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Abstract
Key message We describe here the recent developments about the involvement of diverse stress-related proteins in 
sensing, signaling, and defending the cells in plants in response to drought or/and heat stress.
Abstract In the current era of global climate drift, plant growth and productivity are often limited by various environ-
mental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of 
homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to 
heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling 
events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the 
functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in 
plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can 
be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated 
proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcrip-
tion factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar 
or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is 
distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about 
various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/
and heat stresses, and their possible role in augmenting stress tolerance in crops.

Introduction

Abiotic stresses negatively influence plant growth and pro-
ductivity and are the primary cause of extensive agricultural 
losses worldwide (Ye et al. 2017). Reduction in crop yield 
due to environment variations has increased steadily over the 
last decades (Boyer et al. 2013). Abiotic stress weakens the 
growth and fitness of the plants, and these stresses include 
water surplus/deficit, ion toxicity/deficiency, temperature 
extremes (heat and cold), salinity, and tropospheric ozone. 
It is assessed that around 50–70% decline in the crop produc-
tivity is due to various abiotic stresses (Verma and Deepti 
2016). Several crop production models project a reduction in 
the crop yields of major agricultural crops in future, mostly 
due to climatic change (Rosenzweig et al. 2014).

Due to their sedentary nature, plants are unable to elude 
from unfavorable conditions, so they need robust defense 
mechanisms to confront unfavorable environmental changes 
(Kaldenhoff and Fischer 2006). Abiotic constraints, mainly 
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drought, and heat stress, may act alone, but frequently act 
together, and plants have acquired efficient adaptive and pro-
tective means to counteract this combined adversity (Zan-
dalinas et al. 2018; Fig. 1). Basic tolerance mechanisms in 
plants involve the activation of different stress-regulated 
genes through integrated cellular as well as molecular 
responses (Latif et al. 2016).

Plants respond to their immediate surroundings by 
diverse ways, which assist the cells to adapt and achieve 
cellular homeostasis (Jones 2006). Several diverse proteins 
have been identified, which play pivotal roles in sustaining 
homeostasis and attaining stress resilience in plants (Pérez-
Clemente et al. 2013). Overexpression of stress-induced 
genes through transgenic routes is one of the prevalent and 
most practical approaches in the production of stress-tolerant 
varieties (Guerra et al. 2015). A pressing number of genes 
involved in drought and heat stress resilience have been 

analyzed and attested (Wang et al. 2016b). Cellular proteins 
are related to signaling and transcriptional regulation and 
include osmotins, dehydrins, LEA, and lineages of NAM, 
ATF and CUC (NAC) transcription factors that are intermit-
tently reported as being engaged in stress tolerance (Nouri 
and Komatsu 2013; Vishwakarma et al. 2017; Fig. 1).

Drought and temperature stresses are the most vital 
among all the abiotic stresses. Most receptor proteins, to 
sense these stresses, are located in the plasma membrane 
and are directly involved in sensing external stimuli, aid 
effective regulation of plant–water relations (Zargar et al. 
2017). Since both the stresses result in dehydration, though 
to a varying extent, many cellular responses (especially 
proteins) to drought and heat stress applied alone may be 
common, but differ when these stresses are present at the 
same time (Rizhsky et al. 2004; Zandalinas et al. 2018). 
Different transcription factors (TFs) have been reported 

Fig. 1  In plants, abiotic stresses (heat or/and drought) are first sensed 
via membrane-localized stress sensors and receptors and the per-
ceived stimulus is then relayed to intracellular compartments through 
secondary messengers especially calcium ions. Further, these calcium 
ions activate appropriate signaling pathways to transduce downstream 
signals. In all signaling pathways, MAPK (mitogen-activated pro-

tein kinases) and CDPK (calcium-dependent protein kinases) act as 
potent signal transducers that initiate various transcription networks. 
The transcription factors regulate the transcription of different stress-
related proteins, which in turn act as chaperones to provide heat and 
drought tolerance as shown in figure
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Fig. 2  Regulation of various stress-responsive proteins during heat 
and drought stress has been represented here. Drought or/and heat 
stresses were first detected by the sensors present in plasma mem-
branes (GPCRs, RLKs, HK, ABA receptors, and calcium sensors) 
followed by transduction of information to appropriate effectors. 
ABA binds to PYR/PYL protein and forms a complex with PP2Cs, 
which covers the active sites of PP2Cs, thereby allowing autophos-
phorylation of SnRK2s. These phosphorylated SnRK2s participates 
in ABA-mediated stomatal closure via targeting NADPH oxidases 
and ion channels particularly SLAC1 (slow anion channel-associ-
ated 1) and KAT1 (potassium channel in Arabidopsis thaliana 1) in 
guard cell. The activated SLAC1 further causes membrane depolari-
zation and opens external  K+ channels; the escape of  K+ and anions 
reduces guard cell’s turgor and hence results in stomatal closure. The 
transporters (aquaporins, ion and solute transporters) shown in pink 
color activates calcium/calmodulin complex that plays an important 
role as a messenger or signal transducers. These calcium signals are 
generally decoded by protein kinases especially MAPK and CDPK 
that further initiate different transcription networks. Upregulated 
transcription factors such as WRKY, DREB, MYB, AP2, HSFs, and 
bZIP (upregulated by calcium and ABA) and NAC (upregulated by 
MAP kinases) bind to the specific DNA-binding promotor domain of 
stress-related genes and influence their transcription. After transcrip-
tion, alternative splicing of newly synthesized mRNA leads to the 

formation of mature mRNA which is transported to the cytoplasm. 
In the cytoplasm, translated proteins are activated by phosphoryla-
tion or glycosylation and synthesize corresponding stress-responsive 
proteins, which provide drought or/and heat tolerance in plants. 
Osmotin is a multifunctional stress chaperone which lacks the DNA-
binding domain and maintains osmotic homeostasis via accumulation 
of osmolytes (proline). SP1 a protein of the chloroplast membrane 
(ubiquitin–proteasome pathway) acts to destruct the TOC apparatus 
to restrict the import of photosynthetic apparatus (PS) components, 
which may debilitate photosynthetic activity and reduce reactive 
oxygen species (ROS) production and photo-oxidative damage. Bro-
ken arrows show possible but not firmly demonstrated paths. Abbre-
viations: PIP (plasma membrane intrinsic proteins), NHX  (Na2+/H+ 
exchanger), ACA (calcium ATPases), RLKs (receptor-like kinases), 
GPCRs (G-protein-coupled receptors), PP2C (group-A protein phos-
phatases 2C), and SnRK2 (subclass III sucrose non-fermenting1 
(SNF1)-related protein kinase 2), SLAC1 (slow anion channel-associ-
ated 1), KAT1 (potassium channel in Arabidopsis thaliana 1), MAPK 
(mitogen-activated protein kinases), CaM (calmodulins), WRKY 
(amino acid residues), DREB (dehydration-responsive element-bind-
ing protein), AP2 (apetala 2) (NAM, ATAF, and CUC transcription 
factors), HSFs (heat shock transcription factors), bZIP (basic leucine 
zippers), SP1 (chloroplast specificity protein), TOC (protein import 
machinery), PS (photosynthetic apparatus)
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to play crucial roles in coordination with receptors to 
control plant growth and developmental activities under 
stress situations (Wang et al. 2016b; Fig. 2). The protec-
tion to cells from dehydration is imparted by LEA (late 
embryogenesis-related proteins), osmotins, and dehydrins 
(Banerjee and Roychoudhury 2016). LEA proteins consti-
tute a more widespread pool of proteins commonly termed 
‘hydrophillins’ that defend other proteins from aggrega-
tion, desiccation, or osmotic stress (Ling et al. 2016). 
Likewise, osmotins are highly regulated proteins that pro-
tect cells from high osmolarity and structural or metabolic 
disruptions (Le et al. 2018). Under stressful conditions, 
(HSPs) or chaperones are upregulated to assist in folding, 
association, translocation, and degradation of proteins and 
hence stabilizing membranes and protein motifs (Ohama 
et al. 2017). These responses to prevailing stress factors 
are regulated by different and intermittently discrepant 
signaling cascades, which may have ‘cross-talk’ (Fahad 
et al. 2017). Hence, there is a need to unravel the underly-
ing mechanisms that negotiate stress-sensing events pro-
tection and signal transduction pathways in drought and 
temperature-stressed plants (Zhu 2016). Recent proteomic 
techniques designed to interpret crop responses to abiotic 
stresses have emerged (Arbona et al. 2017), which are pro-
viding new insights about the diverse functional aspects of 
proteins in stressed plants. 

Here, we provide an update on various stress (related) 
proteins (sensors, receptors, signals, and chaperones) that 
are expressed in response to adverse environmental con-
ditions, with a focus on drought and heat stress, and how 
they confer protection and provide stability to plant cel-
lular processes, considering the recent research advances 
in this area.

Stress sensors and receptors

Sensing environmental stimuli often involve some protein 
kinases and phosphatases, which regulate specific signaling 
cascades through the phosphorylation and dephosphoryla-
tion of specific proteins and the intensification of external 
impulses (Cristina et al. 2010). All these mechanisms even-
tually stimulate multiple defense actions and activate differ-
ent developmental processes inclusive of cell enlargement 
and differentiation (Šamajová et al. 2013).

G protein‑coupled receptors (GPCRs)

Environmental disturbances can trigger upregulation of 
some receptors present in the plasma membranes, which 
ultimately initiate downstream signaling circuits in an 
integrated and well-adopted manner (Osakabe et  al. 

2013). G protein-coupled receptors (GPCR) are plasma 
membrane-localized receptors that play crucial roles in 
plant abiotic stress responses (Choudhury et al. 2011); 
relatively less information is available about these pro-
teins in plants. The existence of G protein-coupled 
receptors (GPCRs) in plants is still controversial; how-
ever, due to their significance in signaling, probing new 
GPCRs is necessary (Tuteja and Sopory 2008). The role 
of GPCR in stress sensing is significant as they perceive 
secondary signal relayed from abiotic stressors (Ullah 
et al. 2002; Fig. 2). By perceiving the adverse stimuli, 
the GPCRs communicate with associated G proteins that 
release GDP by binding GTP to the Gα subunit (Choud-
hury et al. 2011). In Arabidopsis thaliana, single GPCR 
gene has been identified that was regulated by cell cycle 
and also participated in guard cell ABA signaling (Wang 
et al. 2001). The GPCR contains two highly conserved 
cysteine residues and a guanine nucleotide exchange fac-
tor (GEF) that further helps in GDP/GTP exchange (Yadav 
and Tuteja 2011). During abiotic stresses, G protein sign-
aling pathways get activated, and G protein overexpressor 
plants have been found to show enhanced tolerance to heat 
stress as well as drought stress (Chen et al. 2003). Over-
expression of RGS1 (Regulator of G protein Signaling1) 
provided drought resilience by upregulating the expres-
sion of genes involved in ABA biosynthesis (Misra et al. 
2007). Targets of G protein signaling in plants are very 
few; however, in Arabidopsis, putative effectors of G pro-
tein signaling pathway have been discovered (Chen et al. 
2003). Few among them are related to animal proteins 
with well-known function in stress; however, their possible 
involvement in plants’ abiotic stress responses is yet to be 
unveiled (Chen et al. 2003). The constitutive expression of 
Gα in transgenic tobacco plants enhanced tolerance to heat 
and salinity, whereas Gβ‐overexpression provided only 
heat resilience (Misra et al. 2007). From the above find-
ings, it is evident that G proteins relay downstream signals 
on perceiving external stimuli, such as drought and heat, 
and impart cellular protection; however, these events are 
highly complicated and need future examination (Lu et al. 
2018). Different studies showed the complex pathway of 
G protein regulated plant acclimation to different abiotic 
stresses (Urano and Jones 2014). Though multiple genetic 
studies have interpreted the role of G proteins in stress 
sensing, the interaction of different downstream targets 
still needs to be probed during signaling events.

Receptor‑like protein kinases (RLKs)

Since 1991, a detailed assay of protein kinase homolog 
 P34cdc2 in Arabidopsis (Ferreira et al. 1991) has helped 
researchers to understand the functional aspects of protein 
kinases in plants. Notably, a special category of protein 
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kinases, known as receptor-like kinases (RLKs), repre-
sents a significant protein group in plants, with 1132 and 
610 RLKs recognized in rice and Arabidopsis, respectively 
(Shiu et al. 2004). RLKs represent a highly conserved ser-
ine-/threonine-linked signaling module that monitors all 
developmental events in plants along with hormone percep-
tion and homeostatic mechanisms covering abiotic stress 
responses (Osakabe et al. 2013). Most RLKs are plasma 
membrane-localized proteins; however, a few are specifi-
cally restricted to other places, for instance, apoplastic rice 
root meander curling (OsRMC) kinases, cytoplasmic-RLKs 
situated in cytoplasm (Zhang et al. 2014), and wall-asso-
ciated kinases knitted to the pectin fragment of the cell 
wall (Lim et al. 2015). According to Greeff et al. (2012), a 
model RLK protein encompasses a transmembrane domain 
(TM), an external ligand-binding domain (ECLB), and a 
protein kinase catalytic domain (PKC). A PKC is the major 
intermediary of signaling events responsible for activation 
or repression of target genes (Zou et al. 2014). In rice, a 
floral organ number 1, (FON1), gene has been identified as 
LRR-RLK, which can be induced by drought stress (Feng 
et al. 2014). Similarly, in Arabidopsis, ‘FERONIA’ receptor 
kinases protect cell wall against drought-induced damages 
(Feng et al. 2018). Further, an Arabidopsis ortholog of the 
wheat LRK10 gene serves as beneficial feedback in drought 
resistance by stomatal closure, involving ABA-dependent 
signaling pathways (Lim et al. 2015). The marked expres-
sion behavior of an OsNRRB RLK in rice (Oryza sativa) 
encoding OsNRRB protein has been determined, and a tran-
scriptomic assay showed that hybrid plants overexpressing 
the OsNRRB gene exhibit exceptionally higher resilience to 
water deficit (Zhang and Chen 2017). Moreover, the upregu-
lation of A. thaliana receptor-like kinase ‘ERECTA ’ (ER) in 
transmutant tomato and rice imparted heat tolerance irrel-
evant to water loss (Shen et al. 2015), which could be used 
in breeding programs to develop thermo-tolerant varieties. 
A wide range of RLKs have been isolated from different 
plant species; however, in contrast to animal protein kinases, 
the study of RLKs in plants is more recent (Ye et al. 2017). 
Extensive research is needed to spotlight the roles of RLKs 
in associated signaling networks throughout the process of 
abiotic stress responses.

Histidine kinases

In plants, histidine kinases (HK) have been identified in 
large variety of crop plants and act as primary signaling 
component governing a bulk of responses, especially stress 
sensing (Singh et al. 2015). Signal received by histidine 
kinases is relayed downstream through transfer of phos-
phate group to some other signal transducers and finally to 
respond regulators (Nongpiur et al. 2012), described as TCS 
(“two-component system”) (Osakabe et al. 2013). Currently, 

several histidine kinases have been also explored to mediate 
drought stress responses in Arabidopsis (Kumar et al. 2013). 
Eight HK members were identified in Arabidopsis, among 
which five (ERS1, ETR1, AHK2, AHK3, and AHK4) are 
involved in perceiving two plant hormones, i.e., ethylene 
and cytokinin (Schaller et al. 2008). Apart from hormonal 
HK, function of non-hormonal HKs (AHK1, AHK5, and 
CKI1) was also studied thoroughly; AHK1 was recognized 
as a novel osmosensor regulating osmotic stress response 
(Tran et al. 2007; Wohlbach et al. 2008). In Arabidopsis, 
upregulation of AHK1 enhances tolerance to osmotic stress, 
whereas the AHK1 knockout mutants were highly suscep-
tible to osmotic stress (Tran et al. 2007; Wohlbach et al. 
2008). AtHK1 has been also reported to regulate drought 
stress responses in Arabidopsis and was expressed highly in 
roots than other tissues (Wohlbach et al. 2008). The mutants 
for AHK1 were less sensitive to ABA, showing AHK1 as a 
potential osmosensor regulating osmotic stress signaling and 
expression of effector genes in both an ABA-dependent and 
ABA-independent manner (Tran et al. 2007; Wohlbach et al. 
2008). In maize, expression of three histidine kinases, i.e., 
ZmHK1, ZmHK2, ZmHK3a, was analyzed during drought 
and UV B-radiations’ exposure (Susan et al. 2013). ZmHK1 
and ZmHK3a transcripts were upregulated during these 
stresses, suggesting ZmHK1 and ZmHK3a as putative osmo-
sensors as well as cytokinin receptors that sense osmotic 
changes induced by dehydration stress (Susan et al. 2013). 
A plasma membrane-localized AHK5 that regulates stoma-
tal closure in response to increased ROS, especially  H2O2, 
was identified (Desikan et al. 2008); however, in AHK5 
mutants, reduced ROS sensitivity and stomatal closure have 
been observed. Histidine–aspartate phosphotransfer system, 
functioning downstream to HKs, has been reported to regu-
late various abiotic stress responses, including drought, heat, 
cold, and salinity (Ha et al. 2012; Pham et al. 2012). Over-
all, above reports suggested that cross-talk between stress 
sensing and signaling networks plays essential roles in plant 
stress response. Further, genome editing of these kinases 
through emerging technologies may help to understand how 
they regulate downstream signaling networks during stresses 
conditions.

ABA receptors

One of the earliest responses to stresses such as drought 
and heat involves the synthesis of a phytohormone-absci-
sic acid (ABA) (Yamaguchi-Shinozaki and Shinozaki 
2006) that regulates various plant growth and develop-
mental programmes and also acts as an endogenous mes-
senger in response to diverse environmental cues (Hines 
2009). ABA produced in the cells is sensed by cytosolic 
calcium ions that further activates two types of anion 
channels, i.e., slow type and rapid type, which result in 
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stomatal closing involving expression of some proteins 
such as CPK10, CPK21 (calcium-dependent protein 
kinases), ABH1 (nuclear cap-binding protein involved in 
ABA signaling), ALMT12 (anion transporter for stoma-
tal closure), etc. (Daszkowska-Golec and Szarejko 2013). 
Abiotic stresses, mainly drought, cause cellular dehydra-
tion in plants, which increases ABA content in vascular 
tissues as well as transport to sites of ABA action (Nam-
bara and Marion-Poll 2005). A significant progress in the 
identification of ABA-responsive genes has been made; 
however, the detailed insight of ABA perception by the 
plant cell is still elusive (Kline et al. 2010). In 2009, dis-
covery of chief ABA signaling components and the iden-
tification of START domain proteins PYR/PYL/RCAR as 
ABA receptors (ABAR) provided knowledge regarding 
molecular aspects of ABA signaling (Ma et al. 2009; Park 
et al. 2009). Major signaling components include ABAR 
(initially known as PYRABACTIN RESISTANCE [PYR]/
PYR1-LIKE [PYL], which belongs to START protein 
superfamily, group-A protein phosphatases 2C (PP2C), 
and subclass III sucrose non-fermenting1 (SNF1)-related 
protein kinase 2 (SnRK2, also named SRK2) (Dalal and 
Chinnusamy 2015). Stress-induced increase in cellular 
ABA is first recognized by the START domain of PYL/
RCAR (pyrabactin resistance-like/regulatory) component 
of ABA receptors protein family (Ma et al. 2009). ABA 
binds to PYR/PYL protein and forms a complex with 
PP2Cs, which covers the active sites of PP2Cs, thereby 
allowing autophosphorylation of SnRK2s (Joshi-saha 
et al. 2011). These phosphorylated SnRK2s participate 
in ABA-mediated stomatal closure via targeting NADPH 
oxidases and ion channels particularly SLAC1 (slow 
anion channel-associated 1) (Geiger et al. 2009; Vahisalu 
et al. 2010) and KAT1 (potassium channel in Arabidop-
sis thaliana 1) (Sato et al. 2009) in guard cell. The acti-
vated SLAC1 further causes membrane depolarization 
and opens external  K+ channels, and the escape of  K+ 
and anions reduces guard cell’s turgor and hence results 
in stomatal closure (Geiger et al. 2009; Lee et al. 2009). 
Apart from this, SnRK2s are also involved in ABA-
induced transcriptional regulation via activating basic 
leucine zipper (bZIP) transcription factors (TFs), ABA-
responsive element (ABRE) binding factor, and ABA-
INSENSITIVE 5 (ABI5) (Yoshida et al. 2010). Some 
other known ABA-binding receptor proteins include 
plasma membrane-localized GPCR2 (G protein-coupled 
receptors), GTG1/GTG2 (G protein-coupled receptor-type 
G proteins), FCA, CHLH and GCR2; however, none has 
been further substantiated (Miyakawa et al. 2013). By 
knowing the roles and signaling mechanisms of the cru-
cial targets in the core ABA pathways, ABA perception 
could be enhanced via engineering transgenic lines over-
expressing ABA effectors (Ng 2016). The biological role 

of different PYLs in conferring abiotic stress tolerance 
has been recently illustrated by several researchers. For 
instance, overexpression of PYL13 results in increased 
ABA sensitivity as well as drought tolerance in Arabidop-
sis (Zhao et al. 2013a, b). Shi et al. (2014) also observed 
enhanced expression of AtPYL4 and AtPYL5 in Arabidop-
sis thaliana that increases antioxidant activity, osmolyte 
accumulation, and drought resistance in transgenic lines. 
Similar findings have been obtained in rice (Oryza 
sativa), where increased expression of OsPYL (the rice 
ortholog of Arabidopsis PYL), enhanced dehydration, 
and heat tolerance (Kim et al. 2014). Tian et al. (2015) 
characterized a PYLs protein in rice cultivar Oryza sativa 
L. ssp japonica cv. Nipponbare and the upregulation of 
OsPYL/RCAR5 provided enhanced tolerance to drought 
stress. The study of Zhao et al. (2016) showed that in 
transgenic Arabidopsis, PYL9 not only prevents transpi-
rational water loss under severe drought, but also induces 
some summer dormancy-like responses such as growth 
inhibition in young parts and senescence in old leaves. 
Similarly, in poplar genome (Populus trichocarpa), 14 
PYR/PYL/RCAR orthologs were encoded (PtPYRLs) and 
two among them, i.e., PtPYRL1 and PtPYRL5, have been 
characterized extensively to regulate drought responses 
(Yu et al. 2017). The constitutive expression of PtPYRL1 
and PtPYRL5 increases tolerance to drought and high 
osmolarity in ‘poplar’ by regulating ABA signaling (Yu 
et al. 2017). The upregulation of OsPYL3 in drought-
resistant rice variety, Nagina22 (N22), imparted multi-
ple abiotic stress tolerance in transgenic plants (Lenka 
et al. 2018). In maize also, 13 PYLs (ZmPYLs1-13) were 
identified and changes in their expression under diverse 
abiotic stresses showed that they may act as potential 
candidates for breeding stress-tolerant maize cultivars 
(He et al. 2018). Moreover, ABA also initiates different 
signaling cascades involving LEA (late embryogenesis 
abundant) class genes and other regulatory genes nec-
essary for plants acclimation to drought and heat stress 
(Suzuki 2016).

As mentioned above, ABA is a key signaling com-
pound that can relay signals sensed during diverse envi-
ronmental stresses, and further examination of ABA 
receptors and ABA-responsive genes may provide deep 
insight of functional aspects of ABA under combination 
of stresses (Ng 2016). Although a large number of stud-
ies showed valuable information at the elementary stage, 
future testing in field crops is required to examine their 
agricultural practicability.

Calcium sensors

Signals sensed by the stressed cells are conveyed by sec-
ondary messengers, such as  Ca2+ ions, cAMP, cGMP,  IP3, 
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and other small hydrophilic molecules. The functional 
aspects of  Ca2+ have been examined widely in cells facing 
drought (Zhu 2002) and heat stress (Goswami et al. 2015). 
Plants recruit calcium  (Ca2+) ions as an accessory media-
tors in communicating external (environmental) and inter-
nal (developmental) cues to associable cellular and genetic 
responses (Kudla et al. 2010; Fig. 2). This is apparent from 
evidences that virtually all cues (hormonal, developmental 
and stresses) induce a shift in cytosolic  Ca2+ and, in a few 
cases, in the nucleus and other cell inclusions (Reddy et al. 
2011). The spatiotemporal  Ca2+ rise along with the perio-
dicity and magnitude of  Ca2+ oscillations regulates different 
signals including environmental stress responses (Zeng et al. 
2015). The fluctuations in cytosolic  Ca2+ levels are deci-
phered by an array of  Ca2+ sensor proteins that encompass 
a homologous  Ca2+-binding domain, the ‘EF-hand’ domain 
(Ranty et al. 2016).

The most putative  Ca2+-sensor proteins in the plant king-
dom are (1) calcium-regulating proteins or calmodulins 
(CaM), (2) calmodulin-like proteins (CML), (3) calcineu-
rin B-like proteins, and (4)  Ca2+-dependent protein kinases 
(CDPKs) (Rasul et al. 2017). The widespread effects of  Ca2+ 
are generally derived from the calmodulin subclass of  Ca2+ 
sensor proteins (Virdi et al. 2015).

Calmodulin (CaM) is an extensively characterized, 
highly conserved  Ca2+ sensor protein found in all eukary-
otes, which plays an important role in  Ca2+-mediated signal-
ing in response to numerous cellular processes (Zhu et al. 
2015). It has been speculated that communication between 
 Ca2+-CaM and terminal proteins results in marked intensifi-
cation of  Ca2+ spikes, thus imparting high resilience to cells 
when decoding distinct  Ca2+ responses for altering gene 
expression (Zhao et al. 2013a, b). Proleptical transcriptomic 
studies showed that nearly all calmodulin and calmodulin-
like genes in A. thaliana are highly “stress responsive” 
in  Ca2+-mediated stress signaling (Perochon et al. 2011). 
Their roles in stress tolerance were validated involving 
transgenic studies. For example, a putative calmodulin-like 
(ShCML44) gene isolated from a cold-resilient variety of 
wild tomato (Solanum habrochaites) conferred enhanced 
resilience to drought conditions in transmutant lines (Munir 
et al. 2016). Similarly, a novel CML multi-stress-responsive 
gene 2, OsMSR2, from rice imparts drought stress resilience 
in plants via ABA-mediated signaling in transgenic Arabi-
dopsis (Xu et al. 2011). A CML, OsDSR-1 (Oryza sativa 
Drought Stress Response-1), was also characterized by Yin 
et al. (2017), and transgenic plants overexpressing OsDSR-1 
showed more drought tolerance as well as ABA sensitiv-
ity. Similarly, Qiao et al. (2015) elucidated the possible role 
of annexins (ANN1, a calcium binding protein) in confer-
ring abiotic stress resilience in rice; enhanced expression 
of OsANN, provided high tolerance to heat stress by pro-
moting the activities of catalase and superoxide dismutase, 

which regulates ROS production. Considering above facts, 
emphasis should be given on studying the CaM-regulated 
activation of target proteins to further understand the role 
of CaMs in drought and heat stress tolerance.

Calcineurin B: like proteins

During adverse stress conditions, a class of  Ca2+ sensors, cal-
cineurin B-like proteins (CBL), and their equivalent kinase 
targets-CBL-interacting protein kinases (CIPK) act as pri-
mary components in signaling events associated with  Ca2+ 
sensors, which is termed the CIPK/CBL cascade (Yu et al. 
2014). The CIPK-CBL pathway controls various downstream 
effectors including ion carriers and transporters (Manik et al. 
2015) and performs different roles in abiotic stress resilience. 
The cytosolic rise in  Ca2+ ions owing to alterations in the 
external environment leads to CBL binding with  Ca2+ to form 
a CBL-CIPK type complex, which is responsible for decod-
ing  Ca2+ signatures (Zhu et al. 2015). CBLs communicate 
with a set of protein kinases known as CBL-interacting pro-
tein kinases or SnRK3s (sucrose non-fermenting-1 related 
kinases) through the CIPK-NAF domain (Chen et al. 2012). 
This interaction ultimately causes phosphorylation of the 
ensuing effector proteins that help to improve stress toler-
ance (Hashimoto et al. 2012). Previous data revealed that 
CIPK3 transcripts were highly upregulated during drought 
and ABA stress, and the interruption of CIPK3 impaired the 
expression behavior of numerous stress marker genes during 
acclimation responses to abiotic stresses. (Kim et al. 2003). 
The overexpression of OsCBL8 (Oryza sativa) increased 
drought stress tolerance in transgenic rice plants (Gu et al. 
2008). Comprehensive research in the field of ‘omics’ has 
provided beneficial results regarding calcium signaling, but, 
so far, little information is available on the transduction of 
 Ca2+ signals into high-throughput physiological responses 
(Simeunovic et al. 2016). The recently discovered calcium 
sensor, i.e., calcineurin B-like proteins (CBLs), and their 
interacting partners CBL-interacting protein kinases (CIPKs) 
have emerged as key network that plays an important role in 
abiotic stress signaling in plants (Manik et al. 2015). Differ-
ent CBLs and their associated protein kinases function in sto-
matal closure, ion homeostasis, ROS scavenging, osmolyte 
biosynthesis, and transcriptional regulation of stress-related 
genes and hence may act as crucial regulator of drought and 
salt stress tolerance (Luo et al. 2017).

Transporter proteins

Water channel proteins or aquaporins

Aquaporins are crucial regulators of plant-water homeo-
stasis and are the choice of target proteins for developing 
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stress resilient plants (Maurel et al. 2015). The potential 
of AQPs for combating environmental hazards has been 
implicated by the expression of aquaporin isoforms, which 
are differentially regulated by environmental stresses, such 
as high salinity, drought, and cold (Xu et al. 2013). They 
are highly conserved membrane channels, which inten-
sify water permeability in cell membrane systems during 
stressful conditions, thus maintaining cellular homeostasis 
by preventing water loss (Xu et al. 2013; Fig. 2). In plants, 
AQPs are emerging as vital players in sustaining the physi-
ology of water-use efficacy, plant growth, and responses 
to external signals (Maurel et al. 2015). They act as vital 
nodes in coordinating cell metabolism and signaling at 
the whole plant level, mainly by interacting with ROS in 
response to extrinsic signals (Deshmukh et al. 2016). As 
integral channel proteins, they assist in the transport of 
small neutral molecules such as water and glycerol, along 
with volatile substances like  CO2, nitric oxide (NO), or 
 NH3 across biological membranes (Kaldenhoff and Fischer 
2006). Aquaporins belong to a highly diverse major intrin-
sic protein family (MIP), which has five distinct groups 
based on subcellular location and sequence similarities 
(Park and Campbell 2015): plasma membrane intrinsic 
proteins (PIPs; Fig. 2), nodulin 26-like intrinsic proteins 
(NIPs), tonoplast intrinsic proteins (TIPs), small intrinsic 
proteins (SIPs), and uncharacterized X intrinsic proteins 
(XIPs) (Chaumont and Tyerman 2014). PIPs and TIPs 
are highly expressed in the plasma membrane and tono-
plast (vacuolar membrane), respectively, whereas NOD26 
(NIPs) initially targeted the peri-bacteroid membrane in 
root nodules of legume plants (Li et al. 2014a). NIPs are 
also present in non-leguminous plants and localized on 
the plasma membrane. The functional aspects of SIPs and 
(XIPs) in plants are yet to be determined. The role of TIPs 
in water transportation has been reported in the expres-
sion of Arabidopsis homologs, AtTIP1;1 AtTIP1;2, and 
AtTIP2;3 expression in yeast (Wang et al. 2016a), and the 
activities of aquaporins have been described in diverse 
wild or cultivated, herbaceous, or woody plant species 
(Deshmukh et al. 2016).

Remarkable progress has been made in interpreting the 
useful role of PIPs as they constitute one of the major sub-
families in AQPs. While numerous studies have revealed 
that overexpression of specific PIP genes is favorable 
under stress situations, the functional aspects of PIPs 
remain largely unknown (Javot and Maurel 2002). Like-
wise, TIPs are a group of plant aquaporins involved in 
monitoring osmotic stress responses and water exchange 
between cytosolic and vacuolar membranes (Shao et al. 
2009). The expression of aquaporins is altered in response 
to drought stress and has been linked to affect the water 
status. For instance, drought-induced expression of certain 
CsPIPs from Camellia sinensis remained comparatively 

high after rehydration in leaves (Yue et al. 2014). Simi-
larly, the highly expressed lily PIP1 gene in tobacco 
enhanced water permeability as well as the conductivity 
of leaf protoplasm including leaf cells (Ding et al. 2004). 
A model of cell osmotic adjustment involving stress-acti-
vated  Ca2+ channel and SoPIP2;1 from Spinacia olera-
cea was designed to explain aquaporin phosphorylation 
in relation to cellular hydraulic conductivity, which helps 
to increase water potential to support the passage of water 
in fully turgid cells (Maurel et al. 2008). In a few cases, 
the scarcity of PIP2 proteins under water deficit has been 
observed, but a noticeable aggregation of PIP1 proteins 
was reported (Aharon et al. 2003). There are several exam-
ples where the expression of aquaporins has been altered 
resulting in varied results in transgenic plants (Table 1). 

Due to their significant contribution to water stress toler-
ance, aquaporins may act as tangible candidates for improv-
ing agricultural productivity in a stressful open environment 
(Laur and Hacke 2014). Further in-depth studies are needed 
to find out their regulatory and functional aspects, under 
drought and heat stress, environments, especially under 
stress combination.

Signal transducers

MAP kinases

The mitogen-activated protein kinase (MAPK) cascade is a 
class of protein kinases that regularly participates in cellu-
lar organization or gene expression of eukaryotic organisms 
including plants (Ning et al. 2010). MAPKs are a signaling 
link in the perception of external signals and management 
of diverse physiological and developmental processes (Joshi 
et al. 2011). All living plant cells are highly efficient in sens-
ing stresses via distinct sensors present in cell membranes 
and driving them downstream using the MAPK cascade 
(Sinha and Ara 2014). A MAPK cascade usually comprises 
a MAPKKK–MAPKK–MAPK moiety that is associated 
with upstream signaling receptors and specific downstream 
targets, which are switched on in a chronological order 
through phosphorylation (Danquah et al. 2014). Advance-
ments in genome sequencing have revealed that MAPKs are 
an integral part of plant signal transduction pathways related 
to drought, as well as heat stress (Moustafa et al. 2014; Ber-
riri et al. 2012). In the Arabidopsis genome, more than 20 
MAPKs, 10 MAP2Ks, and 80 MAP3Ks have been char-
acterized of which three MAPKs, i.e., MPK6, MPK4 and, 
MPK3, have been extensively studied (de Zelicourt et al. 
2016). MAP kinases, along with phosphatases, generally act 
as off/on signal activators to control the action of multiple 
cytosolic proteins or nuclear transcription factors to regu-
late cell signaling as well as plant acclimation to climatic 



Theoretical and Applied Genetics 

1 3

Table 1  Transgenics developed through over/under-expression of stress-related proteins

Stress protein transgene Source plant Target plant Physiological function References

Stress sensors
Receptor-like kinases (RLKs)
 OsNRRB Oryza sativa (rice) Rice High tolerance to drought, 

and oxidative stress
Zhang and Chen (2017)

 OsLRR2 Oryza sativa (rice) Rice Enhanced tolerance to heat, 
drought and cold stress

Liao et al. (2017)

Calcium sensors
 GhCIPK6 Gossypium hirsutum (cotton) Arabidopsis Provides resistance to 

drought and ABA
He et al. (2013)

 VaCPK20 Vitis amurensis (Grapevine) Arabidopsis Transgenic plants showed 
enhanced resilience to 
drought stress

Dubrovina et al. (2015)

 OsANN1 Oryza sativa (rice) Rice Improves heat stress toler-
ance by modulating ROS 
production

Qiao et al. (2015)

Transporters
Aquaporins
 CsTIP4;1-1 Camellia sinensis (tea plant) Camellia Drought resistance in trans-

genic lines, high antioxi-
dant activity

Yue et al. (2014)

 CsTIP2;1 Citrus spp. Tobacco Increased cell expansion, 
 H2O2 detoxification and 
under drought stress

Martins et al. (2017)

 BnPIP Brassica napus (mustard) Tobacco and rice High tolerance to drought 
and high hydraulic con-
ductivity

Maurel et al. (2008)

 SlTIP2;3 Solanum lycopersicon 
(tomato)

Tomato Maintain water or solute 
homeostasis and entire 
plant transpiration

Reuscher et al. (2013)

 MaPIP1;1 Musa acuminata (banana) Arabidopsis Regulate water-use effi-
ciency and hydraulic con-
ductivity during drought 
stress

Xu et al. (2014b)

 VzPIP1;1 Vetiveria zizaniodes (vetiver) Soybean Better photosynthetic activ-
ity and root water transport 
under water stress

Hu et al. (2016a)

 MdPIP1;3 Malus domestica Tomato Drought resistance Wang et al. (2017b)
Signal transducers
MAP kinases
 MnMAPK1 Morus nigra (mulberry) Arabidopsis Improved resilience to 

drought, salt, and  H2O2 
stress

Liu et al. (2017)

 ZmMAPK1 Zea mays (maize) Arabidopsis Enhanced resistance to 
drought and heat stress

Wu et al. (2015)

Transcription factors
Basic leucine zippers (bZIP)
 ABP9 Zea mays (maize) Cotton Overexpressors showed low 

MDA content and reduced 
level of ROS during 
drought conditions

Wang et al. (2017a)

 VqbZIP39 Vitis quinquangularis (tree 
vine)

Arabidopsis Enhanced seed germination 
and seedling growth dur-
ing drought and oxidative 
stress

Tu et al. (2016)
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Table 1  (continued)

Stress protein transgene Source plant Target plant Physiological function References

NAC transcription factors
 ThNAC13 Tamarix hispida (kashgar 

tree)
Tamarix and arabidopsis Increased drought and 

osmotic stress tolerance
Wang et al. (2017d)

 PeNAC034
PeNAC045
PeNAX036

Populus euphratica (poplar) Arabidopsis High survival rate and 
reduced water loss under 
drought stress

Lu et al. (2017)

 AtJUB1 Arabidopsis thaliana (Arabi-
dopsis)

Tomato Increased antioxidant activ-
ity and lower MDA content 
under drought and salt 
stress

Thirumalaikumar et al. (2017)

WRKY transcription factors
 DgWRKY5 Dendranthema grandiflora 

(chrysanthemum)
Chrysanthemum High antioxidant activity 

and proline accumulation, 
improved yield potential 
under drought stress

Liang et al. (2017)

 GsWRKY20 Glycine soja (soybean) Soybean High proline accumulation, 
low MDA, and increased 
antioxidant activity in 
transgenic

Ning et al. (2017)

MYB transcription factors
 TaODORANT1 Triticum aestivum (wheat) Tobacco Higher catalase activity, 

MDA and  H2O2 content 
under stress

Wei et al. (2017)

 FtMYB10 Fagopyrum tataricum (buck-
wheat)

Arabidopsis Enhanced tolerance to 
drought stress

Gao et al. (2016)

AP2/ERBP transcription factors
 ThDREB Tamarix hispida (kashgar 

tree)
Tobacco Transgenics show high 

germination rates, fresh 
weights and root lengths

Yang et al. (2017)

 AaDREB1 Adonis amurensis (amur) Arabidopsis and rice Enhanced tolerance to 
drought and high-tempera-
ture stress

Zong et al. (2016)

Chaperones
LEA and dehydrins
 WRAB18 Triticum aestivum (wheat) Tobacco and E coli Reduced malondialdehyde 

levels and increased 
antioxidant activity in 
transgenic lines

Wang et al. (2017d)

 OsLEA4 Oryza sativa (rice) Rice Increased resistance to 
drought stress

Hu et al. (2016b)

Osmotins
 SindOLP Nicotiana tobacum (tobacco) Sesame Less electrolyte leakage, 

longer roots, increased 
chlorophyll, and proline 
content under drought 
stress

Chowdhury et al. (2017)

 Osmotin gene Olea europea (olive) Olive Enhanced accumulation of 
osmolytes and increased 
activity of antioxidant 
enzymes

Silvestri et al. (2017)

Antifreeze proteins
 LpAFP Lolium perenne (ryegrass) Arabidopsis Transgenic plants showed 

reduced electrolyte leakage
Bredow et al. (2017)

 AnAFP Ammopiptanthus nanus Tobacco Reduction in membrane 
damage and enhanced 
tolerance to heat stress

Deng et al. (2014)
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fluctuations (Moustafa et al. 2014). In tomato, a purified 
heat-induced MAPK phosphorylated a heat shock transcrip-
tion factor, HsFA3 (Link et al. 2002). High-temperature 
exposure of potato (Solanum tuberosum) tubers leads to 
marked expression of StMPK1, which helps in stress resist-
ance (Blanco et al. 2006). Further, upregulation of Raf-like 
MAPKKK, a drought-hypersensitive mutant (DSM1) in rice, 
provided tolerance to oxidation and dehydration under water 
deficit in very young seedlings (Ning et al. 2010). Extensive 
research is underway to increase the adaptability and quality 
of plants under water and heat stress; for example, Zhang 
et al. (2011) characterized a cotton MAP kinase (GhMPK2) 
that limits water losses and regulates homeostasis under 
drought and heat stress conditions. Similarly a novel MAP 
kinase (GhMPK16) in cotton related to group D MAPK 
was identified by Shi et al. (2010). Subcellular quantifica-
tion confirmed that both GhMPK16 and GhMPK2 are pri-
mary regulators of transcription factors and were activated 
during drought conditions. Danquah et al. (2014) showed 
that mutant Arabidopsis plants lacking the MKK3 module 
were less able to control water loss when subjected to a con-
tinuous, moderate drought environment. In a similar study, 
overexpressed cotton GhMKK3 in tobacco exhibited higher 
resistance to water stress and had more effective stomatal 
closure in response to abscisic acid (ABA) (Wang et al. 
2016a).

The above findings related to MAPK pathways have 
unveiled an association of the kinases in the signaling 
events, the identification of pathway targets, and the intri-
cacy of the cascade (Sinha et al. 2011). However, careful 
manipulation of MAPKs may have constructive effects like 
in planta high resilience to drought and heat stress. Detailed 
information regarding the regulation of MAPK cascades, by 
studying omics (proteomics, metabolomics, transcriptomics) 
perspectives and in silico database analysis, might aid in the 

development of innovative techniques to promote heat and 
drought tolerance in plants (Sinha and Ara 2014).

Calcium‑dependent protein kinases

In plants, calcium-dependent protein kinases (CDPKs) 
constitute a unique and structurally conserved group of 
 Ca2+ sensors and represent a model for sensing alterations 
in cytoplasmic  Ca2+ concentration (Schulz et al. 2013). 
CDPKs can effectively sense and transduce signals to spe-
cific downstream effectors, and their role has been probed 
during diverse stress conditions (Liese and Romeis 2013; 
Fig. 2). Recognition of CDPK targets, along with their 
corresponding phosphorylation loci, helps in the analysis 
of CDPK function at both the cellular and genetic level 
(Boudsocq and Sheen 2013). The complexity of kinase-
restricted phosphorylation events within an effector pro-
tein indicates that CDPKs serve as signaling cores in con-
trolling plant stress responses and developmental activities 
(Schulz et al. 2013). CDPKs have long been affirmed to 
engage in  Ca2+-mediated signaling events initiated by vari-
ous environmental stimuli in relation to water stress and 
temperature and usually involve ABA-mediated signaling 
cascades (Asano et al. 2012). CDPK-reliant metabolic 
fluctuations, alterations in ion fluxes or gene expression 
have been identified during abiotic stresses, and the trig-
gered expression of the relevant kinase helps in plant stress 
tolerance (Boudsocq and Sheen 2013). ABA-mediated sto-
matal closure is a unique phenomenon to reduce water loss 
during drought conditions, as a first line defense (Mune-
masa et al. 2015), and various CDPKs have shown to be 
implicated in the regulation of stomatal activities (Zhang 
et al. 2014). The enhanced regulatory effect of CDPKs in 
response to water deficit has been demonstrated by the 
upregulation of ABA-induced genes (Simeunovic et al. 
2016). Notable interactions have been observed between 

Table 1  (continued)

Stress protein transgene Source plant Target plant Physiological function References

Heat shock proteins
 MsHsp23 Medicago sativa (alfalfa) Alfalfa Enhanced tolerance to heat 

and oxidative stress
Lee et al. (2017)

 LlHsfA2B Lilium longiflorum (lily) Arabidopsis Increased heat tolerance 
through upregulation of 
antioxidant and chaperon-
ing machinery

Xin et al. (2017)

 MuHSP70 Macrotyloma uniflorum 
(horse gram)

Arabidopsis Enhanced tolerance to heat, 
drought, and oxidative 
stress

Masand and Yadav (2016)

 BcHSP70 Brassica compestris (mus-
tard)

Tobacco Accumulation of osmolytes 
and decreased MDA 
content under heat stress 
conditions

Wang et al. (2016c)
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AtCPK30, AtCPK10, AtCPK7, AtCPK4, and ABF2 (Lu 
et al. 2013), and also between AtCPK11 and ABF1 (Lynch 
et  al. 2012). Other members of the kinases, including 
SnRK gene families, can communicate and phosphorylate 
ABF2 in ABA-mediated signaling events, as in stomatal 
closing (Umezawa et al. 2013). Apart from this, CDPK 
phosphorylation targets have been observed among anion 
and cation channels; for instance, CPK3 acts as a phos-
phorylating agent of a two-pore  K+ channel (TPK1) (Latz 
et al. 2013). The role of OsCPK9, a rice CDPK gene, was 
identified in the regulation of stomatal activities and main-
taining homeostasis during water deficit (Wei et al. 2014). 
Their study also showed that OsCPK9 also increases pol-
len survival, thereby improving spikelet fertility in rice. 
Similarly, the transcript levels of another rice protein 
kinase, OsCPK4, were highly upregulated by drought 
and high salinity, and the transgenic lines overexpressing 
OsCPK4 gene had higher water-holding capacity and less 
membrane damage than wild-type (Campo et al. 2014).

In Arabidopsis, CPK8 plays a pivotal role in  Ca2+ and 
ABA-regulated stomatal closure in response to drought 
stress (Zou et  al. 2014). A similar study in grapevine 
indicated that the VaCPK29 gene might serve a useful 
regulator of increased heat and osmolarity in callus cell 
lineages of Vitis amurensis and transgenic Arabidopsis 
(Dubrovina et al. 2016). Highly effective transcriptional 
responses were observed in soybean, where, after drought 
and ABA treatments, about half of all GmCDPKs were 
highly upregulated, indicating their essential role in abi-
otic stress resilience (Hettenhausen et al. 2016). A recent 
study showed that the OsCPK10 isoform confers endur-
ance to multiple stress factors in rice by increasing their 
antioxidant activity and scavenging free radicals (Bundó 
and Coca 2017).

These findings indicate that plants need specific sensory 
mechanisms to withstand changing environmental condi-
tions via a series of interrelated signaling events (Asano 
et al. 2012). Over the last few years, valuable information 
has been gathered on plant stress tolerance mechanisms 
including calcium signaling. Calcium signals control a wide 
range of processes in plants, and these events are highly 
regulated (Yu et al. 2014). Comprehensive research in the 
field of ‘omics’ has provided beneficial results regarding 
calcium signaling, but, so far, little information is available 
on the transduction of  Ca2+ signals into high-throughput 
physiological responses (Simeunovic et al. 2016).

Transcription factors

Roughly 7% of coding sequences in the plant genome are 
exclusively attributed to transcription factors, which act as 
early abiotic stress-responsive agents. Some TFs respond 

to stress by linking with the cis-binding domain in the 
promoter zone of the desired genes decoding metabolic 
proteins that perform specific functions (Guo et al. 2016). 
They act as dominant transcriptional regulators for sign-
aling cascades involved in environmental stress tolerance 
(Lata et al. 2011). Different families of plant TFs (Fig. 2) 
perform conspicuous functions in deciphering abiotic 
stress reactivity, mainly by altering gene behavior, and 
act as key nodes in different signaling episodes (Guo et al. 
2016). Major TF families that participate in abiotic stress 
responses include bZIP, NAC, WRKY, MYB, APETALA 
2/ethylene-responsive element binding factor (AP2/ERF) 
and zinc fingers (ZFs) (Lindemose et al. 2013; Fig. 2). The 
roles of these TFs in the regulatory network of different 
environmental stresses including drought and temperature 
extremes are detailed below.

Basic leucine zipper (bZIP)

In plants, the basic leucine zipper (bZIP) family represents 
one of the most diverse TF families, which is involved in 
several biological functions including seed germination, 
reproductive development, embryogenesis, and signaling 
pathways (Sornaraj et al. 2016) and is widely present in 
various crops. They are also crucial agents in multitudi-
nal abiotic stress tolerance inclusive of drought, tempera-
ture extremes, and high osmolarity (Wang et al. 2016b; 
Fig. 2). The ABA-mediated activation of bZIP TFs and 
their binding to cis- elements in the promoter region of 
desired genes enhances the expression of various ensu-
ing stress-responsive genes to enhance stress resilience 
in plants. The bZIP transcription factor consists of a con-
served bZIP domain enfolding two chief components: a 
highly basic nuclear region and a leucine zipper, cemented 
together by a hinge region (Hu et al. 2016c). The basic 
terrain present at the N-terminus is highly enriched with 
a stabile motif (N-x7-R/K-x9) containing 18 amino acid 
residues accountable for DNA-binding activity and nuclear 
re-localization (Noman et al. 2017). The subsequent leu-
cine zipper domain consists of leucine-rich motifs at the 
C-terminus or auxiliary hydrophobic amino acid resi-
dues engaged in dimerization and identification of bZIPs 
(Llorca et al. 2014). In maize, ZmbZIP17 (an ER stress 
regulator) communicates with ABA-responsive cis-bind-
ing elements (ABRE) in the promoter region (Yang et al. 
2013). Various abiotic stress-induced transcription fac-
tors in bread wheat including bZIP and  C2H2 are thought 
to intensify stress endurance and climatic resilience (Xu 
et  al. 2014a). Studies involving transgenics have vali-
dated their involvement in imparting stress tolerance. For 
instance, in cotton, overexpression of maize ABP9bZIP 
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transcription factor increased resilience to drought asso-
ciated with ABA-linked signaling cascades (Wang et al. 
2017a; Table 1). Overexpression of the OsbZIP23 gene 
in rice plants enhanced ABA-linked responses during and 
after germination which were exclusively linked to height-
ened stress resilience (Xiang et al. 2008). Upregulation of 
a bZIP TF, TaABL1, in wheat imparts multitudinal stress 
resilience including drought and heat which is an impor-
tant genetic resource for developing transgenic plants (Xu 
et al. 2014a). Another peculiar nuclear localized OsHBP1 
(Oryza sativa, histone gene-binding protein) has been iso-
lated from rice, and overexpresssors showed better sur-
vival rate under drought conditions (Lakra et al. 2015). 
OsHBP1b belongs to bZIP family of transcription factors 
that activates ROS detoxification system and increases the 
content of protective molecules (i.e., soluble sugars and 
proline) under stressed conditions. A putative  H2O2 and 
ABA-responsive  C2H2-type zinc finger protein OsMSR15 
(Oryza sativa multi-stress-responsive protein) has been 
also identified in rice that enhances drought and oxida-
tive stress tolerance via elevating antioxidant activities 
and ABA sensitivity (Zhang et al. 2016). The biological 
role of another plant-specific protein-GRAS protein fam-
ily (Gibberellic Acid Insensitive GAI, Repressor of GAI, 
and SCARECROW, acting as bZIP transcription factors) 
in conferring abiotic stress tolerance in rice has been also 
explicated recently; enhanced expression of OsGRAS23 
in transgenic rice resulted in high drought as well oxida-
tive stress resilience via reducing  H2O2 accumulation (Xu 
et al. 2015). Similarly, another novel bZIP transcription 
factor, i.e., OsbZIP46 (Oryza sativa), is highly induced by 
drought, heat, and ABA-applications, and the upregulation 
of OsbZIP46 enhances resistance to drought as well as 
ABA in transgenic rice (Tang et al. 2012).

Overexpression, regulation, or silencing of protein clus-
ters associated with TFs is the most accepted gene manipu-
lation regimen pursued for reinforcing stress resilience in 
plants (Sornaraj et al. 2016). These TFs do not function 
alone, but work synergistically with other TFs, chromatin 
proteins, and cofactors to sustain abiotic stress tolerance 
(Baloglu et al. 2014). Some studies indicate that altera-
tion of bZIP TFs and associated proteins appears to be 
necessary for novel genetic engineering strategies (Wang 
et al. 2017a).

NAC transcription factors

Among all lineages of TFs in plants, NAM, ATAF, and 
CUC (NAC) are the largest group of transcription factors 
modulating plant growth and metabolism and abiotic stress 
responses (Pandey et al. 2016; Fig. 2). The epithet NAC is 
alienated from the first character of three genes that was 
originally identified to represent a NAC domain: NAM, 

ATAF1:2, and CUC2 (cup-shaped cotyledon) (Tran et al. 
2010). Recently, various stress-responsive NAC TFs were 
used to engineer stress-tolerant varieties of crop plants using 
transcriptional reprogramming (Sakuraba et al. 2015). These 
stress-responsive TFs not only behave as molecular mark-
ers in gene expression but as the terminating notch in signal 
transducing pathways, regulating their differential expres-
sion (Puranik et al. 2012). Remarkably, a significant number 
of NAC TFs have been reported from diverse plants species, 
but not much is known about their functional aspects under 
stress environments (Hu et al. 2010). NAC transcription 
factors were first reported in Petunia species as NAM (No 
apical meristem) which is essential in the development of 
shoot meristem (Guo and Gan 2006). Later, they were well 
characterized in A. thaliana and O. sativa (Rushton et al. 
2008). Comprehensive analysis of several functional genom-
ics sequences in plants led to the identification of 110 NAC 
genes in Arabidopsis, 151 in rice, 152 each in soybean and 
tobacco, 79 in grape, and 26 in citrus (Le et al. 2011). Entire 
genome sequence profiling in Arabidopsis revealed their 
expression in different stress signals including heat, drought, 
or osmotic stress (Lindemose et al. 2013). The molecular 
tailoring of NAC TFs may assist in breeding transgenic crop 
plants for improved growth and yield under stress (Puranik 
et al. 2012). NAC proteins are suggested to regulate the abi-
otic stress-induced defense mechanisms including multi-
gene expression in plants probably through ABA-dependent 
or ABA-independent signaling cascades (Shao et al. 2015). 
Nonetheless, all discovered NAC TFs are involved in stress 
responses, and particularly, the subfamily IV of NAC TFs is 
broadly found to be engaged in sustaining homeostasis under 
drought and heat stress (Hao et al. 2011). Various studies 
have reported that expression of the ANAC019 gene is stimu-
lated by many stresses, especially drought stress, and the 
application of ABA. As ABA performs a pivotal function in 
seedling germination as well as salt and drought stress sen-
sitivity, there might be a significant relation between ABA 
and ANAC019 during stress (Jensen et al. 2010).

In Arabidopsis, drought tolerance is administered by three 
NAC genes, AtNAC072, AtNAC055, and AtNAC019, through 
their interaction with the ERD1 promoter region (Mao et al. 
2014). Likewise, transgenic Arabidopsis plants overexpress-
ing RhNAC2 (Rosa hybrida) from rose petals showed high 
drought tolerance (Dai et al. 2012; Joshi et al. 2018). Fur-
ther, in barley, ATAF1 and ATF2 TFs, together with the 
HvNAC6 gene, act as important participants in regulating 
seed germination and drought stress responses (Yamagu-
chi-Shinozaki and Shinozaki 2006; Pérez-Clemente et al. 
2013). In rice roots, upregulation of OsSADR1 (salt, ABA, 
and drought stress-induced RING finger protein, in the pres-
ence of ABA increases tolerance to drought stress via inter-
acting with some nuclear localized OsNAC2 proteins (Park 
et al. 2018). Evidences signified that overexpression of a few 
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NAC genes (i.e., OsNAC1, OsNAC5, OsNAC6, OsNAC045, 
OsNAC052, and OsNAC063) in rice plants also intensified 
stress endurance during drought and heat stress (Chew and 
Halliday 2011). SNAC1 was identified to be a master regula-
tor for enhancing drought resistance of transgenic rice in the 
field (Hu et al. 2006), and OSPP18 is one target of SNAC1 
(You et al. (2014). Likewise, transgenic rice plants overex-
pressing SNAC3 (ONAC003, LOC_Os01g09550) showed 
improved tolerance to drought as well as heat stress due to 
less accumulation of reactive oxygen species (Fang et al. 
2015). Recently, Mao et al. (2015) identified a ZmNAC111 
in maize that improved water-use efficiency under drought 
stress via upregulating various drought responsive genes. 
Similarly, overexpression of ZmNAC55 in transgenic maize 
plants induces drought stress tolerance and hence may act 
as potential candidate for breeding drought tolerant lines 
via transgenic techniques (Mao et al. 2016). A large variety 
of NAC TFs were also identified and sequestered in wheat 
with distinct expressions induced by diverse abiotic stresses. 
TaNAC2, TaNAC2a, and TaNAC69 are some examples of 
possible TFs for ameliorating abiotic stresses via generation 
of transgenic plants (Hong et al. 2016). Considering their 
suggested role in stress response, the manipulation of these 
multiple stress-linked TFs, especially multifunctional NAC 
TFs, may contribute to breeding stress-tolerant crops plants 
with high yield potential.

WRKY transcription factors

The plant-restricted WRKY transcription factors are one 
of the largest families of transcriptional regulons with 
multiple biological roles in plant abiotic stress signaling, 
embryogenesis, and seed maturation that supplement other 
developmental and hormone-regulated processes (Tripathi 
et al. 2014). WRKY TFs carry the redundant amino acid 
sequence WRKYGQK (W-box) at the DNA-binding core 
and the zinc finger-like motif Cys2-His2 attached to the cis-
domain in the promoter terrain of the desired genes (Bakshi 
and Oelmüller 2014). An analytical study of signaling events 
and transcriptional reprogramming identified an interaction 
between WRKY proteins and calmodulins, MAPKs, histone 
deacetylases, and other WRKY transcripts (Banerjee and 
Roychoudhury 2015; Fig. 2). WRKY TFs are also essential 
factors in the plant signaling lattice, which not only monitors 
plant responses to multitudinal abiotic stimuli, but functions 
in synchronization with intrinsic signals related to develop-
mental processes by interacting with additional DNA-linked 
and non-linked proteins (Jiang et al. 2017). WRKYs TFs 
have been identified and isolated in all higher plants and in 
some lower flora and are integrated into discrete plant pro-
cesses, along with growth, reproduction, and stress signal-
ing (Phukan et al. 2016). Genome-wide sequencing and the 
analysis of TFs from other plants identified more WRKY 

genes in plants such as soybean, rice, mustard, and Arabi-
dopsis (Fan et al. 2015; He et al. 2016).

Considerable attention is being paid to the functional 
roles of WRKY genes in plants exposed to drought, heat, 
and osmotic stress (Chen et al. 2017). Numerous WRKY 
TFs have been identified in plants in response to heat 
stress (Li et al. 2011). In Arabidopsis, overexpression of 
AtWRKY25 and AtWRKY26 provides tolerance to elevated 
temperatures (Li et al. 2011). Likewise, the TaWRKY44 tran-
script in wheat acts as a positive regulon for drought and 
osmotic stress either as a potent ROS scavenger via initia-
tion of the antioxidant defense activities or by upregulating 
various stress-responsive genes (Wang et al. 2015). Moreo-
ver, TaWRKY33 transgenics had reduced susceptibility to 
heat stress (He et al. 2016). Similarly, the GhWRKY41 gene 
in transgenic tobacco imparts drought and heat tolerance 
by reducing ROS production and stomatal conductance 
(Chu et al. 2015). In Brassica napus, transcripts of three 
WRKY TFs, BnaWRKY210, BnaWRKY166, and BnaW-
RKY147, were strongly upregulated under drought stress, 
signifying their participation in stress tolerance (Jiang et al. 
2017). Similarly, GhWRKY68 transcripts in cotton influ-
enced drought stress response by altering the expression of 
ABA-responsive genes and ROS detoxification (Jia et al. 
2015). The participation and interaction of these multiple 
presiding WRKY TFs with other stress-related genes need 
to be explored (Shanker et al. 2014). Further examination 
of their function in molecular and mutant studies will shed 
light on their potential to sustain plants under a combination 
of stress responses (Zhang 2014). In addition, the mode of 
coordinated responses to multiple stresses related to WRKY 
TFs as well as their targets would be highly exciting (Wang 
et al. 2016b).

MYB transcription factors

The MYB TF family represents a large and functionally dis-
similar class among eukaryotic organisms, which is deline-
ated by the presence of an invariant MYB domain at the 
N-terminus and a modulating network of proteins at the 
C-terminus (Roy 2016). In higher plants, the MYB super-
family is a highly specialized and broad group of R2R3-
MYBs containing various MYB repeats in their sequences 
unveiling DNA-binding activity (Baldoni et al. 2015). The 
R2R3-MYB proteins have a fundamental role in regulating 
numerous plant functions, including growth, metabolism, 
and ABA-mediated reactivity to biotic or abiotic stimuli 
(Kharte et al. 2016). The recent advancements in genetic and 
molecular approaches have promoted the large-scale charac-
terization of functional MYB proteins, especially R2R3-type 
classes in crop plants including soybean, rice, and maize 
(Roy 2016). Analysis of the Arabidopsis genome revealed 
the presence of 168 MYB TFs, denoted by a sequence repeat 
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of R2R3-MYB domain, five R1R2R3-MYB, 64 MYB like 
and three anomalous MYB genes (Zhang et al. 2010). Vari-
ous members of the R2R3-like MYB TFs are intricated in 
their governance of phenyl-propanoid pathway synthesizing 
various secondary metabolites in response to abiotic stress 
in plants (Roy 2016). In Arabidopsis, expression of several 
MYB transcription factors, including AtMYB102, AtMYB74, 
and AtMYB2, was induced during drought conditions (Bal-
doni et al. 2015). Previous data have indicated the involve-
ment of MYB TFs in ABA-mediated drought stress signaling 
(Xie et al. 2014). For instance, the Arabidopsis MYB96 gene 
is involved in lateral root initiation during drought through 
the interaction of auxin and ABA signaling events (Zhang 
et al. 2010). A MYB-type TF from sugarcane (ScMYB76) 
was identified under drought stress conditions (Balakrishnan 
et al. 2016). Further, overexpression of buckwheat FtMYB9 
in transgenic Arabidopsis enhanced tolerance to water-defi-
cit conditions (Gao et al. 2016; Table 1). In another example, 
Chen et al. (2015a, b) showed that GbMYB5-a MYB tran-
scription factor in cotton (Gossypium barbadense) improved 
drought tolerance by increasing the accumulation of compat-
ible solutes. The above findings indicate that MYBs genes 
could be used as efficient candidates for enhancing growth 
under stress conditions (Baldoni et al. 2015). The main con-
straint in this regard is that functional genomics studies have 
been restricted to laboratory conditions, as experimentation 
in open field is challenging (Roy 2016).

AP2/ERBP transcription factors

During episodes of proliferation of the eukaryotic genome 
and DNA-binding proteins, new families of TFs evolved 
(Licausi et al. 2013). Of these, the novel APETALA2/ethyl-
ene-responsive factor (AP2/ERF) superfamily exemplifies 
a benchmark to these episodes (Gu et al. 2017). Although, 
the AP2/ERF domain was initially identified in plants, it has 
been found in the genome of some cyanobacteria and protists 
(Du et al. 2014). In plants, the AP2/ERF superfamily, com-
prising 119–200 members, has been widely explored in rela-
tion to senescence, fruit ripening, ethylene, and abiotic stress 
responses (Shu et al. 2016). AP2/ERF proteins are highly 
proficient in binding to a wide array of cis-elements in the 
promoter region of desired genes (Zong et al. 2016). DREB/
CRT (dehydration response element binding proteins/C-
repeat, RCC GCC  element) and ERF/GCC-box (ethylene-
responsive factor, AGC CGC C element) represent two main 
DNA-binding cis-regulatory elements of AP2/ERF (Wang 
et al. 2016b). Most DREB proteins respond to drought and 
ABA signaling, whereas, members of the ERF family are 
specifically linked to ethylene-mediated responses or patho-
genesis (Licausi et al. 2013). The activation of DREB1/
CBF-type transcription factors is triggered by two major 
abiotic stresses, i.e., heat, and drought stress. However, the 

expression behavior of orthologous genes varies in different 
species (Yang et al. 2017). In rice, expression of OsDRAP1 
(DREB-like genes) was induced by diverse abiotic stresses, 
and OsDRAP1 overexpressors showed high drought toler-
ance (Huang et al. 2018). Further, enhanced expression 
of ZmDBF3 in Arabidopsis and yeast improves tolerance 
to drought and heat, indicating that ZmDBF3 is a positive 
mediator of multiple stress tolerance (Zhou et al. 2016). In 
future, ZmDBF3 might be a candidate gene for improving 
stress tolerance through genetic modification of the plant 
genome. Similarly, overexpression of the VrDREB2A gene 
isolated from mung bean in transgenic tobacco plants con-
ferred higher tolerance to drought stress (Chen et al. 2016). 
As a whole, the above considerations demonstrate that 
DREB TFs could be an effective biotechnological tool for 
improving stress tolerance in important agriculturally sig-
nificant crops (Yang et al. 2017; Table 1).

Chaperones

LEA proteins

Late embryogenesis abundant (LEA) proteins were initially 
discovered in cotton seeds during the late phases of embryo 
development as well as being involved in certain develop-
mental activities of plants such as root and shoot develop-
ment and pollen grain formation (Amara et al. 2014). In 
addition to seed maturation, some LEA proteins are aug-
mented in the differentiation of meristematic and vascular 
tissues (Battaglia et al. 2008). LEA proteins have highly 
intrinsically disarranged structures, commonly referred as 
“molecular shields” owing to their multifaceted roles in 
environmental stress resilience (Gao and Lan 2016; Fig. 2). 
LEA proteins are a broadly distributed category of poly-
peptides in the plant kingdom, ranging from algae to angio-
sperms, and have been reported in some fungi and micro-
organisms such as bacteria (Pedrosa et al. 2015). In higher 
genera, these structurally related proteins facilitate a wide 
range of adaptation to water-deficit environment in somatic 
tissues (Shih et al. 2008). Despite abundant diversity and 
variability, LEA proteins were initially classified into six 
groups according to their amino acid sequences and ubiquity 
of specific domains (Battaglia and Covarrubias 2013), most 
of which belong to the hydrophillins, a broadly dispersed 
group of unstructured proteins distinguished by the pres-
ence of charged amino acid residues. Hydrophillins were 
first characterized in cotton embryos based on the presence 
of conserved specific motifs and homology of amino acid 
sequences (Dure et al. 1981). The association of LEA pro-
teins during water stress assists in the widespread adaptation 
of plants to water stress; however, their specific functions are 
still ambiguous (Amara et al. 2014).
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During water stress, the activity of LEA proteins is 
upregulated to prevent target proteins from denaturation and 
aggregation (Manfre et al. 2006). Their functional role in 
protein stabilization is documented by the fact that in vitro 
enzyme activity is sustained by LEA proteins even after des-
iccation (Reyes et al. 2005). Membrane protection is crucial 
for conserving cellular as well as organellar rationality dur-
ing desiccation (Tunnacliffe et al. 2010). Another conse-
quence of dehydration stress is the enhanced concentration 
of intracellular content, especially ions, which can disrupt 
macromolecular function and conformation (Kovacs et al. 
2008a, b). As LEA proteins contain many charged amino 
acid residues, they might be involved in ion sequestration 
during desiccation. Group 2 LEA proteins (dehydrins) from 
celery were reported in the vacuole which binds to  Ca2+ 
when phosphorylated through histidine residue (Alsheikh 
et al. 2005). LEA proteins can also bind to some metal ions 
 (Fe+3,  Ni+2,  Cu+2, and  Zn+2) attributable to their antioxidant 
activity, for instance, the CuCOR19 protein in citrus displays 
scavenging activity for hydroxyl radicals, thus reducing 
oxidative stress (Hundertmark and Hincha 2008). In some 
cases, LEA proteins may act as hydrating buffers and slow 
down the rate of water loss during drought, osmotic or freez-
ing stress to retain the function of desiccating cells (Banerjee 
and Roychoudhury 2016).

In plants, previous evidences indicate that overexpression 
of LEA proteins imparts tolerance to varied water-deficit 
conditions (Eriksson and Harryson 2011; Duan and Cai 
2012). To some extent, it has been delineated that the inad-
equacy of either one or two LEA4 proteins in A. thaliana 
is sufficient to enhance water stress sensitivity (Ismail et al. 
1999). In some legumes (Phaseolus vulgaris, Medicago 
truncatula, Lotus japonicas, Cajanus cajan, and Cicer ari-
etinum), different LEA proteins with distinct motifs have 
been analyzed by sequence database analysis (Varshney 
et al. 2012, 2013).

Considering the above facts, it is clear that a single LEA 
protein can perform multiple functions; for example, the 
chloroplastic LEA protein (COR15am) and the mitochon-
drial Group 3 proteins (LEAM) are engaged in protect-
ing both membranes and proteins. In rice, a LEA protein, 
(HVA1) stimulated root induction and multiple stress resil-
ience through ABA/stress inducible promoter (Chen et al. 
2015b). Similarly, Group 3 LEA proteins located in the vac-
uole of citrus assisted in ion sequestration and exhibited anti-
oxidant as well as nucleic acid binding ability (Pedrosa et al. 
2015). Overexpression of a novel LEA protein, SiLEA14, 
in Arabidopsis and foxtail millet imparted high tolerance 
to drought and high osmolarity (Wang et al. 2014b). Like-
wise, upregulation of the OsEm1 gene enhanced resilience 
to different stresses including drought and ABA in rice (Yu 
et al. 2016). Transgenic plants had enhanced stress tolerance 
relative to wild-type plants, usually during drought stress 

(Banerjee and Roychoudhury 2016). LEA proteins could 
be beneficial for other biotechnological applications due to 
their ability to prevent the disintegration of proteins (Kosová 
et al. 2014). While relevant analysis has been conducted 
to interpret the role of LEA proteins, the molecular means 
for improving stress adaptability remains ambiguous (Liu 
et al. 2013). Further perspectives including transcript or 
gene expression patterns should be explored to determine 
the involvement of other LEA-dependent regulatory mecha-
nisms for investigating abiotic stress responses in plants.

Dehydrins

Dehydrins represent a highly hydrophilic group of plant 
proteins, which belong to a sizeable biochemical family of 
LEA proteins and were initially characterized in cotton seeds 
(Allagulova et al. 2003). They are well recognized as LEA 
D-11 or LEA II proteins and play an important role in plant 
abiotic stress responses (Ingram and Bartels 1996). Among 
all abiotic stress-related TFs, dehydrin’s expression is more 
pronounced during drought, heat, and desiccation stress and 
is also induced by enhanced ABA contents (Wahid and Close 
2007). Originally designated “dehydration-induced proteins” 
on the basis of their mechanism of expression (Graether and 
Boddington 2014), they were later specified according to 
their unique sequential motifs and presence of lysine-rich 
conserved amino acid sequence, i.e., a K-fragment usually 
present near the C-terminus (Malik et al. 2017). Dehydrin 
molecules also contain partially conserved sequential motifs 
abundant in hydrophilic a Φ-segments and glycine (Hughes 
et al. 2013).

The first dehydrin protein was isolated in rice as RAB21 
or RAB16A (Mundy and Chua 1988). A diverse range of 
dehydrin proteins has been isolated in angiosperms such as 
rice and cotton, as well as some species of mosses, ferns, 
lycopods, and gymnosperms (Liu et al. 2016). In angio-
sperms, especially dicotyledons, dehydrins have been char-
acterized in small herbaceous plants such as A. thaliana as 
well as large, long-living woody species such as silver birch 
(Betula pendula) (Puhakainen et al. 2004), beech (Fagus 
sylvatica) (Jiménez et al. 2008), poplar (Populustremula) 
(Renaut et al. 2005). It has been observed that the upregula-
tion of the dehydrin gene, OsDhn1, improved drought toler-
ance in rice through the detoxification of ROS (Lee et al. 
2005). Similar role of OsDhn1 in mediating drought resist-
ance has been speculated by Kumar et al. (2014). The exag-
gerated expression of Solanum habrochaites dehydrin gene 
(ShDHN) in cultivated tomato conferred tolerance to drought 
and temperature stresses (Liu et al. 2015). The SiDHN gene 
from snow lotus (Saussurea involucrate) provided tolerance 
to drought stress (Guo et al. 2017), suggesting that SiDHN 
could be a potential candidate for genetically enhancing 
plant resistance to water deficits. Recently, five dehydrin 
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genes from Prunusmume (PmLEAs) were characterized 
using RT-PCR, and transmutant tobacco overexpressing 
these genes had improved acclimation to drought stress (Bao 
et al. 2017).

Similar to LEA proteins, dehydrins accumulate abun-
dantly in plant embryos in late developmental stages 
(embryo maturation and desiccation) (Malik et al. 2017). 
In vegetative tissues, their existence is confined to young 
meristematic tissues, i.e., root tips, shoot apex, and petioles. 
However, when plants experience multiple abiotic stresses 
related to cellular water deficit (heat, drought, and osmotic 
stress), dehydrins accumulate in all vegetative tissues (Eriks-
son et al. 2016). There is evidence that a specific interrela-
tionship exists between dehydrin gene expression and plant 
abiotic stress tolerance (Graether and Boddington 2014). 
Hence, dehydrins may serve as an important plant molecular 
marker in plant abiotic stress responses (Hanin et al. 2011).

Osmotins

Osmotins are versatile and multifaceted stress-responsive 
PR-5 proteins that confer stress tolerance in plants to biotic 
and abiotic factors (Anil Kumar et al. 2015). In reference 
to their isoelectric point (pI), PR-5 proteins are further cat-
egorized into three functional groups: neutral (osmotin-like 
proteins-OLPs), acidic (PR-S), and basic (osmotin) (Van 
Loon and Van Strien 1999). Osmotins were originally ana-
lyzed in tobacco plants suffering from tobacco mosaic virus, 
and elevated levels were also observed in young leaves fac-
ing salt stress (Singh et al. 1989). Osmotins are activated 
during osmotic stress in plants to decrease water potential 
(Aliprantis et al. 1999; Hong et al. 2004; Fig. 2). Osmotic 
adjustment is a key phenomenon for maintaining water bal-
ance and cell turgor during osmotic stress and thus contrib-
utes to enhanced photosynthetic efficiency and growth (Das 
and Chakraborty 2016). Osmotins impart osmo-tolerance 
to plants possibly through ion sequestration or conferring 
protection through some structural or metabolic alterations 
at the cellular and molecular level (Viktorova et al. 2012). 
Along with OLPs (Osmotin-like proteins), they negotiate 
abiotic stress responses in plants and their increased expres-
sion is mostly determined by drought (Atkinson and Urwin 
2012), desiccation, or chilling/freezing stress (Aslam et al. 
2009). During oxidative stress, OLPs are expressed in the 
quiescent center of root apices and meristematic zone of 
shoot apex (Bobbert et al. 2005). Transgenic as well as 
wild expression behavior of osmotin and OLPs has been 
confirmed in a wide variety of plants facing multiple biotic 
and abiotic stresses. However, the signaling mechanisms 
related to their upregulation during different stresses are still 
unknown (Anil Kumar et al. 2015). The physiological role of 

RSOsPR10 (rice root-specific pathogenesis-related protein) 
under different abiotic stresses has been reported recently 
(Takeuchi et al. 2016). Their data showed that RSOsPR10 
overexpression in transgenic rice provided high drought 
resistance. Transgenic bent grass overexpressing RSOsPR10 
also showed better resistance to drought, thus validating its 
function. Overexpression of osmotin in transgenic plants 
increased leaf area, chlorophyll, and relative leaf water con-
tent in response to drought stress (Husaini and Abdin 2008). 
These findings suggest that osmotin is capable of protecting 
chlorophyll molecules and photosynthetic apparatus under 
water deficit. Transgenic expression of osmotin in mulberry 
plants with the rd29A promoter also induced high drought 
tolerance (Das et al. 2011). Osmotin and its corresponding 
promoters are transcriptionally regulated by ABA in plants 
(Nelson et al. 1992). Osmotins also regulate the production 
of ROS and activate antioxidant defense machinery under 
different environmental conditions (Xiong and Zhu 2002). 
Thus, transgenic plants overexpressing osmotins neutral-
ize ROS by stimulating the production of more compatible 
osmolytes or expression of corresponding antioxidative 
enzymes (Khan et al. 2015). The above findings indicate 
that osmotins are beneficial for optimizing the yield and 
productivity of diverse crop species to water-limited envi-
ronments. Engineering these proteins might unravel various 
complexities associated with abiotic stresses in crop plants.

Heat shock factors and heat shock proteins

The heat shock transcription factor (HSF) family is the most 
widely studied TF family in plants (Udvardi et al. 2007). 
Various studies have been undertaken to determine the mul-
tifaceted roles of HSFs in abiotic stress tolerance including 
heat stress; it is now clear that HSFs function predominantly 
in individual stress responses, rather than a combination of 
stresses (Sewelam et al. 2014). HSFs in plants are well-
accomplished modular structures characterized by the 
N-terminus DNA-binding motif (DBD) that interact with 
heat stress cis-elements (HSEs) in the destined regions (Lata 
and Prasad 2011). HSFs act as a terminal notch in signal 
transduction pathways and subsequently mediate the tran-
scriptional upregulation of diverse stress-responsive genes 
(Baniwal et al. 2004). On one side of the DBD, a peculiar 
oligomerization domain (OD) with hydrophobic amino acid 
residues (HR-A/B region) remains attached by a flexible 
linker (Baniwal et al. 2004). Plant HSFs are categorized into 
three classes, HSF A, HSF B, and HSF C, on the basis of the 
distance between the DBD and HR-A/B regions linked by a 
flexible linker (Kotak et al. 2004). The C-terminus domains 
are highly activated, distinguished by precise peptide motifs 
(AHA motifs), which are essential modulators of protein 
functions (Kotak et al. 2004).
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Heat shock proteins

Heat shock proteins, (HSPs) proteins act as molecular chap-
erones attributable to their role in perpetuating cellular sta-
bility in cells subsidiary to optimal as well harsh growth 
conditions (Wang et al. 2014a). HSPs assist in protein fold-
ing during cellular metabolism (Wang et al. 2004), stabilize 
membrane proteins, and facilitate protein refolding during 
exposure to stress (Wahid et al. 2007). Moreover, an inclu-
sive category of HSPs exhibits chaperone activity during 
three-dimensional protein folding and destruction caused by 
stress (Kotak et al. 2007).

Heat shock proteins are categorized into five highly con-
served subfamilies on the basis of their molecular weights 
as Hsp60, Hsp70 (DnaK), Hsp90, Hsp100 (Clp), the chap-
eronins (GroEL), and the small HSP (sHsp) family (Kotak 
et al. 2007). The course of action of HSPs is peculiar; they 
specifically bind to target substrates without forming cova-
lent bonds (Wahid et al. 2007). Except for the sHsp family, 
limited attention has been given to the functionality of most 
of the HSPs/chaperones in plant abiotic stress responses 
(Kregel 2002). Hsp60, Hsp70, and Hsp90 behave as molecu-
lar shields during stress conditions by communicating with 
an inclusive array of co-chaperone proteins that assist in the 
assemblage of peculiar substrate proteins by regulating their 
activity (Liberek et al. 2008). Genome analysis revealed 
the existence of approximately 13 sHsps, seven Hsp60, 18 
Hsp70, seven Hsp90, and eight Hsp100 members in A. thali-
ana (Zhang et al. 2015). Plant species such as maize and 
wheat also express HSPs during episodes of abiotic stresses 
(Kumar et al. 2012). By altering the genetic constitution 
of HSPs, new stress-tolerant varieties can be engineered; 
for instance, overexpression of Hsp101 in Arabidopsis and 
rice provided tolerance to extreme temperatures (Katiyar-
Agarwal et al. 2003). The upregulation of Hsp70 imparts 
tolerance to drought, and heat as reported in transgenic 
tobacco, where overexpression of NtHSP70 enhanced tol-
erance to heat as well as drought in transgenic tobacco lines 
(Udvardi et al. 2007). The sHsps are a diverse and abun-
dant category of proteins that may emulate their response 
to counterfeit transient changes in external environmental 
(Sun et al. 2012). These sHsps proteins accumulate not only 
during sublethal temperatures, but in response to osmotic 
stress. Considering the above facts, triggered synthesis of 
HaHsp17.6 (class CI) and HaHsp17.9 (class CII) genes has 
been reported in the stem and roots of water-deficit sun-
flowers (Tuteja and Gill 2016). Similarly, the significance of 
chloroplast sHsps was revealed in Agrostis stolonifera grass, 
where sHsp26.2 was related to heat tolerance in susceptible 
variants (Zhu et al. 2012). OsHSP18.2 (Oryza sativa) in rice 
acts as molecular chaperone and improves seed quality and 
viability under adverse stimuli by inhibiting ROS synthesis 
(Kaur et al. 2015). Several heat shock proteins were also 

upregulated in rice cultivars overexpressing golgi/plastid 
OsMSD1 (Oryza sativa manganese superoxide dismutase 
1) that improved grain quality under heat stress (Shiraya 
et al. 2015). OsMSD1 has been reported to express actively 
in the endosperm and embryo of developing seeds in rice 
(Shiraya et al. 2015).

Individually, each member of HSP/chaperones has pecu-
liar role, but the coordinated function of different HSP/chap-
erone networks emerges as a key for stress tolerance. How-
ever, the role of HSPs/chaperones as regulatory and sensing 
molecules in signal transduction and transcription pathways 
during stress remains unclear, and research in relation to the 
functional aspects of HSPs/chaperones in stress tolerance is 
in progress.

Stress‑associated proteins (SAPs)

A family of stress-associated proteins (SAPs) has recently 
attracted attention in several studies on abiotic stress 
responses in plants (Giri et al. 2013; Dixit and Dhankher 
2011; Kanneganti and Gupta 2008). The SAP gene family 
has emerged as a unique class of ZFPs (zinc finger proteins) 
that have been evolutionarily conserved among various plant 
species (Giri et al. 2013; Vij and Tyagi 2008). Approxi-
mately, 14 genes encoding SAP proteins in Arabidopsis 
thaliana and 18 in Oryza sativa genome have been identi-
fied (Vij and Tyagi 2006). The presence of SAP-like proteins 
in the genomes of other organisms including fungi, protists, 
and animals has been reported (Vij and Tyagi 2008). SAPs 
are characterized by a distinct A20/AN1 zinc finger terrain 
with repeated Cys2-Cys2 finger motifs or Cys2-His2 finger 
motifs (Dixit et al. 2017) and were initially identified in rice 
(Mukhopadhyay et al. 2004). Most SAP genes are induced 
by abiotic stressors such as heat and drought in rice (Vij and 
Tyagi 2006; Dixit and Dhankher 2011). The latest evidence 
is that the constant expression of SAP gene homologs in 
cotton, tobacco, Arabidopsis, wheat, and banana increases 
endurance to multiple abiotic stresses, including drought as 
well as heat (Dansana et al. 2014). Despite detailed insight 
into SAPs function in plants, their mode of action in con-
ferring stress tolerance is not clear yet. The compilation 
of available data on SAPs may be beneficial in evaluating 
their functional aspects for enhanced yield stability and abi-
otic stress tolerance in plants (Giri et al. 2013). SAP gene 
products may be involved in stress signaling through stable 
protein–protein interactions with zinc finger motifs (Kothari 
et al. 2016). SAPs may emerge as novel targets for improving 
stress tolerance, specifically with stress-responsive promot-
ers (Ghneim-Herrera et al. 2017). Functional analysis of the 
ShSAP1 gene from sugarcane indicated that ShSAP1 might 
confer drought and osmotic stress tolerance in transformed 
tobacco (Li et al. 2014b). However, a TaSAP5 protein from 
wheat acted as an E3 ubiquitin ligase to degrade the DRIPs, 



Theoretical and Applied Genetics 

1 3

which enhanced the expression of DREB2A proteins, and 
further improved grain yield as well as survival in transgenic 
Arabidopsis under drought stress.

Enhanced expression of OsiSAP1 and OsiSAP8 from 
Oryza sativa, each with one AN1/A20 motif, increased tol-
erance drought stress in transgenic rice as well as tobacco 
(Dansana et al. 2014; Kanneganti and Gupta 2008; Mukho-
padhyay et al. 2004). Likewise, the constitutive expression of 
ZFP177 (OsSAP9) in rice was induced by heat and oxidative 
stress, but it remained unaltered with drought stress (Huang 
et al. 2008). SAP genes were also expressed in Arabidopsis 
and maize during drought and osmotic stresses in a highly 
specific manner (Dansana et al. 2014). Upregulation of 
AlSAP, an SAP from Aeluropus littoralis (a halophyte grass) 
in transgenic durum wheat, rice, and tobacco, improved 
yield and productivity under stress conditions (Saad et al. 
2010; Ben Saad et al. 2012). Similar findings were reported 
in Arabidopsis, where OsSAP1 from rice protected yields 
during water stress (Giri et al. 2011). Upregulation of the A. 
littoralis, AlSAP gene in rice, also enhanced grain yield by 
50–90% under drought stress in the field (Ghneim-Herrera 
et al. 2017). The expression of Prunus persica, PpSAP1, 
was induced by heat and water stress and increased water 
retention ability in transgenic plums (Lloret et al. 2017). 
Similarly, in Arabidopsis, overexpression of AtSAP13 
transcripts improved tolerance to drought along with other 
stresses (Dixit et al. 2017).

As plant SAPs participate in various physiological func-
tions by interacting with various other proteins, they may 
act as regulators of abiotic stress tolerance in plants (Kothari 
et al. 2016). However, comprehensive evaluation and under-
standing of their role in multifaceted signaling/regulatory 
cascades is required to make use of their potential in yield 
stability under abiotic stresses.

Physiological relationship between drought 
and heat stress

The physiological effects of drought and heat stresses 
are linked and mutual (Prasad et al. 2008). For instance, 
decline in stomatal conductance and transpiration under 
water-deficit conditions may result into heat stress because 
of rise in leaf temperature (Król 2013; Sehgal et al. 2017a, 
b). Drought stress leads to reduced root hydraulic con-
ductivity to prevent water loss from the plant. Extreme 
temperatures can induce stomatal closure and also accel-
erate root moisture loss resulting in drought stress (Par-
ent et al. 2010). Photosynthetic efficiency and transpi-
ration rates have shown to decrease under drought and 
heat stress, when applied individually or in combination 
(Lamaoui et al. 2018; Sehgal et al. 2017a, b; Sita et al. 
2017). This is mainly because of stress-induced stomatal 

closure but can also be as a result of reduced leaf expan-
sion, leaf senescence, and impaired functioning of the 
photosynthetic machinery (Saibo et al. 2009; Rahnama 
et al. 2010). The latter situation is often attributed to the 
decreased internal availability of  CO2, in addition to inhi-
bition of key photosynthetic enzymes and ATP synthases 
(Zlatev and Lidon 2012; Zandalinas et al. 2016). Both heat 
and drought stresses are reported to impair the electron 
transport, degrade proteins, release magnesium and cal-
cium ions from their protein-binding partners (Rexroth 
et  al. 2011; Zlatev and Lidon 2012; Zandalinas et  al. 
2016). Prolonged exposures to exorbitant temperatures as 
well as drought can result in reduced chlorophyll content, 
increased amylolytic activity, disintegration of thylakoid 
grana, and disturbed assimilates’ transport (Kozlowska 
et  al. 2007). These stresses induce elevated levels of 
ROS, depending upon their predominance, which cause 
damage to proteins, lipids, and DNA ultimately result-
ing in oxidative stress (Zlatev and Lidon 2012; Awasthi 
et al. 2015) to upregulate various antioxidants to combat 
the toxic effects of ROS (Mittler 2002; Gill and Tuteja 
2010). The accumulation of osmolytes is also a common 
response to drought and heat stress, aimed to stabilize and 
protect proteins, membranes and maintain the water rela-
tions (Zandalinas et al. 2018). Moreover, several phyto-
hormones are involved in response to drought and heat 
stress to control multiple events, which may be common 
to both the stresses. For instance, abscisic acid (ABA) is 
a key hormone involved in conferring tolerance to abiotic 
stresses such as drought and heat (Zhang et al. 2006; Lata 
and Prasad 2011). ABA has always been considered as 
a major chemical involved in root-to-shoot stress signal 
(Suzuki et al. 2013), inducing inhibition of leaf expansion 
and short-term responses like stomatal closure. ABA is 
involved in the regulation of systemic responses to abiotic 
stress before there are any changes that can be deciphered 
in leaf water or nutrient status (Bauer et al. 2013; Suzuki 
et al. 2013). Recently, new retrograde signals such as the 
metabolite 3′phosphoadenosine 5′-phosphate have been 
considered to accumulate during high-temperatures and 
drought conditions, moving from chloroplast to nucleus 
to regulate ABA signaling and stomatal closure during the 
oxidative stress, to induce drought tolerance (Pornsiriwong 
et al. 2017).

Proteins associated with combined heat 
and drought stress response

Since the episodes of drought and heat are predicted to rise 
in the coming future (Team et al. 2014), there is an immedi-
ate need to study the molecular responses of plants to these 
stresses, especially their combination, for devising strategies 
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to improving the yield and productivity of food crops (Barn-
abás et al. 2008). Both heat and drought stress have several 
damaging impacts on various traits; crop yield and produc-
tivity are negatively influenced by decreased water supply 
and high temperatures due to morphological and physio-
logical disruptions (Lesk et al. 2016). Various studies have 
investigated the effects of drought and heat stress, applied 
individually, or in combination, on plant growth and produc-
tivity, suggesting that these stresses causes severe damage, 
when combined, as compared to individual stress factor (de 
Boeck et al. 2016; Zandalinas et al. 2016; Awasthi et al. 
2017; Sehgal et al. 2017a, b). It is worth mentioning that 
the sequential imposition of drought and heat stress does not 
affect general response to combination of stresses (Zandali-
nas et al. 2017). Though all the plant species, investigated 
for their responses to individual effects of stresses, showed 
early similar physiological response to these stresses, the 
combined action of both stresses was found to be more del-
eterious and even unique than the individual stress factor. 
The plants seem to have adopted specific defensive means 
to counter the combined severity of heat and drought (Fahad 
et al. 2017). The joint effect of heat and drought stress 
resulted in early stomatal closure, more reduction in pho-
tosynthesis, and substantially increased leaf temperature, as 
observed in tobacco, compared to their individual treatments 
(Rizhsky et al. 2004). The responses to these situations were 
found to be unique. For example, some transcription fac-
tors encoding dehydrins, catalases, and glycolate oxidases 
were activated during drought, and some were activated 
during heat stress, for instance, thioredoxin peroxidase, 
while ascorbate peroxidases were down-regulated dur-
ing combination of both drought and heat shock (Rizhsky 
et al. 2004). Moreover, other transcription factors, such as 
WRKY transcripts, glutathione peroxidase, alternative oxi-
dase, phenylalanine ammonia lyase, pathogenesis-related 
proteins, and an ethylene -responsive element-binding pro-
tein, were exclusively expressed during the combined shock 
of heat and drought stress (Rizhsky et al. 2004). In another 
instance, in three-day-old seedlings of wheat exposed to heat 
and/or drought, cyclophilin (wCyp-45) proteins were more 
induced under combined heat and drought stress as com-
pared to individually applied stress (Sharma and Kaur 2009). 
A further study on combined effects of heat and drought 
stress in two wheat cultivars, viz. resistant cv. Katya and 
susceptible cv. Sadovo (Grigorova et al. 2011) showed that 
heat shock proteins, HSP70, HSP100 and (smHSPs), were 
more expressed in both cultivars under the combination of 
both stresses than individually applied stress. The expression 
of HSP70, HSP100 and (smHSPs) was increased to eight-
fold during drought and almost tenfold during combined 
drought/heat; however, no change in the expression behavior 
of HSP70, HSP100 and (smHSPs) was observed during heat 
stress alone (Grigorova et al. 2011). Western blot analysis of 

heat-stable proteins (HSP90, SOD, CyPs, Aquaporins, LEA 
and WGA) revealed that these proteins were highly induced 
during combined heat and drought stress, as compared to 
individual stress, in both tolerant as well as susceptible gen-
otypes of wheat (Triticum aestivum) (Rakhra and Sharma 
2012). Various stress-responsive proteins responsible for 
heat, drought, and combined stress tolerance were also 
examined in two cultivars of Kentucky bluegrass (Poaprat-
ensis L.) viz. (tolerant ‘Midnight’ and sensitive ‘Brilliant’) 
(Xu and Huang 2012). Physiological assays showed that 
‘Midnight’ cultivar showed high photochemical efficiency 
and relative leaf water content and less membrane damage in 
comparison with ‘brilliant’ during all stress treatments (Xu 
and Huang 2012) under combined stresses. Moreover, some 
novel proteins responsive to these stresses, especially heat 
shock proteins (HSPs70 and HSPs90), were highly induced, 
whereas proteins related to photorespiration were down-
regulated (Xu and Huang 2012). Under drought stress, only 
chaperonins were upregulated in both the cultivars, while 
GAPDH (glyceraldehydes-3-phosphate dehydrogenase) 
was exclusively expressed during combined stress, whereas 
heat shock proteins (HSPs70 and HSPs90) were upregulated 
under heat stress (Xu and Huang 2012). In barley, differen-
tial regulation of leaf proteins in response to heat, drought 
and combination of both suggested variations in the role of 
these proteins in detoxification, photosynthesis, protein bio-
synthesis and energy metabolism (Rollins et al. 2013). Leaf 
proteomic analysis of barley plants showed no significant 
change in protein abundance under drought stress, whereas 
during heat stress, a large number of proteins associated with 
light-harvesting complex (Lhcb3) and the oxygen-evolving 
complexes (PsbO and PsbP) were upregulated, whereas 
these were enhanced by tenfold in combined drought/heat 
treatment (Rollins et al. 2013). Some novel transcripts, such 
as MYB78 and ATAF1, stress chaperones, viz. heat shock 
proteins (HSPs), were highly expressed in sorghum plants, 
exposed to heat, drought, and combination of both; and func-
tional characterization of these proteins in response to these 
stresses was proposed to enhance stress tolerance (Johnson 
et al. 2014).

Proteome analysis showed that during drought stress, 
highly activated LEA (late embryogenesis abundant), 
HKT1, a sodium ion transmembrane transporter pro-
teins, engaged in cellular Na + homeostasis mainte-
nance, and P5CS2 (Delta-1-pyrroline-5-carboxylate 
synthase, involved in proline synthesis) were expressed, 
whereas during heat stress, expression of large number 
of heat shock proteins was prominent (Johnson et  al. 
2014). Moreover, in combined stress, some unique genes 
related to protein ubiquitination and aromatic compound 
metabolism, glutathione transferases, heat shock proteins, 
and senescence-associated genes were highly expressed 
(Johnson et al. 2014). In maize, the expression level of 
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Table 2  Stress-related proteins of different types having strong potential for developing drought and heat tolerant plants, on the basis of experi-
mental evidences, obtained from various field-grown transgenic plants, under controlled environment

Stress protein/type Transgenic plant Stress Criteria References

OsPYL3/ABA receptor Rice Drought Higher relative leaf water content, chlorophyll, fresh, and dry 
weight accumulation at maturity under stress

Lenka et al. (2018)

SNAC1/NAC TF Rice Drought Higher seed setting, higher osmotic adjustment, cell mem-
brane stability, protection of important macromolecules 
from degradation, and maintenance of redox homeostasis 
and detoxification under stress

Hu et al. (2006)

GbMYB5/MYB TF Cotton Drought Enhanced root architecture, root expansion, increase in water‐
use efficiency (WUE) and biomass, multiple stress tolerance 
without yield penalty under stress

Chen et al. (2015a, b)

TaABL1/TF Wheat Drought/heat Hastened stomatal closure, oxidative tolerance under stress, 
thereby improving tolerance to multiple abiotic stresses. 
Up- or down-regulation of expression of some stress-related 
genes controlling stomatal closure under drought stress

Xu et al. (2014a)

OSMSD1/HSP Rice Heat Oxidative tolerance increased chaperone generation and regu-
lation of quality control systems in grains under heat stress

Shiraya et al. (2015)

Fig. 3  Combined approach for developing drought or/and heat stress-tolerant plants
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different proteins was changed significantly under com-
bination of heat and drought (Zhao et  al. 2016). The 
upregulation of 16, 28, and 61 proteins was peculiar to 
drought stress, whereas 65, 135, and 201 proteins were 
differentially expressed under both heat, drought as well 
as combined stresses, respectively (Zhao et al. 2016). 
In another study in maize (Hu et al. 2015), three sHSP 
(B4G250, BF976 B6T649) were highly expressed under 
heat and combined heat/drought; however, no significant 
change in these proteins was noticed under drought stress. 
Recent studies confirmed that ABA is responsible for tai-
lored response of plants to the co-occurring drought and 
heat stress as well as individually applied heat or drought 
stress (Suzuki 2016). For instance, enhanced accumula-
tion of 9-cis epoxycarotenoid dioxygenase (NCED) pro-
tein involved in ABA biosynthesis was highly expressed 
in poplar in response to drought or heat stress alone (Li 
et al. 2014a, b, c). However, under the stress combina-
tion, in contrast, NCED protein accumulation initially 
enhanced then declined, suggesting the different regula-
tory mechanisms of ABA under these single and com-
bined stresses (Li et al. 2014a, b, c).

Likewise, the combined as well as individual effects 
of drought and heat stress were compared in the leaves of 
two soya bean cultivars, viz. Surge and Davison, through 
various physiological and biochemical assays (Das et al. 
2016). The study revealed that a wide array of abiotic 
stress-related proteins regulating different signaling path-
ways and molecular events were expressed differentially 
under these stresses (Das et al. 2016). The heat shock pro-
tein 70 and EF-Tu protein were highly upregulated during 
heat stress, whereas no such enhancement under drought 
stress was observed in both the cultivars (Das et al. 2016).

Taken together, above findings showed the crucial and 
distinctive involvement of various stress-responsive pro-
teins in response to heat, drought, as well as their com-
bination, suggesting unique cellular defense responses; 
however, detailed mechanism of pathways and genes-
associated individual and combined stresses are largely 
unknown and need to be probed further.

Conclusion and future perspective

This review emphasizes the promising roles of different 
stress proteins as a tool to enhance plant responses to 
drought and heat stress in various model and agricultural 
crops. The abiotic stress response is a complex process 
in plants because of the involvement of many gene fami-
lies and their complex interactions. Stress proteins have 
been well established to participate in stress tolerance, and 
approaches of overexpressing these genes in model plants 
under controlled conditions have been quite successful, 

as described in Table 1. However, signal specificity is 
achieved as a result of the interplay between components 
of the various pathways, particularly the hormones such 
as ABA, TFs, HSFs, and ROS, etc. The major objectives 
of the current plant stress research are to deliver specific 
targets for the improvement of stress resistance in agricul-
tural crops. This review presents some important regula-
tory genes that act in drought and heat stress response 
systems, individually, as well as in combination. Though 
various studies have reported numerous proteins associ-
ated with drought and/or heat, few of them seem to have 
a strong potential in improving tolerance against these 
stresses, as evidenced by the performance of transgenic 
plants overexpressing them, under controlled field envi-
ronment (Table 2). These plants have been evaluated on 
the basis of several criteria/traits related to drought or 
heat tolerance (Table 2) and may hold promise for future 
applications in crop improvement. Manipulation of these 
genes may confer tolerance to drought and heat, along with 
other stresses too, in various food crops. In future, to have 
a specific model for crop stress responses, a combined 
approach should be implemented through the alignment of 
research on abiotic stress proteins with other omics tech-
nologies such as proteomics, transcriptomics, genomics, 
and metabolomics (Fig. 3). During the past years, the need 
for a change in the attention in abiotic stress research has 
become obvious. There is also a dearth of studies focusing 
on the negative effect of overexpression of TFs on flower-
ing time and yield in agricultural crops. A lot of statistics 
about stress proteins have been collected in response to 
drought and heat stress. However, a complete regulatory 
mechanism of individual transcription factors and their 
interactions remains mostly unidentified, which is required 
to obtain the favorable TF-related genes for breeding abi-
otic stress-tolerant crops with improved yield. Therefore, it 
is still a significant challenge for researchers to figure out a 
complete understanding of the detailed regulatory mecha-
nisms for abiotic stress responses emphasizing drought 
and heat for breeding multiple stress-tolerant crops with 
increased yields and better qualities. Considering the 
future scenario, more emphasis would be needed in prob-
ing the unique proteins associated with combined heat and 
drought stress tolerance in various agricultural crops.
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