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Abstract
The ‘spectral variation hypothesis (SVH)’ assumes spectral variability as a result of vari-
ation in species richness. In the present study, we explore the potential of satellite datasets 
in identifying the patterns in species richness in part of three global biodiversity hotspots 
falling in India viz., Himalaya, Indo-Burma, and Western Ghats. We used generalized lin-
ear models to correlate remote sensing based vegetation indices (VIs) and physiographic 
indices (PIs) with plant richness calculated using 1264, 1114, and 1004 field plots across 
21 different forest vegetation classes in Himalaya, Indo-Burma, and Western Ghats respec-
tively. Three different vegetation indices ranked highest in explaining the variance in plant 
richness in the three hotspots. The variance in species richness explained by models based 
on only VIs was highest (69%, P < 0.01) for Bamboo vegetation in Indo Burma hotspot 
with Normalized Difference Vegetation Index, followed by that for dry deciduous for-
est in Western Ghats (57%, P < 0.001) with Normalized Difference Water Index, and for 
grasslands (54%, P < 0.05) in Himalaya by Modified Soil Adjusted Vegetation Index. The 
explained variance increased with combined models that are based on PIs and VIs to up to 
85% (P < 0.05). Overall, we observed very high correlation between VIs and plant richness 
in open canopy vegetation classes with low species richness such as grasslands, scrubs, and 
dry deciduous forests, followed by vegetation classes with moderately dense canopy. Our 
study provides crucial insights on utility of satellite datasets as a proxy for estimating plant 
richness for better conservation of diverse ecosystems.
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Introduction

Various studies have used satellite data observations to explore patterns of plant richness 
(Gillespie 2005; Viedma et al. 2012). Vegetation indices have been utilized on a wide range 
of spectral and temporal scales to understand the ‘spectral variation hypothesis’, which 
assumes spectral variability as a result of variation in plant diversity (Rocchini et al. 2007; 
Gaitán et al. 2013). In tropical forests, normalized difference vegetation index (NDVI) has 
been shown to increase with diversity, explaining moderate range of variance i.e., 30–60%, 
nonetheless the mechanisms driving the relationship between vegetation indices and spe-
cies richness are not well established. Integration of climatic and physiographic variables 
along with spectral indices in the model could better explain the variance in plant richness 
(Levin et al. 2007; Pau et al. 2012). Satellite-derived vegetation indices provide clues about 
diversity patterns as they are used for productivity estimation and quantification of spatial 
heterogeneity of vegetation (Oindo and Skidmore 2002). The spectral variation of remotely 
sensed data is associated with the heterogeneity in the environment which may, in turn, be 
correlated with species diversity (i.e., the Spectral Variation Hypothesis (SVH). Large sites 
are likely to be more heterogeneous than small sites (Öster et al. 2007), therefore the spec-
tral variation measured over entire sites can be expected to be associated with the area of 
the sites. The variability in observations from satellites with broad spectral bands has been 
shown to function as a useful predictor of species diversity at local scales in a variety of 
vegetation types and geographic areas (Rocchini et al. 2007) and also for estimating levels 
of beta diversity. Although much progress has been made in estimating species diversity 
from satellite data (Gillespie et al. 2008), it has been concluded that more empirical studies 
are needed in order to establish the potential of remote sensing data in biodiversity studies 
(Nagendra et al. 2010).

There is an increased interest in measuring and modelling biodiversity using remote 
sensing datasets (Nagendra 2001). Biodiversity is a multifaceted variable; therefore it 
can be difficult to measure and express it simply (Duro et al. 2007). Biogeographers are 
particularly interested in measuring or quantifying patterns of species’ diversity, distri-
bution, movements, and in modelling or providing probability maps of species distribu-
tions and patterns of diversity. Remote sensing datasets have considerable potential as 
a source of information on biodiversity at various spatial and temporal scales (Willis 
and Whittaker 2002). Remote sensing offers an inexpensive means of deriving com-
plete spatial coverage of environmental information for large areas in a consistent man-
ner that may be updated regularly (Duro et al. 2007). Direct remote sensing approaches 
use space borne sensors to identify either species or land cover types, and directly map 
the distribution of species assemblages, whereas indirect approaches use space borne 
sensors to model species distributions and the distributions of species diversity. Both 
these approaches have significant applications for species and ecosystem conserva-
tion that have still not been completely utilized to their full potential. Alternatively, a 
direct relationship between measures of species diversity and spectral variation has been 
sought. Normalized difference vegetation index (NDVI) from passive sensors has been 
the most famous index, because it is easy to calculate using the red (R) and near infrared 
(NIR) bands common to almost all passive space borne sensors (Gillespie 2005). NDVI 
has been associated with net primary productivity and has been hypothesized to quan-
tify species diversity based on species energy theory (Currie 1991). Many studies have 
reported significant positive correlations between plant species diversity from plot or 
regions and NDVI in both temperate (Fairbanks and McGwire 2004; Levin et al. 2007) 
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and tropical ecosystems (Cayuela et al. 2006). NDVI can explain between 30% and 87% 
of the variation in species richness or diversity within a vegetation type, landscape, or 
region  (Pouteau et  al. 2018). Heterogeneity in land-cover types, spectral indices, and 
spectral variability derived from satellite imagery has also been correlated with species 
diversity (Rocchini 2007). This is largely based on the hypothesis that heterogeneity in 
land cover, spectral indices, or spectral variability within an area or landscape acts as 
an indicator of habitat heterogeneity, which allows more species to coexist and hence 
greater species diversity (Simpson 1949; Carlson et  al. 2007; Rocchini et  al. 2007). 
Variation in spectral indices has been shown to be positively associated with species 
richness and diversity for a number of taxa in different regions. The ability to provide 
complete data coverage for large areas is often seen as a major advantage of remote 
sensing; some problems of working with large areas have not been addressed. It is gen-
erally assumed that relationships between the biodiversity variable of interest and the 
remotely sensed response are spatially stationary and hence transferable between sites 
within the region of study.

The ability to provide complete data coverage for large areas is often seen as a major 
advantage of remote sensing. It is generally assumed that relationships between the 
biodiversity variable of interest and the remotely sensed response are spatially station-
ary and hence transferable between sites within the region of study. There has been an 
increase in sophisticated statistical and spatial analyses to study plant SR. The predic-
tion of richness has substantially relied on simple univariate regression or multiple 
regression models appropriately scaling sensor imagery to field data on vascular plants 
(Gould 2000). While these approaches provide a basic understanding of patterns and 
can be used to create predictive richness maps for a landscape, region, or continent, 
more sophisticated techniques are being examined and developed to model patterns of 
richness (Foody 2004). General linear models and general additive models have become 
increasingly important in the spatial prediction of biodiversity patterns; however, they 
have been less used for exploring the relationship between remote sensing data and 
ground based plant richness (Schwarz and Zimmermann 2005).

Our general hypothesis is that SR at a coarse scale is a function of the area and the envi-
ronmental heterogeneity. Physiography and anthropogenic disturbance are local parame-
ters, in order to take into account both meso- and micro-scale effects. Spatial heterogeneity 
may contribute to the control of local plant SR, thus are mainly related to gap dynamics 
(Pausas 1994). Increased heterogeneity implies diversified niches, thus more species coex-
istence. Often some species might be favored by relatively uniform or stable habitats, while 
others by heterogeneous habitats. As the size of the sites under study increases, within site 
topographic complexity becomes an important determinant of plant richness (O’brien et al. 
2000). Studies with large data sets have shown the importance of the interaction between 
temperature and rainfall for explaining SR (Austin et al. 1996).

In this study, we test following two hypotheses in total 21 different vegetation types 
from three global biodiversity hotspots falling within India viz., Himalaya, Indo-Burma, 
and Western Ghats using open source satellite datasets and vegetation sampling data.

We undertake the present study based on following hypotheses:

(a) Plant richness combined models based on vegetation indices and physiographic indices 
perform better than individual index based models in explaining the variation in plant 
richness.



2186 Biodiversity and Conservation (2019) 28:2183–2196

1 3

(b) Variation in plant richness explained by spectral indices varies across plant life forms 
with maximum variation explained for trees followed by shrubs and herbs.

Materials and methods

Study area

The study area comprises of three global biodiversity hotspots falling in India viz., Hima-
laya, Indo-Burma (only the mainland), and Western Ghats. Himalaya hotspot, hereafter 
called as “Himalaya” is located between 25°39′28″ and 35°49′48″N latitude; and between 
73°08′04″ and 97°24′44″E longitude spanning over ca. 329, 109 km2 (Fig. 1). The eleva-
tional gradient in Himalaya ranges from 500 to 8800 m and distinct climatic gradients 
can be observed in this hotspot, where dry and cold climate is prevalent in western Hima-
laya with mean annual temperature of ca. 5 °C and total annual precipitation of 2500 mm/

Fig. 1  Three global biodiversity hotspots falling in India: a Himalaya, b Indo-Burma, c Western Ghats. 
(Color figure online)



2187Biodiversity and Conservation (2019) 28:2183–2196 

1 3

year; while wet and cold conditions are observed in eastern Himalaya with mean annual 
temperature of ca. 10 °C and total annual precipitation of 4000 mm/year. Owing to dry 
climatic conditions, scrubs and grasslands are prevalent in western Himalaya; while 
moist deciduous and sub-tropical broadleaved forests are dominant in eastern Hima-
laya. Indo-Burma hotspot, hereafter called “Indo-Burma” covers ca. 121,721  km2 and 
is located between 10°30′34″ and 26°55′50″N latitude; and 89°51′16″ and 95°22′48″E 
longitude (Fig. 1). The climate is wet and humid with mean annual temperature of ca. 
25 °C and very high total annual precipitation of 6000 mm/year. The elevational gradient 
ranges from 750 to 2300 m above mean sea level and exhibits a wide variety of ecosys-
tems ranging from mixed wet evergreen, dry evergreen, deciduous, and montane forests. 
Western Ghats hotspots is located between 8°04′45″ and 22°01′40″N latitude; 72°38′34″ 
and 78°28′18″E longitude (Fig. 1). In general, the mean temperature of the coldest month 
ranges from 25 °C at sea level to 11 °C at 2400 m. The elevation gradient ranges from 
300 to 2700 m with increasing trend from north to south in the hotspot. The wide varia-
tion of rainfall patterns in the Western Ghats, coupled with the region’s complex geogra-
phy, produces a great variety of vegetation types (Myers et al. 2000).

Data used

Satellite data

We used multi-season multispectral satellite imagery of Landsat Thematic Mapper of 
year 2010 with spatial resolution of 30 m and a total of 3382 locations of field samples 
from all three hotspots to generate four most widely used spectral vegetation indices 
(VIs); Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 
(EVI), Modified Soil Adjusted Vegetation Index (MSAVI2, Qi et  al. 1994), and Nor-
malized Difference Water Index (NDWI, Gao 1996) (Supplementary Information) for a 
total of 21 vegetation classes. We also calculated and extracted the physiographic indi-
ces (PIs) such as altitude, slope, and aspect using Shuttle Radar Topographic Mission 
(SRTM) satellite data with spatial resolution of 30 m.

Plant richness data

The field samples used in our analysis were laid during ‘biodiversity characterization at 
landscape level project’ conducted for whole India during 1998 to 2008. As a part of the 
project stratified random sampling based 15, 565 nested quadrates of 400 m2 were laid in 
different natural vegetation classes in India (Roy et al. 2012, 2015), which also covered the 
forests in the three biodiversity hotspots covered in the present study. A random distribu-
tion of sample points was chosen in the vegetation type strata to determine the type-specific 
relative species composition. Minimum sampling intensity of 0.001–0.002% was selected 
on the basis of the remote sensing based vegetation type strata along with the physiography 
and climatic zones. This sampling intensity was selected so as to optimize the available 
resources and time, given the forest vegetation cover and other characteristics of the eco-
regions in India. Species richness (Number of species) of different lifeforms (Tree, Shrub, 
Herb) was calculated based on 1264 plots from Himalaya, 1004 plots from Western Ghats 
and 1114 plots from Indo-Burma making to a total of 3382 field plots.
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Testing spectral variation hypothesis

‘Spectral variation hypothesis’ (SVH) was tested using generalized linear models 
(GLMs) to understand the relationship between spectral indices and plant richness 
across different life forms viz., herbs, shrubs, trees, as well as of whole plot. We created 
generalized linear models in R software based on single variable as well as multiple 
variables (R Development Core Team 2014) using spectral vegetation indices (VIs) and 
physiographic indices (PIs) to test our hypotheses.

Results

Patterns of spectral reflectance in three biodiversity hotspots

We observed varied patterns of spectral reflectance of the 21 vegetation types falling in 
the three hotspots. In Himalaya, the spectral reflectance ranged from 7 to 45%, where 
highest reflectance (~ 45%) observed in moist deciduous forests while lowest reflectance 
(~ 8%) was observed in grasslands. In Indo Burma, the spectral reflectance ranged from 
9 to 45%, with highest reflectance (~ 45%) in evergreen forests and lowest reflectance 
(~ 9%) in scrubs and dry deciduous forests. In Western Ghats, the reflectance ranged 
from 9 to 33%, with highest reflectance (32%) in evergreen forests and lowest (9%) in 
forest plantations. Same vegetation types e.g., grasslands, scrublands, and dry decid-
uous forests that occurred in all three hotspots depicted different patterns of spectral 
reflectance, which could be attributed to local conditions that include climate, composi-
tion of these vegetation types, and anthropogenic disturbance (Fig. 2).

Spectral variation and species richness relationship

The variance in species richness explained by models based on vegetation indices only 
(VIs) was highest (69%, P < 0.01) in Bamboo vegetation in Indo Burma hotspot by 
NDVI, followed by that for dry deciduous forest in Western Ghats (57%, P < 0.001) by 
NDWI, and grasslands (54%, P < 0.05) in Himalaya by MSAVI (Figs. 3, 4, 5). Addition-
ally, integration of physiographic indices (PIs) with VIs increased the explained vari-
ance in SR to up to 85% (P < 0.05) by MSAVI + Aspect for grasslands in Himalaya, fol-
lowed by 80% (P < 0.01) for scrubland in Western Ghats by NDVI + altitude + slope, and 
78% (P < 0.01) for grasslands in Indo-Burma by NDVI + altitude (Equations). The vari-
ance explained by different models varied according to the predictor variables as well 
as the type of life form e.g., tree, shrub, herb etc. Variance explained in plant richness 
in trees was the highest in Pine forests in Himalaya (83%, P < 0.05, NDWI + altitude), 
followed by degraded forests in Indo- Burma (78%, P < 0.01, NDVI + altitude), and 
semi-evergreen forests in Western Ghats (76%, P < 0.01, NDVI + altitude + slope). The 
variance explained in shrub and herb species richness was low in most of the vegetation 
classes, because these life forms remain as understory in multi-canopy complex forests 
and are not directly visible to the satellite sensors. The variance explained only based on 
VIs was 54% in grasslands for shrub richness in Himalaya, which increased to 85% after 
we added physiography indices as a predictor variables.  
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Equations:  The models that explained highest variance in plant species richness in 
the three biodiversity hotspots.

For Himalaya:

Var(VEGTYPE) = �Var{(Vegetation Index) + (Physiographic Index)}

Var(GL) = {0.54(MSAVI) + 0.31(ASP)}

Var(SCR) = {0.37(NDWI) + 0.11(SLP) + 0.09(ASP)}

Var(DDF) = {0.53(NDWI) + 0.31(ALT)}

Var(PINE) = {0.42(NDWI) + 0.30(ALT)}

Var(PINEM) = {0.51(NDWI) + 0.05(ALT)}

Var(MDF) = {0.41(NDWI) + 0.07(ALT)}

Var(TEMPC) = {0.41(NDWI) + 0.07(ASP)}

Fig. 3  The variance explained in life form wise species richness in seven vegetation classes explained in 
Himalaya by vegetation index based models and combined models comprising of vegetation index and 
physiographic index. (Color figure online)

Fig. 4  The variance explained in life form wise species richness in seven vegetation classes explained in 
Indo Burma by vegetation index based models and combined models comprising of vegetation index and 
physiographic index. (Color figure online)
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For Indo-Burma:

For Western Ghats:

In Himalaya, the variation in overall species richness (SR) was best explained in 
grasslands (54%, P < 0.05, MSAVI + aspect) and dry deciduous forests (53%, P < 0.01, 
NDWI + altitude), which could be attributed to open canopy, low moisture levels, and 
simpler canopy structure, as compared to other vegetation classes (Fig. 3). The variation 

Var(VEGTYPE) = �Var{(Vegetation Index) + (Physiographic Index)}

Var(GL) = {0.47(NDVI) + 0.31(ALT)}

Var(SCR) = {0.42(NDWI) + 0.32(ALT)}

Var(DDF) = {0.42(NDWI) + 0.21(ALT)}

Var(DEGF) = {0.45(NDVI) + 0.30(ALT)}

Var(BAMB) = {0.69(NDVI) + 0.03(ALT)}

Var(MDF) = {0.42(NDWI) + 0.20(ALT)}

Var(EG) = {0.43(MSAVI) + 0.06(ALT)}

Var(VEGTYPE) = �Var{(Vegetation Index) + (Physiographic Index)}

Var(GL) = {0.31(NDVI) + 0.55(ASP)}

Var(SCR) = {0.44(NDWI) + 0.21(ALT) + 0.15(SLP)}

Var(DDF) = {0.57(NDWI) + 0.071(ALT)}

Var(FORP) = {0.48(MSAVI) + 0.10(ASP)}

Var(MDF) = {0.43(EVI) + 0.24(SLP)}

Var(SEG) = {0.56(NDVI) + 0.02(ALT) + 0.01(SLP)}

Var(EG) = {0.43(NDVI) + 0.16(SLP)}

Fig. 5  The variance explained in life form wise species richness in seven vegetation classes explained in 
Western Ghats by vegetation index based models and combined models comprising of vegetation index and 
physiographic index. (Color figure online)
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in SR in moisture rich diverse ecosystems such as moist deciduous forests was poorly 
explained (41%, P < 0.05, NDWI + altitude) by the spectral vegetation indices, because of 
higher moisture levels, and complex canopy structure with multilayer canopy cover. The 
variance in SR in Pine, Pine mixed forests and scrubs was moderately explained (42%, 
P < 0.05; 51%, P < 0.01; and 45%, P < 0.01 respectively) by vegetation indices. However, 
the explained variance significantly increased after addition of physiographic variables 
such as altitude, slope and aspect to vegetation index based models. Highest increase in the 
variance explained was observed in grasslands and dry deciduous forests, where the vari-
ation in SR explained by combined model with vegetation index and physiography index 
(VI + P) was 85%, P < 0.01; and 84%, P < 0.05 respectively. In Indo-Burma, the variation 
in overall species richness (SR) was best explained for bamboo vegetation (69%, P < 0.01) 
followed by evergreen forests (63%, P < 0.05), which could be attributed to dominance of 
few plant species in the top canopy in Bamboo vegetation, as compared to other vegetation 
classes (Fig. 3). Similar to other hotspots, addition of physiographic variables to vegeta-
tion index based models increased the predictive capacity of the models by a large amount. 
Highest increase in the explained variance due to addition of physiography to spectral 
index based models was observed in grasslands and degraded forests, where the varia-
tion in SR explained increased from 47% to 78% and 42% to 75% respectively. In Western 
Ghats, the variation in overall species richness was best explained in dry deciduous forests 
(57%, P < 0.01) followed by semi-evergreen forests (56%, P < 0.05) and grasslands (52%, 
P < 0.05), which could be attributed relatively open canopy in these vegetation classes as 
compared to other dense vegetation types (Fig. 4). Highest variance in tree species rich-
ness was explained in scrub (61%, P < 0.01), which has sparse distribution of trees, fol-
lowed by plantations (55%, P < 0.01), which has less species richness due to monotonous 
composition.

Discussion and conclusions

We observed highest spectral reflectance among all the vegetation types in moist decidu-
ous forests in Himalaya and evergreen forests in Indo Burma hotspot, whereas lowest 
reflectance was observed in grasslands, scrublands, and dry deciduous forest. This could 
be attributed to canopy structure, species richness, and local conditions such as microcli-
mate, species composition, and anthropogenic disturbance. In addition, we found highest 
range of spectral reflectance in Himalaya, among the three hotspots that could be perti-
nent to larger gradient of species richness due to large climatic variation in western and 
eastern Himalaya, which is line with the results of Tripathi et  al. (2017). In Himalaya, 
highest reflectance was observed in moist deciduous forest, followed by temperate conif-
erous, and pine mixed forest, while among the lowest reflectance classes were grassland, 
scrubs, and dry deciduous forest. This could be clearly attributed to the canopy structure in 
terms of presence of trees in top canopy, canopy density etc. In Indo-Burma, we observed 
highest reflectance in evergreen forest followed by moist deciduous forest and grasslands. 
This could be due to dense canopy structure and high species richness in these vegetation 
types, which is peculiarly visible in pristine ecosystems in Indo-Burma hotspot. Lowest 
reflectance was observed in scrub, degraded forest, and bamboo, which could be attributed 
to less dense canopy, degraded patches of forests, and monotonous vegetation in case of 
bamboo vegetation. In Western Ghats, highest reflectance was observed in evergreen fol-
lowed by semi-evergreen, and moist deciduous forest, which is pertinent to dense canopy 
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and high species richness, whereas lowest reflectance was observed in dry deciduous for-
est, forest plantation, and scrub. The reason behind same vegetation types e.g., grasslands, 
scrublands, and dry deciduous forests depicting different patterns of spectral reflectance 
could be the differences in local conditions among these hotspots. For investigating further, 
we tested two hypotheses for exploring the potential of remote sensing datasets in ecology 
and biodiversity applications as proxy indicators of plant species richness. We observed a 
varied contribution of vegetation indices as well physiographic indices in explaining the 
patterns in overall species richness as well as life form wise species richness in the three 
hotspots. Vegetation indices were able to explain only up to 50% of the variance in plant 
richness, while addition of physiographic variables to models based on vegetation indices 
increased the predictive power of the models (Fig. 3, 4). This satisfies our first hypothesis, 
which states combined models have more predictive power than VI based models for plant 
richness. In past, various studies have reported significant positive correlations between 
plant SR from plot or regions and NDVI in both temperate (e.g., Fairbanks and McGwire 
2004; Levin et al. 2007) and tropical ecosystems (Cayuela et al. 2006).

The difference in contribution by the variables could be attributed to the differences 
in the physiognomic conditions experienced by the three biodiversity hotspots. Spectral 
variation hypothesis (SVH) is generally followed in open canopy and low diversity ecosys-
tems such as grasslands, scrubs and dry deciduous forests. However, in case of moisture 
rich ecosystems, multi-canopy structure affects the spectral response recorded by the sat-
ellite sensor, which could not address the variation in species richness in life forms such 
as shrubs and herbs occurring in the ground flora (Levin et  al. 2007). The variation in 
overall species richness in dry deciduous forests, grasslands and scrubs was observed to 
best explained by vegetation indices, which is in line with the observations of Nagendra 
et al. (2010) in dry deciduous forests in India. This satisfies our second hypothesis, which 
could be attributed to the fact that these ecosystems exhibit low tree richness, less com-
plex canopy structure and low moisture levels as compared to other vegetation classes. In 
case of grasslands such as savannah or dry grasslands in Western Ghats, trees are sparsely 
distributed; hence the variance in tree species richness was better explained by vegetation 
indices as compared to other vegetation classes.

The variance explained in similar vegetation classes such as grasslands and scrubs dif-
fered among the three hotspots, which could be attributed to the variations in the structural 
as well as functional attributes of the vegetation types. For example, in Himalaya grass-
lands occur above the tree line making it amenable to be addressed through the spectral 
reflectance of the satellite data, however in case of Indo Burma and W. Ghats grasslands 
are interspersed with trees/shrubs, which reduced the predictive power of the model based 
on the vegetation indices. Therefore, the variance explained in GL by vegetation indi-
ces was highest in Himalaya, followed by Indo-Burma and Western Ghats. The variance 
explained in the similar vegetation classes from the three hotspots obtained in the present 
study provides a range of variance, which could be replicable to same vegetation classes 
occurring in other parts of the country that experience similar climatic conditions. Addi-
tion of physiographic variables resulted in prominent increase in the variance explained in 
GL in Western Ghats and Himalaya (Fig. 3, 5), as compared to Indo-Burma that exhibits 
lesser physiographic variation. This signifies the role of complex physiography in Hima-
laya in controlling the distribution of plants, where greater environmental heterogeneity 
provides favorable conditions for speciation thus accommodating higher species richness.

Addition of relevant climatic and edaphic variables could enhance the variance 
explained in species richness. In Indo-Burma, the variance in species richness was rela-
tively higher in low richness vegetation classes such as grasslands and degraded forests, 
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as compared to moisture rich diverse vegetation classes such as moist deciduous and ever-
green forests (Fig.  3). This indicates the role of climatic factors such as precipitation in 
controlling patterns of species richness in Indo-Burma. This hotspot experiences highest 
annual precipitation among the three hotspots, which is evident through distribution of 
bamboo vegetation, moist deciduous and evergreen forests in Indo Burma. The variance 
explained in tree richness was highest in grasslands and degraded forests, which could be 
due to open canopy in grasslands with interspersed trees, which helps in better explain-
ing the patterns in tree species richness than in tree dominant forest vegetation classes. 
In Western Ghats, the variance explained by vegetation index based model was highest in 
grasslands and scrubs (Fig. 4), which was further increased after addition of physiography 
variables, which highlights the role of topography in controlling the patterns of species 
richness. Ability of models to explain high variance in species richness in plantations could 
be attributed to monotonous composition of tree plantations, which exhibits less spectral 
variation as compared to other natural ecosystems.

The stratification of overall plant richness into different life form wise richness provided 
better control over the statistical modelling of satellite derived spectral variation and SR. 
Generally, tree richness is observed to be highly correlated with the spectral vegetation indi-
ces, because of dominant occurrence in the top canopy; which is mostly visible to the sat-
ellite data (Rocchini et al. 2017). However, the present study reports better correlation of 
vegetation indices with approximately 55 to 60% among the SR in even in shrubs and herbs.

The present study provides explanation for largely unknown role of remote sensing 
observations in accounting for the variations in the plant richness in the biodiversity hot-
spots in India. Varied patterns of spectral reflectance among the same vegetation types viz., 
grasslands, scrublands, and dry deciduous forest falling in three hotspots hints at the role of 
local conditions in deriving the patterns of plant species richness. Highest range of spectral 
reflectance observed in Himalaya among the three hotspots, could be attributed to highest 
diversity in vegetation types in Himalaya due to variation in western and eastern Himalaya. 
Combined models created using physiographic indices and vegetation indices give better 
results in predicting life form wise SR. In the present study, we attempted to test spec-
tral variation hypothesis, by integrating physiographic indices with vegetation indices to 
increase the predictive power of the models explaining variance in plant species richness. 
Integration of physiographic indices with vegetation indices created an overall scenario to 
represent the spectral heterogeneity in the study area, which certainly increased the model 
prediction accuracy. The investigation also provides novel insights on better correlation of 
vegetation indices with shrub and herb richness, which was sparsely attempted in the previ-
ous studies.
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