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+e emission of greenhouse gases (GHGs) results in global warming and climate change.+e extent to which developing countries
contribute to GHG emissions is not well known. +is study reports findings on the effects of different land-use systems on GHG
emissions (CO2 in this case) from two locations in the southern zone of Ghana,West Africa. Site one (located at Kpong) contained
a heavy clay soil while site two (located at Legon) contained a light-textured sandy soil. Land-use systems include cattle kraals,
natural forests, cultivatedmaize fields, and rice paddy fields at site one, and natural forest, woodlots, and cultivated soya bean fields
at site two. CO2 emissions were measured using the gas entrapment method (PVC chambers). Trapping solutions were changed
every 12–48 h and measurement lasted 9 to 15 days depending on the site. We found that, for the same land-use, CO2 emissions
were higher on the clay soil (Kpong) than the sandy soil (Legon). In the clay soil environment, the highest average CO2 emission
was observed from the cattle kraal (256.7mg·m−2·h−1), followed by the forest (146.0mg·m−2·h−1) and rice paddy
(140.6mg·m−2·h−1) field. +e lowest average emission was observed for maize cropped land (112.0mg·m−2·h−1). In the sandy soil
environment, the highest average CO2 emission was observed from soya cropped land (52.5mg·m−2·h−1), followed by the forest
(47.4mg·m−2·h−1) and woodlot (33.7mg·m−2·h−1). Several factors influenced CO2 emissions from the different land-use systems.
+ese include the inherent properties of the soils such as texture, temperature, and moisture content, which influenced CO2
production through their effect on soil microbial activity and root respiration. Practices that reduce CO2 emissions are likely to
promote carbon sequestration, which will consequently maintain or increase crop productivity and thereby improve global or
regional food security.

1. Introduction

Land-use and land-cover change is among the most im-
portant human alterations of the Earth’s land surface [1].
Conversion or overutilization of land by processes such as
cultivation, excessive removal of vegetation, burning, tree
plantation, and other forms of degradation and restoration

can add or remove greenhouse gases (GHGs) from the at-
mosphere and thereby impact on the global carbon cycle [2].
GHGs are substances believed to make the atmosphere
function like the glass in a greenhouse. +ey trap the sun’s
shortwave energy and re-emit it as heat-producing longwave
radiation, causing an increase in atmospheric temperature
[3]. GHG emissions and their interaction with radiation are
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believed to be the major cause of global climate change,
which has become a major threat to development and food
security, especially in the tropics [4, 5]. +e anthropogenic
gases that are primarily responsible for causing the green-
house effect include CO2, methane (CH4), nitrous oxide
(N2O), sulphur hexafluoride (SF6), perfluorocarbons
(PFCs), and hydrofluorocarbons (HFCs). In 2010, CO2,
N2O, and CH4 accounted for 66.5%, 17.2%, and 15.4% of
greenhouse gases, respectively, worldwide [6].

+e level of CO2 in the atmosphere is estimated to have
been ∼280 ppmv on average during the preindustrial period
before rising from ∼315 ppmv in 1957 to ∼356 ppmv in 1993
when more accurate monitoring began [7]. +e current rate
of increase of ∼1.5 ppmv/yr is due to the combustion of fossil
fuels, cement production, and land-use conversion [3].
Agriculture accounts for approximately 10–12% of total
global anthropogenic emissions of GHGs, which amounts to
60% and 50% of global N2O and CH4 emissions, respectively
[8]. In tropical countries, a great amount of the CO2
emissions steams from vegetation removal, burning and
decomposition, and soil carbon loss due to cultivation and
soil degradation [9]. +e CH4 and N2O emissions emanate
from marshy fields such as those found in lowland rice
production systems, but also from animal production sites.
Recent results of a meta-analysis of N fertilizer effects on
GHG emissions showed that the N fertilizer-induced N2O
emission factor during the rice growing season was 0.21% for
continuously flooded rice systems and 0.40% for fields with
drained periods [10]. Much of the historical emissions of
GHGsmay be attributed to fossil fuel burning [11]. Land-use
change accounts for recent increases in emissions from
fertilizer application, lowland rice fields due to fertilizer
applied in water, and domestic animals such as cattle [12].

By far, agriculture and forest waste constitute the largest
sources of GHG emissions from tropical countries such as
Ghana [13]. Agriculture and climate change are inextricably
linked. Nelson [14] observed that “Agriculture is part of the
climate change problem, contributing about 13.5% of annual
GHG emissions (with forestry contributing an additional
19% compared with 13.1% from transportation).” Agricul-
ture is, however, also part of the solution, offering promising
opportunities for mitigation through carbon sequestration,
improved soil and land-use management, and biomass
production [14]. +e release of CO2 from soil is the largest
source of carbon emissions to the atmosphere [15]. Soil CO2
emissions and production are the result of complex in-
teractions between climate and soil biological, chemical, and
physical properties [16, 17].

Soil surface CO2 production is a major component of the
biosphere’s carbon cycle because it may constitute about three
quarters of total ecosystem respiration [18]. In recent years,
soil CO2 production has been the subject of intense studies
because of its potential role in amplifying global warming
[19].+e rate of soil CO2 production is dependent on land-use
and land management systems [20]. In Ghana, common
land-use systems include forestry, upland agriculture, paddy
rice, and animal husbandry [21]. Understanding the controls
on soil CO2 emissions is critical because relatively small
changes in soil CO2 fluxes from these land-use systems may

dramatically alter atmospheric concentrations of CO2. +e
critical factors reported to influence soil CO2 production rates
include atmospheric temperature and moisture, soil organic
matter and nutrient content, root respiration, microbial
processes, soil aeration, porosity and water, net primary
productivity, and vegetation type [15, 22].

For many years, most tropical countries such as Ghana
have considered themselves as being net carbon sinks or, at
worst, carbon neutral.+is anecdotal assertion is based on the
low level of industrialization in these countries. But given the
extensive land-use change occurring in many tropical
countries including deforestation and land degradation
through poor management and periodic bush fires, it is
conceivable that their GHG emissions are increasing [23].
+ere are relatively few studies estimating GHG emissions in
sub-Saharan West Africa, especially within the agricultural
sector, and likewise, comparative studies across major land-
use types are scarce. Consequently, the majority of practices
and techniques for adaptation to climate change that are now
being advocated [24, 25] are largely based on knowledge
generated in other parts of the world. +e GHG inventory
initiative of Ghana’s Environmental Protection Agency (EPA)
uses the Intergovernmental Panel on Climate Change (IPCC)
guidelines to estimate GHG emissions from several sectors
such as agriculture, forestry waste, animal manures, methane
emissions from cattle, and lowland paddy rice fields [26].
Findings from these estimates as well as those from the
Carbon Dioxide Information Analysis Centre (CDIAC) (http:
//www.cdiac.org) indicate that per capita carbon emissions in
Ghana are on the increase. As stated by Milne et al. [27],
a general weakness in these estimations is the heavy reliance
on lower tier IPCCmethodologies. Estimates by Ghana’s EPA
also show a gradual increase inGHG emissions with projected
further increases based only on “best guesses” or by the use of
emission factors (EFs) published by the IPCC [26]. Actual
measurements to validate these estimates or EFs are lacking.
+us, there is an urgent need for more assessments of eco-
system responses to land management (andmismanagement)
in order to improve decision-making regarding climate
change adaptation and mitigation. +is study sought to ad-
dress some of these identified knowledge gaps. It aims to
measure the CO2 emissions resulting from some of the major
land-use systems operating within the coastal savanna
agroecological zone of Ghana.

2. Materials and Methods

2.1. Study Area Description. +e CO2 emissions experiment
was carried out between July and November in 2012 at two
locations with different land-use systems in the Coastal Sa-
vanna agroecological zone of Ghana.+e first site, the Soil and
Irrigation Research Centre (SIREC) at Kpong, University of
Ghana, is located within the lower Volta basin (Figure 1). +e
1,036 ha SIREC site is located at latitude 6° 09′ N and lon-
gitude 00°04′ E, with an altitude of 22m asl (Table 1). +e
second site, the Legon research farm, University of Ghana
(main campus, Accra), is located at latitude 5°66′ N and
longitude 00°19′ E, with an altitude of 88m asl. +e general
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topography of the SIREC-Kpong site is gently sloping with
slopes ranging from 1 to 5%. �e Legon-Accra site has
a gentle, undulating relief with slopes ranging from 1 to 2%.

�e Kpong site has an annual rainfall of 800–1326mm,
which is bimodal and characterised by a major rainy season
(March–July), a short period of drought in August, a minor
rainy season (September–November), and another period of
drought (December–February) (Table 1). About 60% of the

total rainfall occurs in the major rainy season and 30% in the
minor rainy season. �e rainfall distribution at the Legon site
is similarly bimodal, with a mean annual rainfall range
of 900–1010 mm. Prolonged heavy rain is occasionally
experienced in themajor rainy season fromMarch/April to June
whilst the minor rainy season begins from September/October
to December. Temperatures at both study sites are warm.�e
mean maximum and minimum temperatures at the Kpong
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Figure 1: Map of Ghana showing study areas: SIREC-Kpong and University of Ghana main campus, Legon-Accra.

Table 1: Main characteristics of the experimental sites.

Characteristics
Sites

Kpong, SIREC Legon, University of Ghana
Coordinate 6°09′ N 00°04′ E 5°66′ N 00°19′ E
Altitude (m) 22 88
Rainfall (mm) 800–1326 900–1010
Temperatures (°C), min (mean) max 22.1 (27.2) 33.3 21.5 (27) 30.9
Relative humidity, % 70–100 70–100

Soil type Typic calciustert
(tropical black clay, Akuse series)

Ferric Acrisol (sandy loam)
mineral with argillic horizon, Toje series)

Vegetation Grassland Scanty savannah
Slope (topography) Gentle (1–5%) Gentle (1–2%)
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site are 33.3°C and 22.1°C, respectively, and 30.9 and 21.5°C,
respectively, at the Legon site. +e relative humidity for the
night time to the early hours of the day for both sites ranges
from 70 to 100%.+e afternoon relative humidity ranges from
20% to 65% throughout the year.

+e vegetation at the Kpong site is limited to grasses and
slow-growing, deep-rooting tree species. +is is due to the
soil’s high clay content, and its shrink-swell characteristics
and structure, combined with the climate effect (Table 1).
+e main features of the natural vegetation in these soils are
tolerance to drought, as well as development of deep roots to
overcome root damage as a consequence of the annual
cracking of the soil.+e Legon site is covered with lush grass,
thicket patches, and shrub vegetation community with little
litter falls. Only a small amount of organic matter can
therefore accumulate and the humus top soils are poorly
developed. +e soil at the Kpong site is an alluvial material
derived from the weathering of garnetiferous hornblende
gneiss (Table 1). It is classified as Typic calciustert [28].
Locally, it is the tropical black clay called Akuse series [28]

which is categorized as a vertisol [29]. +ese are generally
deep black soils that contain more than 30% clay which is
often dominated by smectite mineralogy [30]. Generally, the
clay content is very high in vertisols, and the dominant clay
minerals are 2 :1 type minerals (smectite and montmoril-
lonites). At the Legon site, the soil is derived from a ferru-
ginized weathered country rock, the Togo quartzite schists.
It is classified as a ferric acrisol (sandy loam), which is
a mineral soil with a characteristic argillic horizon [31].
Locally, it is classified as a Toje series [32].

2.2. Experimental Layout for Sampling of Carbon Dioxide
Fluxes. Data were collected following a stratified random
sampling approach. +e sites sampled were stratified into
land-use types and within each land-use type or strata,
sampling for carbon dioxide was randomly done at three
replicate locations. At the Legon site, the studied land-use
systems were woodlot (Leucaena leucocephala), cultivated
maize (Zea mays) field, and a natural forest stand. At the
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Figure 2: Layout of identified land-use systems used for the study.
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Kpong site, four land-use systems, namely, cultivated soya
bean (Glycine max) field, natural forest, cattle kraal (an
enclosure for cattle and other domestic animals), and
lowland (paddy) rice field were considered (Figure 2).

At the Kpong site, the soya beanwas at the flowering stage.
+e soil did not receive any form of amendment (e.g., mineral
fertilizer or manure). +e land management system practiced
includes ploughing with a tractor a week prior to sowing. +e
soya bean crops were under rainfed conditions throughout
the growing season. +e natural forest is at least 50 years old
with the dominant tree species comprising Cassia fistula L.,
Ehretia anacua I. M. Johnst., and Azadirachta indica A. Juss.
+e forest floor was covered by a thick mat of leaf litter and
twigs. +e paddy field was under constant irrigation with
about 5 cm head of flood water. At the time of sampling, the
rice plants were at their emergence stage.

Management of the paddy includes fertilization with urea
two and six weeks after planting.+e kraal was a semi-intensive
cattle raising system with a stocking density of one cow per
3.0m2. +ey were fed mainly on grasses (Brachiaria mutica
Stapf, Ischaemum spp., Axonopus compressus P.Beauv.,
Paspalum spp., Panicum maximum Jacq.,Melinis minutiflora
P.Beauv., Pennisetum spp., Brachiaria brizantha (Hochst. ex
A. Rich.) Stapf.,Digitaria decumbens Stent, and Eragrotis spp),
legumes (Calopogonium mucunoides Desv., Centrosema
pubescens Benth., Pueraria phaseoloides Benth., Stylosanthes
gracilis Kunth (GCI), Mimosa pudica L., and Stizolobium
aterrimum Piper & Tracy), and fodder (Gliricidia sepium
(Jacq.) Kunth, Atriplex spp, Kochia sedifolia F. Muell., and
Ficus spp.). Soils within the kraal are covered with cattle
dung mixed with their urine.

At the Legon site, the cultivated maize field was har-
vested prior to the sampling campaign. +e field has been
continuously under maize cultivation for more than five
decades. Weeding is done by hand, and dead weeds and
stovers from previous maize crops are left on the soil surface.
+e 20-year-old Leucaena leucocephala woodlot was adja-
cent to the cultivated maize field. Originally, this site was
cultivated before its conversion to a woodlot for the pro-
duction of fuelwood.+e soil surface was covered with a thin
layer of leaf litter. +e natural forest was over 60 years
old and consisted of plant species such as Zanthoxylum
zanthoxyloides, Azadirachta indica A. Juss., Dichrostachys
glomerataChiov.,Antiaris toxicaria Lesch.,Uvaria siamensis
(Scheff.), Panicum maximum Jacq., Byrsocarpus coccineus
Schumach. &+onn., Canthium orthacanthum Robyns, and
Cissus petiolata Hook.f. (personal observation). +e soil
surface was covered by a thick mat of leaf litter and twigs.

2.3. Measuring Soil CO2 Production. +e gas entrapment
method described byHutchinson andMosier [33] and Sullivan
et al. [34] was used. Transparent polyvinylchloride “PVC”
chambers were inserted 2 cm into the mineral soil at the three
random locations. A 10ml solution of 3M NaOH was dis-
pensed into a vial and placed under the plastic chamber to trap
CO2 evolving from the soil. Additional vials containing 10ml of
3M NaOH placed in the transparent PVC with their lids on to
exclude CO2 evolved from the soil served as controls to account

for the CO2 trapped from the atmosphere. Measurement
duration ranged from 9 to 15 days depending on the site. For
each land-use system at the Kpong site, the trapping solutions
were changed following these arrangements: (I) twice daily
from the 19th to the 24th of July 2012 (12h interval at 5:30 am
and 5:30 pm for 6 days); (II) once daily from the 24th to the
27th of July 2012 (24 h interval at 5:30 pm for 4 days); and
(III) once every two days from the 27th July to the 2nd of
August (48 h interval at 5:30 pm for 7 days). For each land-
use system at the Legon site, the trapping solutions were
changed once daily (24 h) from the 28th of October to the 5th
of November 2012 (9 days). +e trapping chambers were
placed at the same location after each measurement duration.
After exposure of the alkali, the vials were removed, imme-
diately covered with lids (air-tight seal), and taken to the
laboratory for analysis. +e evolved CO2 was determined by
back titration using a phenolphthalein indicator.

2.4. Soil Characteristics Sampling and Analyses. +e main
soil characteristics with potential to influence CO2 emissions
were also measured. Prior to the beginning of the study, soil
samples were taken by augering to a depth of 0–0.15m at
three random positions in each of the land-use systems at
both study sites. Air-dried samples were bulked (for each
land-use), crushed, and then sieved through a 2mm sieve for
characterization. +e soil samples were analyzed for texture,
pH, C, and N using the modified Bouyoucos hydrometer
method [35], an electrode pH meter, the Walker and Black
method, and the Kjeldahl method, respectively.

Soil temperature and soil moisture content were mea-
sured at the same time duration as gas sampling during the
whole experimental period at the Legon site (only). Soil
temperature was measured at a depth of 5 cm using a digital
probe (pH/mV/C meter, RS232). Moisture content was
determined by sampling with a core sampler and oven
drying at 105°C for 24 hours. Daily ambient air temperature
and precipitation data (that can also influence soil tem-
perature and moisture) were obtained from the weather data
station at SIREC, Kpong.

2.5. Statistical Analysis. +e soil and environmental vari-
ables data were assessed using the dispersion and analysis
of variance methods to relate differences to land-use sys-
tems [36]. Analysis of variance was performed on soil CO2
production rates on each sampling date separately, to assess
differences between land-use systems and times during the
day. Regression analysis was also used to determine the
relationship between CO2 production rates and environ-
mental parameters (temperature and moisture) as
expressed for each land-use system. To predict CO2 pro-
duction based on soil temperature, we used an exponential
equation as suggested by Davidson et al. [37] and Raich &
Potter [38]. For soil water, we used a quadratic relationship
between production and water content [37]. Statistical
differences were considered significant at p≤ 0.05. In ad-
dition, the statistical package Statistix version 9.0 was used
to test differences in means using the Tukey range test
procedure at a significance level of p≤ 0.05. Analysis of
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variance was performed with Genstat statistical software
(Genstat version 9.2).

3. Results

3.1. Soil and Environmental Variables. Table 2 summarizes
information on the physical and chemical characteristics
of the land-use systems at the Kpong and Legon sites,
respectively, prior to commencement of the experiment.
�e high clay content of the soils at the Kpong site
con�rms their vertic characteristic, whereas soils at the
Legon site are predominantly sandy. �e average pH of
the Kpong site’s vertisol soil is 7.0, described as neutral
except for soils from the cattle kraal in which the pH was
approximately 8.0 (alkaline). �e Legon site’s al�sol soil is
strongly acid. �e organic carbon (OC) content di£ered
with each land-use system. �e OC content of this site’s
kraal and forest soils is high. At the Legon site, the OC of
the cultivated �eld is low. �e OC content of the forest
¤oor is high (2.42%), whereas in the woodlot the OC is
medium (1.55%).

�e total rainfall during the year of study (2012) at the
Legon site was 594.7mm (minor season), with only one
small rainfall event (i.e., 5.1mm) occurring during the

measurement time frame. �e average annual temperature
in Kpong is 26.6°C. �e total rainfall at the Kpong site was
714mm in the season where measurements were made.
During the measurement time frame, �ve rainfall events
were recorded (i.e., 14.4, 46.6, 52.0, 3.6, and 0.5mm),
amounting to a total of 117.1mm. Soil temperature varied
between 28.95 and 36.6°C during the study period at the
Legon site (Figure 3(a)).

Temperatures were particularly high for the cultivated
land-use system, whereas low soil temperatures were
recorded in the forest land-use. Under the cultivated land-
use, soil temperatures peaked during the second and �fth
sampling time and then decreased gradually to 34.7°C. For
the woodlot system, soil temperature increased gradually
from 30.57°C to 32.7°C during the �rst and third sampling
times. A sudden decrease in temperature then occurred on
the sixth sampling time after which it up-surged to 35°C and
again decreased sharply to 29.37°C. Low soil temperatures
were found in the forest land-use, with a temperature
average of 32.6°C. A maximum temperature of 33.9°C was
measured during the fourth sampling time. �e temperature
then dipped to 28.95°C during the last sampling time.

�e moisture content of the Legon site’s forest soils was
relatively higher compared with the moisture contents of

Table 2: Initial soil chemical and physical properties of land-use systems at SIREC-Kpong (A) and Legon, University of Ghana (B).

Land-use systems pH (1 :1) soil : H2O SOC (%) OM (%) Sand (%) Silt (%) Clay (%) Textural class
A.
Cultivated 6.95 (0.2) 0.96 (0.08) 1.65 (0.13) 29.40 (3.40) 13.80 (1.0) 56.80 (1.3) Clayey
Forest 7.10 (0.1) 2.23 (0.18) 3.84 (0.30) 24.05 (1.10) 16.95 (0.5) 55.00 (1.5) Clayey
Kraal 7.95 (0.35) 4.32 (0.42) 7.43 (0.70) 27.50 (1.50) 15.90 (1.0) 56.60 (0.8) Clayey
Lowland 7.10 (0.2) 0.59 (0.04) 1.01 (0.07) 19.80 (1.60) 22.20 (1.6) 58.00 (1.1) Clayey
B.
Cultivated 4.95 (0.2) 0.70 (0.08) 1.20 (0.14) 61.98 (1.40) 10.52 (1.2) 27.50 (1.2) Sandy clay loam
Forest 5.5 (0.3) 2.42 (0.18) 4.16 (0.30) 60.95 (1.27) 12.80 (1.7) 26.25 (0.8) Sandy clay loam
Woodlot 5.10 (0.2) 1.55 (0.11) 2.67 (0.19) 60.42 (0.92) 14.58 (1.1) 25.00 (1.0) Sandy clay loam
Soils were sampled at 0–0.15m depth; SOC� soil organic carbon; OM� organic matter; standard deviation in parenthesis.
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Figure 3: Variation of soil temperature (a) and soil moisture content (b) from di£erent land-use systems at Legon farm.
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the cultivated and woodlot system soils (Figure 3(b)). �e
cultivated land-use recorded a low moisture content. �e
woodlot and cultivated �eld initially recorded high moisture
contents of 0.124 and 0.097 gg−1, respectively, compared to
0.089 gg−1 from the forest soil. Moisture content decreased
sharply to 0.065 and 0.038 gg−1 for the woodlot and culti-
vated �eld, respectively, during the second sampling time. In
most cases, woodlot soils stored much more moisture than
cultivated soils. �e moisture content of forest soils decreased
gradually with time but was higher compared to the other
land-use systems.

3.2. CO2 Fluxes

3.2.1. CO2 Emission from a Clay Soil Environment (Kpong).
Soil CO2 emissions di£ered signi�cantly with di£erent land-
use systems and for most measurement times. �e highest
CO2 emission was observed from the cattle kraal, followed
by the paddy rice and the forest ecosystem. Higher CO2 ¤uxes
occurred during the daytime (5:30 am–5:30 pm) compared
to emissions observed at night time (5:30 pm–5:30 am).
During the �rst sampling time, the highest CO2 emission
of 340.5mg·m−2·h−1 was emitted from the kraal during the
night time. During the day, the CO2 production increased
to 411.4mg·m−2·h−1 (Figure 4).

�e CO2 emission pattern was maintained for sometime
but decreased gradually to 226.3mg·m−2·h−1 during the
fourth sampling time and up-surged to 421.3mg·m−2·h−1
during the �fth sampling time during the day. Initially,
the CO2 emission from the paddy �eld showed non-
signi�cant di£erences from the kraal. A CO2 production of
330.0mg·m−2·h−1 was measured during the night time and
increased to 404.3mg·m−2·h−1 during the day. �e emission
decreased gradually to 85.3mg·m−2·h−1 after which a sharp
decrease resulted in a production of 31.3mg·m−2·h−1.

�e forest and cultivated land-use systems initially
revealed lower CO2 emissions compared to the kraal and

paddy �eld but increased with time. �e lowest CO2
emission of 5.8mg·m−2·h−1 was from the forest land-use at
the beginning of the measurement. �is peaked to
112.8mg·m−2·h−1 during the daytime and dipped to
25.6mg·m−2·h−1 during the night time. Again, CO2 emission
ascended to 228.6mg·m−2·h−1 in the next sampling time and
gradually decreased to 165.6mg·m−2·h−1.�e cultivated �eld
initially emitted 14.0mg·m−2·h−1 CO2, but this gradually
increased to 176.6mg·m−2·h−1, after which it decreased to
95.8mg·m−2·h−1. �e CO2 production then up-surged to
198.8mg·m−2·h−1 and �nally decreased to 84.2mg·m−2·h−1.

Soil CO2 emissions measured over a 24-hour interval
were consistent with those based on a 12 h interval. For this
period of measurement, cattle kraal CO2 production was
followed by emissions from the forest, whereas the paddy �eld
and cultivated land-uses emitted relatively lower CO2.
Overall, during the whole measurement time, the highest
average CO2 emission was observed from the cattle kraal
(256.7mg·m−2·h−1), followed by the forest (146.0mg·m−2·h−1)
and paddy rice (140.6mg·m−2·h−1) land-uses. �e lowest
average emission was observed for the cultivated land
(112.0mg·m−2·h−1).

3.2.2. CO2 Emission from a Sandy Soil Environment (Legon).
Soil CO2 emissions from the three land-use systems at the
Legon site are shown in Figure 5.

Generally, low emissions were observed in the mornings,
before peaking in the midafternoon and thereafter de-
creasing into the late afternoon (Figure 5(a)). In most cases,
high CO2 production was observed from the cultivated �eld
followed by emissions from the woodlot. Lower emissions
were particularly recorded from the forest ecosystem
(Figure 5(b)).

Soil CO2 production from all of the land-use systems at
�rst sampling showed nonsigni�cant di£erences in emissions.
�e average CO2 production was 31.3mg· m−2·h−1. CO2
emissions ascended gradually at the second sampling time for
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Figure 4: Temporal CO2 emission from di£erent land-use at Kpong site.
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both the forest and woodlot land-use systems. However,
a steep increase in emissions was observed from the cultivated
�eld. A sudden drop in emissions to 37.6mg·m−2·h−1 was
followed by a sharp increase to 88.0mg·m−2·h−1 which was the
highest CO2 production recorded for this land-use. Soil CO2
emissions then dipped to 38.4mg·m−2·h−1 and then up-
surged again to 78.0mg·m−2·h−1 where it �nally declined
to 45.9mg·m−2·h−1 at the last sampling time.

�e CO2 emissions from the woodlot showed a similar
pattern as that of the cultivated �eld, but the dynamics
were gradual rather than steep. From 31.0mg·m−2·h−1
CO2 during the �rst sampling time, the CO2 emissions
increased gradually to 73.9 before decreasing sharply to
40.9mg·m−2·h−1. �ereafter, a gradual decrease and increase
in emissions was maintained until a CO2 production of
48.3mg·m−2·h−1 was recorded at the last sampling time.
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Figure 5: Temporal (a) and cumulative (b) CO2 emission from di£erent land-use at Legon farm site.
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+e forest land-use recorded quite low CO2 emissions
compared with the cultivated and woodlot land-use systems.
An initial production of 31.0mg·m−2·h−1 increased to
49.5mg·m−2·h−1 during the fourth sampling time.+e lowest
CO2 emission of 19.9mg·m−2·h−1 was observed on the sixth
sampling time. Overall, during the whole measurement time,
the highest cumulative CO2 emission was observed from the
cultivated land (250.02mg·m−2·h−1), followed by the woodlot
(228.95mg·m−2·h−1) and forest (175.31mg·m−2·h−1) land-use
systems (Figure 5(b)).

3.2.3. Soil CO2 Production, Temperature, and Moisture
Measurements on Sandy Soil Environment. A regression
analysis reveals significant correlations between the respi-
ration rate and soil temperature and moisture (p< 0.001).
+e predictive power of the model, given by R2, was low in
some cases. +e regression of soil temperature on soil CO2
production showed a positive correlation, with CO2 evo-
lution increasing as soil temperature increased (Figure 6).
Soil temperature explained 65% of the total CO2 production
on cultivated land, 52% on woodland, and 29% on forest
stand. Relationship between soil CO2 production and vol-
umetric soil moisture was higher in woodlot as compared
with cultivated land and natural forest.

4. Discussion

4.1. Impacts of Land-Use Systems on CO2 Emissions. Land-
use and management practices may influence carbon inputs
and hence CO2 emissions [39]. Indeed, the CO2 emissions
from different land-use systems at our study’s Kpong site
differed significantly. Higher CO2 emissions were particularly
observed from the cattle kraal and may be due to min-
eralization of this land-use’s high organic matter content
compared with the other land-use systems. Applications of
organic manure to soil can increase CO2 emissions [40].
Indeed, after fresh organic matter input to soils, many
specialized microorganisms grow quickly and to accelerate
the soil organic matter leading to the priming effects [41].
McGill et al. [42] proposed that soluble organic C in the soil
is an immediate source of C for soil microorganisms, which
in turn emit CO2. Hence, large quantities of organic manure
that are added to agricultural soils every year for supplying
nutrients to crops may contribute significantly to CO2
emission. +e measured organic matter content of the
various land-use systems decreased in the order of kraal,
forest, cropped land, and paddy rice. However, the initial
high CO2 emissions observed from the paddy rice field
during the 12-hour sampling time could be due to adequate
moisture content which increased microbial activity and
hence enhanced the decomposition of organic matter.
+ereafter, the emissions decreased steadily, and low CO2
emissions were observed during the 24- and 48-hour
measurement interval. +e onset of decreasing CO2 pro-
duction from the paddy rice field coincided with a period of
flooding (irrigation) of the field. During this submerged
period of paddy rice cultivation, CO2 evolution in the soil is
severely restricted due to the flooding condition [43].

+e soils of the studied forest land-uses contained a high
amount of organic matter due to the accumulation of litter
fall over time. During decomposition, microbial tissues and
depolymerization products are produced which undergo
chemical stabilization through complexation with mineral
cations or physical stabilization by clays [44]. Since vertisols
contain heavy or high amounts of clay, the stabilized ma-
terials decompose about 100 times slower than the original
litter [44].+e forest soil CO2 emission at the Kpong site was
therefore low compared to emissions from the kraal.
However, the emissions were significantly higher than
emissions from the cultivated soils.

Cultivation of the soil increases the mineralization of
the soil organic matter and hence the emission of CO2 [45].
+e decomposition of soil organic matter is increased by the
physical disturbance caused by soil cultivation, which breaks
down macroaggregates and exposes the carbon protected in
their interiors to microbial processes [46]. In this study, the
low CO2 emissions from the cultivated soil at the Kpong site
could be partly due to its low organic matter content. Even
though cultivation is expected to expose the organic matter
to microbial decomposition, the heavy clay nature of this
site’s soil might have protected it.+is may have significantly
reduced the cultivated field’s CO2 emissions compared with
the other land-use systems except for the paddy rice where
flooding conditions impeded CO2 emissions. At the Legon
site, the cultivated field contained the lowest organic matter
content, but it had high CO2 emissions compared to the
woodlot and forest land-uses.+ismay be due to the low clay
content (i.e., sandy nature) of this site’s alfisol soil which
exposes the organic matter to microbial decomposition.

Soil temperature and moisture content are abiotic factors
which influence processes that affect the dynamics of soil
carbon. Soil microflora contributes 99% of the CO2 arising as
a result of decomposition of organic matter [47], while root
respiration contributes 50% of the total soil respiration [48].
Soil temperature affects microbial respiration, whereas soil
moisture affects microbial respiration and soil respiration,
and hence CO2 evolution [49, 50]. Maximum CO2 evolution
was noted on the 1st and 3rd of November (at 88 and
78mg·m−2·h−1, resp.).+ismay be attributed to the increasing
role of root activity and organic matter decomposition in line
with an increase in soil temperature which peaked at 36.5 and
35.7°C on the 1st and 3rd of November, respectively.

At the Legon site, even though the forest floor had
a higher organic matter content than that of the woodlot, low
CO2 emissions may be due to the low soil temperature
slowing decomposition of its organic matter. Indeed, soil
temperature can have a marked effect on CO2 evolution
from the soil [51]. Considerable variations in soil CO2
emissions during different periods (i.e., day and night) were
observed. Soil CO2 emissions from the various land-use
systems during daytime were higher than the night time
production. +is may be attributed to the higher soil tem-
peratures during the daytime measurements.

4.2. Temperature and Moisture Effects on CO2 Emissions. Soil
water content and soil temperatures are known to be
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important drivers of soil CO2 production, and they may
change as a result of forest thinning [52, 53]. Similar to Tang
et al. [54], we used both soil water content and soil water
content squared in our model. In many research studies, soil
temperature was noted to be a strong and positive predictor
of soil respiration, accounting for 43–75% of the variation
in soil CO2 production rates [55]. On the other hand, in-
creasing soil moisture would increase CO2 evolution up to
an optimum level, above which it would reduce CO2 evo-
lution [51]. +e interaction of soil temperature and soil
moisture assumes great significance in view of global
warming and likely disturbance in precipitation patterns.
However, Kowalenko et al. [56] observed that temperature
was the most dominant factor in determining CO2 evolution
from the soil.

+e regression of soil temperature on soil CO2 pro-
duction (Legon site) showed a positive correlation, with CO2
evolution increasing as soil temperature increased. Soil
temperature explained up to 65% (on cultivated land) of the
total CO2 production in the regression model. +is strong
relationship between soil temperature and CO2 production
is expected since soil respiration rates reflect heterotrophic
and autotrophic activities that are highly temperature de-
pendent [56]. +is was reflected by the soil CO2 emissions of
the forest (with a low soil temperature) being low compared
to the emissions from the kraal and cultivated land-use
systems, of which the latter had a particularly high soil
temperature.+e temperature sensitivity coefficient (i.e.,Q10
values) is a convenient index for comparing the temperature
sensitivity of soil CO2 production. It is commonly used to
express the relationship between soil biological activity and
temperature [58]. +e Q10 values from 25 to 35°C for CO2
emissions in this study suggests that CO2 emission was
controlled primarily by soil biological activity. It is estimated
that a 1°C increase in temperature could lead to a loss of 10%
of soil organic carbon in regions of the world with an annual
mean temperature of 25°C [59]. While in regions having
a mean temperature of 30°C, a 1°C increase in temperature
would lead to a 3% loss of soil organic carbon.

5. Conclusion and Way Forward

Measurement of CO2 emissions from soils of different land-
use systems allows the understanding and accurate evaluation
of soil management practices to reduce GHG emissions. In
our study, soil CO2 emissions were significantly influenced
by different land-use systems. Soil organic matter decom-
position and mineralization were the main drivers of CO2
emissions. +e soil itself could serve as a source or sink of
CO2, depending on the management or land-use system im-
posed on it. Land-use systems which often disturb and expose
the soil’s organic matter to decomposition and mineralization
are liable to emit more GHGs.

In our study, cattle kraals emitted large and increasing
amounts of CO2. +is suggests that such kraals could
become an increasing threat to global warming due to the
large tracts of land occupied by livestock in developing
countries. To reduce CO2 emissions from cattle kraals,
livestock management systems such as improved pasture

with low stocking rates must be practiced. Our studied
woodlot and forest land-uses recorded relatively low CO2
emissions. +is was despite the high organic matter content
of their soils and could be attributed to the low level of soil
disturbance in these land-uses. +is finding implies that
maintaining forest reserves and promoting agroforestry
systems that include woodlots is highly desirable for miti-
gating GHG emissions. We also found that CO2 emissions
from the lowland rice paddy field peaked when oxic con-
ditions were maintained. Periodic flooding of the field
(anoxic condition) often reduced CO2 evolution; however,
research studies show that this condition can promote CH4
production. Due to the lack of access to a gas chromatograph
(GC), other GHGs such as CH4 and N2O could not be
studied. While it is important to reduce CO2 emissions
through maintaining some head of water on the soil surface
(i.e., flooding), periodic drainage is also important to reduce
CH4 emissions.

Overall, several factors influenced CO2 emissions from
the different land-use systems in our study. +ese include
inherent properties of the soils such as texture, temperature,
and moisture content which influenced CO2 production
through their effect on soil microbial activity and root
respiration. Soil temperature explained more than 50% of
the variation in soil CO2 production. A temperature co-
efficient sensitivity Q10 of 4.1 depicts that the soil CO2
emission was controlled primarily by soil microbial activity.

Hence, development and implementation of practices
that increase tree cover to directly reduce emissions through
carbon capture and sequestration should be of priority in the
study area. +is will help to mitigate global GHG emissions
but importantly will also help to maintain or increase crop
productivity and thereby improve global or regional food
security.
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