingredient (Mestres et al., 1993), but due to it
being devoid of gluten-like proteins, sorghum lacks the properties of wheat that make the latter ideal for pasta.
In principle, a good quality pasta product cannot be produced with sorghum and other grains besides wheat
when used alone (FAO, 1995). In the study described in the following on development of sorghum-based pasta,
various additives were investigated to overcome these shortcomings. In addition, cooking the flour (starch gelatini-
zation) was used as a binding mechanism to compensate for the absence of gluten proteins. Starch gelatinization also
imparts precooked or rapid cooking properties to the pasta.

Optimum processing conditions were obtained for producing sorghum-based, precooked pasta using both lab-
and pilot-scale extrusion-based cooking and forming processes (Cheng et al., 2007). A relatively high-moisture
(>30% wet basis) extrusion cooking process led to gelatinization of starch for achieving binding of the product
matrix, while at the same time keeping the specific mechanical energy (SME) in the moderate range (<100 k] /kg)
in order to form a dense, blister-free, unexpanded product. At lab-scale, the effects of adding corn starch, monoglyc-
erides, eggs, gums, and natural color on the quality characteristics of the finished product were evaluated. Drying of
the pasta with humidity adjustment improved its appearance, and addition of 0.5% monoglycerides to the sorghum
flour prior to extrusion significantly improved pasta cooking quality (higher weight gain or water absorption and
lower cooking loss during boiling in water based on standard methods; Fig. 10.3). Monoglycerides act as lubricating
agents and reduce the mechanical-induced shear and degradation of starch granules, leading to better cooking qual-
ity. However, addition of eggs and gums to the sorghum flour did not improve pasta cooking quality.

Results from the pilot-scale study showed that the combination of low screw speed (185 rpm) and high in-barrel
moisture (37%) gave better pasta appearance and cooking quality. The cooking loss ranged from 4.32% to 5.91% and
was at the same level as the commercial durum semolina-based product (Fig. 10.4). Cooking time of pasta made with
sorghum flour and 0.5% monoglycerides ranged from 5.5 to 7 min and was significantly lower compared with the
semolina-based commercial product, indicating that the former was precooked. Differential scanning calorimetry
data confirmed this result. No endothermic peak for starch gelatinization was identified for the sorghum pasta,
implying that the products were fully cooked under the test conditions for extrusion and drying. Weight gain of
pasta on cooking ranged from 120% to 129%, which was acceptable. Pasta brightness was also acceptable compared
with the durum wheat commercial product. However, yellowness was not improved by adding whole eggs.

Results from consumer sensory evaluation of the sorghum pastas using a 9-point hedonic scale are shown in
Table 10.1. The control precooked pasta, made from durum wheat semolina flour, had the highest scores for all at-
tributes (but the lowest score for intensity of bitterness), which were significantly higher (P <.05) than the sorghum
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FIGURE 10.3 Cooking loss of sorghum-based pasta produced using lab-scale extrusion, compared with semolina-based pasta (Cheng et al.,
2007). Additives: CS = 10% corn starch, MG = 0.5% monoglycerides, Egg = 10% whole eggs + egg whites, Gum = 2.0% guar + xanthan gums.
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FIGURE 10.4 Cooking loss of sorghum-based pasta produced using pilot-scale extrusion, compared with semolina-based pasta (Cheng et al.,
2007). Additives: CS = 10% corn starch, MG = 0.5% monoglycerides, Egg = 6% whole eggs.

TABLE 10.1 Consumer Evaluation Results for Pasta Produced by Pilot-Scale Extrusion

Pasta Sample Appearance ~ Chewiness = Texture/Mouthfeel  Flavor  Intensity of Bitterness  Overall Acceptability
Semolina (control) 7.55a 6.80a 7.03a 6.81a 1.84a 7.24a
Sorghum 4.88b 5.61b 5.55b 4.71b 4.09b 5.24b
Sorghum + color 5.13b 5.41b 5.15bc 4.61b 4.28b 5.25b
Sorghum + corn starch ~ 4.79b 5.24b 5.07¢ 5.46b 3.95b 5.09b

Mean values (n = 78) in the same column with the same letter are not significantly different (P <.05).
Data from Cheng, E.M., Alavi, S., Bean, S., 2007. Sorghum-based pre-cooked pasta utilizing extrusion processing. In: 25th Biennial Sorghum Research and Utilization Conference,
January 14—16, 2007, Santa Ana Pueblo, NM.

pastas. The scores of all liking attributes of sorghum pastas were near the neutral region (neither like nor dislike) of
the hedonic scale, and they were not significantly different. The bitter flavor and darker color associated with the
sorghum flour contributed to the poorer sensory quality. The inferior viscoelastic properties of sorghum proteins
were possibly the cause of poor ratings related to inferior texture and mouthfeel. Overall, results from this study
indicated that sorghum-based pasta with good cooking quality and shorter cooking times, compared with commer-
cial pasta, can be produced by extrusion processing after optimization of process variables (in-barrel moisture, screw
speed, and drying humidity) and formulation, especially the inclusion of monoglycerides as lubricating agents dur-
ing extrusion. However, the sensory attributes of the sorghum pasta were poorer compared with the semolina-based
product especially, and this should be the focus of future research. A potential solution could be use of other gluten-
free grains, such as rice, in combination with sorghum.

2.3 Nutritional and Food Assistance Applications

A concerted global effort over the last several years has helped to reduce the population of undernourished peo-
ple. However, there are still close to a billion people around the world who are considered to suffer from chronic
hunger and malnutrition. To help alleviate this tragedy, international agencies such as the United Nations World
Food Programme and national programs like the United States Agency for International Development provide
nutritious basic food products. Micronutrient fortified blended foods constitute a significant portion of these. Mostly,
they are essentially high-protein porridge mixes fortified with vitamins and minerals, typically made from combi-
nations of cereal (primarily maize) and legume (soybean) flours (USAID, Undated). Sorghum can be an alternate
useful cereal ingredient for FBFs. Its advantages include the fact that is an environmentally sustainable crop (low
water input and tolerant to heat stress and drought-like conditions) and not genetically modified and thus aligned
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with often restrictive regulations in recipient countries. Also, importantly, it is also traditionally part of the diet in
many parts of Africa and Asia and acceptable to the people in these regions.

A project at Kansas State University in the United States focused on development and field testing of sorghum-
based FBFs that are precooked and easy to prepare into porridges by end-users and also have superior nutrient den-
sity and acceptability compared with the currently used corn (maize)—soy blend product (CSB Plus); (Joseph, 2016;
Delimont et al., 2017; Chanadang, 2017). Composite flours of sorghum—cowpea (SC), sorghum—soy (SS) and as a
control corn-soy (CS) were extruded on a pilot-scale single screw extruder. Both whole and decorticated sorghum
and maize were used to prepare these composites in order to understand the impact of fiber on processing and prod-
uct characteristics. SC had the highest SME range (286—362 kJ /kg), followed by CS (139—371 kJ/kg), and the lowest
SME was with SS (66—333 k] /kg). SME was found to be positively correlated to starch content in the blends. SC com-
posites had the most stable extrusion process followed by SS and then CS. Significant differences in extrudate phys-
icochemical characteristics were observed between whole and decorticated binary composites on account of their
different starch and fiber contents. Differences were also observed between the composites from the different grains.
Water absorption index for SC was between 4.17 and 5.97 g/g and that for SS ranged from 2.85 to 5.91 g/g and CS
from 2.63 to 5.40 g/g. Percentage starch gelatinization ranged from 85.4% to 98.8% for SC, 90.7% to 96.3% for SS, and
72.6% to 75.5% for CS.

The extrudates were milled into powders for further processing and fortification with nutrients. Milling charac-
teristics were found to be dependent on extrudate bulk density, with low-density extrudates resulting in bigger par-
ticle size and vice-versa. Milled extrudates were evaluated for in-vitro starch and protein digestibility and also
presence of antinutritional factors. Starch digestibility increased after extrusion. There was a significant reduction
in antinutritional factors after extrusion. The phytic acid decreased by 27%—44%, and trypsin inhibitors decreased
by 16.6%—28.1% (Table 10.2). The milled extrudates were fortified by blending with whey protein concentrate, sugar,
oil, and micronutrient premixes of vitamins and minerals.

The final fortified blended porridge foods (SC blends, SS blends, and CSBs were evaluated for physical perfor-
mance using the Bostwick consistency test for viscosity and were found to be within the acceptable range of
9—21 cm/min. These FBFs were also field tested for nutritional efficacy in a controlled randomized trial with
2000 children (aged 6—59 month) in Tanzania over a period of 20 weeks. The results indicated that the sorghum-
based extruded FBFs were equally or more effective in reducing the risk of anemia and vitamin A deficiency
compared with extruded CSB, and the currently being used nonextruded CSB Plus. These studies have shown
that sorghum-based FBFs can be effectively used to expand the basket of products available for food aid
applications.

2.4 Specialty Products—Sorghum Protein Concentrates

As mentioned, sorghum grain is safe for consumption by individuals afflicted with celiac disease. However, uti-
lization of sorghum in human foods is limited partially due to the poor digestibility and lack of functionality of its
proteins, which result from their location in the grain endosperm protein bodies, tight association with starch, and
high degree of cross-linking induced by wet cooking (Duodu et al., 2003). If an economical and scalable process can
be developed for release and/or concentration of sorghum proteins from the endosperm matrix, there is a potential

TABLE 10.2 Changes in Phytic Acid and Trypsin Inhibitor Before and After Extrusion for Production of Fortified Blended Foods

Phytic Acid (mg/100 g) Trypsin Inhibitor—TIA (mng/g)
Formulation RM ME RM ME
SCB-V1 1138.50 £ 5.60a 832.07 £+ 5.68b 228.54 + 8.27a 177.55 £+ 1.04b
SCB-V2 804.22 + 1.74a 560.72 £+ 3.24b 229.79 £ 4.23a 191.75 £ 1.13b
SCB-V3 942.05 + 4.40a 689.21 + 8.06b 233.73 + 2.00a 186.59 + 9.48b
SS'B—V1 0.75 £ 0.02a 0.56 &+ 0.03b 210.60 £ 14.60a 169.53 +0 .93b
CSB 567.54 + 8.52a 317.64 + 2.85b 190.21 + 4.44a 136.67 + 8.33b

CSB, corn soy blend; ME, milled extrudate; RM, raw material; SCB, sorghum cowpea blend; SS’B, sorghum soy blend; TIA, trypsin inhibitor activity, V1, V2, V3,
different varieties of sorghum. Values in the same row not sharing the same subscript are significantly different at P <.05.

Data from Joseph, M.V., 2016. Extrusion, Physico-chemical Characterization and Nutritional Evaluation of Sorghum-based High Protein, Micronutrient Fortified Blended Foods
(Ph.D. thesis). Kansas State University, Manhattan, KS.
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for increase in their digestibility and even functionality and use as a nutritional supplement in gluten-free foods. An
extensive review of current methods for concentration and isolation of sorghum proteins revealed that all of them
are laboratory-scale techniques used for protein characterization and have no potential for commercial scale-up (De
Mesa-Stonestreet et al., 2010). Furthermore, these methods typically use nonfood-grade reagents and do not improve
protein digestibility and functionality.

To overcome the aforementioned limitations, a novel extrusion-enzyme liquefaction (EEL) process was developed
to produce sorghum protein concentrates (De Mesa-Stonestreet et al., 2012). EEL involves extrusion pretreatment of
sorghum flour and starch liquefaction with a thermostable a-amylase, followed by enzyme inactivation, protein sep-
aration, and drying (Fig. 10.5). To demonstrate the concept, a laboratory-scale EEL process was used to produce con-
centrates with higher PC (80% db) and digestibility (D; 74%) than those made by batch liquefaction. The optimum
conditions for producing concentrates with both high PC and D were 32% (wb) in-barrel moisture content, and 2.5%
a-amylase added after extrusion. Using these conditions, EEL was scaled-up to a pilot-scale process to produce sor-
ghum protein concentrates with 72%—80% (db) PC and 62%—74% D, while the batch liquefied control had only 70%
(db) PC and 57% D.

Dynamic oscillatory measurements of dough (55% moisture) and batter (65% moisture) containing sorghum pro-
tein concentrates (5% and 10%), and potato starch were performed to evaluate protein functionality. At lower mois-
ture, pure potato starch and dough containing 10% sorghum protein concentrate had similar elastic and viscous
moduli. At higher moisture, potato starch was more stable and exhibited significantly higher moduli than the batters
with protein concentrates. Sorghum protein concentrates can potentially improve the quality of some gluten-free
foods. EEL shows promise for commercial production of sorghum protein concentrates because of its high
throughput and ability to deliver high PC and digestibility. Demand for sorghum in ethanol production has grown
several fold in the last few decades in the United States (Sorghum Grower, 2018). The by-product stream from the
EEL process, rich in starch and sugars, could be used for ethanol and also high-fructose syrup applications. This will
benefit the economics of the process and its commercialization potential.

2.5 Pet Food and Aquatic Feed

Pet food is a huge market in the United States with annual sales of more than $25 billion. The population of dogs
and cats alone in the United States is close to 165 million, and over two-thirds of households have a pet. Common pet
foods contain between 30% and 60% carbohydrates, primarily from grains (Murray et al., 1999). Sorghum is rarely
used for pet foods due to the lack of scientific data on the nutritional quality and acceptability of sorghum-based
products. In fact, very few pet food brands utilize sorghum as the primary source of starch. Recent human nutrition
studies have shown that sorghum could provide nutritional benefits related to slower digestibility of starch or lower
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FIGURE 10.5 Extrusion-enzyme liquefaction (EEL) process for production of sorghum protein concentrate.
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glycemic response (Simnadis et al., 2016; Anunciacao et al., 2018), which could be advantageous in premium pet
food products targeted toward obese, diabetic, and geriatric pets.

Work at Kansas State University evaluated the effect of particle size on the extrusion of sorghum-based dog food
diets. Two types of nontannin sorghum (white and red) milled to three maximum particle sizes (0.5, 0.8, and 1.0 mm)
were incorporated in a premium dog food formulation and compared with a rice-based dog food formulation. For-
mulas were extruded to achieve processing at two specific thermal energy:SME ratios (STE:SME), using different
combinations of screw speed and preconditioning temperature (high STE:SME at 300 rpm/85—90°C and low
STE:SME at 400 rpm/75—80°C). Water and steam flow in the preconditioner were varied to achieve the desired pre-
conditioner temperature. The mean in-barrel moisture was 26% (wb).

Sorghum variety and milled grain particle size had no effect on SME. However, bulk density increased with par-
ticle size. The diets extruded at 400 rpm/75—80°C had higher bulk density. Percentage starch gelatinization
increased as the particle size decreased (93%, 85%, and 82% of starch gelatinization for 0.5, 0.8, and 1.0 mm particle
size, respectively; Table 10.3). Processing conditions did not influence the starch gelatinization (85% and 87% for
300 rpm /85—90°C and 400 rpm /75—80°C, respectively). The white sorghum had a higher percentage of starch gela-
tinization compared with red sorghum and rice (89%, 85%, and 80%, respectively). In feeding trials (in vivo) with
dogs the sorghum-based pet food products were found to be more palatable than the maize-based control and
also demonstrated lower glycemic response and a prebiotic effect with increase in colonic fermentation by-
products. These results indicated that sorghum can be an effective alternative to traditional grains such as maize
and rice as a carbohydrate source in extruded pet foods.

The increasing cost of fish meal, which is the most expensive macroingredient in aquatic feed, has necessitated the
search for alternative sources of protein. Adedeji et al. (2017) examined the use of distillers dried grain with solubles
from sorghum (sDDGS) in the production of shrimp feed and subsequent growth trials with Litopenaeus vannamei
(Pacific white shrimp /king prawn). High-density shrimp feed pellets can be produced using compression pelleting
or pellet milling, which is a low energy forming process with limited amount of cooking involved or by extrusion
processing that leads to much higher energy input and starch gelatinization. In this study shrimp diets with various
levels of sDDGS inclusion (0%, 10%, 20%, 30%, and 40%), as a replacement for soybean meal, were produced using
extrusion cooking and also by pelleting. SME during extrusion generally increased with sDDGS level. Bulk density
of the extruded feed (0.53—0.58 g/cm”) was lower than that of pelleted feed (0.61—0.65 g/ cm®), although sDDGS

TABLE 10.3 Degree of Starch Gelatinization (Using DSC) of Extruded
Dog Food Based on Grain Sorghum

Extruded Treatments Starch Gelatinization (%)
Red 1.0/400/low T 77.28
Red 1.0/300/high T 83.56
Red 0.8/400/low T 85.05
Red 0.8/300/high T 79.56
Red 0.5/400/low T 92.2
Red 0.5/300/high T 90.8
White 1.0/400/low T 85.31
White 1.0/300/high T 83.5
White 0.8/400/low T 85.85
White 0.8/300/high T 89.45
White 0.5/300/high T 93.55
White 0.5/400/low T 95.46

“Red, red sorghum; White, white sorghum; 0.5, 0.8, and 1.0, particle size in mm; 300 or 400,
extruder screw speed in rpm; low T or high T, low versus high thermal energy input via
preconditioning.
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level did not have an impact on porosity. The finished diets were 100% sinking in water, with some exceptions in the
case of the extruded feed. Pellet durability index (89.4%—96.3%) had an increasing trend up to 20% and 30% sDDGS
for the extruded and pelleted diets, respectively. Extruded feed had a higher degree of gelatinization than
pelleted feed, although the proportion of gelatinized starch generally decreased with sDDGS level. Water stability
(76.2%—91.6%) of the extruded feed was higher than for the pelleted feed and was also significantly influenced
by sDDGS level.

The extruded and pelleted diets were evaluated in two growth trials with Pacific white shrimp for a duration of
9 and 6 weeks in 40 and 60 growth tanks, respectively. In both trials juvenile shrimps (initial weight 0.36—0.38 g)
were stocked at a density of 10 shrimps per tank. Both growth trials resulted in no significant differences in final
mean weight and survival of the shrimp with respect to sDDGS level. Feed conversion ratio (FCR) is defined as the
weight of the input divided by the output (thus weight of feed per weight of shrimp). Based on pooled data,
extruded feeds produced significantly larger shrimps with a lower FCR in trial 1 (Table 10.4). However, pelleted
feeds produced significantly larger shrimps and lower FCR in trial 2 (Table 10.5). Overall results indicated that up
to 40% sorghum DDGS can be used in feed formulations without affecting the growth performance or weight gain
of Pacific white shrimp. Sorghum DDGS is a by-product of the fuel ethanol production process which is discussed
extensively in Chapter 13: Industrial and Nonfood Applications. Such value-added uses of sorghum DDGS have
the potential of increasing the commercial viability of the ethanol industry and the market value and utilization of
sorghum.

TABLE 10.4 Response of Juvenile Pacific White Shrimp/King Prawn (L. vannamei) (Initial Weight Mean + Standard Deviation;
0.35 + 0.032 g) to Sorghum Distilled Dry Grains With Solubles (sDDGS)-Based Extruded and Pelleted Diets After a 63-Day
Growth Trial (Trial 1)

sDDGS Level (%) Mean Weight (g) Final Biomass per Tank (g) Feed Conversion Ratio Survival (%) Weight Gain (%)

EXTRUDED

0 4.59 37.40 2.99 82.50 1226.08
10 4.48 36.90 3.02 82.50 1175.50
20 4.99 43.60 2.72 87.50 1190.63
30 4.69 43.40 2.87 92.50 1260.90
40 4.82 42.00 2.83 87.50 1153.29
P value .6011 .0350 .6296 .2959 .5258
PELLETED

0 4.50 36.40 3.10 82.50 1196.70
10 428 33.60 322 80.00 1171.10
20 422 35.60 3.24 85.00 1062.60
30 443 34.70 3.10 80.00 1163.80
40 4.18 31.30 3.26 75.00 1060.10
P value 9045 .5410 .9668 .8938 7167
POOLED DATA

Extruded 471 40.67 2.89 86.50 1201.28
Pelleted 4.32 34.35 3.18 80.50 1130.90
P value .0135 .0001 .0106 .0842 1.8226

Based on Student—Newman—Keuls test, no significant differences (P >.05) were found among treatment means (1 = 4). FCR, feed conversion ratio = feed offered per
shrimp /weight gain per shrimp.

Data from Adedeji, A.A., Zhou, Y., Fang, X., Davis, D.A., Fahrenholz, A., Alavi, S., 2017. Utilization of sorghum distillers dried grains (SDDGS) in extruded and steam pelleted
shrimp diets. Aquacult. Res. 48, 883—898.
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TABLE 10.5 Response of Juvenile Pacific White Shrimp/King Prawn (L. vannamei) (Initial Weight Mean + Standard Deviation;
0.38 + 0.02 g) to Sorghum Distilled Dried Grain With Solubles (sDDGS)-Based Extruded and Pelleted Diets After a 42-day
Growth Trial (Trial 2)

sDDGS Level(%) Mean Weight(g) Final Biomassper Tank (g) Feed Conversion Ratio Survival (%) Weight Gain (%)

EXTRUDED

0 4.14 37.10 212 90.00 971.80
10 4.02 36.42 2.19 90.00 974.40
20 4.66 42.78 1.84 91.67 1171.80
30 4.69 43.62 1.82 93.33 1174.80
40 4.33 40.98 1.99 93.33 1077.10
P value .0802 .0822 .0592 .9549 .0971
PELLETED

0 4.86 37.56 1.78 (ab) 78.00 1177.30
10 4.99 39.00 1.71 (ab) 78.00 1247.20
20 5.15 43.83 1.66 (b) 85.00 1280.80
30 4.68 35.82 1.84 (ab) 76.67 1130.40
40 4.19 37.62 2.07 (a) 90.00 1002.80
P value .0587 3391 .0469 1699 .0579
POOLED DATA

Extruded 4.37 40.18 1.99 91.67 1073.98
Pelleted 4.77 38.76 1.81 81.53 1167.69
P value .0169 2629 .02 .0005 .0881

Based on Student—Newman—Keuls test, no significant differences (P >.05) were found among treatment means (1 = 6). FCR, feed conversion ratio = feed offered per
shrimp /weight gain per shrimp.

Data from Adedeji, A.A., Zhou, Y., Fang, X., Davis, D.A., Fahrenholz, A., Alavi, S.S, 2017. Utilization of sorghum distillers dried grains (sDDGS) in extruded and steam pelleted
shrimp diets. Aquacult. Res. 48, 883—898.

3. CONVENIENCE FOODS AND BEVERAGE APPLICATIONS—WITH
A FOCUS ON INDIA

3.1 Sorghum- and Millet-Based Commercial Products

The growth in demand for sorghum- and millet-based convenience foods and beverages in India is evidenced by
the introduction of a number of innovative products in the market. The products are targeted at addressing lifestyle
diseases based on the health benefits of sorghum and millets. This section describes the development of and tech-
nologies used in the manufacture of the various types of millet- and sorghum-based products that are now popular
in the Indian market. Additionally, selected examples of millet/sorghum-based commercial value-added food prod-
ucts available in India are presented in Table 10.6.

3.1.1 Flaked Products

Flaking of millet and sorghum is achieved by first moisture conditioning of the grains, usually up to a moisture con-
tent above 17%. This is followed by flaking, which is carried out either using an edge runner (Fig. 10.6A) or a suitably
designed roller flaker (Fig. 10.6B). The flaked product is finally roasted, where the moisture content is reduced to 6%
—8%. The eftficiency of flaking is dependent on the critical step of moisture conditioning of the grains before undertak-
ing the flaking and roasting processes. For each grain type, several process optimization steps need to be undertaken
with respect to moisture conditioning, flaking machine operating parameters, and roasting time and temperature.

The millet and sorghum flakes are packed in air-tight containers or flexible pouches and sold directly as such in
the market (Fig. 10.6C) or used in the production of millet-based breakfast cereals together with other ingredients
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TABLE 10.6 Select Millet—Sorghum-Based Commercial Value-Added Food Products in the Indian Market

Food Product

Consumed as

Ingredients (Sorghum or Millet Ingredients Are in Bold)

Toasted millet muesli

Multigrain high-protein millet-
based flour

Multi millet dosa mix

Multigrain choco malt

Millet porridge mix

Bisibelebath with millets and oats

Millet rawa

Millet chikkis (bars)

Millet pappad

Ragi flakes

Millet bites (cookies)

Millet sathumaavu mix

Breakfast Cereal

High-protein millet-based flour for Indian
flatbreads (roti) as nutritious food for
children and adults (pre—post workout
food)

Breakfast/snack

Health drink

Weaning food

Breakfast food

Breakfast mix

Snack

Snack

Breakfast food

Snack

Organic baby food

Rolled whole grain oats, finger millet, pearl millet flakes,
toasted with palm Jaggery, dried fruits, and nuts. Variants:
dark chocolate/cranberry, almond /roasted cacao bean, raisin/
fig, and honey with salted pistachios

Whole wheat flour, defatted soya flour, amaranth flour, and
foxtail millet.

Gluten-free variant: foxtail millet, amaranth flour, defatted
soya flour, bengal gram flour, potato starch, tapioca flour, and
edible gum

Unrefined multigrain flour variant to control blood sugar: whole
wheat flour, foxtail and pearl millets, bengal gram flour, whole
green gram flour, semolina, defatted soya flour, wheat bran,
psyllium husk, fenugreek powder, flax seeds powder.

Kodo millet, little millet, foxtail millet, rice, pearl millet,
finger millet, sorghum, black gram, fenugreek, cumin, salt

Wheat, finger millet, pearl Millet, red rice, white rice, green
gram, black gram, barley, maize, peanut, horse gram, bengal
gram, soya, kidney beans, peas, red beans, green beans, cocoa
powder, cashew, almond, pistachios, cardamom, jaggery, dry
ginger, Senna auriculata.

Barnyard millet, kodo millet, little millet, foxtail millet,
green gram, cumin seeds, cashew, and almond.

Little millet, kodo millet, oats, green gram, black gram, bengal
gram, tamarind powder, red chilly, coriander seeds, cinnamon,
asafoetida cake, turmeric powder, cloves, mustard seeds,
desiccated coconut, salt

Coarse semolina of roasted sorghum, pearl millet, and finger
millet

Roasted sorghum, pearl millet, wheat, sugar, liquid glucose
and jaggery

Black gram flour, yellow sorghum, red chilly, asafoetida,
edible vegetable oil

Finger millet, sugar/jaggery

Multi millets

Variants:

multi millet-caraway/, multi millets-flaxseeds/Multi-multi
millet-almond, -multi millet-chocolate, -multi millet-coconut

7 different millets (barnyard millet, finger millet, foxtail
millet, kodo millet, little millet, pearl millet, sorghum),
sesame seeds, rice, black gram, green gram, roasted gram,
lentil, wheat dalia, sago, horse gram, maize, almonds, cashew,
cardamom.

Data compiled based on market survey/information sourced from different manufacturers of sorghum and millet products.

such as honey, nuts, seeds, dehydrated fruits, and vegetables (Fig. 10.6D). Speciality flake-based products such as
“organic” mixed millet flakes prepared from finger millet, foxtail millet, little millet, kodo millet, and blended
with “organic” amaranth, fruit powders, salt, sugar, minerals, and vitamins, in packaged and branded forms are
also popular in India. It is important to note that these products need to be packed under dehumidified conditions
and using packaging material having appropriate moisture and oxygen barrier properties, thus enhancing shelf-life
and delaying the onset of rancidity, which is often associated with millet-based products. To overcome the problem
of rancidity in millet flakes and other millet-based products (especially those based on pearl millet), research was
undertaken to understand the diversity in rancidity profile of commercial pearl millet lines available in India
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FIGURE 10.6 Some equipment used for flaking of sorghum and millet, and sorghum flakes and breakfast food made from flaked sorghum and
millet in India. (A) Edge runner, (B) roller flaker, (C) Sorghum flakes, (D) Breakfast food. Pictures (A) and (B) courtesy of Mathesis Engineers Pvt. Ltd,
Hyderabad, India, Pictures (C) and (D) courtesy of Priyanka Durgalla, ICRISAT, Hyderabad, India.

(Datta Mazumdar et al., 2016). The study revealed the existence of a diversity in rancidity profile among the various
pearl millet lines studied. The study was based on monitoring and comparing the progression in development of
oxidative rancidity and hydrolytic rancidity by measuring peroxide value (PV) and acid value (AV) in fat extracted
from flours of the pearl millet lines, which had been stored under accelerated storage conditions. PV and AV are in-
dicators of the extent of oxidative rancidity and hydrolytic rancidity, respectively. Thus varieties which develop low
PVand AV values are less susceptible to rancidity compared with varieties which develop high values, under similar
conditions of accelerated storage. The data obtained from this study are presented in Fig. 10.7 and show the potential
for developing shelf-stable millet-based products using pearl millet varieties with low tendency to become rancid, in
association with the right processing (thermal processing and addition of antioxidants) and packaging interventions.

3.1.2 Puffed and Extruded Products

Popping of millets and sorghum results in delicious puffed (popped) products, which are consumed as snacks.
The popping quality of the millet and sorghum grains varies with variety, grain hardness, and the moisture content
of the grains. A number of studies have contributed toward understanding the popping process in millets and sor-
ghum (Shukla et al., 1986; Thorat et al., 1988; Murty et al., 1982; Malleshi and Desikachar, 1981). Kernels with me-
dium to thick pericarp, hard endosperm, and conditioned to a typical grain moisture content of 15%—18%
(Sailaja, 1992) are critical for obtaining maximum popping yield. Grain popping in India has traditionally been
done using roasting. However, with the growing demand for millet- and sorghum-based “pops,” a number of
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FIGURE 10.7 (A) Peroxide value (PV) and acid values (AV) (10-day storage) of pearl millet varieties/hybrids showing high susceptibility
toward rancidity (either PV or AV > 36). (B) PV and AV (10-day storage) of pearl millet varieties/hybrids showing low susceptibility toward
rancidity (either PV or AV < 36). (A and B) Adapted from Datta Mazumdar et al., 2016. Determination of Variability in Rancidity Profile of Select
Commercial Pearl Millet Varieties/hybrids. DC 24. Poster presented in CGIAR Research Program on Dryland Cereals Review Meeting held at Hyderabad,
India, 5-6 October 2016. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telengana, India. http://oar.icrisat.org/10422/.

mechanical popping machines have been developed. The use of microwave oven for popping sorghum has also been
explored (Mishra et al., 2015). Grain having higher bulk density, true density, and hardness was found to positively
affect the popping volume and yield when using microwave oven popping. In addition, grains with high amylose
content were found to exhibit better popping yield, volume, and resulted in “pops” with a higher sensory score. The
study also reported better popping with kernels having a medium-to-thick pericarp.

A number of extruded products made using sorghum and millets as the main ingredients in the formulations are
also popular in India. Datta Mazumdar (2012) showed that extruded products with acceptable sensory and textural
quality suited to the Indian palate can be prepared using an appropriate combination of sorghum/millets and pulses
(Fig. 10.8). Dehulling (decortication) of sorghum and pearl millet grains was found to reduce product hardness and
resulted in crunchier extrudates with both sorghum and pearl millet. Composite flours were prepared using whole
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FIGURE 10.8 Mean sensory scores (9-point hedonic scale: 1= like extremely, 9 = dislike extremely) for texture and overall acceptability
obtained during sensory evaluation of extrudates obtained from different composite flours, based on sorghum and pearl millet (data shown in
primary Y-axis). The corresponding peak force values obtained during textural analysis are also plotted (data shown in secondary Y-axis). The best
blends DPM + PP and DS + CP + GN are circled. CP, Chickpea; DPM, dehulled pearl millet; DS, dehulled Sorghum; GN, ground nut; PP, Pigeon
Pea; WPM, whole pearl millet; WS, whole Sorghum.

sorghum and whole pearl millet as well as dehulled sorghum and dehulled pearl millet along with the other crops
cultivated in the semi-arid tropics, namely chickpea, pigeon pea, and groundnuts. The controls were 100% whole/
dehulled sorghum flour and 100% whole/dehulled pearl millet flour, and the composite flours comprised chickpea
flour (30%), pigeon pea flour (30%), or a blend (30%) of equal combination of chickpea—groundnut flour or pigeon
pea—groundnut flour. Extrusion cooking was carried out using a twin screw extruder (temperature: 115 and 90°C for
two different heating zones, screw speed: 400 rpm, and die diameter: 3 mm), and texture and sensory analysis of the
extrudates was conducted.

Sensory analysis, involving an informal consumer panel, indicated that in the case of the sorghum blends, extru-
dates prepared from the blend of dehulled sorghum, chickpea, and groundnut (70:15:15) was most acceptable. This
correlated well with its high expansion ratio (2.80 + 0.11) and low bulk density (0.16 + 0.01 g/cm®) as well as with
the texture analysis data (peak force = 18.12 N and slope = 0.09 N/mm). In the case of the pearl millet blends extru-
date prepared from dehulled pearl millet and pigeon pea (70:30) was found to be most acceptable by the sensory
panel. The sensory data were further supported by the low values obtained for peak force (16.81 N) and slope
(0.01 N/mm). The expansion ratio was 2.81 + 0.09 and the bulk density 0.22 & 0.01 g/cm?>. The nutritional profiles
of the blends were also superior when compared with the 100% pearl millet control. A number of healthy extruded
snacks have been developed based on this study and commercialized through entrepreneurs in India (Sharma et al.,
2016).

3.1.3 RTE Sorghum/Millet Roti (Unleavened Flatbread)

Sorghum roti (unleavened Indian flatbread) is known by various names in different languages of India, for
example, chapati (Hindi), bhakri (Marathi), rotla (Gujarati), and rotte (Telugu). Roti is consumed by children from
the age of 2 years as well as adults (Subramanian and Jambunathan, 1980), either at breakfast, lunch, or supper. Oc-
casionally, they are sun-dried and stored for more than a week. Roti is consumed with several side dishes depending
upon the socioeconomic status of the consumer, for example, cooked vegetables, dhal (various soups/curries pre-
pared from pulses), meat, milk, curd, buttermilk, pickles, chutneys, sauce, and so on. They are often softened
with milk or buttermilk when used to feed old people and children.

Traditionally, sorghum roti is prepared manually by women in India, using approximately 50 g flour mixed with
50 mL of warm water in increments and is kneaded by hand (Fig. 10.9) on a smooth wooden board (5—7 cm high)
into a dough (Subramanian and Jambunathan, 1980). As the dough attains a proper consistency, it is made into a
6-cm diameter ball and pressed by hand into the form of a circular disk. The disk is placed on the wooden board
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FIGURE 10.9 Traditional method of preparation of sorghum roti. (A) Preparation of Sorghum dough. (B) Roti dough shaping with hands.
(C) Pan baking of shaped dough to obtain roti. Pictures courtesy of Harshavardhan Mane, ICRISAT, Hyderabad, India.

and flattened by fast and deft hand strokes into a thin circle or formed into a disk by hand. Small quantities of dry
flour are used as dusting flour to eliminate stickiness during handling. Roti size varies from 12 to 25 cm in diameter
and 1.3—3.0 mm in thickness, depending upon the region. Today, with the growing demand for ready-to-cook (RTC)
and ready-to-heat (RTH) sorghum and millet rotis, especially targeting the diabetic population, a number of roti-
making machines have been developed and are available commercially. These machines work on the principle of
mechanical bread dough rolling and sheeting and are available in semiautomatic as well as automatic formats
(Fig. 10.10).

The demand for healthy, low glycemic index (GI) and gluten-free alternatives and also for convenience in
preparation due to lack of cooking time from the growing middle class, double income, and nuclear families in India
has resulted in the development and commercialization of a number of RTE/RTH (ready-to-heat) sorghum/millet
roti—type products. These RTE/RTH rotis are prepared using sorghum /millet flour, and shelf-stability is obtained
mainly through the use of the permitted preservative sorbic acid (added as potassium or sodium sorbate). The
Food Safety and Standards Authority of India, under the Food Safety and Standards Regulations (FSSAI, 2011), per-
mits the use of sorbic acid in roti up to a maximum of 1000 ppm. The use of sorbic acid along with salt, sugar, and
citric acid in dough for wheat-based roti followed by in-pack pasteurization at 90°C has been reported to result in a
product with shelf-life of up to 6 months (Arya, 1984). Similar approaches for extending the shelf-life of RTE sor-
ghum/millet roti have been adopted along with innovations in packaging. With the aim of reducing the GI of the
product, multigrain roti using varying combinations of sorghum, millets, and pulse flours to replace a certain per-
centage of the traditionally used wheat flour is also another popular type of RTE/RTH roti in the Indian market.

(A) (B)

FIGURE 10.10 Commercial roti-making machine and RTE sorghum roti. (A) Roti making machine. (B) RTE sorghum roti. Pictures courtesy of
T. Sai Manideep, ICRISAT, Hyderabad, India.
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3.2 Sorghum- and Millet-Based Health Foods

Sorghum- and millet-based health foods, especially fermented foods, are popular in India. These fermented foods
are being explored as sources of probiotics due to growing consumer demand. Research on understanding the pro-
biotic potential of sorghum and millets has led to isolation of bacteria from sorghum and pearl millet flour and batter
samples and characterization of their probiotic properties (Kunchala et al., 2016). The bacteria isolated were charac-
terized for various traits including gram staining, morphology, biochemistry, IMViC tests, probiotic potentials (acid
[pH 2 and 3], bile [0.5%], and NaCl [6% and 9%] tolerance), phenol tolerance (0.4%), antibiotic tolerance, and anti-
microbial activity against human pathogens. A total of nine probiotic bacterial isolates were shortlisted based on
these traits (Table 10.7). The sequences of 16s rDNA gene of the nine isolates were found to match Bacillus subtilis
(two isolates), Bacillus cereus (three isolates), Bacillus pumilus (one isolate), Bacillus amyloliquefaciens (one isolate),
Sphingobacterium thalpophilum (one isolate), and Brevibacterium sp. (one isolate) in Basic Local Alignment Search
Tool analysis. This study indicated that the selected bacteria isolated from sorghum and pearl millet could be
exploited to develop new probiotic foods. In addition, there are a number of traditionally fermented sorghum-
and millet-based foods in India that have the potential to be explored and developed into probiotic foods such as
ambali and rabadi. They are balanced composite foods, rich in B vitamins, and are well suited to hot climates owing
to their content of lactic acid, which acts as a preservative. Lactic acid bacteria fermentation contributes toward their
safety, nutritional value, shelf-life, and acceptability. Furthermore, it is reported that fermented products involving
lactic acid bacteria fermentation can also have viricidal and antitumor effects (Blandino et al., 2003). The methods of
preparation and properties of ambali and rabadi are briefly described in the following.

3.2.1 Ambali (Fermented Nonalcoholic Drink Using Finger Millet)

Ambali is a finger millet—based semiliquid fermented product popular in the South Indian states of Telangana,
Tamil Nadu, and Karnataka (Sarkar et al., 2015). The preparation process involves mixing finger millet flour with
rice starch (flour:starch ratio of 1:4) followed by soaking and fermentation overnight in earthen pots. Leuconostoc mes-
enteroides, Lactobacillus fermentum, and Streptococcus faecalis are reported to be responsible for the fermentation pro-
cess (Ramakrishnan, 1980). The fermented product is then diluted in water to the desired consistency for
consumption. Salt is added to taste, and the ambali is simmered over low heat, cooled, and consumed. The fermen-
tation process enhances the nutritional quality of the product by increasing the digestibility of carbohydrates and
proteins. The bacterial metabolism during fermentation results in an improved indispensable (essential) amino
acid profile, including tryptophan (Singh and Raguvanshi, 2012), and increased levels of vitamins such as riboflavin
and thiamine. The fermentation process also reduces the levels of antinutritional factors such as phytic acid and thus
enhances the bioavailability of minerals. Being a rich source of calcium as well as potential probiotic bacteria, ambali
is considered beneficial both as a weaning (complimentary) food as well as geriatric food.

TABLE 10.7 Probiotic Properties, Identity, and National Center for Biotechnology Information (NCBI) Accession Numbers of the Nine
Probiotic Potential Bacteria Isolated from Flour and Batter Samples of Sorghum and Millets

Acid Tolerance Bile Tolerance NaCl Tolerance Accession
Isolate (pH) (%) Phenol Tolerance (%) Identified Isolate Number
PHFB- 2 0.3 0.2% 9 Bacillus subtilis —
22
PHFF-11 3 0.5 0.2% 6 Bacillus cereus KM624626
S6SF-44 2 0.3 Nil 3 Bacillus amyloliquefaciens KM624628
S8CF-32 2 0.5 Nil 9 Bacillus subtilis KM624629
S8SF-4 2 0.5 Nil 3 Sphingobacterium KP326566

thalpophilum

SKSB-14 3 0.3 Nil 3 Brevibacterium sp KM817772
SKSB-55 3 0.3 Nil 6 Bacillus cereus KM658265
SKSEF-7 2 0.3 Nil 6 Bacillus cereus KM658262
SKSF-8 3 0.3 Nil 9 Bacillus pumilus KM658263

Data from Kunchala et al., 2016. Characterization of potential probiotic bacteria isolated from sorghum and pearl millet of the semi-arid tropics. Afr. J. Biotechnol. 15,
613—621.
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3.2.2 Rabadi (Fermented Nonalcoholic Drink Using Pearl Millet)

Rabadi is a popular drink in the north-western part of India. It is a traditional lactic acid bacteria-fermented prod-
uct prepared with pearl millet and wheat (Sathe and Mandal, 2016). Improvement in the protein quality of rabadi is
achieved by addition of dairy protein in the form of curd. Blandino et al. (2003) reported that non-lactic acid bacteria
such as Bacillus and Micrococcus are also associated with rabadi. The type of bacterial flora developed in such fer-
mented foods depends on the water activity, pH, salt concentration, temperature, and the composition of the
food matrix. Preparation of rabadi involves mixing of pearl millet and wheat flours in equal proportions with
curd added (flour to curd ratio 1:2.5) to provide the starter culture. This is followed by preparation of a slurry by
addition of water (flour to water ratio 1:6) and allowing overnight fermentation in earthen pots. Salt is added to
this fermented batter to taste, and the mixture simmered over a low flame. The product is then cooled, spiced,
and consumed (Gupta and Nagar, 2010).

3.2.3 Healthy Dry Premixes

Today, “Ragi Malt” is one of the most popular healthy dry premix products in India. Traditionally, especially in the
southern part of India, “ragi malt” is the most common and popular homemade millet-based weaning food and is
prepared using finger millet, which is called ragi in India. Finger millet is notably, rich in calcium
(364 £ 50 mg/100 g), along with its other nutritional attributes (Longvah et al., 2017) and is a very suitable cereal
for preparing weaning foods. However, in order to enhance carbohydrate digestibility, improve the essential amino
acid profile and vitamin content, and enhance micronutrient bioavailability by reducing antinutritional factors, malt-
ing (sprouting) of finger millet is undertaken as an important unit operation for preparing ragi malt. The finger millet
grains are washed to remove stones and dirt, the water drained off, and the moist grains are then allowed to sprout
in a vessel covered with a moist cloth. Depending upon the temperature, sprouting takes between 1 and 2 days. The
grains are washed with fresh water every day, and the water drained off to maintain optimum moisture content
required for sprouting and to avoid any microbial growth. The sprouted grains are then dried in the shade, toasted,
ground into flour, sieved, and blended with sugar and/or with spices such as cardamom and stored in air-tight con-
tainers. Ragi malt powder is traditionally mixed in warm milk and served to children. In India ragi malt is available
as a commercially packaged product, both in its traditional form as well as in different variants/flavors such as choc-
olate (blended with cocoa powder) or fruit (blended with fruit powders). The concept of ragi malt has now been
further adapted in the Indian market using other millets and sorghum and mixed millet/sorghum malt premixes
and also different variants such as weaning and health drinks are available.

In the Indian market, a number of other innovative beverage premixes have been developed and commercialized
which leverage the low GI (Vahini and Bhaskarachary, 2013), high-dietary fiber, and high polyphenol characteristics
of millets and sorghum. Mixed millet drink premixes and other similar products are prepared by adding ingredients
such as foxtail millet, proso millet, barnyard millet, little millet, kodo millet, green gram (mung bean), and spices
such as cardamom, cashew, and almond in various proportions, after appropriate pretreatment (malting, roasting)
of the grains. These beverage premixes are marketed in India as gluten-free, slowly digestible (low GI), and rich in
bioactives, vitamins, and micronutrients.

Another product concept that has been adapted in the Indian market is the use of the antioxidant-rich bran frac-
tion of different millets as a “fiber enhancer” for food products. The fiber enhancers are sold as powdered mixes and
are added as an ingredient in formulations of different food products in amounts as per the fiber content desired. The
mixed millet fiber enhancers can be used to enhance the fiber contents as well as the flavor profile of products such as
flatbreads (roti), breads, cookies, beverage premixes, and ice cream.

3.3 Supplementary Foods for Addressing Malnutrition

The health benefits associated with millets and sorghum can also be leveraged for the development of healthy
supplementary food products for dietary diversity and alleviating malnutrition among vulnerable populations in
India, especially women and children. These products are targeted at the Indian government’s supplementary nutri-
tion programs (Kapil and Pradhan, 1999; Kapil et al., 1992), such as the Integrated Child Development Services
scheme, mid-day meal program, and other similar programs. Typically, millet or sorghum is incorporated into
the food product as a primary ingredient and provides the source of carbohydrate, dietary fiber, and micronutrients.
The most important aspect that needs to be taken into consideration in using millets and sorghum in supplementary
food products is to ensure that their digestibility is enhanced, antinutrients are reduced, and bioavailability of micro-
nutrients increased. Given that these products are to be affordable and produced locally through involvement of
small and medium enterprises, there are very limited options for exploring high-end processing technologies.
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Millets and sorghum are typically malted to make them suitable for use in these supplementary food products.
The advantages of malting in enhancing nutritional quality, for example, enhanced protein digestibility and nitrogen
solubility index and increased lysine content (the first limiting indispensable amino acid) by transamination in sor-
ghum (Dewar, 2003; Taylor, 1983) and pearl millet (Pelembe et al., 2002, 2003), have been well documented. Using the
right malting conditions to obtain optimum nutritional quality enhancement is critical to ensure maximum benefit of
the malted grains in supplementary nutritional products. A few key points that need to be considered in this regard
are grain variety, diastatic power (amylase activity) of the grains, steeping time and temperature, and moisture con-
tent of the grain at the end of the steeping or soaking period (steep-out moisture). As steep-out moisture depends on
the rate of water uptake into the grain during steeping (Taylor et al., 2006), appropriate treatments during steeping
by addition of cell wall disrupting agents, for example, alkali or commercial hydrolytic enzymes, should be consid-
ered as part of the process optimization step.

The malted grains are then incorporated in supplementary food formulations, either in whole, dehulled,
powdered, or flaked form. Malted millet and sorghum in RTE and RTC (ready-to-cook) format have been used
for providing supplementary nutrition in the tribal areas of India (ICRISAT, 2017). Three different products formu-
lated with malted sorghum or millet as one of the key ingredients have been developed by ICRISAT to address
malnutrition (Fig. 10.11). These are RTC Multigrain Meal (an RTC version of a popular recipe called kichidi that is
traditionally based on a cooked blend of rice and lentils), RTC Jowar Meal (an RTC version of another popular recipe
called upma that is traditionally prepared as a thick porridge made from dry roasted semolina or coarse rice flour),
and an energy and nutrient-dense RTE spread consisting of groundnut, malted sorghum, and malted legumes. The
RTC Multigrain Meal comprises approximately 37% malted sorghum grits and 19% malted foxtail millet grits, the
other ingredients being mung bean, curry tree (Murraya koenigii) leaves, salt, sugar, and spices. The RTC Jowar Meal
comprises approximately 69% malted sorghum grits, and the other ingredients are chickpea, groundnut, curry
leaves, salt, and spices. The RTE spread comprises approximately 23% malted sorghum with groundnut, and malted
chickpea, sugar, and vegetable oil as the other ingredients. The malted sorghum and millet are used in the supple-
mentary food formulations primarily as a source of digestible carbohydrates. The carbohydrate contribution from
the malted sorghum /millet components is approximately 77%, 83%, and 32% in the Multigrain Meal, Jowar Meal,
and the RTE spread, respectively.

In India, the push toward promoting the use of millets and sorghum in supplementary foods for addressing
malnutrition has been prioritized by both the central government (The Pioneer, 2017) and by various state govern-
ments. For example, “bisi bele bath” and “pulao” (traditional rice and pulse-based dishes) where rice is replaced with
millets are provided as part of the mid-day meal program in the State of Karnataka (The Hindu, 2018). Other states in
the country such as Tamil Nadu and Odisha have also taken similar initiatives toward introducing millets in
different supplementary nutrition programs.

(A) (B) (€)

FIGURE 10.11 Malted millet and sorghum ready-to-cook (RTC) and ready-to-eat (RTE) food products for addressing malnutrition. (A) Ready
to cook upma mix. (B) Ready to cook kichidi mix. (C) RTE spread. Pictures courtesy of P.S. Rao, ICRISAT, Hyderabad, India. Adapted from ICRISAT,
2017. Tackling Malnutrition through Nutri-food Basket. An Infographic. http://wwuw.icrisat.org/wp-content/uploads/2017/11/ Tackling-Malnutrition-
Through-Affordable-Nutri.pdf.
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3.4 Affordable Processing Technologies for Sorghum and Millet

An important initiative in India is the development and promotion of the availability of low-cost and efficient
primary processing machinery especially for farming and rural communities in order to encourage entrepreneur-
ship around sorghum- and millet-based value addition. This is being done to enable compression of the value chain
by eliminating intermediaries and transfer of the profit margins from the end consumer price to the farmers. The key
equipment needed to promote community-level rural millet processing enterprises is explained in the following;:

3.4.1 Destoner—Aspirator—Grader

The destoner—aspirator—grader is required to enable farmers to sort and grade, as per the market demand, their
produce at the farm gate or community level. This provides the farmers with bargaining power and linkage to the
markets. A destoner—aspirator—grader (Fig. 10.12A) is used to remove impurities like stones and foreign materials
and also to separate different sizes of grains. The machine has three important components: destoner, which removes
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FIGURE 10.12 Some key equipment used for promoting rural, community-level sorghum and millet processing enterprises. (A) Destoner
cum Aspirator cum Grader. (B) Sorghum Dehuller. (C) Millet mill. (D) Double stage pulveriser. (E) Flour sifter. (F) Roaster. (G) Blender.
(H) Polybag sealing machine. Pictures courtesy of Priyanka Durgalla, ICRISAT, Hyderabad, India.
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FIGURE 10.12 Con't

stones, mud balls, sand, and other heavier materials from the millet grains; aspirator, which removes high- and low-
density impurities like husk, dust and sand; and grader, which sorts large grains from smaller grains in a batch.

3.4.2 Dehuller

Dehulling (also known as decorticating) is the process of removing the outer hull /husk from the grains. In case of
sorghum and pearl millet which are “naked” caryopses and do not have a hull “dehulling” actually involves
removal of the pericarp layers. Traditionally, sorghum and millets have been dehulled manually by women in India,
using a pestle and mortar and/or wooden/stone grinders, which involve considerable drudgery and are time-
consuming. As a consequence, the consumption of small millets has drastically declined in its production regions
and across India. However, with the growing demand for processed and packed sorghum and millet grains, there
is an increasing demand for mechanical dehulling machines to cater to the needs of the small and medium enterprise
sector. A mechanical dehulling machine based on abrasive action of an emery-coated rotating cylinder (Fig. 10.12B)
has been promoted in India to efficiently dehull sorghum, pearl millet, and finger millet. However, this dehuller was
found to be unsuitable for the small millets such as foxtail, little, kodo, proso, and barnyard millets, for which a
specially designed millet mill is used.
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3.4.3 Millet Mill

The millet mill (Fig. 10.12C), based on the principle of rubbing the outer covering of the grains between two abra-
sive stones, is used to remove the husk layer of small millets. The machine is suitable for dehulling small millets and
has a processing capacity of 100 kg/h with grain of 10%—12% moisture content.

3.4.4 Roaster

Roasting of sorghum and millet grains and other ingredients to prepare various RTC products is an important
unit operation that needs to be undertaken by the community-level rural millet enterprises. To enable them to carry
out this operation, each of these processing units is provided with a simple gas-fired roaster (Fig. 10.12F), which is
capable of roasting approximately 20—25 kg of grains per batch. The roaster consists of a rotating pan into which the
grains to be roasted are loaded. The pan is heated by a gas burner from the bottom. Baffles are provided to contin-
uously mix and stir the grains as the roasting takes place through heat transfer from the surface of the hot pan to the
grains. Once the roasting is completed, the grains are discharged by opening a discharge outlet at the center of the
pan. The roasted grains are collected at the bottom into a suitable container.

3.4.5 Pulveriser

A pulveriser (Fig. 10.12D), which is basically a hammer-type mill, is designed to convert the sorghum and millet
grains into flour. The grains pass through two different chambers and are subjected to a hammering action, resulting
in the conversion of the grain to flour. The pulveriser is designed in such a manner that when coarse flour is required,
the second chamber is opened up, thus resulting in a single chamber. This reduces the residence time of the grains in
the chamber, yielding a more coarse flour. The outlet of the pulveriser is provided with interchangeable screens,
which further aids in controlling the desired meal/flour particle size as per requirement from the market. The pul-
veriser is suitable for making both coarse flour (rava) and fine flour, both of which are in high demand in the Indian
market. The mixture of the fine and coarse flour is then passed through a flour sifter for further separation into fine
and coarse flour fractions.

3.4.6 Flour Sifter

A flour sifter (Fig. 10.12E) is designed to grade the flour obtained from the pulveriser into the desired particle size.
The sifter comprises a cylindrical mesh screen placed around a central rotating arm having paddles, which enables
the flour of the desired particle size to be sifted through the mesh screen. The mesh screen is removable, and the
equipment can be fitted with the size of mesh as per the particle size of the flour desired. The flour to be sifted is
loaded inside the cylindrical mesh, through a hopper provided on the top. The fine flour which passes through
the mesh is collected at the bottom, and the coarse flour is collected through an outlet provided at one end of the
rotating cylindrical mesh.

3.4.7 Blender

As the purpose of the community-level processing facilities is to add value to local crops, especially millets and
sorghum, a ribbon blender (Fig. 10.12G) is provided in each of these facilities to enable blending of different ingre-
dients, enabling production of different supplementary food formulation blends. Malted /unmalted roasted sor-
ghum and millet flours/grits of different particle size can be blended with processed pulses, fruit powders, spice
powders, and so on as per the product formulation using the blender. The products can also be fortified with vitamin
and micronutrient premixes using the blender.

3.4.8 Polybag Sealing Machine

To enable the packaging of the supplementary food formulations into heat sealable pouches by the community-
level processing facilities, paddle-operated polybag sealing machines (Fig. 10.12H) are provided. This enables the
employment of rural women and youth in the packaging operation. Each pack is hand filled with a weighed quantity
of the product and sealed using the paddle-operated polybag sealing machine.
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4. BEERS AND NONALCOHOLIC BEVERAGES—WITH A FOCUS ON AFRICA

The modern sorghum- and millet-based beverages produced in Africa can be classified into three major product
groups: liquid beers and nonfermented, nonalcoholic malt beverages; liquid-soured starchy gruel-type nonalcoholic
beverages; and dry instant powder-based beverages, both starchy and malted milk-type products.

4.1 Lager and Stout Beers and Nonalcoholic Malt Beverages (Including Gluten-Free Versions)

In Western countries, barley, which is a major cereal crop in these largely temperate countries, is by far the major
grain used in brewing. However, in sub-Saharan Africa, with its tropical and arid-subtropical climates, sorghum and
millets are major cereal crops and the basis of the region’s traditional cloudy and opaque beers. Table 10.8 compares
the grain structure and chemistry of sorghum and the major millets with that of barley, in respect of their malting and
brewing quality. Sorghum is a much better option for commercial brewing than the millets primarily because its
kernel is similar in size to that of barley, whereas the kernels of the millets are all very much smaller. Sorghum is
also far more commercially available.

The idea of using sorghum as a barley substitute for malt and in the brewing of “Western-type” beers (ales, bitter,
lager, and stout beers) has a long history. In 1917, during the First World War when trade was severely disrupted,
locally produced sorghum malt beverages were demonstrated at the Madras Exhibition in India (Viswanath
et al., 1918). However, worldwide, ongoing, and large-scale lager and stout brewing using sorghum malt first
commenced in Nigeria only in the late 1980s. This was in response to a government ban on the importation of barley
(Akinyoade et al., 2016). Brewing lager and stout beers with sorghum (often as an unmalted whole grain adjunct)
have subsequently spread across West Africa, largely through the efforts of the West African Sorghum Value Chain
project (European Cooperative for Rural Development, 2008). A similar development using whole grain sorghum
adjunct took place in East and Central-Southern Africa during the early 2000s, commencing in Uganda (Mackintosh
and Higgins, 2004). The brewing of gluten-free beers based on sorghum also commenced in several Western coun-
tries in the early 2000s. Perhaps, the best known of these is Redbridge beer, produced in the United States by
Anheuser-Busch, now part of the AB-InBev group.

4.1.1 Lager and Stout Beers
4.1.1.1 Malting Brewing Technology

When discussing brewing technologies in respect of the still rapidly developing technology of sorghum lager and
stout beer brewing, there is often something of a disconnect between what is actually happening in commercial prac-
tice and what is published in the public domain. For example, even as recently as 2011, one publication concluded
with reference to research into the brewing behavior of a range of malted cereals and pseudocereals, including sor-
ghum, that these grains “could potentially be used for brewing purposes” (De Meo et al., 2011). This is notwith-
standing the fact that, as mentioned, sorghum malt has been routinely used in Nigeria for lager and stout
brewing since the 1980s. Because of this disconnect and to avoid revealing proprietary information, this discussion
of technologies will inevitably be somewhat generic in nature.

The processes used to brew lager and stout beers with sorghum are very diverse, especially with respect to the
type of grain material used. Concerning grain materials, there is a continuum from one extreme where sorghum
malt is used on its own, through sorghum malt plus barley malt with or without added commercial enzymes
plus unmalted sorghum grain (whole or decorticated) adjunct, to barley malt plus unmalted sorghum grain adjunct
(whole or decorticated), to the other extreme of just unmalted (raw) whole grain sorghum grain plus commercial
enzymes (Taylor et al., 2006). The choice of materials and brewing process is dictated by factors such as the avail-
ability of particular raw materials, available brewing equipment, process cost, and consumer preference.

4.1.1.2 Sorghum Grain Type

With regard to suitable sorghum grain types, in Nigeria, white tan-plant (nontannin), white Type II tannin, and
yellow endosperm (nontannin) sorghum types have or are currently being used for malting (Ogbonna, 2011;
Akinyoade et al., 2016). In East and Central-Southern Africa white tan-plant sorghum is preferred for use as
unmalted grain adjunct (Mackintosh and Higgins, 2004). Concerning other sorghum types, there is clear evidence
that with red Type III tannin sorghums, the tannins present can substantially inhibit malt amylase activity (Beta
et al., 2000) and give reduced extract, fermentable sugars, and free amino nitrogen (FAN) when brewing with
unmalted grain and commercial enzymes (Adetunji et al., 2013). As a consequence, red tannin and red nontannin
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TABLE 10.8 Comparison of the Grain Structure and Chemistry of Sorghum and the Major Millets With That of Barley, With Reference
to Malting and Brewing

Attribute

Sorghum

Millets

Barley

Kernel size and weight

Kernel structure

Condensed tannins

Starch gelatinization temperature

Malt a-amylase activity

Malt B-amylase activity

Malt modification

Slighter smaller than barley (1000
kernel weight [approx. 28 g])*

Naked grain

None in most types

High in Type III tannin sorghums
Moderate in Type II tannin
sorghums

Average
63.1-73.5°C"

Slightly lower than barley malt*

Very much lower than barley
malt®

Glucurono arabinoxylan—rich
endosperm cell walls not
substantially degraded"”’

Much smaller than barley

Pearl millet: approx. 1/4th the
size; proso millet: approx. 1/5th,
foxtail millet: approx. 1/8th, teff
tiny

Variable

Finger millet—loose utricle,
Teff—naked, foxtail
millet—Hulled, pearl
millet—naked, proso
millet—Hulled

None in most species
Moderate in some varieties of
finger millet

High

Finger millet—average
66.4—74.4°C"
Teff—average 65.1—84.6°C”
Foxtail millet—78.8°C*
Pearl millet—average
60.3—-72.3°C"

Proso millet—73.4°C*

Very little comparative data
Pros millet—lower than barley
malt®

Little comparative data—but
generally much lower than barley
malt

Pearl millet—somewhat higher
than sorghum malt®

Proso millet—much lower than
barley malt*

No firm information

Thousand kernel weight
(approx. 35 g)*

Grain surrounded by fibrous husk
Acts as a filter bed during wort
separation

Very low

51—-60°C*®

High

High

Beta-glucan rich endosperm cell
walls fully degraded’

“Kent and Evers (1994).
YEmmambux and Taylor (2013).
“Kumari and Thayumanavan (1998).
AZarnkow et al. (2007).

Lineback (1984).

FTaylor et al. (2013).
8Pelembe et al. (2004).
hGlennie (1984).

Palmer (1991).

’Morrall and Briggs (1978).

sorghums (i.e., types which do not contain condensed tannins but are rich in flavonoid-type polyphenols) are gener-
ally not used in lager and stout beer brewing. Interestingly, however, research by Adetunji et al. (2013) revealed that
worts from unmalted red, nontannin sorghum were similar to those from white, nontannin sorghums in terms of
both physicochemical and sensory quality. In view of the better agronomic quality of red, nontannin sorghums
this work indicates that this type of sorghum could be used to a greater extent in sorghum lager and stout brewing.

The effects of brewing with unmalted waxy type sorghum, where the starch is essentially only amylopectin, as an
adjunct on brewing efficiency and beer quality have been studied quite extensively. Figueroa et al. (1995) found that
there was more rapid starch hydrolysis with waxy sorghum adjunct than with normal sorghum resulting in higher
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hot water extract (essentially a measure of the yield of fermentable sugars and dextrins). This was attributed to the
lower gelatinization temperature (probably actually pasting temperature) of the waxy sorghum, 69.6°C, compared
with approximately 72°C for normal sorghum. Beers brewed with waxy sorghum adjunct have also been found to
filter more rapidly (Osorio-Morales et al., 2000) and their worts to have higher levels of FAN (the nitrogen source for
yeast growth during fermentation; Ortega Villicafia and Serna Saldivar, 2004). Recently, it has been shown that sor-
ghum malts made from waxy sorghum lines exhibited greater endosperm modification and generally gave higher
extract than malts from similar normal starch lines when mashed under standard barley malt brewing conditions
(Mezgebe et al., 2018). The results indicated that waxy sorghum malt had considerable potential as a partial barley
malt substitute.

High-protein digestibility (HPD) sorghum types have been developed that have modified protein body and endo-
sperm structure that facilitates access to the endosperm protein by protease enzymes (Oria et al., 2000; Da Silva et al.,
2011). Research has shown that when malted, these HPD sorghums have approximately 50% higher FAN than
normal sorghums (Mugode et al., 2011). However, when mashed either in the form of malt or raw whole grain
adjunct together with exogenous protease enzymes, wort FAN was not substantially increased. Notwithstanding
this, novel sorghum lines with the HPD trait and reduced phytate (myoinositol hexaphosphate) expression were
found to yield substantially higher wort FAN (23% increase) and hot water extract (a measure of starch hydrolysis;
a 2.8%-point increase) and increased levels of Mg, P, Fe, and Ca minerals in a whole grain mashing process together
with a commercial sorghum brewing enzyme cocktail (Kruger et al., 2012). These minerals are essential micronu-
trients for yeast fermentation performance (Walker, 2004).

4.1.1.3 Malting

As explained, the tannins in tannin-type sorghum can inhibit amylase activity during brewing. In response to this
problem chemical treatments have been developed to inactivate the tannins and are applied in the sorghum malting
process. For industrial opaque beer brewing in Southern Africa, red Type III tannin sorghum is often used, and grain
is generally chemically treated by steeping (soaking) it in a very dilute formalin solution to inactivate the tannins.
This treatment prevents the tannins from inhibiting the malt amylases during brewing (Beta et al., 2000). An alter-
native process of steeping sorghum in dilute sodium hydroxide solution, which also inactivates the tannins (Ezeogu
and Okolo, 1996; Dewar et al., 1997a), is widely used in Nigeria for producing sorghum malt for lager and stout
brewing. However, recent research indicates that the tannins in white Type II tannin sorghums, the only type of
tannin sorghum malted in Nigeria, have little inhibitory effect on amylase activity during the mashing process
(Adetuniji et al., 2015) nor on consequent levels of malt hot water extract obtained and wort fermentable sugars
(Adetuniji et al., 2013). It is more likely that the dilute alkali steeping serves primarily as a method to reduce microbial
load on the sorghum malt (Leyfedi and Taylor, 2006).

The technology of malting sorghum is in principle identical to that of barley, except that the temperature of the
steeping and of germination steps is up to 10°C higher (than that commonly used for barley malting, 24—30°C
(Dewar et al., 1997a,b,c; Morrall et al., 1986), as opposed to around 18°C or lower for barley (Hough et al., 1971).
This low temperature is suboptimal for sorghum malting (Dewar et al., 1997c), as are temperatures of 32°C and
higher (Morrall et al., 1986). Another difference between sorghum and barley malting is that during the germination
step of sorghum malting, seedling growth is very extensive. As a consequence, the germinating sorghum needs to be
watered to at least maintain the same moisture content in order to attain malt optimum quality in terms of param-
eters like amylase activity and FAN (Morrall et al., 1986).

With regard to malt quality for brewing, generally sorghum malt is very deficient in B-amylase activity in com-
parison with barley malt (Dufour et al., 1992; Taylor and Robbins., 1993). Furthermore, the f-amylase activity has
been shown to be limiting in brewing with sorghum malt (Del Pozo-Insfran et al., 2004). B-Amylase is the enzyme
that hydrolyzes dextrins into maltose, which in turn is fermented by yeast into ethanol and carbon dioxide.
Although manipulation of germination moisture levels can increase the level of sorghum malt B-amylase somewhat
(Taylor and Robbins, 1993), the low B-amylase activity of malted sorghum appears to be due to it containing only one
form of the enzyme, unlike the multiple forms in barley (Ziegler, 1999).

Sorghum malt is often just dried at a relatively low temperature (50—60°C), rather than “kilned” at the higher tem-
peratures employed with barley malt. This is done to conserve amylase activity, which can be significantly reduced
at higher temperature (80°C; Aisen and Muts, 1987) but limits the development of the characteristic malt color and
flavor resulting from caramelization and Maillard browning reactions. However, there is some evidence that a two-
stage sorghum malt drying regime, where the malt is initially dried at a low temperate then latterly at higher tem-
perature can both conserve amylase activity and develop malt character (Owuama, 1997). Also, by roasting sorghum
malt at 200°C, a dark, nonenzymic malt with a range of volatile flavor and color compounds, including pyrazines,
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furans, aldehydes, ketones, esters, and alcohols, can be produced (Lasekan et al., 1997). This sort of malt is ideal as an
ingredient to color and flavor dark beers. However, in practice, it seems that African commercial sorghum-based
stout beers are produced either with a proprietary barley-based ingredient or simply with caramel coloring.

4.1.1.4 Mashing

Another important difference between sorghum and barley that impacts on the brewing process used is that the
gelatinization temperature of sorghum starch is considerably higher than that of barley starch, approximately
63.1-73.5°C as opposed to 51—60°C, respectively (Table 10.8). Since starch must be fully gelatinized in order for
it be rapidly hydrolyzed by a-amylase, the high gelatinization temperature of sorghum starch can result in incom-
plete starch hydrolysis and saccharification (fermentable sugar production) when brewing with sorghum if the
mashing process is not optimized (Goode and Arendt, 2003).

When brewing with sorghum malt alone, it is possible to obtain complete starch hydrolysis and good saccharifi-
cation despite its low B-amylase activity and high starch gelatinization temperature. This can be achieved by sepa-
rating the clear enzyme-containing supernatant portion of the mash from the denser starch-containing portion and
then cooking the latter to fully gelatinize the starch, and then combining the two fractions together again to enzy-
mically hydrolyze the starch (Palmer et al., 1989; Taylor, 1992). In fact, such a decantation-type mashing process
is used in the brewing of the West African traditional cloudy sorghum beer, variously called dolo, pito, or burukutu.

No doubt, decantation mashing has or is still used in the brewing of specialized premium and gluten-free type
sorghum lager beers. However, in large-scale sorghum lager and stout brewing, both with sorghum malt and sor-
ghum grain adjunct, the sorghum is cooked first to gelatinize the starch, prior to hydrolysis using barley malt
and/or commercial amylase enzymes during mashing. Thus, in effect where sorghum malt is used, it is acting pri-
marily as a cereal adjunct, rather than being the source of both hydrolytic enzymes (amylases, nonstarch polysaccha-
ride degrading enzymes, proteases, lipases, phytase etc.) and yeast nutrients (carbohydrates, FAN, lipids, vitamins,
and minerals) as is the case with barley malt.

Fig. 10.13 shows the general large-scale industrial sorghum brewing cooking and mashing processes used for
brewing lager beer/stout in Africa. It can be seen that, in principle, the process is the same irrespective of whether
brewing is with sorghum malt or raw sorghum grain. One feature of note, with both the sorghum malt brewing and
the raw sorghum grain plus commercial enzyme process is at “mash in,” there is a short incubation period at rela-
tively low temperature (approximately 55°C) before the malt or grain is cooked to gelatinize the starch. This period
of incubation, referred to in brewing as a “protein rest,” is carried out primarily to modify (degrade) the sorghum
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endosperm structure (the endosperm protein matrix (Ng’andwe et al., 2008) and the cell walls). This enables more
complete “gelatinization” of the starch granules so that the starch is better available for hydrolysis by a-amylase
(Ezeogu et al., 2005). When brewing with sorghum malt, its endogenous cellulases and protease are utilized
(Fig. 10.13), but with raw sorghum grain, commercial cellulose-type enzymes and proteases need to be added.
The action of the proteases also produces FAN for yeast nutrition (Taylor and Boyd, 1986, Goode and Arendt,
2003; Ng’andwe et al., 2008). The low temperature of up to 55°C is necessary as the protease enzymes, in particular,
are heat-labile. When brewing with barley malt, its endogenous B-amylase is responsible for fermentable sugar pro-
duction during mashing (Fig. 10.13A), whereas the maltose-producing fungal a-amylase enzyme is generally used
for saccharification when brewing with commercial enzymes (Fig. 10.13B). In fact, it is notable that the raw sorghum
grain-commercial enzymes brewing process is remarkably similar in principle to the dry grind grain bioethanol pro-
cess (Kwiatkowski et al., 2006). Undoubtedly, proprietary process efficiency improvements in the dry grind grain
bioethanol process are being incorporated into the sorghum grain-commercial enzymes brewing process to improve
its efficiency.

Obviously, the question arises that if the sorghum malt is simply used as an adjunct, why bother brewing with
sorghum malt, since malting the grain is an expensive process? The primary reason that the sorghum is malted is
for the provision of yeast nutrients. During malting, substantial levels of FAN are produced as a result of hydrolysis
of the cereal proteins by the malt protease enzymes (Dewar et al., 1997c). This FAN acts as a source of nutrition for
yeast growth and rapid and complete fermentation (Pickerell, 1986). Malting, through the action of the endogenous
malt hydrolytic enzymes on the malt substrate, also makes other yeast nutrients available such as minerals and B
vitamins (Briggs et al., 2004). Malting may also contribute some malt flavor to the beer, but it is doubtful that this
is significant in view of the fact that the sorghum malt is dried at relatively low temperature. The use of malted sor-
ghum, as opposed to raw sorghum grain, is probably also dictated by brewing tradition and by consumer perception
as to how beer should be brewed.

The form of the raw (unmalted) sorghum used can also influence mashing performance and quality. Perez-Carillo
et al. (2012) found that decorticated sorghum (approximately 10% decortication) gave higher wort FAN levels than
whole grain sorghum, notwithstanding the fact that the level of protein was higher in the whole grain. They attrib-
uted this to inhibition of proteolysis by fiber and phenolics in the whole grain. Furthermore, they found that FAN
levels were enhanced by inclusion of protease in the mash to the extent that the decorticated and protease-treated
sorghum mash had double the FAN level of the mash with whole grain sorghum with added protease.

4.1.1.5 Wort Separation

The sorghum kernel is naked, that is, the outermost layer is the pericarp (bran), whereas the barley kernel is
enclosed in a fibrous husk (also known as a hull). For this reason, theoretically, sorghum should be a more efficient
brewing material than barley, as the barley husk comprises some 4% by weight of the grain (Bhatty, 1999). However,
the husk is very useful when brewing with malted barley because after mashing, the wort (the liquid) is most
commonly separated from the spent grain (insoluble malt components) using a lauter tun. The basic principle of
the lauter tun is that the barley malt husks act as the filtration bed. As sorghum grain does not have a husk, this
presented a significant challenge when sorghum grain or malt was first used for lager and stout brewing. In brew-
eries equipped with lauter tuns for mash filtration various solutions were developed, including brewing with a pro-
portion of barley malt which is now common practice or when brewing with a 100% sorghum grist, using barley
malt husks collected from barley malt brews as the filter bed. The latter is not very satisfactory as the husks can
rapidly become microbiologically contaminated. A far better solution is to use alternative wort separation equip-
ment, most commonly a mash filter. A mash filter (Fig. 10.14) is a plate and frame filter press comprising a series
of filter “cloths.” The filter cloths are generally of stiff, fine, nylon-type mesh. Modern mash filters are completely
automated in operation, whereby the filter plates are separated from each mechanically or hydraulically, and the
spent grain removed from the filter cloths. Basically, because the grain or malt is more finely milled when mash sep-
aration is by mash filtration, there can be 3%—4% improvement in extract (soluble solids) yield compared with brew-
ing with a lauter tun, although maintenance costs are higher (Buttrick, 2006).

4.1.1.6 Fermentation

As indicated, in most commercial brewing with sorghum, the cereal grist comprises either a high ratio of
unmalted sorghum adjunct to malt or the grist is 100% unmalted sorghum grain. This can potentially result in a
shortage of yeast nutrients, most notably, FAN, as the unmalted sorghum grain has only approximately 15% of
the FAN in sorghum malt (Mugode et al., 2011). The effect of low FAN levels on sorghum fermentation efficiency
has been a concern for several decades. Pickerell (1986) found that there was a direct relationship between the
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FIGURE 10.14 Close up of a mash filter in a sorghum lager brewery showing the open plates.

fermentable sugar level in 100% sorghum malt worts and the level of wort FAN required to guarantee a normal and
rapid fermentation in order to obtain an ethanol yield of 99% of the theoretical potential. Goode and Arendt (2003)
investigated the brewing and fermentation efficiency of a 50:50 whole unmalted sorghum grain:barley malt grist
plus commercial enzymes brew versus a 100% barley malt brew. They found that fermentation efficiencies were
similar; 6 days to attain 95% of total ethanol for the sorghum grain:barley malt brew, and 5 days for the barley
malt brew. However, this was probably as a result of the fact that the wort FAN level in the sorghum:barley malt
wort was 195 mg/L, a level classified by Pickerell (1986) as being very high. Dlamini (2015) investigated the effects
of wort FAN levels on the fermentation efficiency in whole grain unmalted sorghum plus commercial enzyme worts.
The worts had FAN levels of only approximately 70 mg/L, and fermentation efficiency was very suboptimal. Sup-
plementation with exogenous nitrogen sources was required in order to attain normal and complete fermentation.

4.1.1.7 Beer Flavor

With regard to the influence of brewing with sorghum on beer flavor, Barredo Moguel et al. (2001) found that there
was no effect of sorghum adjunct type, waxy versus regular sorghum, on the production of fusel alcohols (the higher
alcohols—propanol, isobutanol, and amylisoamyl alcohols) during fermentation. Furthermore, the levels of fusel
alcohols in the beers were within the expected range for commercial beers. Higher alcohols contribute a “warming”
character to beer flavor, intensify ethanol flavor, and act as precursors to the production of the more highly flavored
esters (Briggs et al., 2004). However, the desirable levels of higher alcohols and esters in beer are dependent on the
type of beer being brewed. Mass market lager beers have much lower levels than ales, for example. The level of fusel
alcohols in sorghum brewing fermentations can be influenced by FAN level. Perez-Carrillo et al. (2012) found higher
levels of propanol, isobutanol, and amyl alcohols in beers where commercial protease had been added during mash-
ing to boost FAN levels. Using GC-MS, 31 flavor compounds were identified in an experimental beer brewed with
barley malt and decorticated white sorghum (Ma et al., 2016). The predominant compounds in descending order
were butanol, isoamyl-alcohols, ethyl acetate, and acetaldehyde. All the flavor compounds present were typical
of lager beers and ales, indicating that white sorghum adjunct does not impart any unique flavors to the beer.
This is almost certainly not the case when red or tannin-type sorghums are used in beer brewing.

4.1.2 Millet Beers

The small size of millet grains, their limited availability, generally high cost, and poor brewing attributes militates
against their common use in brewing lager and stout beers. However, they can be used as an exotic ingredient of
specialty premium or gluten-free beers.

Pelembe et al. (2002, 2004) found that the malting conditions for pearl millet were similar to those for sorghum,
with an optimum germination temperature of 25—30°C and time of 3—5 days with malt quality being directly related
to germination moisture. However, the steeping time required was much shorter, only 8 h (Pelembe et al., 2002)
compared with around 24 h for sorghum steeping, presumably due to the far smaller size of the pearl millet kernel.
Pearl millet malt had much higher levels of B-amylase activity (approaching that of barley malt) and of FAN
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compared with sorghum malt, but a similar level of hot water extract (60%—69%, c.f. >80% expected for barley malt;
Pelembe et al., 2004).

Zarnkow et al. (2007) investigated optimum malting conditions for proso millet. They found that like other trop-
ical cereals, its starch had a high gelatinization temperature (73.4°C). The optimum malting conditions were 22°C for
5 days of germination producing a malt with low and very low levels of a- and B-amylase activity, respectively
compared with barley malt. Notwithstanding, these poor-quality parameters, when mashed, the proso millet
malt gave a fair level of extract (64.8%) and fair apparent attenuation (76%, cf. 81%—86% for barley malt), a measure
of wort potential fermentability. Furthermore, by optimizing the mashing conditions for the a- and B-amylase en-
zymes and splitting the mash to fully gelatinize the starch, Zarnkow et al. (2010) were able to produce a wort
from proso millet malt with similar extract, apparent attenuation, and FAN to barley malt. However, there was ev-
idence that the level of lipid peroxidation products was rather high, which could adversely affect beer stability.

4.1.3 Gluten-Free Beers

There are many ingredients that can be used for brewing gluten-free beers and several processes that can be
applied. The ways of brewing gluten-free beers can be divided into three general categories (Hager et al., 2014):

¢ Brewing with barley and removing the toxic hordein proteins by adsorption, precipitation, or enzyme hydrolysis
or alternatively using the newly developed ultralow gluten barley varieties (Tanner et al., 2016),

* Brewing with starchy grains that are only distantly related to barley, such as rice, maize, sorghum, the millets, and
pseudocereals such as amaranth, quinoa, and buckwheat (De Meo et al., 2011),

* Brewing with sugar syrups, either sucrose- or starch-derived plus yeast nutrients.

Thus, the use of sorghum and millets in gluten-free beer brewing is only one of many options. This is despite the
fact that they are traditional brewing cereals and that today sorghum is widely used in Africa in brewing lager and
stout beers. What is often not recognized is that just because a beer is brewed with, for example, 100% sorghum does
not guarantee that it is gluten-free. There are very stringent regulations as to what constitutes gluten-free. The Eu-
ropean Union limit for gluten in food and beverage products is 20 mg/kg (European Commission, 2009). Hence,
what is probably as important as the type of grain used is the avoidance of contamination with barley and other
gluten-containing cereals, particularly wheat, during cultivation, storage, transport, and manufacture. In fact, strict
controls must be in place through the entire supply chain, starting with seed certification right to the point of sealing
the beer bottle or can. Furthermore, complete traceability documentation is normally required.

4.1.4 Nonalcoholic Malt Beverages

Nonalcoholic malt beverages are produced in many countries around the world. In West Africa these products are
very popular and go under trade names such as “Malta” and “Maltina” and are generally produced with sorghum
(malt and/or grain) as part of their ingredients. Typical ingredients are barley malt (or malt extract), sorghum malt,
unmalted sorghum grain adjunct, and maize adjunct, plus sucrose and hops or hop flavoring. In principle, nonal-
coholic malt beverages are unfermented wort, which is carbonated and pasteurized. Hence, their process of manu-
facture is the same as that used for beer brewing as shown in Fig. 10.13, but without the yeast alcoholic fermentation
and maturations steps. However, it is likely that some of the products are not “brewed” but are simply concoctions of
the ingredients, and hence their production process is essentially identical to that used to make sugar-sweetened
carbonated soft drinks. In West Africa, the nonalcoholic malt beverages are characteristically dark in color as caramel
color is added (Fig. 10.15A). They may also be enriched with B vitamins and minerals.

4.2 Nonalcoholic Soured Starchy Beverages

In Southern Africa, lactic acid bacteria-fermented nonalcoholic starchy cereal beverages are a very popular
traditional drink (Taylor, 2016), which today is commonly called mageu, also known as magou, aHewu, amaRhewue,
emaHewu, or amaHewu in various local languages. For many years, mageu has been manufactured industrially
from maize (Holzapfel and Taljaard, 2004). Recently, there has been an upsurge in small and relatively large-scale
commercial manufacture of the sorghum version of the beverage generally called motoho, which is widely
consumed by the Sotho-speaking people of Lesotho and South Africa (Gadaga et al., 2013). Fig. 10.16 compares
the traditional and modern commercial processes for making motoho. Although, in principle, their processes are
the same, involving cooking the sorghum meal to make a thin porridge and carrying out a lactic acid bacteria
fermentation to sour the product, there are some important differences. In the traditional process the sorghum
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FIGURE 10.15 Sorghum beverages. (A) Nonalcoholic malt beverage. (B) Motoho—nonalcoholic soured starchy beverages. (C) starchy gruel-
type nonalcoholic beverage.
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FIGURE 10.16 Comparison of the traditional and modern commercial motoho production processes.
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meal is cooked first and then fermented with a traditional microbial culture. The traditional microbial culture is a
mixture of different lactic acid bacteria and yeasts, and normally obtained by “back-slopping,” that is, the use of
a small portion of a previous successful fermentation. Cooking after fermentation means that the traditional motoho
will only have a short life of 2—3 days at ambient temperature as it will be subject to further fermentation by spoilage
bacteria. In contrast, in the modern commercial process the sorghum is cooked to sterilize it and then fermented with
a specific commercial lactic acid bacteria strain. Chemical preservatives are invariably then added, plus other addi-
tives like artificial flavors and synthetic sweeteners. The motoho is then pasteurized and filled into plastic bottles
(Fig. 10.15B). When stored under refrigeration, it will have a shelf-life of several weeks.

There are also many commercial product variations on the motoho theme. In Zimbabwe similar products are pro-
duced with sorghum malt and maize meal using a truncated version of the commercial opaque beer brewing pro-
cess. Some of these products are nutritionally enriched with dairy ingredients such as milk powder or whey powder.
This year (2018), in South Africa this concept has been taken further in a product that combines a traditional African
cereal gruel with yoghurt.

4.3 Instant Powder-Based Beverages

For consumer convenience, there are also instant beverage powder products made from, or containing, sorghum.
To prepare these beverages, the consumer simply stirs freshly boiled water or milk into the powder. These powder-
type products can be classified into two types: starchy gruels and malted milk beverages.

4.3.1 Starchy Gruel Type

This type of product is loosely based on traditional African sorghum gruels like motoho. It is manufactured by
pregelatinizing sorghum meal using technologies such as extrusion cooking, drum drying, or puffing. After which,
the dried product is milled into a flour. Various ingredients are then incorporated, including sugar and artificial
sweeteners, flavorants, and colorants (Fig. 10.15C). Commonly, fruit acid, for example, citric acid, is included to
mimic the flavor imparted by the lactic acid fermentation in the traditional gruel. The products are generally also
fortified with a range of vitamins and essential minerals.

4.3.2 Malted Milk Beverages

Malted milk beverages are popular products worldwide with trade names such as “Milo” and “Bournvita.” In
Nigeria malted milk powders are commonly produced with sorghum malt/malt extract in place of barley malt/
malt extract (Ozuru et al., 2016). In addition to the malt, they contain a wide range of ingredients, normally including
sugar, milk solids, and cocoa powder. They are also generally fortified with vitamins and minerals.

4.4 Nutritional Attributes

Table 10.9 shows the nutrient composition of various commercial African ready-to-consume nonalcoholic bev-
erages made with sorghum. As can be seen, the beverages differ greatly in energy and macronutrient content. The
differences in energy content are primarily due to the amount of water relative to solids in the products, which in
the case of the powder-based products is solely a consequence of consumer preference when preparing the
beverage. The differences in macronutrient content are also to some extent related to product water content and
also to the ingredients used. For example, the nonalcoholic malt beverages are high in carbohydrates and sugars
mainly as a consequence of them being made with malt and having a high level of sucrose added. In fact, the level
of sugars in these nonalcoholic malt beverages is similar, if not higher, than in sugar-sweetened carbonated soft
drinks.

Generally, as would be expected, the beverages are low in protein as they are cereal-based. However, compositing
with milk solids or yoghurt improves their protein content (Table 10.9) and essential amino acid composition. The
vitamin and mineral contents of the beverages are influenced very greatly by whether they are fortified. In fact, some
micronutrients, notably, vitamins A and C, will be essentially absent in the beverages made from cereals only, such as
the nonalcoholic malt beverages and the starchy gruels, unless they are fortified.



TABLE 10.9 Approximate Nutrient Composition of Nonalcoholic Sorghum-Containing Beverages (Values/100 mL)

Total

Energy  Protein  Carbs. Sugars  Fat Dietary VitA Vit.B1 Vit.B2 Vit.B3 Vit.B5 Vit.B6 Vit.C Ca Na
Beverage Type J) (g) (g) (g (g Fiber (g) (IU) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg)
Malt beverage 1 (Nigeria) 243 0.3 14.0 11.0 0 - - 0.18 0.18 2.4 0.62 0.25 0 - 0
Malt beverage 2 (Nigeria) 238 04 13.7 - <01 - 247 0.15 0.15 2.0 0.52 0.21 2.52 34 -
Instant powder-based 217 1.1 10.8 3.5 0.4 0.9 20 0.03 0.03 0.4 0.12 - 4.50 30 47
starchy gruel prepared
with water (South Africa
Starchy gruel 1 (South Africa) 585 0.7 33.0 2.5 0.3 - - - - - - - - - 1
Starchy gruel 2 (South Africa 131 0.1 6.4 1.0 0.2 0.8 - - - — - - - - 13
Maize—sorghum composite 270 1.0 14.7 - 0.2 - - - - - - - - - -
starchy gruel containing whey
powder (Zimbabwe)
Cereal—yoghurt composite 193 14 8.0 4.0 1.1 <0.5 - - - - - - - 42 38
starchy gruel (South Africa)
Malted milk beverage prepared 150 0.9 8.3 45 0.4 0.8 63 0.02 0.02 2.5 0.15 - 4.50 90 -

with water (Nigeria)

IU, International Units; —, no data.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

Sorghum in particular and to a lesser extent, the millets and its processing coproducts are increasingly being used
in value-added applications spanning food, beverages, pet food, and animal feed. This chapter has detailed innova-
tive products ranging from snacks, breakfast cereal, food aid or nutritional intervention foods, gluten-free pasta,
alcoholic and nonalcoholic beverages, dog and cat food, and aquatic feed. These applications span large-scale com-
mercial production such as in the United States, medium-scale and small-scale food industry sectors as in Africa and
India, and government or privately funded nonprofit initiatives as well. Cutting-edge research in these areas as well
as the descriptions of processing technologies involved clearly underline the progress made in the last few years and
the potential for the future. In the United States alone sorghum use in food and industrial applications has increased
by 1.2 million metric tons in the 9-year period between 2008 and 2017, and the number of retail food products con-
taining sorghum has been growing rapidly with the current total being more than 1000 (Sorghum Grower, 2018).

Sorghum and millets are increasingly important crops and ingredients for food companies as environmental sus-
tainability aspects such as water usage, energy, and carbon footprint become a key focus (Fassl, 2018) and consumer
demand for gluten-free and nutritious products continues to increase. Other key factors that will impact on the use of
these crops in food applications in the coming years include novel process technologies, validated health claims, and
value-chain development, keeping in mind that is smallholder farmers who grow the majority of sorghum and mil-
lets around the world. These aspects are discussed in more detail in the following.

5.1 Novel Technologies

A pressing need is for economical processing technologies which can improve the nutritional quality of sorghum
and millet food products. Concerning improving protein quality, as described in Section 2.4, an interesting approach
is to use extrusion cooking not just as a way of gelatinizing starch but at the same time to utilize it as an enzyme
reaction vessel (De Mesa-Stonestreet et al., 2012).

With regard to starch itself, a novel technology that is being widely investigated to produce resistant starch (RS) is
heat-moisture treatment. Heat-moisture treatment involves the heating of flours or starch under limiting moisture
conditions with the aim of modifying the starch so that, for example, it will be resistant to hydrolysis by digestive
amylases and hence have a low GI. With sorghum, Sun et al. (2014) found that heating sorghum starch or flour at
100°C at a 20%—25% moisture content in sealed vessels increased the temperature and enthalpy of gelatinization
with a concomitant increase in starch crystallinity. Working with foxtail millet flour, Amadou et al. (2014) combined
pre-fermentation by lactic acid bacteria with heat-moisture treatment. They observed a threefold increase in both
slowly digestible starch (SDS) and RS in the flour, and an approx. 66% increase in PC. However, it should be noted
that the flour dry matter loss as result of fermentation was not recorded.

In sorghum brewing, a seemingly intractable problem is that the starch gelatinization temperature of sorghum is
too high to allow optimal simultaneous gelatinization and saccharification (hydrolysis of starch into fermentable
sugars) by the malt amylases. At a temperature high enough to gelatinize the sorghum starch (around 75°C), the
amylases are rapidly inactivated. The problem is compounded by the low B-amylase activity in sorghum malt
(Table 10.8). A patented invention by Mulder (2014) apparently solves this problem through a process of continuous
production of wort from mash. The process involves decoction-type mashing, whereby a portion of the mash con-
taining the starch is separated and carefully heated to gelatinize the starch and then recombined with an aqueous
malt enzyme suspension. The potential of this type of process in sorghum brewing has been explained previously
in the Section 4.1.1.4. The invention, however, advances the technology much further as it also combines decoction
into a complete continuous brewing process involving fermentation as well as mashing.

It has been noted that the processes of brewing and grain bioethanol production are remarkably similar, and that
technological developments in the latter are being applied in brewing (Taylor and Taylor, 2018). One such develop-
ment is simultaneous saccharification and fermentation (SSF). SSF comprises simultaneous enzymatic production of
fermentable sugars and yeast alcoholic fermentation in the fermentation vessel. This obviates the need for a separate
mashing step and its attendant vessels. Fermentable sugar production in SSF can be achieved either by simple addi-
tion of commercial amylase enzymes such as glucoamylase (amyloglucosidase), using immobilized enzymes
(Dyartanti et al., 2015), or by the use of yeast strains that have high amylase activity (Ogata et al., 2017). An issue
with the latter approach is that such yeast strains are currently invariably genetically modified. Using immobilized
glucoamylase, Dyartanti et al. (2015) obtained an approximately 3% higher yield of ethanol in experimental sorghum
grain bioethanol production using SSF than by simply adding the enzyme.
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5.2 Validation of Health Claims

One of the reasons for the expanding demand by consumers for sorghum- and millet-based value-added products
is increasing awareness of their health benefits. Researchers worldwide have generated a wealth of information on
the nutritional and nutraceutical properties of millets and sorghum. Manufacturing companies are now aggressively
marketing such value-added products, mostly based on the information available in the public domain, with health
claims attributable to inclusion of sorghum and millets in their formulations. The health claims include gluten-free,
high-fiber, prebiotic-rich, low-glycemic, antioxidant-rich cardiovascular disease and cancer-preventing, antiaging,
and so on. However, each food product is prepared using different processing technology which may involve
different ingredients, time—temperature combinations, steps such as malting or fermentation, different pressure
and shear forces, and so on. The varying formulations and different processing conditions are known to alter
both the nutritional and health-promoting attributes of the food products (for further detail, see Chapters 7 and
8). Hence, it is important that each sorghum- or millet-based food product be validated for their respective health
claims and not to rely on health claims merely made based on the properties of the raw grains. The much-
needed health claim validations for sorghum- and millet-based products can be achieved by fostering strategic
collaborations between industry and academia. For small-scale entrepreneurs venturing into sorghum millet food—
based business enterprises, appropriate support from business incubation centers having infrastructure and facil-
ities for research, product development, and health claim validation is critical.

5.3 The Sorghum and Millet Value Chain in Emerging Countries

As stated, sorghum and millets are widely grown by smallholder farmers in the dryland areas of Africa and Asia.
However, such farmers are least benefitted in the present crop production and utilization system as there is hardly
any value addition to the produce provided by the farmer. This is attributable to the lack of access to basic primary
food processing equipment and requisite scientific and technological expertise. The previously mentioned con-
straints deprive the smallholder farmers of the monetary benefits of value addition by food processing to meet
the growing market demand for added-value sorghum and millet products. The inclusion of the smallholder
farmers in the value chain can be achieved by compressing the “sorghum/millet value chain” by empowering
farmers and rural communities with efficient food processing technologies and business skills. This will enable
them to add value to their produce and thus gain additional income by shifting part of the profit component
from the hands of the middlemen who currently purchase their grain to supply to large-scale processors. In order
to ensure a sustainable value chain for sorghum and millets and to facilitate a revolution in the “sorghum and millet
value chain,” the smallholder farmers and the rural communities can be organized into cooperatives, and small- and
medium-scale enterprises established in rural communities around sorghum- and millet-based products and tech-
nologies. To achieve this, an appropriate ecosystem needs to be established for incubation of sustainable business
enterprises, coupled with promotion campaigns to increase awareness in consumers and policymakers of sorghum
and millets as a healthy ingredient in food products. These steps will go a long way toward strengthening the sor-
ghum and millet value chain in emerging countries.
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