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A B S T R A C T

Cropland extent maps are useful components for assessing food security. Ideally, such products are a useful
addition to countrywide agricultural statistics since they are not politically biased and can be used to calculate
cropland area for any spatial unit from an individual farm to various administrative unites (e.g., state, county,
district) within and across nations, which in turn can be used to estimate agricultural productivity as well as
degree of disturbance on food security from natural disasters and political conflict. However, existing cropland
extent maps over large areas (e.g., Country, region, continent, world) are derived from coarse resolution imagery
(250 m to 1 km pixels) and have many limitations such as missing fragmented and\or small farms with mixed
signatures from different crop types and\or farming practices that can be, confused with other land cover. As a
result, the coarse resolution maps have limited useflness in areas where fields are small (< 1 ha), such as in
Southeast Asia. Furthermore, coarse resolution cropland maps have known uncertainties in both geo-precision of
cropland location as well as accuracies of the product. To overcome these limitations, this research was con-
ducted using multi-date, multi-year 30-m Landsat time-series data for 3 years chosen from 2013 to 2016 for all
Southeast and Northeast Asian Countries (SNACs), which included 7 refined agro-ecological zones (RAEZ) and
12 countries (Indonesia, Thailand, Myanmar, Vietnam, Malaysia, Philippines, Cambodia, Japan, North Korea,
Laos, South Korea, and Brunei). The 30-m (1 pixel = 0.09 ha) data from Landsat 8 Operational Land Imager
(OLI) and Landsat 7 Enhanced Thematic Mapper (ETM+) were used in the study. Ten Landsat bands were used
in the analysis (blue, green, red, NIR, SWIR1, SWIR2, Thermal, NDVI, NDWI, LSWI) along with additional layers
of standard deviation of these 10 bands across 1 year, and global digital elevation model (GDEM)-derived slope
and elevation bands. To reduce the impact of clouds, the Landsat imagery was time-composited over four time-
periods (Period 1: January- April, Period 2: May-August, and Period 3: September-December) over 3-years.
Period 4 was the standard deviation of all 10 bands taken over all images acquired during the 2015 calendar
year. These four period composites, totaling 42 band data-cube, were generated for each of the 7 RAEZs. The
reference training data (N = 7849) generated for the 7 RAEZ using sub-meter to 5-m very high spatial resolution
imagery (VHRI) helped generate the knowledge-base to separate croplands from non-croplands. This knowledge-
base was used to code and run a pixel-based random forest (RF) supervised machine learning algorithm on the
Google Earth Engine (GEE) cloud computing environment to separate croplands from non-croplands. The re-
sulting cropland extent products were evaluated using an independent reference validation dataset (N = 1750)
in each of the 7 RAEZs as well as for the entire SNAC area. For the entire SNAC area, the overall accuracy was
88.1% with a producer’s accuracy of 81.6% (errors of omissions = 18.4%) and user’s accuracy of 76.7% (errors
of commissions = 23.3%). For each of the 7 RAEZs overall accuracies varied from 83.2 to 96.4%. Cropland areas
calculated for the 12 countries were compared with country areas reported by the United Nations Food and
Agriculture Organization and other national cropland statistics resulting in an R2 value of 0.93. The cropland
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areas of provinces were compared with the province statistics that showed an R2 = 0.95 for South Korea and
R2 = 0.94 for Thailand. The cropland products are made available on an interactive viewer at www.croplands.
org and for download at National Aeronautics and Space Administration’s (NASA) Land Processes Distributed
Active Archive Center (LP DAAC): https://lpdaac.usgs.gov/node/1281.

1. Introduction

The spatial distribution of cropland areas is continually changing
due to many factors such as climate variability resulting in intra- and
inter-annual changes in temperature and precipitation, as well as de-
mographic changes involving migration of rural farming communities
to urban areas in many parts of the world, urbanization expansion into
croplands, and geopolitical issues. Knowing the precise location of the
cropland areas, the ability to map every farm, small or large, with
sufficiently high resolution (30-m or better) over very large spatial
extents with high degrees of accuracy is of great importance to study,
access, and plan global food and water security scenarios in an in-
creasingly inter-connected world (Teluguntla et al., 2016; Thenkabail
et al., 2010; Waldner et al., 2016, 2015). Indeed, cropland area map-
ping with great geographic precision as well as accuracies in high re-
solution (30-m or better) is the first step in developing accurate un-
derstanding, modeling, and mapping of higher level cropland products
such as crop types, cropping intensities, and watering methods (e.g.,
irrigated or rainfed). All of these products play a key role in modeling
and mapping crop productivity and crop water-productivity, which are
crucial in food and water security studies (Gerbens-Leenes and
Nonhebel, 2004).

The need to produce a 30-m cropland extent product over Southeast
Asia and Northeast Asia is of great importance (Asian Development
Bank, 2009; FAO, 2016) and brings in unique challenges (Hurni et al.,
2017; Li et al., 2017; Reid et al., 2013; Zhou et al., 2016). Southeast
Asia has some of the most favorable climates in the world for agri-
culture, with large areas of Thailand, Cambodia, Vietnam, Philippines,
and Indonesia able to support agriculture year-round. The main crop is
rice and governments have put a great emphasis on national agri-
cultural self-sufficiency, putting great effort in developing infra-
structure and subsidies to support rice production (Panuju et al., 2013).
Existing croplands not only feed the population of these countries, but
also play a key role in economic income of the nations with many food
products such as rice, coffee, tea, cocoa, and palm oil exported to many
countries in the world. As populations and markets grow, so too does
the demand for food. However, expansion of cropland area likely will
be unfeasible due to the need for increase in land for urban develop-
ment (Bren d’Amour et al., 2016; Bruinsma, 2009; Mutert and
Fairhurst, 2002), wildlife habitat conservation (Li et al., 2016), eco-
system services, and submergence and sea level rise (Meybeck et al.,
2012). As a result, these factors necessitate more complete and sus-
tainable utilization of existing farmland (Thenkabail et al., 2010).

The landscape in Southeast Asia is a patchwork of different land
uses and land covers, which presents difficulties when mapping at
250 m to 1 km Moderate-resolution Imaging Spectroradiometer
(MODIS) resolutions (Suepa et al., 2016). The majority of existing
cropland extent products (see Teluguntla et al., 2016) over very large
areas such as continents or the entire world are coarse resolution
( > 250 m) with significant uncertainties associated with the precise
location of croplands as well as their accuracies. The majority of
cropland maps derived by remote sensing for Southeast or Northeast
Asia are limited to 250-m to 500-m ground resolution, about 6.25–25
hectares (ha) per pixel, because these maps rely on MODIS data
(Ahamed and Bolten, 2017; Gumma et al., 2018; Setiawan et al., 2013;
Sianturi et al., 2018; Tingting and Chuang, 2010) or other moderate
resolution sensors (SPOT 1 km) (Manjunath et al., 2015). Further, they

fail to capture large proportions of individual small farms (errors or
omissions) or they capture a significant proportion of non-croplands as
croplands (errors of commissions).

There are a few existing high resolution (30-m or better) cropland
products for small parts of Southeast and Northeast Asia (Cheng et al.,
2016; Hurni et al., 2017; Kontgis et al., 2015; Sonobe et al., 2017;
Torbick et al., 2016), but none for the entire area. Existing cropland
studies often cover small areas ranging from 1000 km2 (a small portion
of a Landsat image) to a few Landsat footprints. Such small maps are
highly inadequate for monitoring food security on a regional or na-
tional scale. For products to be useful for decision makers, they need to
cover sufficiently large areas at high spatial resolution (30-m or better).

Current cropland classifications of Southeast Asia either are of in-
sufficient spatial resolution or extent or of insufficient quality. A small
number of global land use\land cover (LULC) products were created at
moderate resolution, however, croplands are just one of the LULC
classes without an attempt to capture croplands in particular, such as
GLC2000 (Bartholomé and Belward, 2005), GlobCover (Arino et al.,
2007), GLC-SHARE (Latham et al., 2014), and MODIS Land Cover
(Friedl et al., 2002). In these large-scale land cover products, cropland
is intermixed with pastures which limits their usefulness for deriving
areas devoted to food production or as an agriculture mask for further
work. However, high-quality and high-resolution cropland maps have
been produced for continents outside Southeast Asia. Xiong et al.
(2017b) produced the first large-scale Landsat-derived 30-m cropland
extent product over the entire continent of Africa and Teluguntla et al.
(2018) produced an excellent Landsat-derived 30-m cropland extent
product for all of China and Australia.

In the last few decades, multi-temporal classification of satellite
imagery has become an important tool in LULC science at regional,
national, continental, and global scales (Chen et al., 2018; Gallego
et al., 2014; Giri et al., 2003). Until recently, such analysis at con-
tinental and global scales were restricted to coarse resolution imagery
like Advanced Very-High-Resolution Radiometer (AVHRR) 1-km and
MODIS 250 m–500 m (Gumma et al., 2016; Teluguntla et al., 2017;
Xiong et al., 2017a). Due to the expansion of parallel processing and
huge cloud computing data centers, it is now possible to create global
classified maps using Landsat 30-m imagery as demonstrated by studies
on Global Forest Cover, (Hansen et al., 2013) and GlobeLand30 (Chen
et al., 2015). Also, a major limitation with mapping with Landsat
imagery is cloud cover; some of the cloudiest regions on Earth are in
Southeast Asia (Kontgis et al., 2015; Li et al., 2017). This cloudiness
necessitates using advanced cloud identification and compositing al-
gorithms to overcome errors associated with clouds and cloud shadows
(Xiong et al., 2017b). Availability of the Google Earth Engine (GEE)
cloud computing platform allows processing of massively large volumes
of multi-temporal satellite data from high spatial resolution imagery
such as the Landsat and Sentinel sensors (Gorelick et al., 2017). GEE has
been used for many global and continent-wide land cover analyses with
great success (Dong and Xiao, 2016). The chief benefit of using GEE is it
alleviates the burden of downloading and processing the raw imagery
locally; instead processing is done on the cloud (Gorelick et al., 2017).

Given the above background, the overarching goal of this research
was to produce a precise and accurate cropland extent product of
Southeast and Northeast Asia using Landsat 30-m data, within the GEE
cloud computing platform, using machine learning algorithms (MLA)
(Teluguntla et al., 2018; Xiong et al., 2017b). This study helps
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determine consistent and objective cropland areas at the national and
sub-national level and compare the same with the national and-sub-
national statistics obtained from the country statistics.

2. Study area

2.1. Study area location

This study covers a total of 12 countries: 9 Association of Southeast
Asian Nations (ASEAN) countries (Brunei, Cambodia, Indonesia, Laos,
Malaysia, Myanmar, Philippines, Thailand, and Vietnam), and 3
Northeast Asian countries (Japan, North Korea, and South Korea)
(Fig. 1). Singapore was not included since the total agricultural area is
very small (about 1000 ha) and very technologically advanced, making
it atypical of agriculture in the vast majority of Southeast Asia (Agri-
Food and Veterinary Authority of Singapore, 2018). Together, we refer
to the 12 countries as Southeast and Northeast Asian countries or SNAC
(Fig. 1). There are 836.7 million people in SNAC, which is about 11.3%
of the world’s 7.6 billion people (UN DESA 2015).

2.2. Study area stratification and study area characteristics

A major challenge with mapping over such large areas is that the
agricultural practices vary greatly from region to region (Brown et al.,
2012; Portmann et al., 2010). Additionally, seasonal cloud cover during
monsoons varies between regions and locales. Since these areas cover
vast stretches of complex landscapes with varying climate, topography,
and geography, we decided to divide SNAC into seven refined agro-
ecological zones (RAEZs) (Table 1). The seven RAEZs were created
taking the following into consideration. Initially, we started with the
Köppen Climate map (Peel et al., 2007) and UN Food and Agriculture
Organization (FAO) agro-ecological zones (AEZs) (Fischer et al., 2000).
However, much of the area fell in tropical and subtropical regimes,

Köppen classes Af and Am (Af: Equatorial climate, Am: Monsoon cli-
mate). There was a lack of sufficient distinction within these zones to
account for the distinct agricultural patterns and variations in climate,
topography, vegetation, soils, and slope, which are all important factors
in cropland extent classifications. To overcome this lack of distinction,
we reviewed additional spatial data layers like soils, elevation, slope,
and political administrative boundaries along with AEZs to arrive at
seven broad RAEZs (Table 1), using methodology similar to Xiong et al.
(2017b). Attributes of these seven RAEZs for SNAC follow.

3. Methods

3.1. Definition of cropland extent

Any mapping should begin with a clear definition on what is being
mapped. When definitions vary between different mapping projects,
they cause one of the greatest uncertainties in the inter-comparison of
the products. So, when two maps are compared, an understanding of
the differences in definitions is key. For this project on Global Food
Security-support Analysis Data project at 30-m for the 12 countries of
Southeast and Northeast Asia (GFSAD30SEA), cropland extent map was
defined as: “lands cultivated with plants harvested for food, feed, and fiber,
including both seasonal crops (e.g., wheat, rice, corn, soybeans, cotton) and
continuous plantations (e.g., coffee, tea, rubber, cocoa, oil palms)”
(Teluguntla et al., 2016). Additionally, since the goal of this work was
to create a cropland extent map that could be used for multiple years,
cropland fallows were included in the cropland extent class to account
for land left fallow as a result of drought conditions, crop rotations, and
other causes (e.g., price drop for some crop produce in a given year).
Farmlands that are not cultivated during a season or a year are con-
sidered cropland fallows. Simply put, this cropland extent map includes
standing annual crops + permanent plantation crops + cropland fal-
lows. A major benefit of using Landsat is its spatial resolution of 30 m

Fig. 1. Southeast and Northeast Asian countries (SNACs) were devided into 7 refined agro-ecological zones (RAEZs) for the pixel-based supervised random forest
cropland extent classification. RAEZs were chosen based on temperature, political boundaries, seasonal precipitation, and farming practices. The zones are as follows:
RAEZ 1 - Mainland SE Asia; RAEZ 2 - Philippines; RAEZ 3 – Sumatra and West Malaysia; RAEZ 4 – Java and Bali; RAEZ 5 – East Malaysia, Kalimantan, and Brunei;
RAEZ 6 – Northeast Asia; RAEZ 7 - Eastern Indonesian Islands. Also shown are reference samples of cropland in green and non-cropland in red. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article).
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(0.09 ha per pixel). At this resolution an overwhelming proportion of
the world’s croplands are higher resolution than 0.09 ha. However,
even when cropland falls below this resolution, as is the case in some
fragmented farms or in parts of the economically developing world, the
temporal signal (e.g., reflectivity, NDVI) of various magnitude (e.g.,
depending on: crop types, proportion of the pixel occupying the crop,
irrigated or rainfed) from sub-pixel fraction of farming within a Landsat
pixel area of 0.09 ha, is still captured as croplands. In area calculations
they form a full pixel area (FPA) of 0.09 ha. Accounting for sub-pixel
fraction of these pixels is not required as such pixels form < 3% of the
global cropland area (Monfreda et al., 2008; Thenkabail et al., 2007).

3.2. Input imagery: landsat 30-m time-series data

The Landsat 8 and 7, 30-m, time-series data (Table 2) during the
2013–2016 time-period were used for mapping the cropland extent of
SNAC. Landsat 8 and 7 satellites have high spectral calibrations and
produce high quality and consistent data suitable for spatial analysis
over very large areas. The Landsat satellite series are launched by the
National Aeronautics and Space Administration (NASA) and the U.S.
Geological Survey (USGS) freely processes and distributes the imagery
to the public for no direct cost to users.

It was necessary to use both Landsat 8 and 7 imagery to maximize
data coverage and to derive cloud-free pixels for analysis. Data are
acquired over the study area every 8 days from the two satellites.
Overall, 10 bands of data (Table 2) were used. The blue, green, red,
near infrared (NIR), shortwave infrared (SWIR) 1, SWIR 2, and thermal
bands along with the vegetation indices Normalized Difference Vege-
tation Index (NDVI), Normalized Burn Index (NBR2), and Liquid

Surface Water Index (LSWI) were used for this classification (Table 2).
NDVI was selected to help distinguish dense vegetation including for-
ests. NBR2 was chosen to distinguish barren and urban lands from other
land cover. LSWI was included to help separate rice paddy and other
bodies from land (Kontgis et al., 2015).

Four temporal periods (Fig. 2) were chosen for image composition
based on regional cropping calendars and cloud cover. The periods
chosen were: period 1 (day of year (DOY) 1 to 120); period 2 (DOY 121-
240); period 3 (DOY 241 to 365). Period 4 was the standard deviation
of all cloud-free pixels during the entire year, 2015, for all 10 bands.
The standard deviation across 1 year was chosen to capture inter-an-
nual variability and to focus the classification on one year (2015). The
composites were compared to sub-meter to 5-m very high spatial re-
solution imagery (VHRI) to ensure that no artifacts were introduced
into the composites (such as cloud cover). This comparison was done to
ensure that no erroneous classification results due to missing data oc-
curred in portions of the image (Teluguntla et al., 2018). Through ex-
perimentation, we found to ensure that gapless cloud-free images could
be generated for the entire SNAC area (Fig. 1) for each period, it was
necessary to generate composites over multiple years. Although having
composites within only a year would be ideal, analysis of temperature
and precipitation data from the Climate Change Knowledge Portal
(World Bank, 2016) indicated that the years 2013 to 2016 contained
dry, average, and wet years (World Bank, 2016). This was of benefit in
that it encapsulated the inter-annual variability in crop extent due to
variations in precipitation and rainfall. Additionally, no areas had
image gaps in agricultural areas when using 3-year composites, which
was not the case when using 2 years of data, particularly in very cloudy
areas found in Borneo and Sumatra.

Table 1
Table with Revised Agro-Ecological Zones (RAEZs) #, RAEZ name, Köppen climate classification, temperature mean annual, average temperature of coldest and
warmest month, precipitation mean annual, average precipitation of coldest and warmest month. Average temperature and precipitation are over years 1991–2015,
sourced from World Bank, 2016 Climate Change Knowledge Portal***.

RAEZ # RAEZ Name Dominant
Köppen Class

Average temp.
of coldest
month

Average temp.
of warmest
month

Mean average
annual temp.

Average precip.
of annual
rainfall

Average
precip. of
wettest month

Average precip.
of driest month

Average
monthly
precip.

°C °C °C mm mm mm mm

1 Mainland SE Asia Af, Am, Csa 21.5 27.3 25.2 1739 304 19 145
2 Philippines Af, Am 24.4 27 25.9 2536 310 101 211
3 Sumatra & W. Malaysia Af 25.2 26.3 25.8 3105 340 190 259
4 Java & Bali Af, Am 25.9 26.5 26.2 2869 307 165 239
5 Borneo Af 25.2 26.1 25.7 3296 337 198 275
6 Japan, N&S Korea Cfa, Dfa, Dwa −4.7 22.9 9.7 1354 265 37 113
7 Eastern Indonesian Islands Af 24.3 26.5 25.4 1519 261 11 127

Af = Equatorial climate Am = Monsoon climate Aw = Tropical savanna climate.
Cfa = Humid subtropical climate Csa = Warm Mediterranean climate.
Dfa = Humid continental climate Dwa = Humid continental climate (dry winter).

*** Note: See Fig. 1 for spatial coverage of RAEZ’s.

Table 2
Characteristics of Multi-temporal Landsat 7 and 8 data used in the study.

Band Name Landsat 8 OLI Spectral Range
μm

Landsat 7 ETM + Spectral Range
μm

Vegetation Index (VI) Name Equation

Blue 0.452 – 0.512 0.45 – 0.52 NDVI (NIR – Red)/(NIR + Red)
Green 0.533 – 0.590 0.52 – 0.60
Red 0.636 – 0.673 0.63 – 0.69 NBR2 (SWIR1 – SWIR2)/(SWIR1+SWIR2)
NIR 0.85 – 0.879 0.77 – 0.90
SWIR 1 1.566 – 1.651 1.55 – 1.75 LSWI (NIR–SWIR1)/(NIR+SWIR1)
SWIR 2 2.107 – 2.294 2.09 – 2.35
Thermal 10.60 – 11.19 10.40 – 12.50

Note: NIR = near infrared, SWIR = shortwave infrared, OLI = Operational Land Imager.
ETM+ = Enhanced Thematic Mapper plus, NDVI = normalized difference vegetation index.
NBR = normalized burn ratio, LSWI = land surface water index.
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In addition to 40 Landsat 7 and 8 derived bands of data [10 bands
(Table 2) x 4 periods (Fig.2)], slope and elevation were used in this
classification because croplands vary based on elevation and slope
(Iizumi and Ramankutty, 2015; Reda and Tripathi, 2016). The Sep-
tember 2014 release of the nominal 30-m resolution Shuttle Radar
Topography Mission (SRTM) Version 3 void filled global elevation data
was used to determine slope and elevation (Farr et al., 2007; Kobrick
and Crippen, 2014).

The methodology used to create the imagery stack or mega file data
cube (MFDC) is described below and illustrated graphically in Fig. 3. All
processing was performed on the Google Earth Engine (GEE) cloud
computing platform to enable seamless and fast computing and the
ability to handle massive amounts of data over very large areas. A
custom cloud detecting script available at (Oliphant et al., 2017a) was
run within GEE to mask out cloud-impacted pixels. Top of the Atmo-
sphere (TOA) images were used instead of Surface Reflectance (SR)
images due to low SR imagery availability in GEE. The novel script ran
faster and masked more cloud impacted pixels than Fmask (Housman
et al., 2015; Zhu et al., 2015). These 42 bands (Fig. 3) were generated
separately for each of the 7 RAEZs and formed the baseline remote
sensing data used in the cropland versus non-cropland classification in
RAEZ.

3.3. Reference training data

Reference data were gathered from multiple sources: (1) Sub-meter
to 5-m VHRI acquired circa 2013 to 2016 and made available to us from
the National Geospatial Agency (NGA), (2) Ground data through ex-
tensive field visits, and (3) Tertiary published data from collaborators.
The cropland versus non-cropland reference training and validation data
used to classify imagery using the random forest (RF) machine learning
algorithm (MLA) were gathered from VHRI such as WorldView,
QuickBird, and GeoEye. We generated the reference training data for
RF MLA by initially creating at least 500 random samples for each of
the 7 RAEZs. Each sample was extracted from a 90 m x 90 m (Fig. 4)
area to ensure the validity of the sample in terms of its homogeneity
and geographic integrity. Additional training samples were added to the
initial selection of 500 random samples in areas where it was obvious
that the classified images did not visually match the landcover observed
from multiyear VHRI (explained in detail in section 3.6). Ultimately,
there was a total of 7849 training samples (Table 3) from VHRI spread
across SNAC. Their distribution in each of the 7 RAEZs is summarized in
Table 3. The entire sample training and validation dataset used in this
study is available at the following website: https://croplands.org/app/

data/search.
In addition, over 1960 ground reference samples were collected

through extensive field campaigns in Thailand, Myanmar, Vietnam, and
Indonesia by the authors (Gumma et al., 2018). In particular, our field
visit to Thailand and Indonesia in 2016 greatly informed our under-
standing in regard to crop rotations and the heterogeneity of small
farms (e.g. farmers commonly have a small, deep pond they use for
irrigation water storage and aquaculture). The standard process of
gathering field data is extensively described in Teluguntla et al. (2017).
The same process was followed here. Further, tertiary collaborators
provided us with 2383 tertiary reference samples in Indonesia, Japan,
South Korea, Thailand, and Vietnam (Bui et al., 2013; Dutta et al.,
2015; Seong et al., 2008; Sharma et al., 2016). The ground data and the
tertiary data were used in class identification and labeling. These data
helped us improve the RF classification performance leading to optimal
results.

3.4. Knowledge generation for random forest (RF) classifier

After reference training data were collected (Table 3), they were
used to generate croplands versus non-croplands knowledge using the
42-band data cube (Fig. 3). These data are plotted in a bar and whiskers
plot as illustrated for RAEZ 2 (Fig. 5). This knowledge was used in the
RF algorithm to classify images. These knowledge plots provide clear
indications in which bands there is separability between cropland
versus non-croplands. Two box and whiskers knowledge plots are il-
lustrated in Fig. 5 for RAEZ 2, Philippines. Cropland is shown in green
(the first box) and non-cropland is shown in gold (the second box). The
central line is the mean of all the values, while the top and bottom of
the box are the 25th and 75th percentiles, respectively. The ends of the
whiskers are defaults as defined in (Wickham and Chang, 2016), and
the black dots are individual outlier samples. In order for all the values
to fit legibility into the same plot, the following scaling was performed
for visualization: temperature was converted from K to °C then divided
by 25; slope was divided by 45 to convert percent slope to percent rise;
elevation was divided by 1000.

3.5. Cloud computing on Google Earth Engine (GEE)

Due to the enormous size of the Landsat 30-m time-series data over
very large areas such as SNAC (Fig. 1), it is essential to have a powerful
platform for image organization, processing, and classification. In this
study, we performed this task on the GEE cloud computing platform.
GEE has the entire Landsat archive along with many publicly available

Fig. 2. Time period of Landsat 8 and 7 imagery used in the study.
Landsat 7 and 8 images acquired from May 1, 2013, through April
30, 2016, were used to composite and mosaic nominal 30-m data
used in cropland classification. Note: Period 4 was the standard
deviation calculated over all images aquired over 2015 for each
band.

Fig. 3. Data cube of Landsat 8 and 7 for each of
the three periods, taking 2013–2016 imagery
over entire Southeast and Northeast Asian
countries. A 10-band (blue, green red, NIR,
SWIR1, SWIR2, Thermal, NDVI, NDWI, LSWI)
median composite of Landsat 8 and 7 was cre-
ated for four time periods (1: January-April, 2:
May-August, 3: September-December). In ad-
dition, 10 standard deviation bands from each
image collected in 2015 (period 4) and slope
and elevation derived from SRTM were also
used. This resulted in a 42-band data stack for
each of the seven zones in the study area which

were inputs for the random forest crop extent classifications (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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raster datasets from NASA, European Space Agency (ESA), and other
imagery. GEE allows code to be brought to data; complex multi-tem-
poral continental-scale data can be run using relatively simple Java-
Script or Python code that can be shared and replicated by other re-
searchers, lowering the barriers to utilizing supercomputers to perform
geospatial analysis (Gorelick et al., 2017). The entire classification
process was performed in GEE. First, code was executed that created
cloud-free image composites. After the composites were generated,
median pixel values corresponding to the training data extracted in GEE
were used as the basis for the pixel-based supervised RF MLA classifi-
cation. The results were viewed within GEE, and performance of clas-
sification was tested using reference data (e.g., field data from ground,
data from collaborators, and VHRI; section 3.3), and this process was
iterated using additional training data until optimal classification re-
sults of croplands versus non-croplands were attained. Post processing
was performed within GEE and cropland areas were calculated in GEE
based on the Global Administrative Unit Layers (GAUL) database by the
United Nation’s (UN) Food and Agricultural Organization (FAO)
(http://www.foodsec.org/tools_gaul.htm) country political boundaries.

3.6. Random forest algorithm

A pixel-based supervised random forest (RF) machine learning al-
gorithm (MLA) was used for classification in the GEE cloud computing
platform. Random forest classifiers applied to Landsat imagery in GEE
have successfully mapped a variety of vegetation in SNAC including
plantations such as oil palms (Lee et al., 2016), and rubber
(Beckschäfer, 2017). The RF classifier is a relatively fast, nonlinear
classifier that excels in producing good results from noisy data (Pelletier
et al., 2016; Rodriguez-Galiano et al., 2012). It uses multiple decision

trees to assign classification labels. To reduce overfitting, each tree only
classifies a subsection of training data. For a detailed description of the
RF classifier, the reader is referred to (Breiman, 2001; Breiman and
Cutler, 2004; Oliphant et al., 2017b). Through experimentation, we
determined that 300 trees was a good balance between classification
speed and accuracy. The default values were chosen for varia-
blesPerSplit (√(n_bands)), minLeafPopulation (1), and bag Fraction
(0.5). The outOfBagMode = true was used in order to use different
random subsamples of training data in generating trees to reduce model
overfitting.

As with most pixel-based supervised classifiers, obtaining quality
results requires high quality (cloud free) input rasters (Fig. 3) and
adequate training data (section 3.3, Table 3) that encompass the
variability of the landscape. When such large regions are mapped, a
large number of samples (Table 3) is required. An iterative approach
was used to add and remove training samples to improve the map
classification (Fig. 6). Each map was visually assessed to see how well
the classified map correlated with observed cropland in the landscape
from sub-meter to 5-m satellite VHRI, (Oliphant et al., 2014) primarily
from WorldView 3. The number of iterations required to achieve sa-
tisfactory classification was related to the complexity of the area. The
RF MLA was used to do a binary classification in each of the 7 RAEZs to
generate cropland and non-cropland classes (Fig. 6).

3.7. Classification post processing

Post-processing image enhancements were used to create the final
cropland extent product. In pixel-based land cover classification pro-
jects, large homogenous areas of one land cover class can often contain
single pixels or small numbers of pixels of another land cover class.

Fig. 4. Illustration of the reference training data collected from sub-meter to 5-m very high spatial resolution imagery (VHRI). The sub-meter to 5-meter VHRI
sourced training samples for croplands versus non-cropland for use in the random forest algorithm in each of the 7 refined agro-ecological zones. Green and pink
squares are 90 m × 90 m (9 Landsat pixels) for croplands and non-croplands respectively. The background is a VHRI from sensors such as WorldView, QuickBird, and
GeoEye that shows a 250 m × 250 m area of ground (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).

Table 3
Number of reference training samples of croplands versus non-croplands in each of the 7 refined agro-ecological zones (RAEZs) in Southeast and Northeast Asian
countries.

RAEZ# RAEZ Name Cropland Training Samples Non Cropland Training Samples Total Training Samples Land Area Area per Sample
# # # km2 km2 /#

1 Mainland SE Asia 1,326 1,267 2,593 1,939,900 748
2 Philippines 350 330 680 300,000 441
3 Sumatra & W. Malaysia 305 317 622 604,100 971
4 Java & Bali 298 272 570 134,100 235
5 Kalimantan 257 349 606 743,300 1227
6 Japan and N&S Korea 460 481 941 598,700 636
7 Eastern Indonesian Islands 614 1,223 1,837 750,800 409

Total 3,610 4,239 7849 5,070,900 646

A.J. Oliphant, et al. Int J Appl  Earth Obs Geoinformation 81 (2019) 110–124

115

http://www.foodsec.org/tools


Algorithms can be applied to remove these erroneous artifacts often
called ‘Salt and Pepper’ noise, thus improving the accuracy and the
visual correctness of map products. A disadvantage of using post clas-
sification smoothers is that fine features such as roads are obscured in
the smoothed product although they were present in the pre-smoothed

product. To correct for this, major roads were masked out using Open
Street Map Vector files (March 30, 2017) downloaded from https://
extract.bbbike.org. Additionally, coastlines and large water bodies were
given a separate classification to separate them from the non-cropland
class using the GlobCover version 2.3 product (Bicheron et al., 2011).

3.8. Uniqueness of this study relative to previous studies

There were some similarities, but also important differences be-
tween in this study relative to other recent studies (Teluguntla et al.,
2018; Xiong et al., 2017b). Similarities\overlap in the methods used
here compared to thoes of Xiong et al. (2017b) and Teluguntla et al.
(2018) include:

1 Use of a Random Forest supervised machine learning algorithm;
2 Use of Google Earth Engine cloud platform; and
3 Methods involved in validation data collection and accuracy as-

sessment.

Uniqueness of this study relative to that of Xiong et al. (2017b) and
Teluguntla et al. (2018) include:

Fig. 5. Illustration of knowledge generation for croplands versus non-croplands for the refined agro-ecological zone 2 (RAEZ 2), Philippines. Knowledge generation
for croplands (left in green) versus non-croplands (right bar in gold) developed based on reference training samples using the 42-band data cube. This knowledge is
used in the random forest algorithm to classify cropland versus non-croplands. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 6. Flowchart for mapping cropland extent in Southeast and Northeast Asia
using pixel-based random forest machine learning algorithm.

Table 4
Reference validation data. Number of validation samples of croplands for versus non-croplands in each of the 7 refined agro-ecological zones (RAEZs) in Southeast
and Northeast Asian countries.

RAEZ# RAEZ Name Cropland Validation Samples Non Cropland Validation Samples Total Validation Samples Percent of cropland for total area
# # # %

1 Mainland SE Asia 96 154 250 47.6
2 Philippines 56 194 250 7.2
3 Sumatra & W. Malaysia 67 183 250 14.5
4 Java & Bali 102 148 250 4.7
5 Borneo 71 179 250 14.4
6 Japan and N&S Korea 57 193 250 6.7
7 Eastern Indonesian Islands 12 238 250 4.9

Total 461 1,289 1750 100.0
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1 Use of standard deviation bands (Section 3.4) in the random forest
machine learning algorithm, which enhanced the performance of
the random forest significantly.

2 Use of extensive field data from the trip to Thailand and Indonesia
(see last paragraph in Section 3.3) where substantial effort was
taken to collect training and validation data. This effort enhanced
the quality of data fed to train the random forest machine learning
algorithms, by making them more robust. These data also bring
greater clarity and confidence in the validation data; and

3 Use of post-processing image enhancement codes (Section 3.7) that
further improved the final product.

3.9. Accuracy assessment

The accuracy of a mapped product must take into account the
precision of the input raster data on which the classification was gen-
erated as well as the locational precision of the validation data used to
assess the product. In order to account for these uncertainties, a
minimum mapping unit of 0.9 ha (nine 30-m x 30-m pixels) was chosen.
An ideal way to assess such accuracies is through a balanced sampling
approach by a team using data that were not available to the analysts
(Congalton et al., 2017). This ensures the accuracy is not artificially
inflated as a result of the training data being from the same source as
the validation data and it is impossible to fit the classification to the
validation data. For this study, 250 randomly distributed sampling lo-
cations were generated for each of the 7 RAEZs, completely in-
dependent of the producers of the SNAC cropland product. Each of
these validation sampling locations was either uniform cropland or non-
cropland over a 90 m x 90 m area. If the area in which the sample unit
was located contained a mix of cropland and non-cropland, the sam-
pling unit was moved to the nearest area of cropland. The samples were
visually interpreted by two independent analysts and only the samples
agreed on by both were retained. The high-resolution imagery

referenced was collected between 2013–2016. Table 4 shows the dis-
tribution of the cropland and non-cropland validation samples. There
were 250 samples generated for each of the seven RAEZs, (1750 in
total) so each RAEZ has its own accuracy error matrix, as well as an
overall accuracy matrix for the continent overall accuracy; user’s ac-
curacy (or errors of commissions) and producer’s accuracy (or errors of
omissions) were calculated to assess the accuracy of the classified maps
after application of the post-processing steps defined above (Congalton
and Kass, 2008).

3.10. Area assessment

Food security studies require cropland areas to be generated at
national and sub-national scales. This product, mapping croplands at
30-m resolution (1 pixel = 0.09 ha), is ideal for cropland area assess-
ments at national and sub-national levels and even at village and in-
dividual farm levels. Cropland areas calculated from this study were
compared with several other studies [FAO Cultivated Area (FAO, 2013),
Monthly Irrigated and Rainfed Cropland Areas year 2000 (MIRCA2000)
(Portmann et al., 2010), Global Rain-fed, Irrigated, & Paddy Croplands
(GRIPC) (Salmon et al., 2015), Global Irrigated Area Map (GIAM)
(Thenkabail et al., 2009) and Global Map of Rainfed Cropland Areas
(GMRCA) (Biradar et al., 2009)] based on availability of data for
comparisons. The areas calculated for the study countries were con-
trasted with areas obtained from FAO. Sub-national statistics were
obtained for the provinces of South Korea and Thailand and were
compared with the area statistics generated by this study.

4. Results

This section summarizes the 30-m cropland extent product. First,
the cropland product is displayed in totality, with select areas high-
lighted to show detail. Second, an assessment of accuracies of the 30-m

Fig. 7. The 30-m Landsat derived cropland extent product for the nominal year 2015 for Southeast and Northeast Asian countries. Green areas represent croplands
and transparent areas are non-croplands. The product is viewable at full resolution at: www.croplands.org. This product, named GFSAD30SEACE, can be downloaded
from: https://lpdaac.usgs.gov/node/1279. “Zoom-in” view at three locations: (a) Ayeyarwady, Myanmar, (b) Majalengka Regency, West Java, Indonesia, and (c)
Maguindanao, Philippines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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cropland extent product is presented. Third, cropland areas are com-
puted for national and sub-national levels and are compared with the
corresponding areas obtained from the national statistics.

4.1. 30-m cropland extent product

The study created a 30-m cropland extent product of the 12 coun-
tries (Fig. 7): nine Southeast Asian countries and three Northeast Asian
countries for the nominal year 2015. The product was generated from a
supervised random forest machine learning algorithm (Section 3.6)
utilizing training data (Section 3.3), on seasonal custom cloud free
image composites derived from Landsat 8 and 7 imagery (Section 3.2).
It maps croplands at a very fine (1 pixel = 0.09 ha) spatial resolution
over a very large area covering the entire SNAC in great detail (Fig. 7).
The product is called the Global Food Security-support Analysis Data @
30-m Cropland Extent for Southeast and Northeast Asia (GFSAD30SEA),
and can be viewed at www.croplands.org and downloaded from the
NASA LP DAAC: https://lpdaac.usgs.gov/node/1279.

An overview of the cropland extent of the entire SNAC is shown in
Fig. 7 where cropland extent is shown in bright green and non-cropland
extent is shown as transparent (no color). “Zoom-in” insert maps are
shown for 3 areas labeled a, b, and c for small portions of Myanmar,
Java, and Philippines respectively, to show map detail. These areas are
magnified and shown along with VHRI for visual comparison.

4.2. Accuracies of the 30-m cropland extent product

The results showed that for the entire SNAC study area the overall
accuracies were 88.6% with cropland class producer’s accuracy of
81.6% (errors of omissions = 18.4%) and user’s accuracies of 76.7%
(errors of commissions = 23.3%) (Table 5). The column total lists the
number of cropland and non-cropland samples that were generated by
an independent validation team that were used to assess the accuracy of
the product. For each of the 7 RAEZs overall accuracies varied between
83.2% and 96.4% with cropland class producer’s accuracy of
67.2%–97.2% (errors of omissions = 2.8%–32.8%) (Table 6). Results
clearly indicate the ability of Landsat data and methods used in this
study to rapidly and accurately map croplands.

4.3. Total Net Cropland Areas (TNCAs)

The 30-m cropland extent product is ideal for generating cropland
area statistics at the national as well as various sub-national levels.
Table 7 shows cropland areas of the 12 countries compared with the
cropland areas derived from a number of other sources including:
MIRCA (Portmann et al., 2010); FAO (FAO, 2013); GRIPC (Salmon
et al., 2015); and the combination of GIAM (Thenkabail et al., 2009)
and GMRCA (Biradar et al., 2009).

The total net cropland area (TNCA) of 12 countries was 126.6
million hectares (Mha) as compared with MIRCA (132.2 Mha) and FAO
national statistics (116.2 Mha). The cropland area calculated by
GFSAD30 was 5.6 Mha less than MIRCA (4.2% difference) and
10.4 Mha greater than FAO (9.2% difference). This same information is
shown graphically in Fig. 8 where GFSAD30 is compared to national
agricultural areas reported by FAO.

4.4. Sub-national cropland areas

The 30-m resolution (1 pixel = 0.09 ha) allows the calculation of
sub-national statistics down to a single farm level. This is indeed a great
advantage of the 30-m product wherein one can generate statistics at
various levels with very high degrees of accuracy. So, wherever na-
tional statistics were available at the sub-national level, we compared
the GFSAD30SEACE (this study) 30-m derived statistics of sub-national
level with sub-national level statistics available from the national
ministries. Provincial cropland areas were obtained for South Korea

(Statistics Korea, 2017) and Thailand (National Statistical Office, 2013)
and were compared with GFSAD30SEACE derived 30-m statistics,
which are shown in Fig. 9 and Fig. 10 respectively. The large number of
provinces in Thailand prohibited all provinces from being labeled in
Fig. 10.

5. Discussion

With Southeast and Northeast Asia’s population representing 11% of
the world’s population, and the number of people expected to increase
from 837 million in 2017 to 958 million by 2050 (UN DESA, 2017), the
complete utilization of existing farmland is of the utmost importance.
Cropland extent maps are one way to demonstrate the current utiliza-
tion of cropland (See et al., 2015; USDA NASS, 2014). In 2005 FAO
estimated that 4% of the population of Southeast Asia suffered from
severe food insecurity while an additional 14% suffered from moderate
food insecurity (FAO, 2016). The situation is worse for stunted growth
in children; in 2010 30% of the population under 5 years old were
estimated to have stunted growth in Cambodia, Indonesia, Laos,
Myanmar, and Philippines (FAO, 2016). Expansion of plantation crops
such as rubber (Fox and Castella, 2013), oil palm (Castellanos-
Navarrete and Jansen, 2015), and sugarcane threaten small-holder
farms and reduce land available to local food production.

5.1. Classification

Previous studies have mapped cropland extent in Southeast Asia,
but they have been limited by low spatial resolution or low spatial
extent. This study covered all of Southeast Asia over the years between
2013–2016, using Landsat 30-m imagery. Landsat 8 and 7 were used to
maximize data coverage to every 8 days over 3 years (2013–2016).
Time-compositing (Fig. 3) over such a dense time-series, in all four
time-periods (Fig. 2), ensured that less than 1% of pixels were obscured
by clouds across the entire Southeast and Northeast Asia study area
(Fig. 1) (in Borneo the amount may be closer to 2–3%). Further, these
pixels are in deep forests, having inconsequential impact on cropland
class accuracies. With the increasing availability of Sentinel 2 imagery,
its use with Landsat should be considered, because the increase in
temporal acquisition outweighs drawbacks from mismatch using mul-
tiple sensors (Xiong et al., 2017b). In particular, the development of
Sentinel 2 – Landsat harmonized datasets makes it easier to merge
Landsat and Sentinel 2 imagery (Claverie et al., 2017). Increasing
temporal acquisition from multiple satellites also increases the perfor-
mance of data interpolation and curve fitting algorithms (Brooks et al.,
2012; Nguyen et al., 2012; Vuolo et al., 2017). Additionally, Landsat 9,
which is similar to Landsat 8, is currently being constructed and is on
track to be launched in 2020, ensuring the continuity and relevance of
Landsat imagery (Jenstrom and Sauer, 2018).

Google Earth Engine was used to generate cloud-free image

Table 5
Overall accuracy error matrix of the Southeast and Northeast Asian countries
(SNAC) study area which includes 12 nations. Independently collected valida-
tion samples were used to assess the accuracy of the cropland product and show
the overall, producer’s and user’s accuracies. TNCA = Total Net Cropland Area
of SNAC.

Entire Study Area: 100 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 376 114 490 23.3%
Non cropland 85 1175 1260 6.7%
Column total 461 1289 1750
Omission error 18.4% 8.8%
Producer accuracy 81.6% 91.2%
User accuracy 76.7% 93.3%
Overall accuracy 88.6%
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composites from Landsat 8 and 7 imagery. Through experimentation,
we found that it was necessary to make composites covering 4 months
and over 3 years (Fig. 2 and 3) in order to create consistent cloud-free
composites over all of the study area. Additionally, we observed that
including Landsat 7 (despite issues with scan lines) with Landsat 8
produced better composites than Landsat 8 alone. In order to not re-
move any potentially useful information, all Landsat 7 bands compar-
able to the Landsat 8 bands (except the 15 m Pan) were used for clas-
sification (Table 2). In addition, three spectral indices NDVI, NBR2, and
LSWI (Section 3.2) were included to help classify vegetation, bare
ground, and surface water respectively. Additionally, slope and eleva-
tion, derived from SRTM 30 m, were included since precipitation,
temperature, land cover, and agricultural practices vary with slope and
elevation.

The band values for each sample in a RAEZ were plotted in a bar
and whisker plot to evaluate the distribution and separability (Fig. 5).
None of the 30 4-month-period composite bands demonstrated a clear
separability between cropland and non-croplands. We hypothesized
that the broad composites masked the growth stages (planting,
growing, fruiting, harvest) of seasonal crops which distinguish them-
selves from other types of land cover. To reintroduce the spectral
variability from those different growth stages, the standard deviation
for all cloud free images within the year 2015 were also included in the
classification. Fig. 5 demonstrated that the standard deviation band had
greater class separability for a given band than any one seasonal
composite for that band.

The RF algorithm was chosen for the map classification because it
has been used successfully for over a decade in remote landscape
classifications, and is resistant to highly correlated data and for over-
coming data over-fitting (Belgiu and Drăgu, 2016). As a result, high
band correlation was not a concern for decreasing classifier perfor-
mance. Analysts selected 90-m x 90-m areas for training data. A
minimum of 500 training samples per RAEZ were generated and used.
An iterative process of classification, review, adding samples in mis-
classified areas, and reclassification was performed to improve the
product.

5.2. Cropland class accuracies and uncertainties

Often when performing land cover classifications, there is a trade-
off in increasing accuracies: when producer’s accuracies increase, user’s
accuracies decrease and vice versa. The RF algorithm is optimized to
keep both accuracies as high as possible. However, when optimizing the
RF algorithm, our goal was to capture as much cropland as possible
(i.e., to keep the errors of omissions minimum or producer’s accuracies
high). In the process, if some non-croplands are classified as croplands,
the errors of commissions go up (or user’s accuracies go down). The
mixed pixel challenge using 30 m (1 pixel = 0.09 ha) Landsat data is
minimum compared to much coarser resolution data such as MODIS
250 m (1 pixel = 6.26 ha). This is because the purity of the training and
validation data for 30-m pixels are significantly higher than much

Table 6
Accuracy error matrices of the 7 refined agro-ecological zones (RAEZs) of
Southeast and Northeast Asian countries (SNAC) study area. Independent as-
sessment of overall, producer’s, and user’s accuracies are shown for the circa
2015 cropland extent product derived from Landsat imagery. TNCA = Total
Net Cropland Area of SNAC.

RAEZ 1: Mainland SE Asia: 47.6 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 80 20 100 20.0%
Non cropland 16 134 150 10.7%
Column total 96 154 250
Omission error 16.7% 13.0%
Producer accuracy 83.3% 87.0%
User accuracy 80.0% 89.3%
Overall accuracy 85.6%

RAEZ 2: Philippines: 7.2 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 41 7 48 14.6%
Non cropland 15 187 202 7.4%
Column total 56 194 250
Omission error 26.8% 3.6%
Producer accuracy 73.2% 96.4%
User accuracy 85.4% 92.6%
Overall accuracy 91.2%

RAEZ 3: Sumatra & W. Malaysia: 14.5 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 45 20 65 30.8%
Non cropland 22 163 185 11.9%
Column total 67 183 250
Omission error 32.8% 10.9%
Producer accuracy 67.2% 89.1%
User accuracy 69.2% 88.1%
Overall accuracy 83.2%

RAEZ 4: Java & Bali: 4.7 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 89 27 116 23.3%
Non cropland 13 121 134 9.7%
Column total 102 148 250
Omission error 12.7% 18.2%
Producer accuracy 87.3% 81.8%
User accuracy 76.7% 90.3%
Overall accuracy 84.0%

RAEZ 5: Borneo: 14.4 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 69 26 95 27.4%
Non cropland 2 153 155 1.3%
Column total 71 179 250
Omission error 2.8% 14.5%
Producer accuracy 97.2% 85.5%
User accuracy 72.6% 98.7%
Overall accuracy 88.8%

RAEZ 6: Japan and N&S Korea: 6.7 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 42 7 49 14.3%
Non cropland 15 186 201 7.5%
Column total 57 193 250
Omission error 26.3% 3.6%
Producer accuracy 73.7% 96.4%
User accuracy 85.7% 92.5%
Overall accuracy 91.2%

Table 6 (continued)

RAEZ 7: Eastern Indonesian Islands: 4.9 % of TNCA

Cropland Non cropland Row total Commission error

Cropland 10 7 17 41.2%
Non cropland 2 231 233 0.9%
Column total 12 238 250
Omission error 16.7% 2.9%
Producer accuracy 83.3% 97.1%
User accuracy 58.8% 99.1%
Overall accuracy 96.4%
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Table 7
Comparison of cropland areas derived from this product (i.e., Global Food Security-support Analysis Data @ 30-m for Southeast Asia (GFSAD30SEA)) with:
MIRCA2000 (personal communication with Stefan Siebert, 2014); FAO cultivated area (2009); GRIPC (Salmon et al., 2015); GIAM (Thenkabail et al., 2009) and
GMRCA (Biradar et al., 2009). All cropland product definitions are the same except GRIPC where cropland fallows are not included***. All areas are listed in
thousands of ha (x 1000 ha).

Country Resolution Total Land Area GAO-
GAUL

GFSAD30SEACE This Study: 30 m Crop Extent MIRCA
variable

FAO 2009 Cultivated Area
variable

GRIPC 500 m GIAM + GMRCA
1 km

Indonesia 181,100 37,440 55,750 42,600 31,030 20,750
Thailand 51,150 25,760 18,320 19,000 27,360 16,540
Myanmar 65,500 14,240 12,640 12,130 11,560 10,710
Vietnam 31,000 10,800 9,520 9,640 12,060 10,350
Malaysia 32,800 10,420 7,770 7,590 4,700 5,300
Philippines 29,800 9,150 12,190 10,440 12,820 9,020
Cambodia 17,600 7,680 3,980 4,060 4,980 4,600
Japan 36,580 3,730 5,790 4,610 5,990 5,950
North Korea 12,050 3,330 3,060 2,860 5,250 3,070
Laos 23,000 2,450 1,110 1,470 1750 2,020
South Korea 9,7000 1,520 2,090 1,780 3,180 3,120
Brunei 577 54 13 11 0
Total 490,857 126,574 132,233 116,191 120,680 91,430

Sources.
MIRCA: MIRCA2000-Global Monthly Irrigated and Rainfed Crop Areas around the year 2000.
FAO Cultivated Area circa 2009: FAO Yearbook 2013.
GRIPC: Global Rain-fed, Irrigated, & Paddy Croplands.
GIAM: Global Irrigated Area Map derived from remote sensing, for the end of the last millennium.
GMRCA: Global Map of Rainfed Cropland Areas around the year 2000.
***= definition of croplands for different products.
GFSAD30SEACE = standing crops + cropland fallows + permanent crops.
MIRCA = Irrigated + rainfed annual and perennial cropland + temporary fallows.
FAO 2009 = Annual crops + perennial crops + cropland fallows.
GRIPC = Irrigated, rainfed, and paddy (rice) cropland that are harvested at least once per year (fallow not included).
GIAM + GMRA = standing crops + cropland fallows + permanent crops.

Fig. 8. Comparison of Landsat 30-m cropland areas derived from this study with UN FAO cultivated area national statistics for the 12 Southeast and Northeast Asian
countries.
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Fig. 9. Provincial cropland extent areas obtained for South Korea circa 2016 (Statistics Korea, 2017) compared with the GFSAD30SEACE 30-m cropland extent circa
2015 statistics of this study.

Fig. 10. Provincial cropland areas from Thailand circa 2013 (National Statistical Office, 2013) compared with the GFSAD30SEACE 30-m cropland extent circa 2015
statistics of this study.
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coarser pixels such as MODIS 250 m. This leads to substantially reduced
uncertainties in the random forest classifier as well as reduction in
uncertainties in accuracy assessments of a 30-m data as opposed to
much coarser data such as MODIS 250 m.

5.2.1. Cropland over-classification
In RAEZ 1 (Mainland Southeast Asia), cropland was slightly over-

classified. This finding is evident with both the producer’s accuracy
being higher than the user’s accuracy and the cropland extent calcu-
lated from GFSAD30 being higher for Thailand, Vietnam, Cambodia,
Laos, and Myanmar than that reported in FAO statistics and many of the
other cropland extent datasets (Table 7).

The accuracy assessment of RAEZ 5 (Borneo) suggests that cropland
was over-classified. The producer’s accuracy was significantly higher
than the user’s accuracy for the cropland class, 97.2% versus 72.6%
respectively, suggesting somewhat higher cropland commissions.
Borneo has particularly heavy cloud cover due to heavy and regular
rainfall (see Table 1). Additionally, peatland fires regularly occur,
producing large amounts of smoke (Miettinen et al., 2016; Uda et al.,
2017). The combination of heavy cloud cover and smoke reduced the
quality of the image composites in this RAEZ more than any other,
which likely negatively impacted classification accuracy.

5.2.2. Cropland under-classification
When classifying RAEZ 2 (Philippines) it was particularly difficult to

classify plantations as cropland without classifying large sections of
forest as cropland as well. Additionally, in many areas of the
Philippines, there is a checkerboard like pattern of croplands and forest,
with agricultural fields less than 1 ha in size, which are difficult to
classify. This corresponds with the under-estimation of agricultural area
in the Philippines compared to other studies as GFSAD30 found
9,150,000 ha, whereas the FAO (which reports data from the
Agricultural Ministry of Philippines) listed 10,440,000 ha. Cropland
area was also under-classified in RAEZ 6 (Japan and N&S Korea). Upon
reviewing the product on www.croplands.org, it was found that very
small farms were sometimes omitted. Particularly in Japan, it is
common for very small fields (> 1 ha) to be located among houses on
the edges of cities. Some of these fields were not classified as cropland,
largely due to mixed pixels (cropland and developed land occurring
within the same pixel). This finding corresponds with some under-es-
timation of agricultural area in Japan compared to other studies as
GFSAD30 found 3,730,000 ha, whereas FAO (which used data from the
Agricultural Ministry of Japan) reported 4,610,000 ha.

5.3. Sub-national cropland area comparisons

A primary benefit of mapping cropland extent at 30 m is for asses-
sing agricultural land at the regional or local level. Mapping croplands
at 30 m delineates field boundaries and can capture small isolated
farms. To assess how well GFSAD30SEACE (this study) mapped crop-
land at the provincial level, our product was compared to cropland
extent statistics obtained from respective countries’ Ministry of
Agriculture or Statistics where such data were available.

For Thailand, the over-estimation of cropland extent at the
Provincial scale (Fig. 10) was based on the linear relationship between
GFSAD30 and the Whole Kingdom of Thailand 2013 Agricultural
Census (National Statistical Office, 2013). This over-estimation is un-
derstandable considering the commissions (classifying non-cropland
area as cropland) is preferable to omissions (classifying cropland as
non-cropland). Regardless, the high R2 value of 0.948 of the linear fit
indicates consistent cropland mapping across the entire country of
Thailand.

For South Korea, the Agricurtural Land Area Survey provided by the
Korean Statistical Information Service (Statistics Korea, 2017) was in
close agreement with the cropland areas obtained from GFSAD30-
SEACE derived 30-m statistics of this study (Fig. 10). The high R2 value

of 0.952 of the linear fit between GFSAD30 and the provincial areas
indicates consistent cropland mapping across the entire country.

6. Conclusions

This study successfully produced high spatial resolution 30-m (1
pixel = 0.09 ha) cropland extent product for the entire 12 Southeast
and Northeast Asian Countries (SNAC). Overall, 25.78%
(126,574,000 ha) of the total geographic area was net cropland area for
the nominal year 2015. In comparison, only 12.6% of the terrestrial
land in the world is under croplands. This shows the intense cropland
acctivity in Southeast and Northeast Asia as a result of favourable cli-
mate, adequate precipitation and\or irrigation, rich soils, and the need
to feed a population 836.7 million from the 12 study countries. The
product has high robust levels of accuracy, established by an in-
dependent group, with a weighted overall accuracy of 88.6%, a pro-
ducer’s accuracy of 81.6% (error of omission = 18.4%) and a user’s
accuracy of 76.7% (error of commission = 23.3%). For each of the 7
RAEZs overall accuracies varied from 83.2 to 96.4%. The computed
cropland areas of the countries and sub-national levels explained
93–95% of the variability when compared with areas reported by the
UN FAO and the national statistics. The uniqueness of this study was
clearly demonstrated by the applicability of the pixel-based random
forest machine learning algorithm over such large areas using knowl-
edge generated by well distributed, large sample size reference training
data through petabyte-scale powerful cloud computing on Google Earth
Engine. The cropland product can be viewed at full resolution at www.
croplands.org and downloaded from the NASA LP DAAC at: https://
lpdaac.usgs.gov/node/1281.
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