
 
 

 

  

Project report 2  
November 2018 - March 2019 

Tungabhadra Left Bank Canal (TLBC) irrigation 

modernization: Detailed command area mapping 

using remote sensing 

Submitted to 
Advanced Centre for Integrated Water Resources Management 
(ACIWRM), WRD, Government of Karnataka 

 

Murali Krishna Gumma, Kimeera Tummala, Mohammad Jameeruddin, Bhavani 

Pinjarla, P.S.Roy and Anthony M Whitbread 



1 
 

Background: 
Conventional surveys and assessments have merged with technology to help decision makers 
take timely action and prevent losses in agricultural production. Remote sensing is one such 
technology-driven tool that can produce accurate results economically. So is satellite imagery 
with high temporal and spatial resolutions specifically suited to agriculture. Given Karnataka 
state’s diverse agro-ecosystems, knowing the spatial distribution of such systems and their 
constraints to production is essential so that abiotic stresses like drought can be mapped and 
information disseminated to decision makers for contingency planning. 
 
The natural resource base of an area is instrumental in its agricultural development and also 
linked to improvement of livelihoods. Mapping the natural resource base and crop domains 
provides insights into the status of and trends in land and water utilization, development of 
water resources over time, and the impacts of cropping systems on water resource systems 
(Gumma et al. 2016a; Gumma et al. 2011a). Integrating remote sensing with spatial analyses 
like crop and economic models provides the much needed knowledge for decision making for 
resource-based planning of lower risk and profitable cropping systems, efficient allocation of 
water at basin and sub-basin levels and other crop management interventions in targeting 
technologies appropriate for different locations. Remote sensing provides such information 
in a time and cost effective manner by mapping major cropped areas using open datasets 
such as MODIS, LANDSAT, along with high resolution datasets from Indian remote sensing 
satellites, and sensors such as LISS IV and RiSAT-1 which provide reliable information on 
spatial distribution, acreage estimation and crop growth stages (during planting and 
harvesting). 
 

 
Figure 1. A map showing the study area. 

  

Study area  

The Krishna river basin is India’s fourth largest covering 258,948 km2 of southern India, spanning the 

states of Karnataka (113,291 km2), Andhra Pradesh (31,638 km2), Telangana (51,845 km2) and 

Maharashtra (69,028 km2) (Gumma et al. 2011c). The basin is relatively flat, except for the Western 

Ghats and some forested hills in the center and northeast. The river Krishna originates in the Western 

Ghat mountains, flows east across the Deccan Plateau, and discharges into the Bay of Bengal.  It has 

three main tributaries that drain from the northwest, west and southwest (Figure 1). The climate is 
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generally semi-arid, with some dry, sub-humid areas in the eastern delta and humid areas in the 

Western Ghats.  Annual precipitation averages 780 mm and decreases gradually from 850-1000 mm 

in the Krishna Delta to 300-400 mm in the northwest, then increases to >1000 mm in the Western 

Ghats. In the extreme western parts of the basin, the Western Ghats have high annual precipitation 

(1500-2500 mm).  Most of the rainfall occurs during the monsoon from June to October. Cropping 

occurs in three seasons: Kharif during the monsoon (June to mid-December), rabi in the post-monsoon 

dry season (mid-December to March) and in the summer season (April and May). In Irrigated areas, 

rice during kharif season and other crops are grown in rabi season. Rainfed crops include cereals, 

pulses and oilseeds. The study will focus on Tungabhadra Left Bank Canal (TLBC) command area in 

Karnataka (nearly 250,000 ha).  

 
Geographical area 

Since the remote sensing-based intervention will mainly link to the hydrological analysis initiative of 

ACIWRM, Karnataka, the targeted intervention region is the Tungabhadra Left Bank Canal command 

area in Karnataka (Figure 1). 

 

Component1 

1.1. Ground data collection: 

Ground truth data for kharif season was collected during 19-21 November 2018 in 113 sample sites 

covering major cropland areas (rainfed upland, lowland, irrigated, surface water, other non-

agriculture land use) following the rainy season and with its fraction in a pixel of 90 m x 90 m at the 

location (Figure 1a). Observations were recorded extensively for class identification. In addition, a 

total of 455 observations were used for accuracy assessment. A minimum sampling unit of 90 m x 90 

m was taken for ground truth validation at each location. At each sample site, information was 

collected on the existing crop, irrigation and soil types and land use land cover (LULC). The precise 

locations of the samples were recorded by a handheld Garmin GPS unit in tracking mode to map the 

total route travelled. The sample size varied from 15 to 20 for each category. At each location, a few 

photographs were taken to illustrate LULC during classification (Figures 1b and 1c). These data were 

collected based on stratified random sampling: stratified by road network and randomized by distance 

travelled (either every 10 minutes of drive or every 10/15/ 20 km, depending on road, weather 

conditions or other limitations like safety issues or sensitive locations). Roughly, 20% of all ground 

data samples were used for ideal spectra generation and class identification. Greater time was spent 

on ideal spectral sample locations since it took time to find local expert to speak to and to understand 

agricultural systems.  
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Figure 1a: Ground data collection – Kharif season 2018. 
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Figure 1b: Photographs of ground data with the crops and farmer interviews. 
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 Figure 1c: Photographs of ground data with the crops and farmer interviews. 

Ground truth data was similarly collected for rabi season from 15 - 19 February 2019, covering 105 

sample sites of major cropland areas (rainfed upland, lowland, irrigated, surface water, other non-
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agriculture land use) following the rainy season and with its fraction in a pixel of 90 m x 90 m at the 

location (Figure 2a). The ground truth collection scheme for rabi season is similar to that of the kharif 

season. Photographs taken at sample sites are shown in Figure 2b. 

 

Figure 2a: Ground data collection – Rabi season 2018-19 

 

Figure 2b: Photographs of ground data with the crops and farmer interviews. 
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Information on the irrigated area surrounding the point was categorized into three classes: small (≤10 

ha), medium (10-15 ha), and large (≥15 ha). Additional information was gathered through interviews 

with farmers and district agriculture extension officers to determine crop intensity, and type during 

the previous year. Ground data was systematically collected by adopting the following approach: 

 Cropland water methods: irrigated or rainfed 

 Cropping intensity: single crop (SC), double crop (DC) or continuous crop (CC) 

 Phenology: kharif or season 1 (June-October), rabi or season 2 (November-February). 

Samples covered major cropland areas, which in turn were chosen based on the knowledge of the 

district agricultural extension officer in order to ensure adequate samples of major crops as well as 

other LULC information, including two photographs from each location. In many sample locations, 

farmers provided information on planting dates, cropping intensity (single or double crop), and 

percentage canopy cover for these locations. For areas not accessible due to road conditions and time 

constraints, additional information was obtained from agriculture and irrigation departments. LULC 

names and class labels were assigned in the field using the ground data protocol (Gumma et al. 2014; 

Thenkabail et al. 2009). 

1.2. Crop dominance map @ 10 m 

The process began with mapping land use/land cover using Sentinel-2 time series data with spectral 

matching techniques and ground data. 

Six bands of Sentinel-2 data at 10 m resolution were obtained for September to December 2018. For 

each month, images with minimum cloud cover were used. Sentinel-2 datasets are available in the 

public domain and are pre-calibrated (https://earthexplorer.usgs.gov/). The large swath width of 290 

km and a revisit time of 2-3 days at mid-latitudes because of the two-satellite constellation of Sentinel-

2 makes it attractive for mapping large crop areas. The list of Sentinel-2 bands used in the present 

study is given in table 1. A total of 24 bands (6 bands from each of the Sentinel-2 images of the four 

months) were stacked and used for classification. 

Table 1: Sentinel-2 bands used for classification, and their spatial resolutions. 

Band Resolution (m) 

Band 2 - Blue 10 

Band 3 - Green 10 

Band 4 - Red 10 

Band 8 - NIR 10 

Band 11 - SWIR 1 20 

Band 12 - SWIR 2 20 

 

Unsupervised classification was used to generate initial classes. The unsupervised ISOCLASS cluster 

algorithm (ISODATA in ERDAS Imagine 2016TM) run on the 24-band stack generated an initial 60 

classes, with a maximum of 60 iterations and convergence threshold of 0.99. Though ground survey 

data was available at the time of image classification, unsupervised classification was used in order to 



8 
 

capture the complete effect of all wavelengths over a large area. Use of unsupervised techniques is 

recommended for large areas that cover a wide and unknown range of vegetation types, and where 

landscape heterogeneity complicates identification of homogeneous training sites. Identification of 

training sites is particularly problematic for small, heterogeneous irrigated areas. 

Land use/land cover classes were identified based on temporal signatures along with ground survey 

data. We observed crop growth stages including length of growing periods (LGPs) and cropping 

pattern from temporal signatures, such as (a) onset of cropping season (e.g., monsoon and winter); 

(b) duration of cropping season such as monsoon and winter; (c) magnitude of crops during different 

seasons and years (e.g., water stress and normal years); and (d) end of cropping season. 

The process of labeling class identification was done based on spectral matching techniques (SMTs) 

(Gumma et al. 2018; Gumma et al. 2016b; Gumma et al. 2015). Initially, 160 classes from the 

unsupervised classification were grouped based on spectral similarity or closeness of class signatures. 

Each group of classes was matched with ideal spectral signatures and ground survey data, and 

assigned class names1. Classes with similar time series and land cover were merged into a single class, 

and classes showing significant mixing, e.g., homogeneous irrigated areas and forest, were masked 

and reclassified using the same ISOCLASS algorithm. Some continuous irrigated areas mixed with 

forests in the Western Ghats were separated using a 90 m digital elevation model (Papademetriou) 

from the Shuttle Radar Topography Mission (SRTM) and an elevation threshold of 630 m, Landsat 

imagery and ground survey data through spatial modeling techniques such as overlay, matrix, recode 

and proximity analysis. This resulted in 14 classes of LULC. While class aggregation could have been 

performed statistically using a Euclidean or other distance measure, we employed a user-intensive 

method that incorporates both ground survey data and high resolution imagery in order to avoid 

lumping classes that might be spectrally similar but have distinct land cover. The signatures of some 

classes differed in only one or two months, which would have caused the classes to be merged if an 

automated similarity index were used. 

 

1.3. Accuracy assessment 

Ground data points were used to assess the accuracy of the classification results, based on a standard 

procedure (Congalton and Green 1999; Congalton and Green 2008; Jensen 1996), to generate an error 

matrix and accuracy measures for each land use/land cover map. Error matrices and Equation (Farr 

and M. Kobrick) ‘Cohen’s kappa coefficient (𝜅)’ are commonly used for accuracy assessment. For 

example, these are useful when building models that predict discrete classes or when classifying 

imagery. 𝜅 can be used as a measure of agreement between model predictions and reality (Congalton 

1991) or to determine if the values contained in an error matrix represent a result significantly better 

than random (Jensen 1996). 𝜅 is computed as:  

𝜅 =   
𝑁 ∑ 𝑥𝑖𝑖  − ∑ (𝑥𝑖+  ×   𝑥+𝑖 )

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2  −  ∑ (𝑥𝑖+  ×  𝑥+𝑖 )
𝑟
𝑖=1

 (1) 

where, N is the total number of sites in the matrix, r is the number of rows in the matrix, xii is the 

number in row i and column i, x+i is the total for row i, and xi+ is the total for column i (Jensen 1996). 

The accuracy assessment for the classified map of kharif season consisting of 14 classes (both crop 

and other land use/ land cover classes) including overall accuracy, producer’s and user’s accuracies, 
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and kappa coefficient is given in Table 2a. Table 2b gives the corresponding crop dominance or land 

use/ land cover classes for the class names in Table 2a. 

Table 2a: Accuracy assessment for the classified map of kharif season containing crop dominance 
along with other land use/land cover classes. 
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CL_1 95 0 0 0 0 0 0 0 0 0 0 0 0 0 95 95 86% ### 1.0 

CL_2 10 21 0 0 0 0 0 0 0 0 0 0 0 0 31 21 100% 68% 0.7 

CL_3 0 0 13 0 6 0 0 2 0 0 0 0 0 0 21 13 81% 62% 0.6 

CL_4 0 0 1 13 1 0 0 1 0 0 0 1 0 0 17 13 37% 76% 0.7 

CL_5 0 0 1 4 31 0 0 0 0 1 0 0 0 0 37 31 63% 84% 0.8 

CL_6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      --

- 
  --- 0.0 

CL_7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      --

- 
  --- 0.0 

CL_8 1 0 1 0 0 0 0 30 0 0 1 1 0 0 34 30 81% 88% 0.9 

CL_9 0 0 0 5 0 0 0 0 6 0 0 0 0 0 12 6 100% 50% 0.5 

CL_10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      --
- 

  --- 0.0 

CL_11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      --

- 
  --- 0.0 

CL_12 1 0 0 10 9 1 0 3 0 2 1 3 0 0 30 3 60% 10% 0.1 

CL_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
      --

- 
  --- 0.0 

CL_14 3 0 0 3 2 1 0 1 0 0 0 0 0 0 10 0 
      --

- 
  --- 0.0 

Column 
Total 110 21 16 35 49 2 0 37 6 3 2 5 0 0 455 380       

Overall Classification Accuracy =     83.52% 

Overall Kappa Statistics = 0.7910 

 
 

Table 2b: Corresponding crop dominance and land use/ land cover classes for the class names in 
Table 2a. 

Class name Land use/ land cover 

CL_1 
01. Irrigated-SW-rice 

CL_2 
02. Irrigated-supplemental-rice 

CL_3 
03. Chickpea (CP) 

CL_4 
04. Irrigated-supplemental-cotton 

CL_5 
05. Sorghum 

CL_6 

06. Irrigated-supplemental-pigeonpea (PP) (Smith 

et al.) 

CL_7 
07. Irrigated-banana / sugarcane 

CL_8 
08. Mixed crops-sorghum-CP-cotton 

CL_9 
09. Mixed crops-CP-PP-sorghum 

CL_10 
10. Irrigated-supplemental-cotton/mixed crops 
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Class name Land use/ land cover 

CL_11 
11. Fallows/CP/sorghum 

CL_12 
12. Shrub lands/wastelands/gGrasses 

CL_13 
13. Water 

CL_14 
14. Built-up lands 

 
The accuracy assessment for the classified map of rabi season consisting of 12 classes (both crop and 
other land use/ land cover classes) including overall accuracy, producer’s and user’s accuracies, and 
kappa coefficient is given in Table 3. 

Table 3: Accuracy assessment for the classified map of rabi season containing crop dominance 
along with other land use/land cover classes. 
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01. GW-rice 25 2 0 0 0 0 0 0 0 0 0 0 27 25 93% 86% 
02.SW/GW-rice 0 33 0 0 0 1 0 3 0 0 0 1 38 33 87% 85% 
03. Maize 0 0 8 0 0 0 0 0 0 0 0 0 8 8 100% 89% 
04. Mustard 0 3 0 5 0 0 0 0 0 0 0 0 8 5 63% 71% 
05. Chickpea 0 0 1 0 1 0 0 0 0 0 0 0 2 1 50% 100% 
06. Banana/plantations 0 1 0 2 0 2 1 0 0 0 0 0 6 2 33% 67% 
07. Sorghum 4 0 0 0 0 0 2 0 0 0 0 1 7 2 29% 50% 
08. Cotton/fallows 0 0 0 0 0 0 0 9 0 0 0 0 9 9 100% 60% 
09. Fallow 0 0 0 0 0 0 1 3 24 0 0 0 28 24 86% 100% 
10. Mixed crops 0 0 0 0 0 0 0 0 0 4 0 0 4 4 100% 100% 
11. Fallows/shrublands 0 0 0 0 0 0 0 0 0 0 2 0 2 2 100% 100% 
12. Shrub lands/grasses 0 0 0 0 0 0 0 0 0 0 0 6 6 6 100% 75% 

Total 29 39 9 7 1 3 4 15 24 4 2 8 145 121     

Overall accuracy = 83.45% 
Kappa coefficient = 80.35% 

 

1.4. Results 

Spatial distribution of crops 
Considering the objectives of this study and based on the methods described above and its sub-
sections, distinct cropland classes of the study districts were mapped. The kharif season classified map 
for the TLBC command area is shown in Figure 3. The characteristics of these cropland classes were 
then used to determine croplands during the kharif season.  
 

Table 4. Land use / land cover areas of the TLBC area with a 5 km buffer. 

Land use / land cover  Area (ha) 

01. Irrigated-SW-rice 173,187 

02. Irrigated-supplemental-rice 35,074 

03. Chickpea (CP) 21,625 

04. Irrigated-supplemental-cotton 7,879 

05. Sorghum 53,262 
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Land use / land cover  Area (ha) 

06. Irrigated-supplemental-pigeonpea (Smith et al.) 704 

07. Irrigated-banana / sugarcane 4,069 

08. Mixed crops-sorghum-CP-cotton 100,222 

09. Mixed crops-CP-PP-sorghum 27,659 

10. Irrigated-supplemental-cotton/mixed crops 856 

11. Fallows/CP/sorghum 13,350 

12. Shrublands/wastelands/grasses 121,442 

13. Water 11,145 

14. Built-up lands 26,825 

Total area 597,298 

Total irrigated area 349,651 

 

 
Figure 3: Classified map of the TLBC command area showing the spatial extent of dominant crops 

during kharif season along with other land use/ land cover classes. 
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The areas under various classes of the classified map for kharif season excluding the 5 km buffer are 
shown in table 5. Of the total cultivated area of 313,353 ha, the area under irrigation was found to 
be around 257,126 ha. The classified image without the 5 km buffer is shown in Figure 4. 
 

Table 5. Land use / land cover areas of TLBC area without 5 km buffer. 

Land use / land cover areas of TLBC areas  

Land use / land cover (kharif)  Area (ha) 

01. Irrigated-SW-rice 128,304 

02. Irrigated-supplemental-rice 31,052 

03. Chickpea (CP) 17,154 

04. Irrigated-supplemental-cotton 6,537 

05. Sorghum 35,047 

06. Irrigated-supplemental-pigeonpea (PP) 46 

07. Irrigated-banana / sugarcane 93 

08. Mixed crops-sorghum-CP-cotton 76,355 

09. Mixed crops-CP-PP-sorghum 14,545 

10. Irrigated-supplemental-cotton/mixed crops 193 

11. Fallows/CP/sorghum 4,027 

12. Shrublands/wastelands/Grasses 51,361 

13. Water 2,443 

14. Built-up lands 17,125 

Total area 384,282 

Total irrigated area 257,126 
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Figure 4: Classified map of the TLBC command area without the 5 km buffer, showing the spatial 

extent of dominant crops during kharif season along with other land use/ land cover classes. 
 

 
For rabi season, the classified map with a 5 km buffer is shown in Figure 5, and the corresponding 
areas under various classes are shown in Table 6. 
 

Table 6. Land use / land cover areas of TLBC areas with a 5 km buffer. 

Land use / land cover (Roy et al.) Area (ha) 

01. GW-rice 2,711 

02.SW/GW-rice 87,949 

03. Maize 6,534 

04. Mustard 13,047 

05. Chickpea 6,585 

06. Banana/plantations 9,457 
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Land use / land cover (Roy et al.) Area (ha) 

07. Sorghum 33,278 

08. Cotton/fallows 27,326 

09. Fallow 200,254 

10. Mixed crops 16,698 

11. Fallows/shrub lands 15,232 

12. Shrub lands/grasses 138,896 

13. Water bodies/wetlands 12,290 

14. Built-up lands 26,838 

Total area 597,095 

Total irrigated area 100,117 

 
 

 
Figure 5: Classified map of the TLBC command area showing the spatial extent of dominant crops 

during rabi season along with other land use/ land cover classes. 
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The classified map of rabi season without the 5 km buffer is shown in Figure 6, and the corresponding 
areas are shown in Table 7. It was observed that the area under cultivation and thus the area under 
irrigation are both low in rabi season compared to kharif season. Out of the total cultivated area of 
155,424 ha, 69,167 ha were irrigated in the rabi season. 

 
Figure 6: Classified map of the TLBC command area without the 5 km buffer showing the spatial 

extent of dominant crops during rabi season along with other land use/ land cover classes. 
 

Table 7. Land use / land cover areas of TLBC areas without a 5 km buffer.  

Land use / land cover (Roy et al.) Area (ha) 

01. GW-rice 2,075 

02.SW/GW-rice 63,663 

03. Maize 6,231 

04. Mustard 12,332 
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Land use / land cover (Roy et al.) Area (ha) 

05. Chickpea 5,829 

06. Banana/plantations 3,429 

07. Sorghum 26,995 

08. Cotton/fallows 21,018 

09. Fallow 137,061 

10. Mixedcrops 13,852 

11. Fallows/shrublands 10,093 

12. Shrublands/grasses 61,959 

13. Water bodieds/wetlands 2,599 

14. Built-up lands 17,146 

Total area 384,282 

Total irrigated area 69,167 

 
End use 

India is among countries that have created extensive areas under irrigation facilities. However, there 

is an increasing concern about some of the potential irrigation created not being brought into the 

functional system, low operating efficiency, less crop productivity, etc. System performance 

monitoring, evaluation and diagnostic analysis are key to appreciating improvements or inefficiencies 

in our irrigation projects. Irrigated lands’ baseline inventory in spatial and time domains using spatial 

information technologies (satellite remote sensing, digital image processing, GIS and GPS) provides an 

array of performance evaluation matrices to address this issue. Regular monitoring will bridge the gap 

between the creation and utilisation of irrigation potential and for optimizing production and 

productivity from irrigated lands on a sustainable basis. The information thus generated can support 

on-farm developmental work like the construction of field channels and field drains, land levelling and 

shaping and introduction of conjunctive use of canal and tube well irrigation. The performance 

evaluation studies of irrigation projects build baseline inventory of irrigation infrastructure at large 

scale at desired time intervals.  

The basic objective of an irrigation project is to improve the productivity of the land for agricultural 
produce with scientific application of water and other management inputs. Performance can 
therefore be judged, if we have answers to the following questions: 

 Is the irrigation potential utilised vis-à-vis the potential created? 

 Is the return on agricultural production and productivity achieved towards design crop 

yield (maximisation)? 

 Is irrigation water being efficiently applied (managed)? 

 Is there an improvement or deterioration in the irrigated lands development (due to 

salinity / alkalinity, waterlogging)? 

To address these questions, ‘time domain’ and ‘spatial domain’ play important roles. 
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Time domain: The time span of performance evaluation can be (i) since the commissioning of the 
irrigation project, and or (Gumma et al.) in subsequent time periods. 

Spatial domain: A canal irrigation project in India constitutes a hierarchical system of main canal, 
branch canals, distributaries, minors and field channels. Each has its irrigation command: 

 A canal irrigation project in India is also divided and sub-divided into several administrative 

jurisdictions like Irrigation Zones / Divisions / Sub-divisions / Blocks. 

 Each canal can be divided into ‘head reach’ and ‘tail reach’. 

Evaluation has to be structured into relative performance within the time domains and spatial 
domains of an irrigation project or among several irrigation projects. 

Target audience and uses 

1. Generation of spatial information on cropping pattern at command area level will help 
stakeholders monitor the changes taking place between land uses like agricultural lands, 
fallows of different types (including major crops) and land cover such as forest lands, water 
bodies and wetlands. Land use planning is possible with this type of information.  

2. Crop dominance mapping is the primary task which will be useful in acreage estimation and 
production monitoring. Administrators from the agricultural departments and revenue 
authorities will need such spatial information at disaggregated administrative levels to 
disseminate advisories to farmers for timely inputs and crop protection practices. 

Other outcomes and outputs include, but are not limited to: 

-         Improve the ability to monitor changes and implement effective land use planning across 
government agencies and people (planning, irrigation, agriculture, farmers, etc.) 

-         Timely dissemination of improved advisories to farmers related to inputs and crop 
protection practices 

-         Enhance productivity through better disseminated interventions 
-         Better farming practices related to improved seasonal rainfall and weekly rainfall predictions 
-         Stabilize prices in markets through improved regionally downscaled forecasts and 

subsequent yield and risk assessments to improve farmer decision making 
- Improving agriculture productivity and water saving through new cropping pattern. 

 

Future perspective 

Traditional indicators of canal irrigation are equity, adequacy and reliability, and are estimated from 

the supply side. Equity assessment, however, reveals whether spatial and temporal water use across 

a canal command is consistent. Adequacy is the quantitative component, and is defined as the 

sufficiency of water use in an irrigation system. In contrast, reliability is the time component and 

defined as the correspondence of water supply upon request. These indicators of water supply to 

cropped area can be assessed using evaporative fraction maps (using satellite-derived 

evapotranspiration) which directly reveal crop supply conditions. However, in a canal command, 

where conjunctive water use is predominant, it is judicious to estimate them based on water 

consumed by crops. 

Benchmarking of irrigation systems is a systematic process for securing continual improvement 

through comparison with relevant and achievable internal or external performance indicators. 

Attempts to assess performance or benchmark irrigation systems have often failed. One crucial reason 
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for this is the difficulty in identifying cost-effective performance monitoring indicators that can be 

assessed rapidly, consistently and continuously. Occasional assessment of irrigation system 

performance over vast areas has been greatly facilitated by high-resolution images acquired from 

satellites. They offer inexpensive, rapid and consistent methodologies to monitor spatial and temporal 

variation of large-scale processes. Over the past three decades, various combinations of images and 

algorithms have been used to estimate:  

 Irrigated areas  

 Cropping patterns  

 Cropping intensity  

 Soil moisture availability  

 Evapotranspiration  

 Crop water stress  

 Land and water productivity  

 Prospective yields and  

 Extent of land degradation due to salinization, waterlogging, flooding and soil erosion. 

 

Finally, it is also important to map areas under climate change “hot spots” by using climate information 

along with population density, agricultural land and gross domestic product (GDP) overlaid to identify 

‘hot spot’ areas. Hot spot analysis could suggest the areas where more investments are needed to 

minimize irrigation risk and such investments are likely to have a substantial payoff in terms of reduced 

loss and sustainable agriculture. 
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